文档库 最新最全的文档下载
当前位置:文档库 › 离散信号的DTFT和DFT 代码

离散信号的DTFT和DFT 代码

离散信号的DTFT和DFT 代码
离散信号的DTFT和DFT 代码

离散信号的DTFT和DFT 代码

clf;

w=pi/8:pi/8:pi; %用plot函数

num=[1 3 5 7 9 11 13 15 17 19 21];

h=freqz(num,1,w);

subplot(2,2,1);

plot(w/pi,real(h));

grid;

xlabel('数字频率');

ylabel('振幅');

title('实部');

subplot(2,2,2);

plot(w/pi,imag(h));

grid;

xlabel('数字频率');

ylabel('振幅');

title('虚部');

pause;

subplot(2,2,3);

plot(w/pi,abs(h));

grid;

xlabel('数字频率');

ylabel('振幅');

title('幅度谱');

subplot(2,2,4);

plot(w/pi,angle(h));

grid;

xlabel('数字频率');

ylabel('相位');

title('相位谱');

clf;

w=pi/8:pi/8:pi; %用stem函数

num=[1 3 5 7 9 11 13 15 17 19 21]; h=freqz(num,1,w);

subplot(2,2,1);

stem(w/pi,real(h));

grid;

xlabel('数字频率');

ylabel('振幅');

title('实部');

subplot(2,2,2);

stem(w/pi,imag(h));

grid;

xlabel('数字频率');

ylabel('振幅');

title('虚部');

pause;

subplot(2,2,3);

stem(w/pi,abs(h));

grid;

xlabel('数字频率');

ylabel('振幅');

title('幅度谱');

subplot(2,2,4);

stem(w/pi,angle(h));

grid;

xlabel('数字频率');

ylabel('相位');

clf;

w=[pi/8 pi/4 pi*3/8 pi/2 pi*5/8 pi*3/4 pi*7/8 pi]; n=0:15; % 16点的算法

num=cos(5*pi*n/16);

h=freqz(num,1,w);

subplot(2,2,1);

stem(w/pi,abs(h));

title('DTFT幅度谱')

xlabel('数字频率');

ylabel('振幅'); grid;

n=0:15;

x=cos(5*pi*n/16);

k=fft(x,16);

subplot(2,2,2);

stem(n, abs (k));

title('16点DFT幅度谱')

xlabel('数字频率');

ylabel('振幅');grid;

w=pi/16:pi/16:pi;

n=0:31; % 32点的算法num=cos(5*pi*n/16);

h=freqz(num,1,w);

subplot(2,2,3);

stem(w/pi,abs(h));

title('DTFT幅度谱') xlabel('数字频率'); ylabel('振幅'); grid;

n=0:31;

x=cos(5*pi*n/16);

k=fft(x,32);

subplot(2,2,4);

stem(n, abs (k));

title('32点FFT幅度谱') xlabel('数字频率'); ylabel('振幅');grid;

关系。

实验1离散时间信号的产生与运算

数字信号处理 实验报告 班级: 学号: 姓名:word文档可自由复制编辑

实验1离散时间信号的产生与运算 一、实验目的 (1)了解离散时间信号的特点。 (2)掌握在计算机中生成及绘制各种常用离散时间信号序列的方法。 (3)掌握序列的加、减、乘、除和平移、反转、尺度变换等基本运算及计算机的 实现方法。 二、实验原理 信号是随时间变化的物理量,而计算机只能处理离散信号。离散信号是在某些不连续的时间上有信号值,而在其它时间点上没有定义的一类信号。离散信号一般可以由连续信号通过模数转换得到。 常用的离散信号有单位脉冲序列、单位阶跃序列、复指数序列、正弦信号序列、随机序列等。 离散信号的基本运算包括信号的加、减、乘、除。离散信号的时域变换包括信号的平移、反转、尺度变换等。 三、实验内容与方法 1、编写程序,生成如下数字信号:sqrt(2*k)u(k错误!未找到引用源。3), δ(k+5)。 (1) f(k)=sqrt(2*k)u(k错误!未找到引用源。3) 代码: k=(1:10); n=3; u=[(k-n)>=0]; a=sqrt(2*k); stem(k,a.*u); title('sqrt(2*k)u(k 3)的图像'); xlabel('时间(k)');ylabel('幅值f(k)'); 运行图: word文档可自由复制编辑

(2) f(k)= δ(k+5) 代码: k1=-10;k2=0;k=k1:k2; n=-5; %单位脉冲出现的位置 f=[(k-n)==0]; stem(k,f,'filled');title('δ(k+5)序列的图像') xlabel('时间(k)');ylabel('幅值f(k)'); 运行图: word文档可自由复制编辑

