文档库 最新最全的文档下载
当前位置:文档库 › 台达伺服故障代码

台达伺服故障代码

台达伺服故障代码
台达伺服故障代码

台达位置与扭矩模式伺服电机文档(一类特选)

台达ASD-B2伺服ECMA-C20401GS电机控制文档一.扭矩模式 1.说明:此扭矩模式是用于外部控制器控制输入给伺服器的电 压来实现电机扭矩大小的输出。 2.接线:将控制器控制的能输出可变电压的引脚直接连接到 CN1的18引脚,将控制器的GND与伺服器CN1的19脚连 接 3.参数设定: P2-15,P2-16,P2-17都设定为0,消除初始状态下AL013 的预警状态。 P1-01:03,将电机设定为转矩模式 P1-02:01,速度限制,电机在没有负载的情况下会转很快 P1-07:500,设置电机加减速的时间,减少通电与断电的时 对于轴与外设的冲击 P1-09=设定电机最高转速 P2-12:00,将TCM0设定为0 P2-13:00,将TCM1设定为0 P2-12与P2-13的作用是将扭矩的命令设定为外部电压来控 制。详情见数据手册144页6.4.1 P2-14:14,设定速度,当不设定此项时,电机只有力矩,没有 转速

P1-41:200,表示输入5V模拟电压,达到100%额定转矩 P2-10:01,启动电机 当此时电机不转时,重启伺服器即可。(建议重启) 要关闭电机则将P2-10设定为00,并保存,然后将开关关闭 并重启即可完成电机的关闭。 二.位置模式 1.说明:当前位置模式是通过外部控制器输出的PWM来控制 伺服电机的位置以及速度,其中PWM频率控制电机速度, PWM的个数与P1-44与P1-45的结合控制电机的具体位置。 使用的脉冲输入为开集极NPN设备输入,电源为内部24v 电源。 2.接线:

上图中的白线是控制器的脉冲输出线,用于输出PWM,蓝色线是控制板的GND的连接线,用于控制器与伺服器的共地作用。

ASD伺服常见问题处理方式

ASD伺服常见问题处理方式 1,伺服驱动器输出到电机的UVW三相是否可以互换? 不可以,伺服驱动器到电机UVW的接法是唯一的。普通异步电机输入电源UVW两相互换时电机会反转,事实上伺服电机UVW任意两相互换电机也会反转,但是伺服电机是有反馈装置的,这样就出现正反馈会导致电机飞车。伺服驱动器会检测并防止飞车,因此在UVW接错线后我们看到的现象是电机以很快的速度转过一个角度然后报警过负载ALE06。 2,伺服电机为何要Servo on之后才可以动作? 伺服驱动器并不是在通电后就会输出电流到电机,因此电机是处于放松的状态(手可以转动电机轴)。伺服驱动器接收到Servo on信号后会输出电流到电机,让电机处于一种电气保持的状态,此时才可以接收指令去动作,没有收到指令时是不会动作的即使有外力介入(手转不动电机轴),这样伺服电机才能实现精确定位。 3,伺服驱动器报警ALE01如何处理? 检查UVW线是否有短路。如果把UVW线与驱动器断开再通电仍然出现ALE01则是驱动器硬件故障。 4,ALE02过电压/ALE03低电压报警发生时如何处理? 首先使用万用表测量输入电压是否在允许范围内;再次是通过驱动器或伺服软件示波器监视“主回路电压”,这是直流母线电压,电压伏数应该是输入交流电压的1.414倍,正常来讲应该不会有太大的偏差。如果偏差很大需返厂重新校准。ALE02/ALE03报警是以“主回路电压”来判断的。 5,在高速运行时机台在中途有很明显的一钝,观察发现是中途有ALE03报警产生,但是一闪就消失了,如何解决这个问题? 在高速运行时会消耗很大能量,母线电压会下降,如果输入电压偏低此时就会出现ALE03报警。报警发生时伺服马上停止,母线电压恢复正常,报警自动消失,伺服会继续运行,因此看起来就是明显的一钝。这种情况多发生在使用单相电源供电时,建议主回路使用三相电源供电。参数P2-65 bit12置ON可使ALE03报警发生时,母线电压恢复后报警不会自动消失。 6,伺服驱动器报警ALE04如何处理? AB系列伺服驱动器配ECMA马达时功率不匹配上电会报警ALE04,除这种情况外刚一上电就报警ALE04就是电机编码器故障。如果在使用过程中出现ALE04报警是因为编码器信号被干扰,请查看编码器线是否是屏蔽双绞、驱动器与电机间地线是否连接,或者在编码器线上套磁环。通过ALE04.EXE软件可以监测每次Z脉冲位置AB脉冲计数是否变化,有变化则会报

台达伺服问答

01、问台达交流伺服系统ASDA-M系列所提供DI/O功能与交流伺服系统ASDA-A2系列有何差异? 答台达交流伺服系统ASDA-M系列各轴各提供6个DI,3个DO;共有18个DI,9个DO。 交流伺服系统ASDA-A2则提供8个DI,5个DI。 ASDA-M系列硬件的DI与DO分别在三轴的50 PIN Connector上,透过韧体的转换,可以将各轴6个DI与3个DO整合之后分配给其他轴使用。 为避免一些共享DI重复及节省DI脚位,可透过参数设定三轴共享DI,目前提供三轴共享DI: 1.SON,伺服启动:设定数值为0101(A接点),0001(B接点) 2.ARST,异常重置: 设定数值为0102(A接点),0002(B接点) 3.EMGS,紧急停止: 设定数值为0121(A接点),0021(B接点) 在指定各轴DI/O的参数设定上,DI(P2-10~P2-15)及DO(P2-18~P2-20)功能参数设定中增加位4作为各轴DI/O的指定。

