文档库 最新最全的文档下载
当前位置:文档库 › 三维模态变形体离散元方法

三维模态变形体离散元方法

三维模态变形体离散元方法
三维模态变形体离散元方法

SAP2000之Pushover分析

SAP2000之Pushover分析 Pushover分析:基本概念 静力非线性分析方法(Nonlinear Static Procedure),也称Pushover 分析法,是基于性能评估现有结构和设计新结构的一种方法。静力非线性分析是结构分析模型在一个沿结构高度为某种规定分布形式且逐渐增加的侧向力或侧向位移作用下,直至结构模型控制点达到目标位移或结构倾覆为止。控制点一般指建筑物顶层的形心位置;目标位移为建筑物在设计地震力作用下的最大变形。 Pushover方法的早期形式是“能力谱方法”(Capacity Spectrum Method CSM),基于能量原理的一些研究成果,试图将实际结构的多自由度体系的弹塑性反应用单自由度体系的反应来表达,初衷是建立一种大震下结构抗震性能的快速评估方法。从形式上看,这是一种将静力弹塑性分析与反应谱相结合、进行图解的快捷计算方法,它的结果具有直观、信息丰富的特点。正因为如此,随着90年代以后基于位移的抗震设计(Diaplacement-Based Seismic Design,DBSD)和基于性能(功能)的抗震设计(Performance-Based Seismic Design. PBSD)等概念的提出和广为接受,使这种方法作为实现DBSD和PBSD的重要工具,得到了重视和发展。这种方法本身主要包含两方面的内容:计算结构的能力曲线(静力弹塑性分析)、计算结构的目标位移及结果的评价。第一方面内容的中心问题是静力弹塑性分析中采用的结构模型和加载方式;第二方面内容的中心问题则是如何确定结构在预定地震水平下的反应,目前可分为以A TC-40为代表的CSM和以FEMA356为代表的NSP (Nonlinear Static Procedure,非线性静力方法),CSM的表现形式是对弹性反应谱进行修正,而NSP则直接利用各种系数对弹性反应谱的计算位移值进行调整。两者在理论上是一致的。在一些文献中将第一方面的内容称为Pushover,不包括计算目标位移和结果评价的内容。本文中,将两方面的内容统称为“Pushover 分析”。基于结构行为设计使用Pushover分析包括形成结构近似需求和能力曲线并确定曲线交点。需求曲线基于反应谱曲线,能力谱基于Pushover分析。在Pushover分析中,结构在逐渐增加的荷载作用下,其抗侧能力不断变化(通常用底部剪力-顶部位移曲线来表征结构刚度与延性的变化,这条曲线我们可以看成为表征结构抗侧能力的曲线)。将需求曲线与抗侧能力曲线绘制在一张图表中,如果近似需求曲线与能力曲线的有交点,则称此交点为性能点。利用性能点能够得到结构在用需求曲线表征的地震作用下结构底部剪力和位移。通过比较结构在性能点的行为与预先定义的容许准则,判断设计目标是否满足。在结构产生侧向位移的过程中,结构构件的内力和变形可以计算出来,观察其全过程的变化,判别结构和构件的破坏状态,Pushover分析比一般线性抗震分析提供更为有用的设计信息。在大震作用下,结构处于弹塑性工作状态,目前的承载力设计方法,不能有效估计结构在大震作用下的工作性能。Pushover分析可以估计结构和构件的非线性变形,结果比承载力设计更接近实际。Pushover分析相对于非线性时程分析,可以获得较为稳定的分析结果,减少分析结果的偶然性,同时可以大大节省分析时间和工作量。

岩体动静力稳定分析的三维离散元数值模型

清华大学学报(自然科学版)18 20 1996年第36卷Journal of T singhua U niversity(Sci&T ech)第10期第98~104页 岩体动静力稳定分析的三维离散元数值模型3 鲁 军, 张楚汉, 王光纶, 金 峰 清华大学水利水电工程系,北京100084 文 摘 离散单元法是一种适用于不连续岩体稳定分析的数值方法,可用于模拟岩体的大变 形及系统的失稳破坏过程。提出了一种可用于岩体动静力稳定分析的三维离散元模型的凸多 面体角边修圆模式及接触关系检测算法,此法将接触区域分为角区域、边区域和面区域,采用分 级检索。对于接触刚度、阻尼系数、时步等参数作了讨论,同时建立了相应的动力学模型,并验 证了振动台上的两刚块振动实验结果。结果表明:计算所得的加速度、位移过程曲线与试验结 果吻合较好。该模型可分析在静力与动力作用下岩体的大变形失稳过程。 关键词 离散元;刚体动力学;岩体稳定 分类号 TV35 离散单元法是一种适用于不连续岩体稳定分析的数值方法[1,2],已经应用于岩土、矿山、地下工程等方面。离散单元法的最大特点是允许单元之间的相对运动,不需要满足位移连续和变形协调条件,因此它可以模拟系统的大变形以及系统的破坏过程。与二维离散单元法相比,三维离散单元法的重点在于岩体自动剖分及接触关系检测与动力学模型的建立。目前,二维离散元模型已在我国岩石力学工程中得到了一定的应用,但三维离散元方法在国内未见到应用实例。本文建立的三维刚性体离散元模型对多面体岩块进行了角边修圆,能较好地确定单元接触作用的方向。用中心差分的动力松弛法求解静力问题,使得动静力分析统一在一个模型之中。 1 模 型 1.1 凸多面体接触关系分类及角边修圆处理 在三维离散单元中,块体之间的接触关系可分为角面、角边、角角、边边、边面、面面6种接触模式,其中以角面、角边、角角、边边接触为4种基本模式。而边面接触可以分解为边边或角面接触或两者之和。面面接触可以分解为角面或边边接触或两者之和。在拟定4种基本接触关系后,进一步进行修圆处理。 本文提出的凸多面体角边修圆算法对凸多面体的限制是:块体不存在4个以上公共面的角点,这一点容易满足。因为在实际节理、断层等结构面切割的岩体中,4个以上结构面相交于同一点的情况出现较少。角边修圆时将块体的每个角点修成圆球角,同时将块体的每条边修成圆柱边,并保证修圆后的角边面光滑过渡,为此, 1)取定修圆半径R,即圆球角的球半径与圆柱边的圆柱半径; 收稿日期:1995212207  3国家“八五”科技攻关项目