实验一利用DFT分析信号频谱

实验一利用DFT 分析信号频谱 一、 实验目的 1. 加深对DFT 原理的理解。 2. 应用DFT 分析信号的频谱。 3. 深刻理解利用DFT 分析信号频谱的原理,分析实现过程中出现的现象及解决方法。 二、 实验设备与环境 计算机、MATLAB^件环境。 三、 实验基础理论 1. DFT 与DTFT 的关系 方法二:实际在MATLAB 十算中,上述插值运算不见得是最好的办法。 由于DFT 是DTFT 的取 样值,其相邻两个频率样本点的间距为 —,所以如果我们增加数据的长度 N,使得到的 N DFT 谱线就更加精细,其包络就越接近 DTFT 的结果,这样就可以利用 DFT 计算DTFT 如果 没有更多的数据,可以通过补零来增加数据长度。 3、利用DFT 分析连续时间函数 利用DFT 分析连续时间函数是,主要有两个处理:①抽样,②截断 对连续时间信号x a (t) 一时间T 进行抽样,截取长度为 M 则 址 ML X a (N)「-x a (t)e4dt 二「x a (nT)e jnT n=0 再进行频域抽样可得 M 4 —j 竺 n 送,T' X a (nT)e N =TX M (k) NT n =0 因此,利用DFT 分析连续时间信号的步骤如下: (1 )、确定时间间隔,抽样得到离散时间序列 x(n). (2) 、选择合适的窗函数和合适长度 M 得到M 点离散序列x M DFT 实际上是 DTFT 在单位圆上以 的抽样,数学公式表示为: N-1 _j 空 k X(k) = X(z)| 耳八 x(n)e N z” N n=0 (2 — 1) 2、利用 DFT 求DTFT 方法一:利用下列公式: 2rk X(e j )二、X(k)( ) k=0 N k= 0,1,..N - 1 (2 — 2) Sn(N ,/2) Nsin(,/2) .N A e 2为内插函数 (2— 3) (2—4) X a (r 1)|

离散时间信号的表示及运算

第2章 离散时间信号的表示及运算 2.1 实验目的 ● 学会运用MATLAB 表示的常用离散时间信号; ● 学会运用MATLAB 实现离散时间信号的基本运算。 2.2 实验原理及实例分析 2.2.1 离散时间信号在MATLAB 中的表示 离散时间信号是指在离散时刻才有定义的信号,简称离散信号,或者序列。离散序列通常用)(n x 来表示,自变量必须是整数。 离散时间信号的波形绘制在MATLAB 中一般用stem 函数。stem 函数的基本用法和plot 函数一样,它绘制的波形图的每个样本点上有一个小圆圈,默认是空心的。如果要实心,需使用参数“fill”、“filled”,或者参数“.”。由于MA TLAB 中矩阵元素的个数有限,所以MA TLAB 只能表示一定时间范围内有限长度的序列;而对于无限序列,也只能在一定时间范围内表示出来。类似于连续时间信号,离散时间信号也有一些典型的离散时间信号。 1. 单位取样序列 单位取样序列)(n δ,也称为单位冲激序列,定义为 ) 0()0(0 1)(≠=?? ?=n n n δ (12-1) 要注意,单位冲激序列不是单位冲激函数的简单离散抽样,它在n =0处是取确定的值1。在MATLAB 中,冲激序列可以通过编写以下的impDT .m 文件来实现,即 function y=impDT(n) y=(n==0); %当参数为0时冲激为1,否则为0 调用该函数时n 必须为整数或整数向量。 【实例2-1】 利用MATLAB 的impDT 函数绘出单位冲激序列的波形图。 解:MATLAB 源程序为 >>n=-3:3; >>x=impDT(n); >>stem(n,x,'fill'),xlabel('n'),grid on >>title('单位冲激序列') >>axis([-3 3 -0.1 1.1])

信号与测试实验1时率与频率

基本信号分析 一、实验目的 1.掌握基本信号的时域和频域分析方法 2.掌握信号的自相关和互相关分析,了解其应用 二、数据处理与分析 (1)幅值为1,频率为100Hz的正弦信号,上图为时域图,下图为利用快速傅里叶变换获得的频谱图。从频谱图上看出,f=100Hz时频域的幅值最大。 (2)频域为100Hz,幅值为1的方波信号,上图为时域图,下图为借助快速傅立叶变换获得的频域图。从频谱图上看出,f=100Hz时频域的幅值最大,随着频域增大,频域的幅值逐渐衰减。

(3)频率为100Hz,幅值为1的锯齿波信号图,上图为时域图,下图为借助傅立叶变换而获得的频域图。从频域图看出,在100Hz的整数倍频率上,频域幅值都出现了峰值,随着频率的增大,峰值逐渐收敛至0. (4)平均振幅为1的噪声信号,上图为时域图,下图为通过快速傅立叶变

换得出的频谱图,从频谱图可以看出,白噪声信号的频谱杂乱无章,无明显规律。 (5)由频率为50Hz、100Hz、150Hz的正弦信号组成的复合信号,上图为时域图,下图为频域图,从图中可以看出,频谱图在50、100、150Hz处出现了峰值。 (6)频率为100Hz 的正弦信号叠加噪声信号:上图为时域信号图,下图为

通过快速傅立叶变换获得的频谱图。与没有叠加噪声信号的正弦波相比,时域波形出现了毛刺,而频谱图中除了在100Hz处有峰值外,在其他频率点处也出现了一些较低的峰值。 (7)频率为100Hz的正弦信号和频率为100Hz的方波信号进行叠加,上图为时域信号,下图为频谱图。从时域图上可以看出,正弦波形叠加方波后有了明显的畸变。从频谱图上可以看出,除了100Hz处出现峰值以外,在其他频率点也出现了一些峰值。

离散时间信号处理-知识点总结

离散时间信号及系统的DTFT 离散时间信号及系统的z变换 DFT的表达式 连续时间信号机系统的Fourier变换 时域-系统的因果性及稳定性P21、P32、P48 z域-系统的因果性及稳定性P110 抽样时间信号的频域表示P142 抽样离散信号与原连续信号的时域关系P150 连续信号、采样时间信号与离散信号的频谱关系P157 DTFT的对称性质P56 DTFT的理论及性质P59 DTFT变换对P62 DTFT与原连续信号的频谱关系P147 离散Fourier级数DFS性质P550 DFT性质P576 线性循环卷积P576 重叠保留法、相加法P582 窗函数效应P698 时间依赖Fourier变换P714 Decimation in Time P640、P645 Decimation in Frequency P649、P651 z-Transform变换对P104 z-Transform性质P126

