文档库 最新最全的文档下载
当前位置:文档库 › 细胞生物学作业自测9-12

细胞生物学作业自测9-12

细胞生物学作业自测9-12
细胞生物学作业自测9-12

一、名词解释

1.微丝:由肌动蛋白组成的骨架纤维,又称肌动蛋白纤维。

https://www.wendangku.net/doc/9810446229.html,临界浓度:单体聚合和单体解离达到动态平衡时的单体蛋白浓度。

3.踏车行为:在体外组装过程中优势可见到微丝的正极由于肌动蛋白亚基的不断添加而延长,而负极则由于肌动蛋

白亚基去组装而缩短,这一现象称为踏车行为。

4.分子马达:指依赖于微观的驱动蛋白、动力蛋白和依赖于微丝的肌动蛋白这三类蛋白质超家族的成员。

5.微管组织中心:指在活细胞内。能够其实微管的成核作用,并使之延伸的细胞结构。

6.分子发动机:将细胞内利用ATP供能,产生推动力,进行细胞内的物质运输或细胞运动的蛋白质分子称为分子发动

机或发动机蛋白。

7.亲核蛋白:是指在细胞质内合成后,需要或能够进入细胞核内发挥功能的一类蛋白质。

8.核定位序列:亲核蛋白一般都含有特殊的氨基酸序列,这些内含的特殊短肽保证了整个蛋白质能够通过核孔复合

体被转运到细胞核内。这段具有“定向”,“定位”作用的序列被命名为核定位序列。

9.染色质:是指间期细胞核内有DNA、组蛋白、非组蛋白及少量RNA组成的线性复合结构,是间期细胞遗传物质

存在的形式。

10.染色体:是指细胞在有丝分裂或减数分裂的特定阶段,由染色质聚缩而成的棒状结构。

11.组蛋白:带正电荷的含精氨酸和赖氨酸的碱性氨基酸,等电点一般在PH10.0以上,属碱性蛋白质,可以和酸性

的DNA紧密结合,而且一般不要求特殊的核苷酸序列(真核细胞中组蛋白共有5种:H1、H2A、H2B、H3和H4)。

12.非组蛋白:主要是指与特异DNA序列结合的蛋白质,含有较多的天门冬氨酸、谷氨酸,带负电荷,属酸性蛋白

质。

13.核小体:是一种串珠状结构,由核心颗粒和连结线DNA两部分组成,是染色质的基本结构单位。

14.常染色质:是指间期细胞核内染色质纤维折叠压缩程度低,相对于伸展状态,用碱性染料染色时着色浅的那些染

色质。

15.异染色质:是指间期核中,染色质纤维折叠压缩程度高,处于紧缩状态,用碱性染料染色时着色深的那些染色质。

16.结构异染色质:是各种类型的细胞中,除复制期以外,在整个细胞周期均处于聚缩状态,DNA组装比在整个细

胞周期中基本没有较大变化的异染色质。

17.兼性异染色质:是指在某些细胞类型或一定的发育阶段,原来的常染色质聚缩,并丧失基因转录活性,变为异染

色质。

18.活性染色质:是指具有转录活性的染色质。

19.非活性染色质:是指没有转录活性的染色质。

20.DNase Ⅰ超敏感位点:如用很低浓度的DNase Ⅰ处理染色质,切割将首先发生在少数特异性位点上,这些特异

性位点就叫做DNase Ⅰ超敏感位点(其存在时活性染色质的特点,大部分位于基因5’端启动子区域,且5’端超敏感位点只出现在即应正在活跃表达的细胞中)。

21.隔离子:是指处于抑制状态与活化状态的染色质结构域之间、能防止不同状态的染色质结构域的结构特征向两侧

扩散的染色质DNA序列。

22.表观遗传调控:指可遗传的、与核酸序列没有直接关系的控制基因活性的调控方式。

23.随体:指位于染色体末端的球形染色体节段,通过次缢痕区与染色体主体部分相连。

24.端粒:是染色体两个端部的特化结构。

25.核型:染色体组在有丝分裂中期的表型,包括染色体数目、大小、形态特征等。

26.核基质:将DNA组蛋白和RNA抽提后发现核内残留的纤维蛋白的网架结构。