02、问当连接绝对型伺服系统时,如何设定绝对型编码器? 答设定步骤如下: 1.确认P2-69参数目前设定值(0x0èINC ;0x1èABS),P2-69如果有修改设定必须重新上电功能才会生效,此参数特性与P1-01属同一类型。 2.接上电池盒(已经连接编码器端与驱动器端,电池也安装上),首次上电会跳ALE60,此时需坐标初始化,ALE60才会消失。 3.坐标初始化有三个方法 尚未作坐标初始化时驱动器会出现ALE60,可以透过以下初始化方式排除: (1)参数法: 设定P2-08è271后,设定P2-71è0x1,,此时ALE60会消失,但是当电池电量低于 3.1V会跳ALE61,否则正常情况面板看到会出现00000。 (2)DI法: 设定ABSE(0x1D)与ABSC(0x1F),当ABSE(ON),ABSC设定由OFF变为ON,系统将进行坐标初始化,完成后编码器脉波将从重设为0且PUU将重设为P6-01数值。 (3)PR回原点法: 若设定在PR控制模式时,可以执行PR回原点方式完成坐标初始化。 4.读取马达绝对位置: (1)设定P2-70决定马达绝对位置形式及读取方式设定, P2-70,bit0,DI/O读取单位设定,读取PUU(bit0=0)或Pulse(bit0=1) P2-70,bit1,通讯读取单位设定,读取PUU(bit1=0)或Pulse(bit1=1) (2)通讯读取马达位置单位为Pulse(P2-70=2,bit1=1,bit0=0): 设定P0-49=1或2(1:只更新编码器数据;2:更新编码器数据并将位置误 差清除为0),P0-51代表马达绝对位置圈数,P0-52代表马达绝对位置脉波数 (3)通讯读取马达位置单位为PUU(P2-70=0,bit1=0,bit0=0) 设定P0-49=1或2(1:只更新编码器数据;2:更新编码器数据并将位置误 差清除为0),P0-51=0,P0-52代表马达绝对位置PUU 5.透过上位控制器读取马达绝对位置信息P0-51及P0-52 6.(1)当编码器电源低于 3.1V时会出现ALE61 (2)当绝对型系统初次上电尚未完成坐标初始化、编码器电源低于 1.2V或在低电压状况下更换编码器电池,均会发生ALE60:马达绝对位置遗失。 (3)使用非绝对型编码器系统时,开启绝对型功能设定P2-69=1时,会发

台达伺服调机步骤简易说明书

台达伺服调机步骤简易说明书 本调机步骤简易说明书主要就配线及调试做一简易说明,因客户使用情况各异,此说明书只做一个调试流程的大概说明,具体细节部分请依实际要求调整。 一:检查确定伺服驱动器及电机是否为所需型号;注意安装环境。(祥见操作手册) 二:配线 (1)周边装置接线图

(2)信号与配线 请根据您所需的控制模式和具体要求功能来配线,不同控制模式的配线是不同的,具体请参照手册3-23至3-26页说明。但请注意, 1.无论是什么控制模式,伺服驱动器均需DC24V电源,您可以让驱动器自已供给此电源(PIN17脚VDD与PIN11脚COM+短接);也可以外加POWER 供电(+24接伺服驱动器PIN11脚COM+,GND接伺服的PIN45,47,49 脚COM-); 2.驱动器均需SERVO ON,如参数没有变动,PIN9脚DI1 SON 信号需导通。您可以根据您的需要让PIN9与PIN45等常时短接或用个开关量来控制它的ON-OFF; 3.如果您没有用到CW,CCW禁止极限和外加急停按扭,则请把PIN 32,PIN31 ,PIN30与PIN45等COM-脚短路。 (3)编码器接线 1.編碼器引出線連接頭規格: 線材選擇請使用附隔離網線的多芯双绞線,而隔離網線要確實與SHIELD端相連接!

2.CN2接头定义: CN2連接器(公)背面接線端 各信號的意義說明如下: 三:参数调整 A . 参数1-01:此参数为控制模式及控制指令输入源设定。请根据您所用的控制模式来 设定。如为位置模式,且指令由端子输入,则请设为00;如为速度模式,则请 设为02。具体设定请见下表: B . 参数1-00: 当您选用位置控制模式且由端子输入指令时(当参数1-01设为00时),此参数才需设 定,其功能为外部脉冲输入型式设定。 Z Y X X 值設定:脈沖型式 其中X=0:AB 相脈沖列(4x ); X=1:正轉脈沖列及逆轉脈沖列(CW CCW 型式)

台达伺服调试经验故障排除

Q1:伺服电机与普通电机有何区别? A1:伺服电机与普通电机最大的区别在于电机转子和反馈装置。伺服电机转子表面贴有强力磁钢片,因此可以通过定子线圈产生的磁场精确控制转子的位置,并且加减速特性远高于普通电机。反馈装置可以精确反馈电机转子位置到伺服驱动器,伺服电机常用的反馈装置有光学编码器、旋转变压器等。 Q2:伺服驱动器输入电源是否可接单相220V ? A2:台达伺服1.5KW(含)以下可接单相/三相220V电源,2.0KW(含)以上只能接三相220V电源。三相电源整流出来的直流波形质量更好,质量不好的直流电源会消耗母线上电容的能量,电机急加减速时电容会对母线充放电来保持母线电压稳定,因此三相电源输入比单相电源输入伺服的特性会好一些,三相电源输入提供的电流也更大。 Q3:伺服驱动器输出到电机的UVW三相是否可以互换? A3:不可以,伺服驱动器到电机UVW的接法是唯一的。普通异步电机输入电源UVW两相互换时电机会反转,事实上伺服电机UVW任意两相互换电机也会反转,但是伺服电机是有反馈装置的,这样就出现正反馈会导致电机飞车。伺服驱动器会检测并防止飞车,因此在UVW