LTI的典型单位冲激响应P31 LTI的特征函数及特征根P40、P46 全通系统P274 最小相位系统P280 线性相位系统P291 线性相位系统与最小相位系统的关系P308 FIR滤波器窗函数P469 FIR滤波器最佳逼近P486 降采样频谱P168、P170 升采样频谱P172、P174 随机信号理论Appendix-A 随机信号的自协方差及自相关序列的时域频域性质P65 平稳随机信号的Fourier分析P723 AD噪声分析P193 数字滤波器中的舍入误差噪声P391 有限字长效应P370 系数量化误差P377 FFT有限寄存器长效应P661 极限循环P415

习题1 绘制典型信号及其频谱图(参考模板)

习题一绘制典型信号及其频谱图 电子工程学院 202班一、单边指数信号 单边指数信号的理论表达式为 对提供的MATLAB程序作了一些说明性的补充,MATLAB程序为

figure(3); plot(w,20*log10(abs(F)));xlabel('\omega');ylabel('|F(\omega)| in dB');title(' 幅频特性/dB'); figure(4); plot(w,angle(F)*57.29577951);xlabel('\omega');ylabel('\phi(\omega)/(°) ');title('相频特性'); 调整,将a分别等于1、5、10等值,观察时域波形和频域波形。由于波形 较多,现不失代表性地将a=1和a=5时的各个波形图列表如下进行对比,其 他a值的情况类似可推知。 a15 时 域 图 像

幅频特性 幅频特性/d B 相频特性

分析: 由上表中a=1和a=5的单边指数信号的波形图和频谱图的对比可以发现,当a值增大时,信号的时域波形减小得很快,而其幅频特性的尖峰变宽,相频特性的曲线趋向平缓。 二、矩形脉冲信号 矩形脉冲信号的理论表达式为 MATLAB程序为:

clear all; E=1;%矩形脉冲幅度 width=2;%对应了时域表达式中的tao t=-4:0.01:4; w=-5:0.01:5; f=E*rectpuls(t,width); %MATLAB中的矩形脉冲函数,width即是tao,t为时间 F=E*width*sinc(w.*width/2); figure(1); plot(t,f);xlabel('t');ylabel('f(t)');title('信号时域图像'); figure(2); plot(w,abs(F));xlabel('\omega');ylabel('|F(\omega)|');title('幅频特性'); figure(3); plot(w,20*log10(abs(F)));xlabel('\omega');ylabel('|F(\omega)| in dB');title(' 幅频特性/dB'); figure(4); plot(w,angle(F));xlabel('\omega');ylabel('\phi(\omega)');title('相频特性'); 调整,将分别等于1、4等值,观察时域波形和频域波形。由于波形较多,现不失代表性地将a=1和a=4时的各个波形图列表如下进行对比,其他值的情况类似可推知。 14

离散时间信号表与运算

离散时间信号表与运算

————————————————————————————————作者:————————————————————————————————日期:

实验一 离散时间信号的表示与运算 一 实验目的 1、熟悉MATLAB 的绘图函数; 2、掌握单位取样序列、单位阶跃序列、矩形序列和正余弦序列的产生方法; 3、掌握离散时间信号基本运算的MATLAB 实现; 4、掌握离散时间信号线性卷积和运算的MATLAB 实现。 二 实验设备 1、计算机 2、MA TLAB R2007a 仿真软件 三 实验原理 1)序列相加和相乘 设有序列)(1n x 和)(2n x ,它们相加和相乘如下: ) ()()()()()(2121n x n x n x n x n x n x ?=+= 注意,序列相加(相乘)是对应序列值之间的相加(相乘),因此参加运算的两个序列必须具有相同的长度,并且保证位置相对应。如果不相同,在运算前应采用zeros 函数将序列左右补零使其长度相等并且位置相对应。在MATLAB 中,设序列用x1和x2表示,序列相加的语句为:x=x1+x2;然而要注意,序列相乘不能直接用x=x1*x2,该式表示两个矩阵的相乘,而不是对应项的相乘。对应项之间相乘的实现形式是点乘“.*”,实现语句为:x=x1.*x2。 2)序列翻转 设有序列:)()(n x n y -=,在翻转运算中,序列的每个值以n=0为中心进行翻转,需要注意的是翻转过程中序列的样值向量翻转的同时,位置向量翻转并取反。MATLAB 中,翻转运算用fliplr 函数实现。设序列)(n x 用样值向量x 和位置向量nx 表述,翻转后的序列 )(n y 用样值向量y 和位置向量ny 描述。 3)序列的移位 移位序列)(n x 的移位序列可表示为:)()(0n n x n y -=,其中,00>n 时代表序列右移 0n 个单位;00

信号与系统实验报告-实验3--周期信号的频谱分析

信号与系统实验报告-实验3--周期信号的频谱分析

信号与系统 实验报告 实验三周期信号的频谱分析 实验三周期信号的频谱分析 实验目的: 1、掌握连续时间周期信号的傅里叶级数的物理意义和分析方法; 2、观察截短傅里叶级数而产生的“Gibbs现象”,了解其特点以及产生的原因;