模态试验及分析的基本步骤

模态试验及分析的基本步骤 1.动态数据的采集及响应函数分析 首先应选取适当的激励方式。激励方式可以是正弦、随机或瞬态中的任何一种。激励方式不同,相应的模态参数识别方法也不同。目前主要有单输入单输出、单输入多输出和多输入多输出三种方法。然后进行数据采集。对于单输入单输出方法要求同时高速采集输入与输出两个点的信号,用不断移动激励点位置或响应点位置的办法取得振型数据;单输入多输出及多输入多输出的方法要求大量通道数据的高速采集,因此要求大量的振动测量传感器或激振器,试验成本极高。在采集信号数据以后,还要在时域或频域对信号进行处理,例如谱分析、传递函数估计、脉冲响应测量以及滤波、相关分析等。 2.建立结构数学模型 根据己知条件,建立一种描述结构状态及特性的模型,作为计算及参数识别的依据,目前一般假定系统为线性的。由于采用的识别方法不同,数学建模可分为频域建模和时域建模。根据阻尼特性及频率藕合程度又可分为实模态和复模态等。 3.参数识别 按识别域的不同可分为频域法、时域法和混合域法。激励方式不同,相应的识别参数方法也不尽相同。并非越复杂的方法识别的结果越可靠。对于目前能够进行的大多数不是十分复杂的结构,只要取得了可靠的频响数据,用简单的识别方法也可能获得良好的模态参数;反之,即使用最复杂的数学模型、最高级的拟合方法,如果频响测量数据不可靠,识别的结果也不会理想。 4.振型动画 参数识别的结果得到了结构的模态参数模型,即一组固有频率、模态阻尼以及相应各阶模态的振型。但是由于结构复杂,由许多自由度组成的振型的数组难以引起对振动直观的想象,所以必须采用振型动画的办法,将放大的振型叠加到原始的几何形状上。

主要的离散元软件介绍

主要的离散元软件介绍 离散元方法(DEM)首次于20世纪70年代由CundallandStrack 在《A discrete numerical model for granular assemblies》一文提出,并不断得到学者的关注和发展。 PFC3D模拟效果 该方法最早应用于岩石力学问题的分析,后逐渐应用于散状物料和粉体工程领域。由于散状物料通常表现出复杂的运动行为和力学行为,这些行为难以直接使用现有基本理论,尤其是基于连续介质理论的方法来解释,而进行实验研究则成本高、周期长,DEM仿真技术的应用范围将会越来越广。 (1)商用软件 目前开发离散元商用程序最有名的公司要属由离散元思想首创者Cundall加盟的ITASCA国际工程咨询公司。该公司开发的二维UDEC(universal distinct element code)和三维3DEC(3-dimensional distinct elementcode)块体离散元程序,主要用于模拟节理岩石或离散块体岩石在准静或动载条件下力学过程及采矿过程的工程问题。

该公司开发的PFC2D和PFC3D(particle flow code in 2/3 dimensions)则分别为基于二维圆盘单元和三维圆球单元的离散元程序。它主要用于模拟大量颗粒元的非线性相互作用下的总体流动和材料的混合,含破损累计导致的破裂、动态破坏和地震响应等问题。 EDEM是世界上第一个用现代化离散元模型科技设计的用来模拟和分析颗粒的处理和生产操作的通用CAE软件。使用EDEM,可以快速、简便的为颗粒固体系统建立一个参数化模型,可以导入真实颗粒的CAD模型来准确描述它们的形状。现在大量应用于欧美国家中的采矿、煤炭、石油、化工、钢铁和医药等诸多领域。 中国科学院非连续介质力学与工程灾害联合实验室与极道成然科技有限公司联合开发了国内最新的离散元大型商用软件GDEM,该软件基于中科院力学所非连续介质力学与工程灾害联合实验室开发的CDEM算法,将有限元与块体离散元进行有机结合,并利用GPU加速技术,可以高效的计算从连续到非连续整个过程。 由中冶赛迪公司在冶金、矿山、工程机械工程应用基础上,2013年推出的大型商业软件StreamDEM,是国内首款完全拥有完全独立的自主知识产权,代表了离散元的最高发展水平,让国人和世界站在了同一起跑线上。 (2)开源软件 BALL & TRUBAL (1979–1980) distinct element method (FORTRAN code), originally written by P.Cundall and currently maintained by Colin Thornton.