27.多聚核糖体:指具有特殊功能与形态结构的核糖体与mRNA的聚合体。

28.核酶:一系列具有催化作用的RNA统称为核酶。

29.细胞增殖:细胞物质积累与细胞分裂的循环过程。

30细胞周期:从一次细胞分裂结束开始,经过物质积累过程,知道下一次细胞分裂结束为止,称为一个细胞周期。

31.检验点:细胞周期进程被抑制的原因并不是由于DNA损伤或DNA复制尚未完成本身所引起的,而是由于细胞内

存在一系列监控机制。这些特异的监控机制可以鉴别细胞周期进程中的错误,并诱导产生特异的抑制因子,阻止细胞周期进一步运行。这些监控机制称为检验点。

32.有丝分裂:是细胞周期的丝裂期(M期)进行的分裂活动。

33.星体:中心体与放射的微管合称为星体。

34.中心体整列:中心体分离时,负向运动的马达蛋白在来自姐妹中心体的微管之间搭桥,通过向负极运动,将被结

合的微管牵拉在一起,组成纺锤体微管;中心体也自然形成了纺锤体的两级。这一过程称为中心体整列。

35.联会:同源染色体配对的过程称为联会。

36.联会复合体:联会也可以同时发生在同源染色体的几个点上,在联会的部位形成一种特殊复合结构,称为联会复

合体,其主要成分是蛋白质。

37.交叉端化:在同源染色体联会期间,同源染色体要发生断裂和重接,在此过程中发生同源染色体间的交换,随着

双线期的进行,交叉开始远离着丝粒,并逐渐向染色体臂的端部移动。

38.超前凝集染色体(PCC):将处于分裂期的细胞(M期)与处于细胞周期其他时期(G1期、S期、G2期)的细

胞融合, M期的细胞质总是能够诱导非有丝分裂的细胞中的染色质凝集, 将这种现象称为染色体超前凝集,凝聚的染色体称为超前凝聚染色体。

39.细胞促成熟因子:M期细腻可以诱导PCC,提示在M期细胞中可能存在一种诱导染色体凝集的因子。

二、填空

1.细胞骨架包括微丝、微管和中间丝。

2.微丝的主要结构是肌动蛋白,肌动蛋白有另种存在形式,即肌动蛋白单体和纤维状肌动蛋白。

3.微丝组装的条件是存在ATP、K+、Mg+等离子。

4.影响微丝组装的特异性药物是细胞松弛素和鬼笔环肽。

5.高于Cc临界浓度时,微丝正端的组装速度比负极快,则微丝的长度增加,反之,则反。

6.细胞内微丝网络的组织形式和功能通常取决于结合的微丝结合蛋白,而不是微丝本身。

7.细胞内的三类分子发动机:肌球蛋白、肌动蛋白和胞质动力蛋白。

8.粗肌丝的成分是肌球蛋白,细肌丝的主要成分是肌动蛋白,辅以原肌球蛋白和肌钙蛋白;原肌球蛋白与肌动蛋白

结合,作用是加强和稳定肌动蛋白丝,抑制肌动蛋白与肌球蛋白结合,肌钙蛋白含三个亚基,调节肌肉的收缩。

9.鞭毛与纤毛的机构是9+2(即微管的排列方式)。

10.细胞核主要由核被膜、核纤层、染色质、核仁及核体组成。

11.物质交换与信息交流主要是通过核被膜上的核孔复合体进行的。

12.染色质DNA的类型有3种序列:单一序列、中度重复序列、高度重复序列。

13.DNA二级结构的3种构象:B-DNA、Z-DNA、A-DNA。

14.DNA结合蛋白包括两类:一类是组蛋白,另一类是非组蛋白。

15.核小体是染色住组装的一级结构;螺线管是染色质组装的二级结构;超螺线管是染色质组装的三级结构;染色单

体是染色质组装的四级结构。

16.构成常染色质的DNA主要是单一DNA和中度重复序列DNA。

17.间期染色质按形态特征、活性状态和染色性能区分为常染色质和异染色质;按功能状态分为活性染色质和非活性

染色质。

18.当活性染色质的染色质结构处于疏松状态时,利用核心组蛋白H3暴露出来的游离巯基与有机汞的亲和性,可采