3、掌握各种典型的连续时间非周期信号的频谱特征。 实验内容: (1)Q3-1 编写程序Q3_1,绘制下面的信号的波形图: 其中,0 = 0.5π,要求将一个图形窗口分割成四个子图,分别绘制cos(0t)、cos(30t)、cos(50t) 和x(t) 的波形图,给图形加title,网格线和x坐标标签,并且程序能够接受从键盘输入的和式中的项数。 程序如下: clear,%Clear all variables close all,%Close all figure windows dt = 0.00001; %Specify the step of time variable t = -2:dt:4; %Specify the interval of time w0=0.5*pi; x1=cos(w0.*t); x2=cos(3*w0.*t); x3=cos(5*w0.*t); N=input('Type in the number of the harmonic components N='); x=0; for q=1:N; x=x+(sin(q*(pi/2)).*cos(q*w0*t))/q; end subplot(221) plot(t,x1)%Plot x1 axis([-2 4 -2 2]); grid on, title('signal cos(w0.*t)') subplot(222) plot(t,x2)%Plot x2 axis([-2 4 -2 2]); grid on, title('signal cos(3*w0.*t))') subplot(223) plot(t,x3)%Plot x3

《离散时间信号的表示及运算》

实验一 离散时间信号的表示及运算 一、实验目的 1.掌握离散时间信号的时域表示; 2.掌握离散时间信号的基本运算; 3.用MA TLAB 表示的常用离散时间信号及其运算; 4.掌握用MA TLAB 描绘二维图形的方法。 二、实验原理 离散时间信号是指在离散时刻才有定义的信号,简称离散信号,或者序列。离散序列通常用)(n x 来表示,自变量必须是整数。离散时间信号的波形绘制在MATLAB 中一般用stem 函数。 对离散时间序列实行基本运算可得到新的序列,这些基本运算主要包括加、减、乘、除、移位、反折等。两个序列的加减乘除是对应离散样点值的加减乘除,因此,可通过MATLAB 的点乘和点除、序列移位和反折来实现。 一些常用序列 1.单位冲激序列(单位抽样))(n δ ?? ?≠==0,00,1)(n n n δ (1) 2.单位阶跃序列)(n u ???=,,01)(n u 00<≥n n (2) 3.矩形序列)(n R N ???=,,01)(n R N 其他10-≤≤N n (3) 4.正弦序列和指数序列 正弦序列 )s i n ()(0?ω+=n A n x (4) 式中:A 为幅度,0ω为数字域的频率,它反映了序列变化的速率,?为起始相位。 实指数序列 )()(n u a n x n = (5)

式中,a 为实数。当1a 时,序列是发散的。a 为负数时,序列是摆动的。 复指数序列 n j e n x )(0)(ωσ+= (6) 它具有实部和虚部,0ω是复正弦的数字域频率。 三、实验内容 1.用Matlab 编制程序分别产生单位抽样序列)(n δ、单位阶跃序列)(n u 、矩形序列)()(5n R n x =、正弦序列)8 sin(2)(n n x π=、复指数序列n j e n x )641()(π+=,并画波形图; 绘制)(n δ波形 绘制n j e n x ][)()2.01.0(π+-=的实部和虚部的波形。

信号与检验测试实验一

实验一、基本信号分析 一、实验目的 1. 掌握基本信号的时域和频域分析方法 2. 掌握信号的自相关和互相关分析,了解其应用 二、实验原理 (1)信号的时域和频域转换 目的:研究分析信号的时域特征(如持续时间、幅值、周期等)和信号的频域特征(如是否含有周期性信号、信号的频率带宽等) 转换方法:时域有限长序列 频域有限长序列: 离散傅里叶变换 (2)信号相关性 相关是用来描述一个随机过程自身在不同时刻的状态间,或者两个随机过程在某个时刻状态间线性依从关系的数字特征。 自相关函数定义为: xx 01()lim ()()T T R x t x t dt T ττ→∞ =+? 互相关函数定义为: xx 0 1()lim ()()T T R x t x t dt T ττ→∞=+?

三、实验内容与步骤 (1)产生不同的周期信号,包括正弦信号、方波信号、锯齿波信号,在时域分析这些波形特征(幅值、频率(周期))。 上图为幅值为2频率为20Hz的正弦信号时域图,下图为快速傅里叶变换之后获得的频谱图。从频谱图上看出,f=20Hz时频域的幅值最大,和时域图吻合。

上图为幅值为3频率为5Hz的方波信号时域图,下图为快速傅里叶变换之后获得的频谱图。从频谱图上看出,方波信号傅里叶分解后由一个频率为5Hz 的基波和无数个高次谐波组成。以幅值衰减十倍为带宽,由图可知此方波信号带宽约为35Hz

上图为幅值为4频率为10Hz的三角波信号时域图,下图为快速傅里叶变换之后获得的频谱图。从频域图看出,在10Hz的整数倍频率上,频域幅值出现了峰值,其后有无数个谐波和基波一起组成了三角波。以幅值衰减十倍为带宽,由图可知此三角波信号带宽约为80Hz (2)在Matlab中产生随机噪声、阶跃信号(选作)、矩形脉冲(选作)