接错线后我们看到的现象是电机以很快的速度转过一个角度然后报警过负载ALE06。 Q4:伺服电机为何要Servo on之后才可以动作? A4:伺服驱动器并不是在通电后就会输出电流到电机,因此电机是处于放松的状态(手可以转动电机轴)。伺服驱动器接收到Servo on信号后会输出电流到电机,让电机处于一种电气保持的状态,此时才可以接收指令去动作,没有收到指令时是不会动作的即使有外力介入(手转不动电机轴),这样伺服电机才能实现精确定位。

台达伺服电机常见问题

ASDA-A2的 PUU 單位的意義?如何使用? 所謂的PUU (Pulse of User Unit)使用者單位,為一個經過電子齒輪比的使用者單位,這樣的設計,可以讓使用者不必自行轉換外部實際物理Encoder 回授量與電子齒輪間的關係。例如:ASDA-A2的encoder ,每轉一圏,物理量將回授1280000個脈波,如果想要改變馬逹走一圏時的回授脈波數,例如100000個脈波當作一圏,則可以設P1-44(N) =128;P1-45(M) =10,當馬逹轉完一圏時,ASDA-A2會收到100000個脈波,這個經過電子齒輪比運算的100000,其單位即為PUU ,如果要在控制器內部下逹馬逹走兩圏的命令時,只需根據所定義的PUU 下200000個PUU 命令,控制器內部會自動換回其實際的物理量,這個用法很直覺,下圖為其運算原理。 一般一直認為同樣的負載、同樣的慣量(切刀伺服),使用同等轉速的2kW 馬達,慣量比大的馬達應該只有好處沒有壞處,但事實上在實驗過程中發現:切刀驅動不換,原來使用130框號, 2kW 的馬達,負載率約120 ~ 140%,負載慣量比1%的馬達總是過熱,因此當嘗試將馬達更換為180框號, 2kW ,結果換上去後發現速度只要開到800r/min ,就會發生ALE02(過電壓)或ALE05(回生異常)警示。兩台馬達的扭力是一樣的,但是原來使用130框號, 2kW 的馬達,當轉速達到1200r/min 才會達到極限。 從這個例子來看,並不是馬達慣量越大越好,那麼請問在那些應用場合下慣量比發揮的作用影響大,那些應用場合下扭力的影響大? 1. 並不是高慣量就一定好,低慣量就一定差,要看其應用場合。 T= I x α (扭力 = 慣量 x 角加速度) P= T x ω (功率 = 扭力 x 角速度) P = I x α x ω 所以,同樣的功率之下,若慣量提升,加速度必下降,即加減速的特性變差了,當然,角速度也會相對變化,在此我們先假設其運轉速度不變。 I 是固定的,當一個系統設定好後 (如飛刀系統,因為飛刀不變,但如果用於輸送帶,慣量則會變,當輸送帶上的物品變多時,

ASD伺服常见问题处理方式优选稿

A S D伺服常见问题处理 方式 集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

ASD伺服常见问题处理方式 1,伺服驱动器输出到电机的UVW三相是否可以互换 不可以,伺服驱动器到电机UVW的接法是唯一的。普通异步电机输入电源UVW两相互换时电机会反转,事实上伺服电机UVW任意两相互换电机也会反转,但是伺服电机是有反馈装置的,这样就出现正反馈会导致电机飞车。伺服驱动器会检测并防止飞车,因此在UVW接错线后我们看到的现象是电机以很快的速度转过一个角度然后报警过负载ALE06。 2,伺服电机为何要Servo on之后才可以动作? 伺服驱动器并不是在通电后就会输出电流到电机,因此电机是处于放松的状态(手可以转动电机轴)。伺服驱动器接收到Servo on信号后会输出电流到电机,让电机处于一种电气保持的状态,此时才可以接收指令去动作,没有收到指令时是不会动作的即使有外力介入(手转不动电机轴),这样伺服电机才能实现精确定位。 3,伺服驱动器报警ALE01如何处理? 检查UVW线是否有短路。如果把UVW线与驱动器断开再通电仍然出现ALE01则是驱动器硬件故障。 4,ALE02过电压/ALE03低电压报警发生时如何处理?

首先使用万用表测量输入电压是否在允许范围内;再次是通过驱动器或伺服软件示波器监视“主回路电压”,这是直流母线电压,电压伏数应该是输入交流电压的1.414倍,正常来讲应该不会有太大的偏差。如果偏差很大需返厂重新校准。ALE02/ALE03报警是以“主回路电压”来判断的。 5,在高速运行时机台在中途有很明显的一钝,观察发现是中途有ALE03报警产生,但是一闪就消失了,如何解决这个问题? 在高速运行时会消耗很大能量,母线电压会下降,如果输入电压偏低此时就会出现ALE03报警。报警发生时伺服马上停止,母线电压恢复正常,报警自动消失,伺服会继续运行,因此看起来就是明显的一钝。这种情况多发生在使用单相电源供电时,建议主回路使用三相电源供电。参数P2-65 bit12置ON可使ALE03报警发生时,母线电压恢复后报警不会自动消失。 6,伺服驱动器报警ALE04如何处理? AB系列伺服驱动器配ECMA马达时功率不匹配上电会报警ALE04,除这种情况外刚一上电就报警ALE04就是电机编码器故障。如果在使用过程中出现ALE04报警是因为编码器信号被干扰,请查看编码器线是否是屏蔽双绞、驱动器与电机间地线是否连接,或者在编码器线上套磁环。通过ALE04.EXE软件可以监测每次Z脉冲位置AB脉冲计数是否变化,有变化则会报警 7,伺服驱动器报警ALE06如何处理?