用有机汞亲和层析和二流苏糖醇洗脱的方法将活性染色质分离出来。

19.染色质的疏松状态源于核小体的结构改变或核小体的解聚;核小体并非沿DNA随即分布,而是定位在特殊位点。

20.真核细胞中基因转录的模板时染色质而不是裸露的DNA,因此染色质呈疏松或紧密结构,即是否处于活化状态

时决定RNA聚合酶能否有效行使转录功能的关键。

21.染色体DNA的三种功能元件是复制起点(至少一个)、着丝粒、端粒。

22.蛋白质合成旺盛、活跃生长的细胞的核仁大,不具蛋白质合成能力的细胞核仁小。

23.在电子显微镜下可辨认出核仁的超微结构的3个特征性的区域是纤维中心、致密纤维组分和颗粒组分。

24.核糖体的主要成分是RNA和蛋白质。

25.生物界有两种基本类型的核糖体,分别是原核细胞核糖体和真核细腻核糖体。

26.原核蛋白质合成过程包括3个主要阶段:肽链的起始、肽链的延伸和肽链的终止。

27.一个细胞周期可分为先后连续的4个时期,即G1期、S期、G2期和M期。

28.细胞周期长短的常用测定方法是流式细胞仪测定法。

29.就环境温度而言,在一定范围内,温度升高,细胞分裂繁殖速度加快;温度降低,则分裂繁殖速度减慢。

30.细胞周期同步化方法是自然同步化和人工同步化(主要为密度梯度离心法)。

31.中心体的两个中心粒互成直角排列,圆筒的壁由9组三联体微管构成。

32.高等细胞的纺锤体呈纺锤状,主要由微管和微管结合蛋白组成;纺锤体的两端为星体,组成纺锤体的微管可分为

三种类型,即星体微管、动粒微管和极微管。

33.解释有丝分裂过程中染色体运动的动力机制的学说为牵拉假说和外推假说。

34.减数分裂前期Ⅰ分为细线期、偶线期、粗线期、双线期和终变期5个阶段。

35.不同时相的间期细胞与M期细胞融合,产生的PCC形态各异。G1期PCC为细单线状,S期PCC为粉末状,G2

期PCC为双线染色体状。

三、简答题

1.作用于微管的特异性药物有哪些?且其作用机制是什么?

答:特异性药物有秋水仙素和紫杉醇等。

机制:用低浓度的秋水仙素处理细胞,可立即破坏细胞内的微管或纺锤体结构;

当紫杉醇与微管结合后可以阻止微管的去组装,增强微管的稳定性,但不影响新的微管蛋白亚基在

微管的末端进行组装。

2.核孔复合体的滴漏样模型的结构组成的两种理解是什么?

答:从横向上看,核孔复合体由周边向核孔中心依次可分为环、辐、栓3种结构亚单位;

从纵向上看,核孔复合体由核外(胞质面)向核外(核质面)依次可分为胞质环、辐(+栓)、核质环3种结构亚单位。

3.核孔复合体的功能是什么?

答:核孔复合体可以看做是一种特殊的跨膜运输蛋白复合体,并且是一个双功能、双向性的亲水性核质交换通道。双功能表现在它有两种运输方式:被动扩散与主动运输。双向性表现在既介导蛋白质的入核转运,又介导RNA、核糖核蛋白颗粒(RNP)的出核转运。

4.序列特异性DNA结合蛋白的不同结构模式?

答:α螺旋—转角—α螺旋、锌指模式、亮氨酸拉链模式、螺旋—环—螺旋模式、HMG框结构模式。

5.核小体的结构要点是什么?

答:(1)每个核小体单位包括200bp的左右的DNA超螺旋和一个组蛋白八聚体以及一个分子的组蛋白H1;

(2)为盘状核心颗粒,由二聚体组成;

(3)146bp的DNA分子超螺旋盘绕组蛋白八聚体1.75圈,H1组蛋白用于锁住核小体DNA的进出端,其有稳定核小体的作用;

(4)两个相邻核小体之间以连接DNA相连;

(5)组蛋白与DNA之间的相互作用主要是结构性的,基本不依赖于核苷酸的特意序列,核小体具有自组装的性质;

(6)核小体沿DNA的定位受不同因素的影响。

6.新复制的DNA主要通过哪两种途径组装形成染色质?