离散时间系统的时域分析

第七章离散时间系统的时域分析 §7-1 概述 一、离散时间信号与离散时间系统 离散时间信号:只在某些离散的时间点上有值的 信号。 离散时间系统:处理离散时间信号的系统。 混合时间系统:既处理离散时间信号,又处理连 续时间信号的系统。 二、连续信号与离散信号 连续信号可以转换成离散信号,从而可以用离散时间系统(或数字信号处理系统)进行处理: 三、离散信号的表示方法:

1、 时间函数:f(k)<——f(kT),其中k 为序号,相当于时间。 例如:)1.0sin()(k k f = 2、 (有序)数列:将离散信号的数值按顺序排列起来。例如: f(k)={1,0.5,0.25,0.125,……,} 时间函数可以表达任意长(可能是无限长)的离散信号,可以表达单边或双边信号,但是在很多情况下难于得到;数列的方法表示比较简单,直观,但是只能表示有始、有限长度的信号。 四、典型的离散时间信号 1、 单位样值函数:? ??==其它001)(k k δ 下图表示了)(n k ?δ的波形。

这个函数与连续时间信号中的冲激函数 )(t δ相似,也有着与其相似的性质。例如: )()0()()(k f k k f δδ=, )()()()(000k k k f k k k f ?=?δδ。 2、 单位阶跃函数:? ??≥=其它001)(k k ε 这个函数与连续时间信号中的阶跃函数)(t ε相似。用它可以产生(或表示)单边信号(这里称为单边序列)。 3、 单边指数序列:)(k a k ε

比较:单边连续指数信号:)()()(t e t e t a at εε=,其 底一定大于零,不会出现负数。 (a) 0.9a = (d) 0.9a =? (b) 1a = (e) 1a =? (c) 1.1a = (f) 1.1a =?

实验一-离散时间信号分析

实验一 离散时间信号分析 一、实验目的 1. 初步掌握 Matlab 的使用,掌握编写M 文件和函数文件 2. 掌握各种常用序列的表达,理解其数学表达式和波形表示之间的关系。 3. 掌握生成及绘制数字信号波形的方法。 4. 掌握序列的基本运算及实现方法。 5. 研究信号采样时采样定理的应用问题。 二、实验原理 1.序列的基本概念 离散时间信号在数学上可用时间序列{x (n )}来表示,其中x (n )代表序列的第n 个数字,n 代表时间的序列,n 的取值范围为-∞< n<+∞的整数,n 取其它值x (n )没有意义。离散时间信号可以是由模拟信号通过采样得到,例如对模拟信号x a (t ) 进行等间隔采样,采样间隔为T ,得到{x (nT )} a 一个有序的数字序列就是离散时间信号,简称序列。 2.常用序列 常用序列有:单位脉冲序列(单位抽样)δ (n )、单位阶跃序列u (n )、矩形序列R N (n ) 、 实指数序列、复指数序列、正弦型序列等。 3.序列的基本运算 序列的运算包括移位、反褶、和、积、标乘、累加、差分运算等。 4.序列的卷积运算 y(n)=∑x (m )h (n ?m )+∞m=?∞=x(n)*h(n) 上式的运算关系称为卷积运算,式中* 代表两个序列卷积运算。两个序列的卷积是一个序列与另一个序列反褶后逐次移位乘积之和,故称为离散卷积,也称两序列的线性卷积。其计算的过程包括以下4 个步骤。 (1)反褶:先将x (n )和h (n )的变量n 换成m ,变成x (m )和h (m ),再将h (m )以纵 轴为对称轴反褶成h (-m )。 (2)移位:将h (-m )移位n ,得h (n- m )。当n 为正数时,右移n 位;当n 为负数时, 左移n 位。 (3)相乘:将h (n -m )和x (m )的对应点值相乘。 (4)求和:将以上所有对应点的乘积累加起来,即得y (n )。 三、主要实验仪器及材料 PC 机、Matlab7.0。

09典型信号的频谱分析

实验九 典型信号的频谱分析 一. 实验目的 1. 在理论学习的基础上,通过本实验熟悉典型信号的频谱特征,并能够从信号频谱中读取 所需的信息。 2. 了解信号频谱分析的基本原理和方法,掌握用频谱分析提取测量信号特征的方法。 二. 实验原理 信号频谱分析是采用傅里叶变换将时域信号x(t)变换为频域信号X(f),从而帮助人们从另一个角度来了解信号的特征。 图1、时域分析与频域分析的关系 信号频谱X(f)代表了信号在不同频率分量成分的大小,能够提供比时域信号波形更直观,丰富的信息。时域信号x(t)的傅氏变换为: dt e t x f X ft j ?+∞ ∞--=π2)()( (1) 式中X(f)为信号的频域表示,x(t)为信号的时域表示,f 为频率。 工程上习惯将计算结果用图形方式表示, 以频率f 为横坐标,X(f)的实部)(f a 和虚部 )(f b 为纵坐标画图,称为时频-虚频谱图; 以频率f 为横坐标,X(f)的幅值)(f A 和相位 )(f ?为纵坐标画图,则称为幅值-相位谱; 以f 为横坐标,A(f) 2为纵坐标画图,则称为 功率谱,如图所示。 频谱是构成信号的各频率分量的集合,它 完整地表示了信号的频率结构,即信号由哪些 谐波组成,各谐波分量的幅值大小及初始相 位,揭示了信号的频率信息。 图2、信号的频谱表示方法