台达伺服电机A2系列常用型号

台达ASD-A2系列常用型号 系列功率型号详情 ASDA-A2 100W ASD-A2-0121-L A2 100W基础型全闭环 ASDA-A2 100W ECMA-C10401GS 带油封带键槽 ASDA-A2 100W ECMA-C10401HS 键槽油封刹车 ASDA-A2 200W ASD-A2-0221-L A2 200W基础型全闭环 ASDA-A2 200W ECMA-C10602RS 带键槽带中心螺纹孔油封 ASDA-A2 200W ECMA-C10602SS 带键槽带中心螺纹孔油封刹车 ASDA-A2 400W ASD-A2-0421-L A2 400W基础型全闭环 ASDA-A2 400W ECMA-C10604RS 带键槽带中心螺纹孔油封 ASDA-A2 400W ECMA-C10604SS 带键槽带中心螺纹孔油封刹车 ASDA-A2 400W ECMA-E11305RS A2 500W 带键槽带中心螺纹孔油封 ASDA-A2 400W ECMA-E11305SS A2 500W 带键槽带中心螺纹孔油封刹车 ASDA-A2 400W ECMA-G11303RS A2 300W 带键槽带中心螺纹孔油封 ASDA-A2 400W ECMA-G11303SS A2 300W 带键槽带中心螺纹孔油封刹车 ASDA-A2 400W ECMA-C10804R7 A2 400W 带键槽带中心螺纹孔油封80框 ASDA-A2 400W ECMA-C10804S7 A2 400W 带键槽带中心螺纹孔油封刹车80框ASDA-A2 750W ASD-A2-0721-L A2 750W基础型全闭环 ASDA-A2 750W ECMA-C10807RS 带键槽带中心螺纹孔油封 ASDA-A2 750W ECMA-C10807SS 带键槽带中心螺纹孔油封刹车 ASDA-A2 750W ECMA-G11306RS 带键槽带中心螺纹孔油封 ASDA-A2 750W ECMA-G11306SS 带键槽带中心螺纹孔油封刹车 ASDA-A2 1KW ASD-A2-1021-L A2 1KW基础型全闭环 ASDA-A2 1KW ECMA-C10910RS 低惯量,1KW,键槽,86框号,油封 ASDA-A2 1KW ECMA-C11010RS 1KW 带键槽带中心螺纹孔油封轻惯量 ASDA-A2 1KW ECMA-C11010SS 1KW 带键槽带中心螺纹孔油封刹车轻惯量 ASDA-A2 1KW ECMA-E11310RS 1KW 带键槽带中心螺纹孔油封 ASDA-A2 1KW ECMA-E11310SS 1KW 带键槽带中心螺纹孔油封刹车 ASDA-A2 1KW ECMA-G11309RS A2 900W 带键槽带中心螺纹孔油封 ASDA-A2 1KW ECMA-G11309SS A2 900W 带键槽带中心螺纹孔油封刹车 需要采购变频器PLC伺服电机人机界面就联系常州耀德机电,我们将为您提供最优质的产品和周到快捷的服务,如需要安装调试电话联系0519-********,我们期待与您合作!ASDA-A2 1.5KW ASD-A2-1521-L A2 1.5KW基础型全闭环 ASDA-A2 1.5KW ECMA-E11315RS A2 1.5KW 带键槽带中心螺纹孔油封 ASDA-A2 1.5KW ECMA-E11315SS A2 1.5KW 带键槽带中心螺纹孔油封刹车 ASDA-A2 2KW ASD-A2-2023-L A2 2KW基础型全闭环 ASDA-A2 2KW ECMA-C11020RS A2 2KW 带键槽带中心螺纹孔油封轻惯量 ASDA-A2 2KW ECMA-C11020SS A2 2KW 带键槽带中心螺纹孔油封刹车轻惯量 ASDA-A2 2KW ECMA-E11320RS A2 2KW 带键槽带中心螺纹孔油封 ASDA-A2 2KW ECMA-E11320SS A2 2KW 带键槽带中心螺纹孔油封刹车 ASDA-A2 2KW ECMA-E11820RS A2 2KW 带键槽带中心螺纹孔油封180框 ASDA-A2 2KW ECMA-E11820SS A2 2KW 带键槽带中心螺纹孔油封刹车180框 ASDA-A2 3KW ASD-A2-3023-L A2 3KW基础型全闭环 ASDA-A2 3KW ECMA-E11830RS A2 3KW 带键槽带中心螺纹孔油封

台达伺服电机驱动器的常见问题

三相機種的變頻器是否可以接單相入力電源? 台達變頻器為單相及三相機種,其最大的差異在於電容的配置。單相機種會配置比較大的電容,因此若三相機種只接單相入力,可能導致輸出電流不足,且會發生欠相的異常。為確保系統正常運行,請搭配使用正確的電源系統。 變頻器使用 在硬體上需加裝PG卡,在PG卡上的開關設置編碼器為Open-Collector或是 Line-Driver型式,並設置正確的電壓大小。在參數上,設定編碼器每轉的脈波數及輸入脈波型式。以台達VFD-VE系列變頻器為例,選用EMV-PG01X的PG卡,且編碼器一圈有1024個脈波,為Open-Collector 12V型,此時,PG卡需設置(如下圖) 在參數設定方面,需設定參數10-00每轉脈波數為1024。另外,在設定10-01之前,需先確定該編碼器的脈波型式為AB相、脈波加方向或單一脈波,再加以設定。 之後只要將參數00-04設為7,就可以在使用者顯示的內容看到馬達實際由編碼器回授的轉速。 無感測向量控制 a.優異開迴路速度控制,不必滑差補償 b.在低度時有高轉矩,不必提供過多之轉矩增強 c.更低損耗,更高效率 d.更高動力響應- 尤其是階梯式負載 e.大馬達有穩定之運轉 f.在電流限制,改善滑差控制有較好之表現 在台達交流馬達驅動器的輸入