答:(1)在复制叉的移动期间,父代的核小体核心颗粒与DNA的分离,到该段DNA复制完成,父代的核小体核心颗粒直接转移到两条子链DNA的一条上;

(2)染色质组装因子利用刚刚合成的、乙酰化的组的组蛋白介导核小体在复制DNA上组装。

7.结构异染色质的特征是什么?

答:(1)在中期染色体上多定位于着丝粒区、端粒、次缢痕及染色体臂的某些节段;

(2)由相对简单、高度重复的DNA序列构成;

(3)具有显著的遗传惰性,不转录也不编码蛋白质;

(4)在复制行为上与常染色质相比表现为晚复制早聚缩;

(5)占有较大部分核DNA,在功能上参与染色质高级结构的形成,导致染色质区间性,作为核DNA的转座元件,引起遗传变异。

8.活性染色质与非活性染色质的区别

答:(1)活性染色质具有DNase Ⅰ超敏感位点,当染色质用DNase Ⅰ消化时,可将染色质降解成酸溶性的DNA 小片段;

(2)活性染色质在生化上具有特殊性;

(3)活性染色质在组蛋白修饰上的特异性,乙酰化一般是活性染色质的标志,而甲基化和磷酸化则在活性染色质和非活性染色质中都存在,不同组蛋白或同一组蛋白的不同氨基酸残基上的修饰决定染色质处于活性或非活性状态。

9.组蛋白修饰有何意义?

答:(1)改变染色质的结构,直接影响转录活性;

(2)核小体表面发生改变,使其他调控蛋白易于和染色质相互接触,间接影响转录活性。

10.巨大染色体的特点是什么?

答:(1)体积巨大,染色体多次复制而不分离;

(2)多线性,每条多线染色体由500-4000条解旋的染色体合并在一起形成;

(3)体细胞中同源染色体紧密配对;

(4)横带纹,染色后呈现出明暗相间的带纹;

(5)胀泡和环,在幼虫发育的某个阶段,多线染色体的某些带区疏松膨大,形成胀泡或巴氏环。

11.简述核仁周期。

答:当细胞进入有丝分裂时,核仁首先变形和变小,然后随着染色质凝聚,核仁消失,所有RNA合成停止,致使在中期和后期细胞中没有核仁;在有丝分裂末期,rRNA合成重新开始,核仁的重建随着核仁物质聚集成分散的前核仁体而开始,然后在NOR周围融合成正在发育的核仁。

12.谈谈对核骨架的研究认识。

答:(1)核骨架是存在于真核细胞核内的结构体系;

(2)核骨架与核纤层、中间丝相互连接形成的网络体系,是贯穿于核与质的一个相对独立的结构系统;

(3)核骨架的主要成分是非组蛋白的纤维蛋白,含有多种蛋白成分;

(4)核骨架与DNA复制、基因表达及染色体的组装与构建有密切关系。

13.核糖体蛋白质与rRNA 的功能是什么?

答:(1)核糖体上与蛋白质合成有关的6个位点:与mRNA结合的位点、A位点(氨酰基位点)、P位点(肽酰基位点)、E位点、与肽酰tRNA从A位点转移到P位点有关的转移酶的结合位点、肽酰转移酶的催化位点;

(2)rRNA的功能:核糖体中rRNA是起主要作用的结构成分:

a.具有肽酰转移酶的活性;

b.为tRNA提供结合位点;

c.为多种蛋白质合成因子提供结合位点;

d.在蛋白质合成起始时参与同mRNA选择性的结合以及肽链的延伸中与mRNA结合;

(3)r蛋白的功能:如果缺失某一种r蛋白都将会影响核糖体的功能,降低多肽合成的活性。

14.简述细胞周期中细胞形态结构的变化。

答:(1)细胞形态的变化:如处于S期的细胞呈扁平状, 紧贴在培养瓶壁上, 细胞表面的微绒毛和小泡很少。细胞进入G2期, 特别是G2期的中后期, 细胞渐渐从贴壁摊平的状态鼓起来, 而细胞表面的微绒毛增多, 此时摇动培养瓶, 细胞很容易与瓶壁脱离。进入M期的细胞, 变成球形;

(2)细胞内部结构的变化:

a.内部结构的最大变化是染色质结构的变化;

b.与染色体复制周期相关联的是核仁的变化;

c.间期-分裂期过渡中, 有两点明显的变化: 一是形成纺锤体, 另一是细胞表面微绒毛的形成;

(3)细胞器的分裂和片段化

15.植物细胞细胞周期的特点是什么?