三. 实验内容 1. 白噪声信号幅值谱特性 2. 正弦波信号幅值谱特性 3. 方波信号幅值谱特性 4. 三角波信号幅值谱特性 5. 正弦波信号+白噪声信号幅值谱特性 四. 实验仪器和设备 1. 计算机1台 2. DRVI快速可重组虚拟仪器平台1套 3. 打印机1台 五. 实验步骤 1.运行DRVI主程序,点击DRVI快捷工具条上的"联机注册"图标,选择其中的“DRVI 采集仪主卡检测”或“网络在线注册”进行软件注册。 2.在DRVI软件平台的地址信息栏中输入WEB版实验指导书的地址,在实验目录中选择 “典型信号频谱分析”,建立实验环境。 图5 典型信号的频谱分析实验环境 下面是该实验的装配图和信号流图,图中的线上的数字为连接软件芯片的软件总线数据线号,6017、6018为两个被驱动的信号发生器的名字。 图6 典型信号的频谱分析实验装配图

华中师范大学离散时间信号处理A卷

院(系 ): 专业: 年级: 学生 姓名: 学号: --- -- -- --- -- -- -- --- -- -- -- --- -- -- -- --- -- -- -- -- -- -- 密 -- -- -- -- --- -- -- -- --- -- -- -- --- -- -- - 封 --- -- -- --- -- -- -- --- -- -- -- -- -- 线 ---- -- -- -- --- -- -- -- --- -- -- -- --- -- -- -- --- -- -- -- --- -- -- -- --

第 1 页共 3 页

------------------------------------------------- 密 ---------------------------------- 封 ----------------------------- 线 ---------------------------------------------------------

第 2 页(共 3 页)

第 3 页(共 3 页) ------------------------------------------------- 密 ---------------------------------- 封 ----------------------------- 线 ---------------------------------------------------------

离散时间信号的表示与运算

实验一 离散时间信号的表示与运算 一 实验目的 1、熟悉MATLAB 的绘图函数; 2、掌握单位取样序列、单位阶跃序列、矩形序列和正余弦序列的产生方法; 3、掌握离散时间信号基本运算的MATLAB 实现; 4、掌握离散时间信号线性卷积和运算的MATLAB 实现。 二 实验设备 1、计算机 2、MA TLAB R2007a 仿真软件 三 实验原理 1)序列相加和相乘 设有序列)(1n x 和)(2n x ,它们相加和相乘如下: ) ()()()()()(2121n x n x n x n x n x n x ?=+= 注意,序列相加(相乘)是对应序列值之间的相加(相乘),因此参加运算的两个序列必须具有相同的长度,并且保证位置相对应。如果不相同,在运算前应采用zeros 函数将序列左右补零使其长度相等并且位置相对应。在MATLAB 中,设序列用x1和x2表示,序列相加的语句为:x=x1+x2;然而要注意,序列相乘不能直接用x=x1*x2,该式表示两个矩阵的相乘,而不是对应项的相乘。对应项之间相乘的实现形式是点乘“.*”,实现语句为:x=x1.*x2。 2)序列翻转 设有序列:)()(n x n y -=,在翻转运算中,序列的每个值以n=0为中心进行翻转,需要注意的是翻转过程中序列的样值向量翻转的同时,位置向量翻转并取反。MATLAB 中,翻转运算用fliplr 函数实现。设序列)(n x 用样值向量x 和位置向量nx 表述,翻转后的序列 )(n y 用样值向量y 和位置向量ny 描述。 3)序列的移位 移位序列)(n x 的移位序列可表示为:)()(0n n x n y -=,其中,00>n 时代表序列右移 0n 个单位;00

实验一离散信号的频谱分析报告

实验一离散信号的频谱分析报告 班级 姓名 学号

实验一离散信号的频谱分析报告 1 掌握采样频率的概念 2 掌握信号频谱分析方法; 3 掌握在计算机中绘制信号频谱图的方法。 ①采样频率为1000Hz,信号频率为30Hz的正弦信号y1(n) 对其进行FFT变换 ②采样频率为1000Hz,信号频率为120Hz的正弦信号y2(n)

对其进行FFT变换 ③采样频率为1000Hz, 30Hz的正弦信号和120Hz的混合信号y3(n)。 对其进行FFT变换

语音信号波形

附录程序: fs=1000;%设定采样频率 N=1024; n=0:N-1; t=n/fs; f0=30;%设定正弦信号频率 %生成正弦信号 x=sin(2*pi*f0*t); figure(1); subplot(3,2,1); plot(t,x);%作正弦信号的时域波形xlabel('t'); ylabel('y'); title('正弦信号30HZ时域波形'); grid; %进行FFT变换并做频谱图

y=fft(x,N);%进行fft变换 mag=abs(y);%求幅值 f=(0:length(y)-1)'*fs/length(y);%进行对应的频率转换figure(1); subplot(3,2,2); plot(f,mag);%做频谱图 axis([0,100,0,500]); xlabel('频率(Hz)'); ylabel('幅值'); title('正弦信号30HZ幅频谱图N=1024'); grid; %120HZ f1=120; x=sin(2*pi*f1*t); figure(1); subplot(3,2,3); plot(t,x);%作正弦信号的时域波形 xlabel('t'); ylabel('y'); title('正弦信号120HZ时域波形'); grid; %进行FFT变换并做频谱图 y=fft(x,N);%进行fft变换 mag=abs(y);%求幅值 f=(0:length(y)-1)'*fs/length(y);%进行对应的频率转换