PUSHOVER分析

提要:本文首先介绍采用Midas/Gen进行Pushover分析的主要方法及使用心得,然后结合工程实例进行具体说明,其结果反映出此类结构在大震下表现的一些特点,可供类似设计参考。 关键词:Pushover 剪力墙结构超限高层 Midas/Gen 静力弹塑性分析(Pushover)方法是对结构在罕遇地震作用下进行弹塑性变形分析的一种简化方法,本质上是一种静力分析方法。具体地说,就是在结构计算模型上施加按某种规则分布的水平侧向力,单调加荷载并逐级加大;一旦有构件开裂(或屈服)即修改其刚度(或使其退出工作),进而修改结构总刚度矩阵,进行下一步计算,依次循环直到结构达到预定的状态(成为机构、位移超限或达到目标位移),得到结构能力曲线,并判断是否出现性能点,从而判断是否达到相应的抗震性能目标[1]。 Pushover方法可分为两个部分,第一步建立结构能力谱曲线,第二步评估结构的抗震性能。 对剪力墙结构体系的超限高层而言,选取Pushover计算程序的关键是程序对墙单元的设定。SAP2000、ETABS软件没有提供剪力墙塑性铰,对框-剪结构可将剪力墙人工转换为模拟支撑框架进行分析;对剪力墙结构来说,进行转换不可行。而Midas/Gen程序提供了剪力墙Pushover单元(类似薄壁柱单元,详见用户手册),对剪力墙能够设置轴力-弯矩铰以及剪切铰。下面将详细介绍如何在Midas/Gen中进行Pushover分析的步骤(以Midas/Gen 6.9.1为例): 一 Pushover分析步骤 1. 结构建模并完成静力分析和构件设计直接在Midas/Gen中建模比较繁琐,可以用接口转换程序从SATWE(或其他程序如SAP2000)中导入。SATWE转换程序由Midas/Gen提供,会根据PKPM的升级而更新。转换仅需要SATWE中的Stru.sat 和Load.sat文件。转换时需要注意的是,用转换程序导入SATWE的模型文件后,形成的是Midas/Gen的Stru.mgt文件,是模型的文本文件形式,需要在Midas/Gen中导入此文件,导入后还应该注意以下几个问题: 1) 风荷载及反应谱荷载没有导进来,需要在Midas/Gen中重新定义; 2) 需要定义自重、质量; 3) 需要定义层信息,以及墙编号; 此外,还应注意比较SATWE的质量与Midas/Gen的质量,并比较两者计算的周期结果实否一致。 2. 输入Pushover分析控制用数据 荷载最大增幅次数用于定义达到设定的目标位移(或荷载)的分步数,一般来说,分步越多,每次的增幅越小,最终得到的能力谱曲线越平滑。但是分步过多带来计算时间上的大大增加,所以取值应该由少至多进行试算,直到取得满意的曲线结果为止。 图1 10分步,每步最大10次迭代结果

混合有限元离散元方法

可变形离散元的坐标变换 0 接触检测算法 对非连续问题来说,判断是否接触是很重要的。减少相隔较远的颗粒间的接触判断可以提高算法效率()()o N o N →2。直接检测的算法分为两类:一类是圆形边界,另一类是矩形边界。对矩形边界,有离散单元的直接映射检测算法,单元每改变一次位置该方法需调用一次: Step 1:将离散元映射到胞元。根据每个单元中心位置将单元映射到胞元上。因此每个单元都唯一的与一个胞元对应。即对每个单元中心坐标取整,其中d 为胞元边长,max()elements d R > min min int int( ), int int()i i i i x x y y x y d d --=+=+11 (1) Step 2:找到可能接触的离散元。每个离散元都与其映射胞元中心重合且被完全覆盖,两个胞元相邻的单元有可能接触。事实上对下面的胞元,因为每个胞元都可作为中心元被检查两次,所以只需检查左下角的四个。 如何将单元映射到胞元上呢?不同的映射方法定义了不同的算法,如屏风法、分类法、Munjiza-NBS 法和Williams-C 网格法。 1 屏风法: [,,,...,]N E e e e e =123,N 为单元个数。离散元素映射到细胞的获得是通过设置阵列C 指单独列出的头连接的胞元。