答:(1)植物细胞不含中心体,但在细胞分裂是可以正常组装纺锤体;

(2)植物细胞以形成细胞板的形式进行胞质分裂。

16.简述有丝分裂中染色体分离的过程。

答:当染色体排列到赤道板上后,同源染色单体分离并逐渐向两极移动,在后期A,动粒微管由于其动粒端解聚而变短,将染色体之间拉向两极,A TP分解提供能量的情况下,沿动粒微管向两极运动,并带动动粒和染色单体向极部运动;在后期B,极性微管游离端(正极)在A TP提供能量的情况下与微管蛋白聚合,使极性微管加长,形成较宽的极性微管重叠区。

17.减数分裂的主要特点是什么?

答:细胞仅进行一次DNA复制,随后进行两次细胞分裂;两性生殖细胞经过减数分裂,各自的染色体数减少一半;再经过受精,形成合子,染色体数恢复到体细胞的染色体数目。

18.减数分裂与有丝分裂的比较。

答:共同点:减数分裂与有丝分裂的都是通过纺锤体同染色体的相互作用进行细胞的分裂。

差异:①有丝分裂是体细胞的分裂方式,减数分裂主要是细胞产生配子的过程。

②有丝分裂是一次细胞周期, DNA复制一次, 分裂一次, 染色体由2n→2n;减数分裂是两次细胞周期,

DNA复制一次, 细胞分裂两次, 染色体由2n→1n。

③有丝分裂中, 每个染色体是独立活动;在减数分裂中, 染色体要配对、联会、交换和交叉。

④有丝分裂之前, 经DNA合成, 进入G2期后才进行有丝分裂; 减数分裂之前, DNA合成时间很长

(99.7%合成, 0.3%未合成), 一旦合成,即进入减数分裂期, G2期短或没有。

⑤有丝分裂时间短, 1-2小时; 减数分裂时间长, 几十小时

至几年。

细胞生物学作业

细胞生物学作业(专升本) 1.如何理解细胞生物学与医学的关系? 是医学学科的基础课程。 研究细胞生物学是医学研究的必修课,在细胞免疫,识别,和分泌各种物质以及胞间运输等各方面都与人类个体息息相关,细胞是人体最基本的生命系统,是人体代谢免疫等各种生命活动的承担者,细胞构成组织,细胞所需要的各种营养物质也是人体所必须的,细胞普遍衰老也是人体衰老的象征,从一个细胞就具有人类所以的遗传物质,我们加以利用,人为培养出一些器官组织,或者从大肠杆菌从植入人的激素基因,制造胰岛素,进行基因工程,细胞对人体稳态的调整也具有重要作用,如效应T细胞可以杀死人体的癌细胞 和多种病变细胞,癌细胞有不死性,讲癌细胞与人体效应B细胞融合可以获得杂交的无限 分泌抗体的瘤性B细胞,对人体有利无害。 2.原核细胞和真核细胞有哪些异同? 相同点:有细胞膜细胞质,均有核糖体,均以DNA为遗传物质。 不同点: 1、细胞壁成分:原核细胞为肽聚糖、真核细胞为纤维素和果胶; 2、细胞器种类:原核细胞只有核糖体;真核细胞有核糖体、线粒体、叶绿体、高尔基体、内质网、溶酶体等细胞器; 3、原核细胞无染色体,真核细胞有染色体; 4、细胞大小:原核细胞小、真核细胞大。 3.试述细胞膜液态镶嵌模型的主要内容。 1脂双分子层构成膜的主体,它既有固体(晶体)的有序性又有液体的流动性。2膜蛋白分子以各种形式与脂双分子层结合,有的贯穿其中,有的镶嵌在其表面。