電源輸入側電抗器 用於變頻器/驅動器輸入端,電抗器保護著靈敏電子設備使其免受變頻器產生的電力雜訊干擾(如電壓凹陷、脈衝、失真、諧波等),而藉由電抗器吸收電源上的突波,更能使變頻器受到良好的保護。 變頻器/驅動器輸出側電抗器 在長距離電纜接線應用中,使用IGBT保護型電抗器於馬達與變頻器之間,來減緩dv/dt值及降低馬達端的反射電壓。使用負載電抗器於輸出端,可抑制負載迅速變化所產生的突波電流,即使是負載短路亦可提供保護。 何謂控速比 可控速範圍是以馬達的額定轉速為基準,在定轉矩操作區中為維持額定轉矩,其額定轉速與最低轉速的比值,例如一典型交流伺服馬達的可控速範圍為1000:1,亦即若馬達的額定轉速為2000 rpm/min,其最低轉速為2 rpm/min;而且在此控速範圍內,由無載至額定負載時,其轉速誤差百分比值均能滿足所設定的控速精度,如+-0.01%。轉速誤差百分比值是由下式計算:(如下圖) 什麼是變頻器的失速防止功能? 如果給定的加速時間過短,變頻器的輸出頻率變化遠遠超過轉速的變化,變頻器將因流過過電流而跳機,而自由運轉停止,這就是失速。為了防止失速使馬達繼續運轉,就要檢出電流的大小進行頻率控制。當加速電流過大時,適當放慢加速速率。減速時也是如此。兩者結合起來就是失速防止功能。 變頻器的哪些模式可以調整馬達轉速? 變頻器上的轉速控制主要有以下: 1. 直接從變頻器面版上的可變電阻調整 2. 外接類比電壓或電流信號來調整 3. 利用變頻器的多功能輸入端子可達成多段速控制 4. 台達變頻器支援Modbus通訊,可利用上位控制器以通訊的方式改變變頻器轉速。 請問 可以,只要韌體版本為4.08版,即可運轉到2000Hz。 請問 不可以,因為EF輸入端子是數位端子,只有開及關的狀態而已,所以不能作為PTC的輸入端。 請問

台达伺服器报警与处理

台达伺服器异警处理 RLE01:过电流:主回路电流值超越电机瞬间最大电流值1.5倍时动作 1.驱动器输出短路:检查电机与驱动器接线状态或导线本体是否短路,排除短路状态,并防止金属导体外露 2. 电机接线异常:检查电机连接至驱动器的接线顺序,根据说明书的配线顺序重新配线 3. IGBT 异常:散热片温度异常,送回经销商或原厂检修 4. 控制参数设定异常:设定值是否远大于出厂预设值,回复至原出厂预设值,再逐量修正 5. 控制命令设定异常:检查控制输入命令是否变动过于剧烈,修正输入命令变动率或开启滤波功能 RLE02:过电压:主回路电压值高于规格值时动作 1.主回路输入电压高于额定容许电压值:用电压计测定主回路输入电压是否在额定容许电压值以内(参照11-1),使用正确电压源或串接稳压器 2. 电源输入错误(非正确电源系统):用电压计测定电源系统是否与规格定义相符,使用正确电压源或串接变压器 3. 驱动器硬件故障:当电压计测定主回路输入电压在额定容许电压值以内仍然发生此错误,送回经销商或原厂检修 RLE03:低电压:主回路电压值低于规格电压时动作 1.主回路输入电压低于额定容许电压值:检查主回路输入电压接线是否正常,重新确认电压接线 2. 主回路无输入电压源:用电压计测定是否主回路电压正常,重新确认电源开关 3. 电源输入错误(非正确电源系统):用电压计测定电源系统是否与规格定义相符,使用正确电压源或串接变压器 RLE04:RLE04:Z 脉冲所对应磁场角度异常 1.编码器损坏:编码器异常,更换电机 2. 编码器松脱:检视编码器接头,重新安装 RLE05:回生错误:回生控制作动异常时动作 1.回生电阻未接或过小:确认回生电阻的连接状况,重新连接回生电阻或计算回生电阻值 2. .回生用切换晶体管失效:检查回生用切换晶体管是否短路,送回经销商或原厂检修 3. 参数设定错误:确认回生电阻参数(P1-52)设定值与回生电阻容量参数(P1-53)设定,重新正确设定 RLE06:过负载:电机及驱动器过负载时动作 1.超过驱动器额定负载连续使用:可由驱动器状态显示P0-02设定为11后,监视平均转矩[%]是否持续一直超过100%以上,提高电机容量或降低负载 2. 控制系统参数设定不当:机械系统是否摆振、加减速设定常数过快,调整控制回路增益值、加减速设定时间减慢 3. 电机、编码器接线错误:检查U、V、W 及编码器接线是否准确 4. 电机的编码器不良:送回经销商或原厂检修 RLE07:过速度:电机控制速度超过正常速度过大时动作 1.速度输入命令变动过剧:用信号检测计检测输入的模拟电压信号是否异常,调整输入变信号动率或开启滤波功能 2. 过速度判定参数设定不当:检查过速度设定参数P2-34(过速度警告条件)是否太小,检查过速度设定参数P2-34(过速度警告条件)是否太小 RLE08:异常脉冲控制命令:脉冲命令的输入频率超过硬件界面容许值时动作 1.脉冲命令频率高于额定输入频率:用脉冲频率检测计检测输入频率是否超过额定输入频率,正确设定输入脉冲频率 RLE09:位置控制误差过大:位置控制误差量大于设定容许值时动作 1.最大位置误差参数设定过小:确认最大位置误差参数P2-35(位置控制误差过大警告条件)设定值,加大P2-35 (位置控制误差过大警告条件)设定值 2. 增益值设定过小:确认设定值是否适当,正确调整增益值 3. 扭矩限制过低:确认扭矩限制值,正确调整扭矩限制值 4. 外部负载过大:检查外部负载,减低外部负载或重新评估电机容量。更换摇床电机。 RLE10:芯片执行超时:芯片异常时动作 1.芯片动作异常:电源复位检测,复位仍异常时,送回经销商或原厂检修 RLE11:编码器异常:编码器产生脉冲信号异常时动作