映射进行如下: STEP 1 设置空为-1 Loop over all rows of cells(i=1; i ≤Ncel ; i++) { Loop over all cells in a row(j=1;j ≤Ncel ; j++) { set C[i][j ] = ?1 } } Loop over all discrete elements(k=1; k ≤N; k++) { set E[k] = ?1 } STEP 2 离散元映射到胞元。单元每运动一次执行一次,例如每个时间步执行一次。对每个胞元设置一个独立的链表: Loop over all discrete elements (k=1; k ≤N;k++) { Integerise current coordinates and set min min int int( ), int int() i i i i x x i x d y y j y d -==+-==+11 Place the discrete element onto the corresponding singly connected list by setting E[k] = C[i][j ] and afterwards C[i][j ] = k } 当单元移动后再进行映射时不需要初始化。当单元分离时步骤1再次进行。一旦 离散元都映射到胞元,则检测开始。对所有离散元循环,找到离散元映射的胞元,然后检查该胞元相邻和周围胞元中的单元。 Loop over discrete elements (k=1; k ≤N; k++) { Integerise current coordinates and set min min int int( ), int int() i i i i x x i x d y y j y d -==+-==+11 if C[i][j]≤N { C[i][j]=C[i][j]+N loop over all discrete elements from C[i][j] list { loop over all discrete elements from neighboring cells, i.e. lists C[i-1][j-1], C[i][j-1], C[i+1][j-1], C[i-1][j], C[i][j] { direct check for contact between discrete elements } } } } 搜索只遍历所有离散元,并不遍历所有胞元。 2 分类法 如果离散元是分散分布的,则胞元矩阵会很大,所以为节省RAM 和CPU 产生

模态分析与振动测试技术

模态分析与振动测试技术 固体力学 S0902015 李鹏飞

模态分析与振动测试技术 模态分析的理论基础是在机械阻抗与导纳的概念上发展起来的。近二十多年来,模态分析理论吸取了振动理论、信号分析、数据处理数理统计以及自动控制理论中的有关“营养”,结合自身内容的发展,形成了一套独特的理论,为模态分析及参数识别技术的发展奠定了理论基础。 一、单自由度模态分析 单自由度系统是最基本的振动系统。虽然实际结构均为多自由度系统,但单自由度系统的分析能揭示振动系统很多基本的特性。由于他简单,因此常常作为振动分析的基础。从单自由度系统的分析出发分析系统的频响函数,将使我们便于分析和深刻理解他的基本特性。对于线性的多自由度系统常常可以看成为许多单自由度系统特性的线性叠加。 二、多自由度系统模态分析 对于多自由度系统频响函数数学表达式有很多种,一般可以根据一个实际系统来讨论,给出一种形式;也可根据问题的要求来讨论,给出其他不同的形式。为了课程的紧凑,直接联系本课程的模态分析问题,我们就直接讨论多自由度系统通过频响函数表达形式的模态参数和模态分析。即多自由度系统模态参数与模态分析。 多自由度系统模态分析将主要用矩阵分析方法来进行。 我们以N个自由度的比例阻尼系统作为讨论的对象。然后将所分析的结果推广到其他阻尼形式的系统。 设所研究的系统为N个自由度的定常系统。其运动微分方程为: (2—1) ++= M X CX KX F ?)阶式中M,C,K分别为系统的质量、阻尼及刚度矩阵。均为(N N 矩阵。并且M及K矩阵为实系数对称矩阵,而其中质量矩阵M是正定矩阵,刚度矩阵K对于无刚体运动的约束系统是正定的;对于有刚体运动的自由系统则是半正定的。当阻尼为比例阻尼时,阻尼矩阵C为对称矩阵(上述是解耦条件)。 N?阶矩阵。即 X及F分别为系统的位移响应向量及激励力向量,均为1

最新模态试验及分析的基本步骤

模态试验及分析的基本步骤 1 1.动态数据的采集及响应函数分析 2 首先应选取适当的激励方式。激励方式可以是正弦、随机或瞬态中的任何一种。激3 励方式不同,相应的模态参数识别方法也不同。目前主要有单输入单输出、单输入多4 输出和多输入多输出三种方法。然后进行数据采集。对于单输入单输出方法要求同时5 高速采集输入与输出两个点的信号,用不断移动激励点位置或响应点位置的办法取得6 振型数据;单输入多输出及多输入多输出的方法要求大量通道数据的高速采集,因此要7 求大量的振动测量传感器或激振器,试验成本极高。在采集信号数据以后,还要在时8 域或频域对信号进行处理,例如谱分析、传递函数估计、脉冲响应测量以及滤波、相9 关分析等。 10 2.建立结构数学模型 11 根据己知条件,建立一种描述结构状态及特性的模型,作为计算及参数识别的依 12 据,目前一般假定系统为线性的。由于采用的识别方法不同,数学建模可分为频域建13 模和时域建模。根据阻尼特性及频率藕合程度又可分为实模态和复模态等。 14 3.参数识别 15 按识别域的不同可分为频域法、时域法和混合域法。激励方式不同,相应的识别参16 数方法也不尽相同。并非越复杂的方法识别的结果越可靠。对于目前能够进行的大多17 数不是十分复杂的结构,只要取得了可靠的频响数据,用简单的识别方法也可能获得18 良好的模态参数;反之,即使用最复杂的数学模型、最高级的拟合方法,如果频响测量19 数据不可靠,识别的结果也不会理想。 20 4.振型动画 21 参数识别的结果得到了结构的模态参数模型,即一组固有频率、模态阻尼以及相应22 各阶模态的振型。但是由于结构复杂,由许多自由度组成的振型的数组难以引起对振23