离散时间信号与离散时间系统

§7-1 概述 一、 离散时间信号与离散时间系统 离散时间信号:只在某些离散的时间点上有值的 信号。 离散时间系统:处理离散时间信号的系统。 混合时间系统:既处理离散时间信号,又处理连 续时间信号的系统。 二、 连续信号与离散信号 连续信号可以转换成离散信号,从而可以用离散时间系统(或数字信号处理系统)进行处理: 三、 离散信号的表示方法: 1、 时间函数:f(k)<——f(kT),其中k 为序号,相当于时间。 例如:)1.0sin()(k k f = 2、 (有序)数列:将离散信号的数值按顺序排列起来。例如: f(k)={1,0.5,0.25,0.125,……,} 时间函数可以表达任意长(可能是无限长)的离散信号,可以表达单边或双边信号,但是在很多情况下难于得到;数列的方法表示比较简单,直观,但是只能表示有始、有限长度的信号。 四、 典型的离散时间信号 1、 单位样值函数: ?? ?==其它001)(k k δ 下图表示了)(n k -δ的波形。 连续信号 离散信号 数字信号 取样 量化

这个函数与连续时间信号中的冲激函数)(t δ相似,也有着 与其相似的性质。例如: )()0()()(k f k k f δδ=, )()()()(000k k k f k k k f -=-δδ。 2、 单位阶跃函数: ?? ?≥=其它001)(k k ε 这个函数与连续时间信号中的阶跃函数) (t ε相似。用它可以产生(或表示)单边信号(这里称为单边序列)。 3、 单边指数序列: )(k a k ε 比较:单边连续指数信号: )( )()(t e t e t a at εε=,其底一定大于零,不会出现负数。 4、 单边正弦序列:)()cos(0k k A εφω+ (a) 0.9a = (d) 0.9a =- (b) 1a = (e) 1a =- (c) 1.1a = (f) 1.1a =-

实验:典型信号频谱分析报告

实验3.2 典型信号频谱分析 一、 实验目的 1. 在理论学习的基础上,通过本实验熟悉典型信号的波形和频谱特征,并 能够从信号频谱中读取所需的信息。 2. 了解信号频谱分析的基本方法及仪器设备。 二、 实验原理 1. 典型信号及其频谱分析的作用 正弦波、方波、三角波和白噪声信号是实际工程测试中常见的典型信号,这些信号时域、频域之间的关系很明确,并且都具有一定的特性,通过对这些典型信号的频谱进行分析,对掌握信号的特性,熟悉信号的分析方法大有益处,并且这些典型信号也可以作为实际工程信号分析时的参照资料。本次实验利用DRVI 快速可重组虚拟仪器平台可以很方便的对上述典型信号作频谱分析。 2. 频谱分析的方法及设备 信号的频谱可分为幅值谱、相位谱、功率谱、对数谱等等。对信号作频谱分析的设备主要是频谱分析仪,它把信号按数学关系作为频率的函数显示出来,其工作方式有模拟式和数字式二种。模拟式频谱分析仪以模拟滤波器为基础,从信号中选出各个频率成分的量值;数字式频谱分析仪以数字滤波器或快速傅立叶变换为基础,实现信号的时—频关系转换分析。 傅立叶变换是信号频谱分析中常用的一个工具,它把一些复杂的信号分解为无穷多个相互之间具有一定关系的正弦信号之和,并通过对各个正弦信号的研究来了解复杂信号的频率成分和幅值。 信号频谱分析是采用傅立叶变换将时域信号x(t)变换为频域信号X(f),从而帮助人们从另一个角度来了解信号的特征。时域信号x(t)的傅氏变换为: 式中X(f)为信号的频域表示,x(t)为信号的时域表示,f 为频率。 3. 周期信号的频谱分析 周期信号是经过一定时间可以重复出现的信号,满足条件: dt e t x f X ft j ?+∞ ∞--=π2)()(

实验1 信号的频谱图

大连理工大学实验报告 学院(系): 专业: 班级: _________ 姓 名: 学号: 组: ___ __________ 实验时间: 实验室: 实验台:_____________ 指导教师签字: 成绩:__________________ 实验名称 一、 实验目的和要求 1. 掌握周期信号的傅里叶级数展开; 2. 掌握周期信号的有限项傅里叶级数逼近; 3. 掌握周期信号的频谱分析; 4. 掌握连续非周期信号的傅立叶变换; 5. 掌握傅立叶变换的性质。 二、实验程序和结果 1. 已知周期三角信号如下图1-5所示,试求出该信号的傅里叶级数,利用MATLAB 编程实现其各次谐波的叠加,并验证其收敛性。 三角型号的傅里叶级数展开式如下: ) 5cos 1 3cos 1 (cos 4 2 1 )(5 3 2 2 2 ++ + += wt wt wt t f pi

clc clear t=-5:0.001:5; y=0.5*(sawtooth(pi*(t+1),0.5)+1); plot(t,y); xlabel('t'),ylabel('周期三角波') axis([-3 3 -0.5 1.5]); grid on n_max=[1 3 5 11 47]; N=length(n_max); for k=1:N n=1:2:n_max(k); b=4./(pi*pi*n.*n); x=0.5+b*cos(pi*n'*t); figure; plot(t,y,'b'); hold on; plot(t,x,'r'); hold off; xlabel('t'),ylabel(‘部分和波形'); axis([-3 3 -0.5 1.5]);grid on; title(['最高谐波次数=',num2str(n_max(k))]); end t 部分和波形 最高谐波次数 =1 t 周期三角信号