台达伺服调试经验故障排除

Q1 :伺服电机与普通电机有何区别? A1 :伺服电机与普通电机最大的区别在于电机转子和反馈装置。伺服 电机转子表面贴有强力磁钢片,因此可以通过定子线圈产生的磁场精确控制转子的位置,并且加减速特性远高于普通电机。反馈装置可以精确反馈电机转子位置到伺服驱动器,伺服电机常用的反馈装置有光学编码器、旋转变压器等。 Q2 :伺服驱动器输入电源是否可接单相220V ? A2 :台达伺服1.5KW (含)以下可接单相/三相220V电源,2.0KW (含)以上只能接三相220V 电源。三相电源整流出来的直流波形质量更好,质量不好的直流电源会消耗母线上电容的能量,电机急加减速时电容会对母线充放电来保持母线电压稳定,因此三相电源输入比单相电源输入伺服的特性会好一些,三相电源输入提供的电流也更大。 Q3 :伺服驱动器输出到电机的UVW三相是否可以互换? A3 :不可以,伺服驱动器到电机UVW的接法是唯一的。普通异步电机输入电源UVW 两相互换时电机会反转,事实上伺服电机UVW 任意两相互换电机也会反转,但是伺服电机是有反馈装置的,这样就出现正反馈会导致电机飞车。伺服驱动器会检测并防止飞车,因此在UVW

接错线后我们看到的现象是电机以很快的速度转过一个角度然后报警 过负载ALE06 Q4 :伺服电机为何要Servo on 之后才可以动作? A4 :伺服驱动器并不是在通电后就会输出电流到电机,因此电机是处 于放松的状态(手可以转动电机轴)。伺服驱动器接收到 Servo on 信 号后会输出电流到电机,让电机处于一种电气保持的状态,此时才可 以接收指令去动作,没有收到指令时是不会动作的即使有外力介入 (手 转不动电机轴),这样伺服电机才能实现精确定位。 Q5 :伺服驱动器上电就报警 ALE14 如何处理? W 丿 證擦 110V 22OV

台达伺服报警查询

台达伺服报警查询 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

台达伺服驱动器异警处理 RLE01:过电流:主回路电流值超越电机瞬间最大电流值倍时动作 1.驱动器输出短路:检查电机与驱动器接线状态或导线本体是否短路,排除短路状态,并防止金属导体外露2.电机接线异常:检查电机连接至驱动器的接线顺序,根据说明书的配线顺序重新配线3.IGBT异常:散热片温度异常,送回经销商或原厂检修4.控制参数设定异常:设定值是否远大于出厂预设值,回复至原出厂预设值,再逐量修正5.控制命令设定异常:检查控制输入命令是否变动过于剧烈,修正输入命令变动率或开启滤波功能 RLE02:过电压:主回路电压值高于规格值时动作 1.主回路输入电压高于额定容许电压值:用电压计测定主回路输入电压是否在额定容许电压值以内(参照11-1),使用正确电压源或串接稳压器2.电源输入错误(非正确电源系统):用电压计测定电源系统是否与规格定义相符,使用正确电压源或串接变压器3.驱动器硬件故障:当电压计测定主回路输入电压在额定容许电压值以内仍然发生此错误,送回经销商或原厂检修 RLE03:低电压:主回路电压值低于规格电压时动作 1.主回路输入电压低于额定容许电压值:检查主回路输入电压接线是否正常,重新确认电压接线2.主回路无输入电压源:用电压计测定是否主回路电压正常,重新确认电源开关3.电源输入错误(非

正确电源系统):用电压计测定电源系统是否与规格定义相符,使用正确电压源或串接变压器 RLE04:RLE04:Z脉冲所对应磁场角度异常 1.编码器损坏:编码器异常,更换电机2.编码器松脱:检视编码器接头,重新安装 RLE05:回生错误:回生控制作动异常时动作 1.回生电阻未接或过小:确认回生电阻的连接状况,重新连接回生电阻或计算回生电阻值2..回生用切换晶体管失效:检查回生用切换晶体管是否短路,送回经销商或原厂检修3.参数设定错误:确认回生电阻参数(P1-52)设定值与回生电阻容量参数(P1-53)设定,重新正确设定 RLE06:过负载:电机及驱动器过负载时动作 1.超过驱动器额定负载连续使用:可由驱动器状态显示P0-02设定为11后,监视平均转矩[%]是否持续一直超过100%以上,提高电机容量或降低负载2.控制系统参数设定不当:机械系统是否摆振、加减速设定常数过快,调整控制回路增益值、加减速设定时间减慢3.电机、编码器接线错误:检查U、V、W及编码器接线是否准确4.电机的编码器不良:送回经销商或原厂检修 RLE07:过速度:电机控制速度超过正常速度过大时动作1.速度输入命令变动过剧:用信号检测计检测输入的模拟电压信号是否异常,调整输入变信号动率或开启滤波功能2.过速度判定参数设定不当:检查过速度设定参数P2-34(过速度警告条件)是否太小,检查过速度设定参数P2-34(过速度警告条件)是否太小

台达DVP-ES2C系列与ASDA-A2伺服电机调试方法

台达绝对型编码器伺服系统的参数设置 (DVP32ES200RC/TC与ASDA-A2 伺服驱动器)使用之前需要对CANopen型号的PLC进行韧体的更新。(对应的版本为V3.43) 刻录方式: 1.PC 要与 ES2-C PLC 通过 IFD6601 链接。 2.点开有.exe 的文件,选择正确的 COM口。 3.鼠标点击 START burn 开始刻录,待PLC上面的EPROM指示灯闪烁红色以后,重新启动PLC, 4.重启后,再次鼠标点击 START burn 开始刻录可以看到白色进度条在移动(红色进度条也是一样的,白色代表版本升级,红色代表版本降级),同时看到 Progress 有显示百分数值,到达百分之百为刻录完成。 5.刻录后检查版本刻录情况 一,硬件 DI 信号配置 : DI1 → PL : 正向运转禁止极限,为 B 接点,必须时常导通(ON),否则驱动(P2-10),用常闭接近开关,设置为23. 器显示异警。 DI2 → NL : 逆向运转禁止极限,为 B 接点,必须时常导通(ON),否则驱(P2-11),用常闭接近开关,设置为22. 动器显示异警。