PUSHOVER方法

PUSHOVER方法 1.介绍 PushOVER计算是属于非线性静力计算,可以考虑多种非线性:材 料非线性(在连接/支座单元内的多种类型的非线性属性;框架单元内 的拉和/或压极限;框架单元内的塑性铰);几何非线性(P-delta 效应;大位移效应);阶段施工(结构改变;龄期、徐变、收缩)。 所有在模型中定义的材料非线性将在非线性静力分析工况中考虑。 用户可选择考虑几何非线性的类型:无 P-delta 效应大位移效应。阶 段施工可作为一个选项。即使独立的阶段是线性的,结构从一个阶段 到下一阶段被考虑为非线性。 2 加载 用户可施加任意荷载工况组合、加速度荷载和模态荷载。其中模态 荷载是用于pushover分析的特定类型的荷载。它是在节点的力的模式,与特定振型形状、圆频率平方(ω2)、分配至节点质量的乘积成正比。 指定的荷载组合同时施加。一般地,荷载从零增加至完全指定的量。对于特殊目的(如 pushover 或 snap-though 屈曲),用户可选择使用监 控结构所产生的位移来控制加载。 当用户知道所施加的荷载量,且期望结构能够承担此荷载时,选择 荷载控制。例如,施加重力荷载。在荷载控制下,所有荷载从零增加 至完全指定的量。 当用户知道所期望的结构位移,但不知道施加多少荷载时,选择位 移控制。这对于在分析过程中可能失去承载力而失稳的结构,是十分 有用的。标准的应用包括静力pushover 或 snap-though 屈曲分析。用户 必须选择一个位移分量来监控,可以是节点的单个自由度,或一个用 户以前定义的广义位移。用户必须指定分析中的目标位移。程序将试 图施加达到此位移的荷载。荷载量在分析中可被增加或减少。确认选 择一个在加载过程中单调增加的位移分量。若这不可能,则用户必须 将分析分割至两个或更多的顺序工况,在不同的工况中改变所监控的 位移。 注意使用位移控制和在结构施加位移荷载是不同的!位移控制只用 来计量从所施加荷载产生的位移,来调整荷载量,以试图达到某种计 量的位移值。 3 铰卸载方法 卸载整个结构;局部卸载;使用割线刚度重新开始。第一种方法通 常使用,效率最高,第三种方法效率最低。 4 PUSHOVER方法 非线性静力pushover分析是一个特定的过程,用于地震荷载的基于 性能的设计。 SAP2000 提供了pushover 分析需要的下列工具:

ansys模态分析步骤

模态分析步骤 第1步:载入模型 Plot>Volumes 第2步:指定分析标题并设置分析范畴 1 设置标题等Utility Menu>File>Change Title Utility Menu>File> Change Jobname Utility Menu>File>Change Directory 2 选取菜单途径 Main Menu>Preference ,单击 Structure,单击OK 第3步:定义单元类型 Main Menu>Preprocessor>Element Type>Add/Edit/Delete,出现Element Types对话框,单击Add出现Library of Element Types 对话框,选择Structural Solid,再右滚动栏选择Brick 20node 95,然后单击OK,单击Element Types对话框中的Close按钮就完成这项设置了。 第4步:指定材料性能 选取菜单途径Main Menu>Preprocessor>Material Props>Material Models。出现Define Material Model Behavior对话框,在右侧Structural>Linear>Elastic>Isotropic,指定材料的弹性模量和泊松系数,Structural>Density指定材料的密度,完成后退出即可。 第5步:划分网格 选取菜单途径Main Menu>Preprocessor>Meshing>MeshTool,出

现MeshTool对话框,一般采用只能划分网格,点击SmartSize,下面可选择网格的相对大小(太小的计算比较复杂,不一定能产生好的效果,一般做两三组进行比较),保留其他选项,单击Mesh出现Mesh Volumes对话框,其他保持不变单击Pick All,完成网格划分。 第6步:进入求解器并指定分析类型和选项 选取菜单途径Main Menu>Solution>Analysis Type>New Analysis,将出现New Analysis对话框,选择Modal单击 OK。 选取Main Menu>Solution> Analysis Type>Analysis Options,将出现Modal Analysis 对话框,选中Subspace模态提取法,在 Number of modes to extract处输入相应的值(一般为5或10,如果想要看更多的可以选择相应的数字),单击OK,出现Subspace Model Analysis对话框,选择频率的起始值,其他保持不变,单击OK。 第7步:施加边界条件. 选取Main Menu>Solution>Define loads>Apply>Structural>Displacement,出现ApplyU,ROT on KPS对话框,选择在点、线或面上施加位移约束,单击OK会打开约束种类对话框,选择(All DOF,UX,UY,UZ)相应的约束,单击apply或OK即可。第8步:指定要扩展的模态数。选取菜单途径Main Menu>Solution>Load Step Opts>ExpansionPass>Expand Modes,出现Expand Modes对话框,在number of modes to expand 处输入第6步相应的数字,单击 OK即可。(当选取Main Menu>Solution> Analysis Type>Analysis Options,将出现Modal Analysis 对话框,选中Subspace模态提取法,在 Number of modes to extract处输入相应