习题1绘制典型信号及其频谱图

习题一 绘制典型信号及其频谱图 电子工程学院202班 单边指数信号的理论表达式为 figure(4); 调整,将a 分别等于1、5、10等值,观察时域波形和频域波形。由于波形 较多,现不失代表性地将a=1和a=5时的各个波形图列表如下进行对比, 其 他a 值的情况类似可推知。 单边指数信号 信号 名称 单边 时间函数f t 频谱函数F ■ 指数 脉冲 Ee% t a 对提供的MATLAB 程序作了一些说明性的补充, MATLAB 程序为 %单边指数信号 clc; close all ; clear all ; E=1; a=1; %调整a 的值,观察不同a 的值对信号波形和频谱的影响 t=0:0.01:4; w=-30:0.01:30; f=E*exp(-a*t); F=1./(a+j*w); figure(1); plot(t,f);xlabel( 't' );ylabel( 'f(t)' );title( '信号时域图像’); figure(2); plot(w,abs(F));xlabel( '\omega' 特性'); figure (3); plot(w,20*log10(abs(F)));xlabel( );ylabel( '|F(\omega)|' ); ti tle( '幅频 '\omega' );ylabel( '|F(\omega)| in dB' );title( 幅频特性/dB'); plot(w,a ngle(F)*57.29577951);xlabel( )/ (°)' );title( '相频特性’); '\omega' );ylabel( '\phi(\omega

实验一____离散时间信号的表示及运算

实验一 离散时间信号的表示及运算 一、 实验目的:学会运用MATLAB 表示的常用离散时间信号;学会运用MATLAB 实现离散时间信号的基本运算。 二、 实验仪器:电脑一台,MATLAB6.5或更高级版本软件一套。 三、实验内容: (一) 离散时间信号在MATLAB 中的表示 离散时间信号是指在离散时刻才有定义的信号,简称离散信号,或者序列。离散序列通常用)(n x 来表示,自变量必须是整数。 离散时间信号的波形绘制在MATLAB 中一般用stem 函数。stem 函数的基本用法和plot 函数一样,它绘制的波形图的每个样本点上有一个小圆圈,默认是空心的。如果要实心,需使用参数“fill ”、“filled ”,或者参数“.”。由于MATLAB 中矩阵元素的个数有限,所以MATLAB 只能表示一定时间范围内有限长度的序列;而对于无限序列,也只能在一定时间范围内表示出来。类似于连续时间信号,离散时间信号也有一些典型的离散时间信号。 1. 单位取样序列 单位取样序列)(n δ,也称为单位冲激序列,定义为 ) 0()0(0 1 )(≠=?? ?=n n n δ (1-1) 要注意,单位冲激序列不是单位冲激函数的简单离散抽样,它在n =0处是取确定的值1。在MATLAB 中,冲激序列可以通过编写以下的impDT.m 文件来实现,即 function y=impDT(n) y=(n==0); %当参数为0时冲激为1,否则为0 调用该函数时n 必须为整数或整数向量。 【实例1-1】 利用MATLAB 的impDT 函数绘出单位冲激序列的波形图。 解:MATLAB 源程序为 >>n=-3:3; >>x=impDT(n);

实验一 采样率对信号频谱的影响

实验一 采样率对信号频谱的影响 1.实验目的 (1)理解采样定理; (2)掌握采样频率确定方法; (3)理解频谱的概念; (4)理解三种频率之间的关系。 2.实验原理 理想采样过程是连续信号x a (t )与冲激函数串M (t )的乘积的过程 ∑∞ -∞ =-= k s kT t t M )()(δ (7-13) )()()(?t M t x t x a a = (7-14) 式中T s 为采样间隔。因此,理想采样过程可以看作是脉冲调制过程,调制信号是连续信号x a (t ),载波信号是冲激函数串M (t )。显然 )()()()()(?s k s a k s a a kT t kT x kT t t x t x -= -=∑∑∞ -∞ =∞ -∞ =δδ (7-15) 所以,)(?t x a 实际上是x a (t )在离散时间kT s 上的取值的集合,即)(?s a kT x 。 对信号采样我们最关心的问题是,信号经过采样后是否会丢失信息,或者说能否不失真 地恢复原来的模拟信号。下面从频域出发,根据理想采样信号的频谱)(?Ωj X a 和原来模拟信号的频谱)(Ωj X 之间的关系,来讨论采样不失真的条件 ∑ ∞ -∞ =Ω-Ω=Ωk s s a kj j X T j X )(1)(? (7-16) 上式表明,一个连续信号经过理想采样后,其频谱将以采样频率Ωs =2π/T s 为间隔周期延拓,其频谱的幅度与原模拟信号频谱的幅度相差一个常数因子1/T s 。只要各延拓分量与原频谱分量之间不发生频率上的交叠,则可以完全恢复原来的模拟信号。根据式(7-16)可知,要保证各延拓分量与原频谱分量之间不发生频率上的交叠,则必须满足Ωs ≥2Ω。这就是奈奎斯特采样定理:要想连续信号采样后能够不失真地还原原信号,采样频率必须大于或等于被采样信号最高频率的两倍 h s Ω≥Ω2,或者h s f f 2≥,或者2 h s T T ≤ (7-17) 即对于最高频率的信号一个周期内至少要采样两点,式中Ωh 、f s 、T h 分别为被采样模拟信号的最高角频率、频率和最小周期。 在对正弦信号采样时,采样频率要大于这一最低的采样频率,或小于这一最大的采样间

相关文档
相关文档 最新文档