DI3 → EMGS : 为 B 接点,必须时常导通(ON),否则驱动器显示异警。(P2-12),用常闭接近开关,设置为21. DI4 → ORGP : 在内部位置缓存器模式下,在搜寻原点时,此讯号接通后伺服将此点之位置当成原点。(可以不接) 二,手动设定参数 : 在使用伺服专用指令之前,需要先将伺服做一些初始化设定,步骤如下 : 1.将伺服 P2-08 设置为 10,回归原厂设定。 2.将伺服断电后重新上电。 3.设定伺服控制模式,将 P1-01 设置为 0001(PR 模式)具体方向可以根据实际情况更改。 4.P3-01通讯速度设置为 0403(1M)。 5.站号设定 : 依照需要的台数,分别设置每台伺服的 P3-00,请依序设定为 1、2、3 …最多可设定 8 台。 6.将伺服断电后重新上电。 1.设置伺服驱动器站号(P3-00),伺服从1到8依次设定。 2.设置伺服电机与PLC的通讯速率(P3-01,可以设置为403) 3.设置伺服电机的运动模式(P1-01如设置为0001就是PR位置控制模式)第三位数值可以设置电机运行方向。 4.设置伺服电机的正反向禁止极限,和急停触发。(P2-10-P2-18)

伺服电机接线方式

. 富士伺服电机 富士伺服电机电子齿轮比计算:命令 脉冲补偿周时的机械系统移动伺服电机旋转×位 β脉冲/转命令脉冲补偿131072 例如:电机旋转一圈的机械移动量等于单位量下,转一圈需2500脉冲 N α(分母) N = ×131072 β(分子) 2500 α(分母) 131072 32768 = = 2500 625 β(分子) I/O信号接线 P24 1 24V 24V 19 电源 激磁 2 cont1 脉冲8 *CA 方向21 *CB 0V M24 14 报警17 OUT1 到位结束16 编码器接线方式(smart系统、w系列、A5) 驱动器电机端 P5 P5 1 7 M5 2 M5 8 SIG+ 5 5 SIG+ SIG- 4 SIG- 6 BAT+ BAT+ 1 3 BAT- 2 BAT- 4

地线 GND 外壳 3 旧版富士驱动器参数设置新版富士驱动器参数设置 1# 16384(分子) 1# 0 2# 125(分母) 3# 0(脉冲+方向控制模式)3# 0(脉冲+方向控制模式) 4# 1(方向) 4# 1(方向) 6# 65536(分子) 7# 15(刚性) 7# 125(分母) 19# 250 8# 15# 14(刚性) '. . 松下伺服电机 松下A5 I/O接线说明: 1、2、7 24V 36、41 0V 4 脉冲 6 方向 29 使能ON 37 报警 松下A5编码器接线说明: 驱动器马达 14 25 5 2 6 3 外壳 6(GND) 松下A5驱动器参数设置Pr0.** 0# 方向 1# 控制模式 0 7#指令脉冲形式 3 8#电机旋转一圈指令脉冲数

台达A系列伺服电机调试步骤

台达A系列伺服电机调试 步骤 The Standardization Office was revised on the afternoon of December 13, 2020

第七轴通过伺服电机运行的调试步骤 一、概述 此文档将介绍如何通过西门子PLC来控制伺服电机的正转、反转、以某一速度进行绝对位置的定位以及电机运行错误后如何复位,伺服驱动器如何设置参数等一些最基本的伺服电机的运行操作步骤。 二、需准备的材料 1、西门子S7-1200系列PLC一台(我们准备的S7-1200 CPU1215C DC/DC/DC) 2、台达伺服电机ECMA-L110 20RS一台 3、台达伺服控制器ASD-A2-2023-M一台 4、威纶通触摸屏MT-8012IE一台 5、博途V15设计软件 6、威纶通设计软件 三、调试步骤及简单说明 调试之前首先将所有设备按照安装说明书上控制接线部分的介绍正确的接入电源,所有设备中需要特别注意的是伺服控制器的进线是三项220V 的电压。建议先让伺服电机在无负载的作用下正常运作,之后再将负载接上以免造成不必要的危险,伺服驱动器的控制用CN1信号端口来接线控制(CN1端口如何接线将提供接线图来接线)。

1、伺服驱动器的参数设置 1)、伺服驱动器面板介绍 2)、启动电源面板将显示以下几种报警画面,根据需要将参数调整到位。 画面一:将参数P2-15、P2-16、P2-17三个参数设定为0