三维块体离散元可变形计算方法研究_田振农

第27卷增1岩石力学与工程学报V ol.27Supp.1 2008年6月Chinese Journal of Rock Mechanics and Engineering June,2008三维块体离散元可变形计算方法研究 田振农1,李世海1,刘晓宇1,柳丙善1,2 (1. 中国科学院力学研究所,北京 100080;2. 中国石油大学储运工程系,山东东营 257062) 摘要:在三维刚性块体离散元的基础上,研究可变形块体离散元方法,并编制相应的可变形块体离散元程序。该方法把块体单元看作弹性体,并对其划分有限元网格,对每个可变形单元的计算是假设在力边界条件下求解可变形单元的节点位移;可变形块体之间力和位移的传递是通过构筑的节理单元实现的,节理单元反应岩土工程中实际节理的变形性质和强度特征,结构面破坏前,体现了连续介质计算方法的特点,结构面如果发生破坏,预设节理处的节理单元直接转变化为法向和切向弹簧,体现了离散元计算方法的特点。另外,节理单元有实际的厚度,可以根据实际节理的性质确定计算参数,这一点也体现出了对刚性块体离散元方法的改进。与刚性块体离散元方法比较,该方法可以反映岩体变形性质,如泊松效应、三维岩体中的真实波速,它还可以模拟结构面的破坏演化过程;与有限元方法比较,它可以更好地描述岩体中节理的特征,允许单元有较大的位移;相对于以前的可变性离散元方法,它既克服了有限差分格式带来计算上的复杂,又建立在三维模型的基础上,为有关岩土工程的数值分析提供了一个可行的数值方法。 关键词:数值分析;离散元法;岩体;可变形单元 分类号:O 241 文献标识码 A 文章编号1000–6915(2008)增1–2832–09 RESEARCH ON DEFORMABLE CALCULATION METHOD BASED ON THREE-DIMENSIONAL BLOCK DISCRETE ELEMENT TIAN Zhennong1,LI Shihai1,LIU Xiaoyu1,LIU Bingshan1,2 (1. Institute of Mechanics,Chinese Academy of Sciences,Beijing100080,China;2. Department of Storage and Transportation Engineering,China University of Petroleum,Dongying,Shandong257062,China) Abstract:Deformable block discrete element model is studied on the basis of three-dimensional rigid block discrete element method,and corresponding program is developed for this method. Each block element is considered as an elastic body,and finite element grids are generated. Each node displacement in the deformable block is calculated under the condition of force boundary. Jointed elements are constructed to transfer the force and displacement between adjacent deformable blocks. Jointed elements in the method can represent practical joint characteristics and strength in rock engineering. This method reflects the characteristics of continuous calculative method before breakage of structural plane. If the structural plane is broken,the jointed element will change into the normal and shear springs at the preset joint. So it also reflects the characteristics of discontinuous calculation method. In addition,the jointed element has certain thickness,so the calculative parameter can be determined by those of the actual joint. It embodies the improvement to rigid block discrete element method. Compared with rigid block discrete element method,this method can reflect the deformable character of rock,such as Poisson′s effect of rock mass and the propagation velocity of stress wave in three-dimensional rock mass. Compared with finite element method(FEM),it presents the jointed characteristics of rock mass more sufficient 收稿日期:2006–11–09;修回日期:2007–04–06 基金项目:国家重点基础研究发展规划(973)项目(2002CB412703);中国科学院重要方向性项目(KJCX2–SW–L1) 作者简介:田振农(1971–),男,硕士,1996年毕业于山东矿业学院矿井建设专业,现为博士研究生,主要从事岩土中有关爆炸方面的研究工作。E-mail:

各种模态分析方法总结与比较

各种模态分析方法总结与比较 一、模态分析 模态分析是计算或试验分析固有频率、阻尼比和模态振型这些模态参数的过程。 模态分析的理论经典定义:将线性定常系统振动微分方程组中的物理坐标变换为模态坐标,使方程组解耦,成为一组以模态坐标及模态参数描述的独立方程,以便求出系统的模态参数。坐标变换的变换矩阵为模态矩阵,其每列为模态振型。 模态分析是研究结构动力特性一种近代方法,是系统辨别方法在工程振动领域中的应用。模态是机械结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。这些模态参数可以由计算或试验分析取得,这样一个计算或试验分析过程称为模态分析。这个分析过程如果是由有限元计算的方法取得的,则称为计算模记分析;如果通过试验将采集的系统输入与输出信号经过参数识别获得模态参数,称为试验模态分析。通常,模态分析都是指试验模态分析。振动模态是弹性结构的固有的、整体的特性。如果通过模态分析方法搞清楚了结构物在某一易受影响的频率围各阶主要模态的特性,就可能预言结构在此频段在外部或部各种振源作用下实际振动响应。因此,模态分析是结构动态设计及设备的故障诊断的重要方法。 模态分析最终目标是在识别出系统的模态参数,为结构系统的振动特性分析、振动故障诊断和预报以及结构动力特性的优化设计提供依据。 二、各模态分析方法的总结