画面二:将参数P2-10~P2-17参数中没有一个设定为21 画面三:将参数P2-10~P2-17参数中没有一个设定为23

3)、以上步骤调整好之后可以利用JOG寸动方式来试转电机和驱动器,操作 步骤如下图

台达伺服故障查询

1.绝对型伺服系统时,绝对型编码器设置 设定步骤如下: 1.确认P2-69参数目前设定值(0x0为INC ;0x1为ABS),P2-69如果有修改设定必须重新上电功能才会生效,此参数特性与P1-01属同一类型。 2.接上电池盒(已经连接编码器端与驱动器端,电池也安装上),首次上电会跳ALE60,此时需坐标初始化,ALE60才会消失。 3.坐标初始化有三个方法 尚未作坐标初始化时驱动器会出现ALE60,可以透过以下初始化方式排除: (1)参数法: 设定P2-08为271后,设定P2-71为0x1,,此时ALE60会消失,但是当电池电量低于3.1V会跳ALE61,否则正常情况面板看到会出现00000。 (2)DI法: 设定ABSE(0x1D)与ABSC(0x1F),当ABSE(ON),ABSC设定由OFF变为ON,系统将进行坐标初始化,完成后编码器脉波将从重设为0且PUU将重设为P6-01数值。 (3)PR回原点法: 若设定在PR控制模式时,可以执行PR回原点方式完成坐标初始化。 4.读取马达绝对位置: (1)设定P2-70决定马达绝对位置形式及读取方式设定, P2-70,bit0,DI/O读取单位设定,读取PUU(bit0=0)或Pulse(bit0=1) P2-70,bit1,通讯读取单位设定,读取PUU(bit1=0)或Pulse(bit1=1) (2)通讯读取马达位置单位为Pulse(P2-70=2,bit1=1,bit0=0): 设定P0-49=1或2(1:只更新编码器数据;2:更新编码器数据并将位置误差清除为0),P0-51代表马达绝对位置圈数,P0-52代表马达绝对位置脉波数 (3)通讯读取马达位置单位为PUU(P2-70=0,bit1=0,bit0=0) 设定P0-49=1或2(1:只更新编码器数据;2:更新编码器数据并将位置误差清除为0),P0-51=0,P0-52代表马达绝对位置PUU 5.透过上位控制器读取马达绝对位置信息P0-51及P0-52 6.(1)当编码器电源低于3.1V时会出现ALE61 (2)当绝对型系统初次上电尚未完成坐标初始化、编码器电源低于1.2V或在低电压状况下更换编码器电池,均会发生ALE60:马达绝对位置遗失。 (3)使用非绝对型编码器系统时,开启绝对型功能设定P2-69=1时,会发生ALE69:马达性是错误异常。 (4)编码器绝对位置Pulse型式圈数溢位时会发生ALE62;PUU形式溢位时会发生ALE289。

台达伺服定位控制案例

X1 Y0脉冲输出Y1正转/反转Y 脉冲清除 4DOP-A 人机 ASDA 伺服驱动器 【控制要求】 ● 由台达PLC 和台达伺服,台达人机组成一个简单的定位控制演示系统。通过PLC 发送脉冲控制伺服, 实现原点回归、相对定位和绝对定位功能的演示。 ● 下面是台达DOP-A 人机监控画面: 原点回归演示画面 相对定位演示画面

绝对定位演示画面【元件说明】

【PLC 与伺服驱动器硬件接线图】 台达伺服驱动器 码器 DO_COM SRDY ZSPD TPOS ALAM HOME

【ASD-A伺服驱动器参数必要设置】 当出现伺服因参数设置错乱而导致不能正常运行时,可先设置P2-08=10(回归出厂值),重新上电后再按照上表进行参数设置。 【控制程序】

M1002 MOV K200 D1343 Y7 Y10 Y11 M20 M21 M22 M23 M24 M1334 Y12 M1346 M11 X0 X1 X3 X4 X5 X6 X7 M12 M13 设置加减速时间为 200ms Y6 M10 伺服启动伺服异常复位M0M1M2M3M4M1029 DZRN DDRVI DDRVI DDRVA DDRVA ZRST K10000 K100000K-100000K400000K-50000K5000 K20000 K20000 K200000 K200000 X2 Y0 Y0 Y0 Y0 Y0 Y1 Y1 Y1 Y1 M1M0M0M0M0M2M2M1M1M1M3M3M3M2M2M4 M4 M4 M4 M3 M0 M4 原点回归 正转圈 10跑到绝对坐标,处400000跑到绝对坐标,处 -50000定位完成后自动关闭定位指令执行伺服计数寄存器清零使能 反转圈10伺服电机正转禁止伺服电机反转禁止PLC 暂停输出脉冲伺服紧急停止伺服启动准备完毕伺服启动零速度检出伺服原点回归完成伺服定位完成伺服异常报警

台达伺服电机说明书蜗轮蜗杆减速机电机减速一体机,NMRV40-20-Y..

台达伺服电机说明书蜗轮蜗杆减速机电机减速一体机,NMRV40-20-Y..欧姆龙伺服电机专用行星减速机特点:为同轴式方形法兰输出,具有精度高、钢性好、承载能力大、效率高、寿命长、噪音低、体积轻小、外形美观、安装方便、定位精准等特点,适用于交流伺服马达、直流伺服马达、步进马达、液压马达的增速与减速传动。适合于全球任何厂商所制造的驱动产品连接. KB系列枫信伺服行星减速机: 分KB40、KB60、KB90、KB115、KB142、KB180、KB220、KB280同轴式机座型号,速比:3~1000有20多个比可选择;分一、二、三级减速传动;精度:一级传动精度在4-6弧分,二级传动精度在6-8弧分;三级传动精度在7-10弧分;有数百种规格。产品型号例如:KB142-32-S2-P2。 应用领域: 伺服减速机可直接安装到交流和直流伺服马达上,广泛应用于精密机床、军工设备、半导体设备、印刷包装设备、食品包裝、自动化产业、太阳能、工业机器人、精密测试仪器等高精度场合应用。 KB枫信系列精密行星减速机性能参数:

KB系列精密行星减速机转动惯量:

配备电机LA LZ S LR LB LE LC L1(一级传动)L2(二级传动)L3(三级传动)2000W 145 4-M8 22(F7) 65 110(H7) 10 150 280 326 372 3000W 200 4-M12 35(F7) 80 114.3(H7) 10 180 305 351 397 4000W 215 4-M12 38/42(F7) 115 180(H7) 10 190 325 371 417 配备电机LA LZ S LR LB LE LC L1(一级传动)L2(二级传动)L3(三级传动)3000W 200 4-M12 35F7 82 114.3H7 10 188 320 368 413 4200W 215 4-M12 38/42F7 115 180H7 10 188 340 388 433 7500W 235 4-M12 55F7 120 200H7 10 220 342 390 435

相关文档
相关文档 最新文档