(一)单自由度法 一般来说,一个系统的动态响应是它的若干阶模态振型的叠加。但是如果假定在给定的频带只有一个模态是重要的,那么该模态的参数可以单独确定。以这个假定为根据的模态参数识别方法叫做单自由度(SDOF)法n1。在给定的频带围,结构的动态特性的时域表达表示近似为: ()[]}{}{T R R t r Q e t h r ψψλ= 2-1 而频域表示则近似为: ()[]}}{ {()[]2ωλωψψωLR UR j Q j h r t r r r -+-= 2-2 单自由度系统是一种很快速的方法,几乎不需要什么计算时间和计算机存。 这种单自由度的假定只有当系统的各阶模态能够很好解耦时才是正确的。然而实际情况通常并不是这样的,所以就需要用包含若干模态的模型对测得的数据进行近似,同时识别这些参数的模态,就是所谓的多自由度(MDOF)法。 单自由度算法运算速度很快,几乎不需要什么计算和计算机存,因此在当前小型二通道或四通道傅立叶分析仪中,都把这种方法做成置选项。然而随着计算机的发展,存不断扩大,计算速度越来越快,在大多数实际应用中,单自由度方法已经让位给更加复杂的多自由度方法。 1、峰值检测 峰值检测是一种单自由度方法,它是频域中的模态模型为根据对系统极点进行局部估计(固有频率和阻尼)。峰值检测方法基于这样的事实:在固有频率附近,频响函数通过自己的极值,此时其实部为零(同相部分最

静力弹塑性分析_PushoverAnalysis_的基本原理和计算实例

收稿日期:2003-02-16; 修订日期:2003-05-12 基金项目:华东建筑设计研究院有限公司第2001年度科研项目. 作者简介:汪大绥(1941-),男,江西乐平人,教授级高工,主要从事大型复杂结构设计与研究工作. 文章编号:100726069(2004)0120045209 静力弹塑性分析(Pushover Analysis )的 基本原理和计算实例 汪大绥 贺军利 张凤新 (华东建筑设计研究院有限公司,上海200002) 摘要:阐述了美国两本手册FE M A273/274和AT C -40中关于静力弹塑性分析的基本原理和方法,给出了利用ET ABS 程序进行适合我国地震烈度分析的计算步骤,并用一框剪结构示例予以说明,表明 Pushover 方法是目前对结构进行在罕遇地震作用下弹塑性分析的有效方法。 关键词:静力弹塑性;能力谱;需求谱;性能点中图分类号:P315.6 文献标识码:A The basic principle and a case study of the static elastoplastic analysis (pushover analysis) W ANG Da 2sui HE Jun 2li ZH ANG Feng 2xin (East China Architectural Design &Research Institute C o.,Ltd ,Shanghai 200002,China ) Abstract :This paper reviews the basic principles and methods of the static elasto 2plastic analysis (pushover analysis )in FE MA273/274and in AT C 240.Its main calculation procedures are summarized and a case study is presented for the frame 2shearwall structure designed according to China C ode for Seismic Design by means of ET ABS.It has been proved that pushover analysis is a effective method of structural elastoplastic analysis under the maximum earthquake action.K ey w ords :static elastoplastic ;capacity spectrum ;demand spectrum ;performance point 1 前言 利用静力弹塑性分析(Pushover Analysis )进行结构分析的优点在于:既能对结构在多遇地震下的弹性设 计进行校核,也能够确定结构在罕遇地震下潜在的破坏机制,找到最先破坏的薄弱环节,从而使设计者仅对局部薄弱环节进行修复和加强,不改变整体结构的性能,就能使整体结构达到预定的使用功能;而利用传统的弹性分析,对不能满足使用要求的结构,可能采取增加新的构件或增大原来构件的截面尺寸的办法,结果是增加了结构刚度,造成了一定程度的浪费,也可能存在新的薄弱环节和隐患。 对多遇地震的计算,可以与弹性分析的结果进行验证,看总侧移和层间位移角、各杆件是否满足弹性极限要求,各杆件是否处于弹性状态;对罕遇地震的计算,可以检验总侧移和层间位移角、各个杆件是否超过弹塑性极限状态,是否满足大震不倒的要求。 20卷1期2004年3月 世 界 地 震 工 程 W OR LD E ARTH QUAKE E NGI NEERI NG V ol.20,N o.1 Mar.,2004

模态测试与分析报告基本概念

模态测试与分析基本概念 1.模态假设:线性假设、时不变假设、互易性假设、可观测性假设 线性假设:结构的动态特性是线性的,就是说任何输入组合引起的输出等于各自输出的组合,其动力学特性可以用一组线性二阶微分方程来描述。 时不变性假设:结构的动态特性不随时间变化,因而微分方程的系数是与时间无关的常数。 可观测性假设:这意味着用以确定我们所关心的系统动态特性所需要的全部数据都是可以测量的。 互易性假设:结构应该遵从Maxwell互易性原理,即在q点输入所引起的p点响应,等于在p点的相同输入所引起的q点响应。 2.EMA、OMA、ODS 试验模态分析(Experimental Modal Analysis, EMA) 力锤激励EMA技术 激振器激励EMA技术 工作模态分析(Operational Modal Analysis, OMA) 工作变形模态(Operational Deflection Shape, ODS) 3.SISO、SIMO、MIMO SISO:设置1个响应测点,力锤激励遍历所有测点,也称为SRIT SIMO:设置若干响应测点,力锤激励遍历所有测点,也称为MRIT;用一个激振器固定在某测点处激励结构,测量所有测量自由度的响应,经FFT快速测量计算FRF MIMO:用多个激振器激励结构,测量所有测量自由度的响应,经FFT快速测量计算MIMO-FRFs,输入能量均匀,数据一致性好,能分离密集和重根模态,在大型复杂或轴对称结构模态试验尤为重要 4.模态分析基本步骤 建立模型:确定测量自由度、生成几何、确定各类参数:BW,参考点、触发等 测量:FRF,(时域数据可选) 参数估计:曲线拟合、参数提取 验证:MAC、MOV、MP等

考虑竖向地震效应的模态Pushover分析方法

考虑竖向地震效应的模态Pushover 分析方法 3 尹 犟 易伟建 (湖南大学土木工程学院,长沙 410082) 摘 要:传统的Pushover 方法未考虑竖向地震效应对结构水平位移需求的影响,当地面运动中竖向分量所占比例相对较高时,该方法很难对结构最大位移需求作出精确估计。通过对其进行改进,提出首先对结构按一定方式施加竖向地震引起的惯性力,随后进行结构水平向的多模态推覆分析,并按SRSS 方法计算其最大位移需求。最后采用一多层混凝土框架结构对其进行验证,结果表明,该方法所得的楼层位移及层间位移角与非线性时程分析结果十分接近,具有较高的精度。 关键词:竖向地震;Pushover 分析;竖向模态;位移需求 THE MODA L PUSH OVER ANA LYSIS WITH THE CONSI DERATION OF THE VERTICA L SEISMIC EFFECTS Y in Jiang Y i Weijian (C ollege of Civil Engineering ,Hunan University ,Changsha 410082,China ) Abstract :In the traditional Pushover method ,the vertical earthquake effect ,which has an impact on horizontal displacement ,is not taken into consideration.When the seismic intensity in vertical direction takes a high ratio ,it is hard to accurately estimate the maximum displacement demands on structure by the traditional Pushover method.Hence ,the paper aims at making improvement on the traditional one.Firstly ,the inertial force caused by vertical earthquake is en forced on structure according to certain means.Then ,the multi 2m ode Pushover analysis procedures are applied in the horizontal direction of structure ,and the maximum displacement demand is calculated on the ground of SRSS method.A multistory concrete frame is applied to testify this theory.The data shows that ,using the improved method ,the numerical results of floor displacement and story drift ratio are well agreed with the results from nonlinear time 2history analysis ,which dem onstrated that the improved method is of high accuracy. K eyw ords :vertical earthquake ;pushover analysis ;vertical m ode ;displacement demands 3国家自然科学基金(50678064)和湖南省科技厅重点项目 (06F J3003)资助。 第一作者:尹犟,男,1975年10月出生,博士生。 E -mail :yinjiang2001@https://www.wendangku.net/doc/9e9381426.html, 收稿日期:2009-01-20 0 引 言 地震工程的传统观点通常认为,竖向地震对结构的影响远小于水平地震。若取地震加速度记录中较大的一个水平分量为基数,其竖向分量峰值PG A 2 v 与水平峰值PG A 2h 之比仅为1Π2~1Π3左右 [1] 。然 而,近几十年来国内外发生的多次强震表明,竖向地震的强度也能达到十分可观的程度 [2-5] 。如:美国 Im perial Valley 1979、Loma Prieta 1989、Northridge1994 及台湾Chichi 1999地震中均曾测得PG A 2v ΠPG A 2h 大于1的地面运动纪录。不仅如此,同期震害调查也显示,某些强震中结构物的破坏的确存在着竖向地震作用的明显痕迹 [6-8] 。如:1985年四川自贡418 级地震,震中区多层砖房破坏严重,震害主要表现为随处可见的水平横缝和环缝,由水平地震引起的典型破坏特征(剪切斜裂缝及X 裂缝)则很少出现; 1995年日本神户地区712级地震中,许多7~8层混 凝土框架结构房屋破坏严重,震害主要表现为3~4 层部位混凝土框架柱纵向钢筋受压屈服,混凝土被压碎,底层柱的破坏程度却相对较轻,以上震害现象均被视为竖向地震作用导致结构破坏的典型案例。 作为一种结构非线性反应的简化分析方法,Pushover Analysis 以其相对较高的精度、简单的工作量及广泛的适用性受到各国学者的普遍关注并得到 广泛应用[10-14] 。目前,Pushover 分析大都仅考虑水平方向的地震作用。然而有研究表明,当竖向分量在地面运动加速度过程中所占比例相对较大时,竖 9 3Industrial C onstruction V ol 139,N o 15,2009 工业建筑 2009年第39卷第5期

相关文档