3膜糖类(糖脂和糖蛋白)分布在非细胞质侧,形成糖萼。 4该模型强调了膜的流动性和不对称性。 4.细胞膜的生物学意义有哪些? 意义:细胞的流动性在细胞信号传导和物质跨膜运输等病原微生物侵染过程中有重要作用;不对称性(主要是指膜蛋白)是生物膜执行复杂的、在时间与空间上有序的各种生理功能的保证。 5.试述Na+-K+泵的工作原理及其生理学意义。 工作原理 钠钾泵位于动物细胞的质膜上,由2个α和2个β亚基组成四聚体,β亚基是糖基化的多肽,并不直接参与离子跨膜转运,但帮助在内质网新合成的α亚基进行折叠。1.细胞内侧α亚基与Na+结合促进ATP水解,α亚基上的一个天冬氨酸残基磷酸化引起α亚基构象发生变化,将Na+泵出细胞。 2.同时细胞外的K+与α亚基的另外一点结合,使其磷酸化,α亚基构象再度发生变化,将K+泵入细胞。 3.完成整个循环。从整个转运过程中α亚基的磷酸化发生在Na+结合后,去磷酸化发生在与K+结合后。每个循环消耗一个ATP,可以逆电化学梯度泵出3个Na+和泵入2个K+。 生理功能 1.维持细胞膜电位 膜电位是膜两侧的离子浓度不同形成的,细胞在静息状态时膜电位质膜内侧为负,外侧为正。每一个工作循环下来。钠钾泵从细胞泵出3个Na+并且泵入2个K+。结果对膜电位的形成了一定作用。 2.维持动物细胞渗透平衡 动物细胞内含有多种溶质,包括多种阴离子和阳离子。没有钠钾泵的工作将Na+

(完整版)分子生物学实验技术考试题(卷)库

一、名词解释 1.分配常数:又称分配系数,是指一种分析物在两种不相混合溶剂中的平衡常数。 2.多肽链的末端分析:确定多肽链的两末端可作为整条多肽链一级结构测定的标志,分为氨基端分析和羧基端分析。 3.连接酶:指能将双链DNA中一条单链上相邻两核苷酸连接成一条完整的分子的酶。 4.预杂交:在分子杂交实验之前对杂交膜上非样品区域进行封闭,用以降低探针在膜上的非特异性结合。 5.反转录PCR:是将反转录RNA与PCR结合起来建立的一种PCR技术。首先进行反转录产生cDNA,然后进行常规的PCR反应。 6.稳定表达:外源基因转染真核细胞并整合入基因组后的表达。 7.基因敲除:是指对一个结构已知但功能未知或未完全知道的基因,从分子水平上设计实验,将该基因从动物的原基因组中去除,或用其它无功能的DNA片断取代,然后从整体观察实验动物表型,推测相应基因的功能。 8.物理图谱:人类基因组的物理图是指以已知核苷酸序列的DNA片段为“路标”,以碱基对(bp,kb,Mb)作为基本测量单位(图距)的基因组图。 9.质谱图:不同质荷比的离子经质量分析器分开后,到检测器被检测并记录下来,经计算机处理后所表示出的图形。 10.侧向散射光:激光束照射细胞时,光以90度角散射的讯号,用于检测细胞内部结构属性。

11.离子交换层析:是以离子交换剂为固定相,液体为流动相的系统中进行的层析。 12.Edman降解:从多肽链游离的N末端测定氨基酸残基的序列的过程。 13.又称为限制性核酸内切酶(restriction endonuclease):是能够特异识别双链DNA序列并进行切割的一类酶。 14.电转移:用电泳技术将凝胶中的蛋白质,DNA或RNA条带按原位转移到固体支持物,形成印迹。 15.多重PCR:是在一次反应中加入多对引物,同时扩增一份模板样品中不同序列的PCR 过程。 16.融合表达: 在表达载体的多克隆位点上连有一段融合表达标签(Tag),表达产物为融合蛋白(有分N端或者C端融合表达),方便后继的纯化步骤或者检测。 17.同源重组:发生在DNA同源序列之间,有相同或近似碱基序列的DNA分子之间的遗传交换。 18.遗传图谱又称连锁图谱(linkage map),它是以具有遗传多态性的遗传标记为“路标”,以遗传学距离为图距的基因组图。 19.碎片离子:广义的碎片离子为由分子离子裂解产生的所有离子。 20.前向散射光:激光束照射细胞时,光以相对轴较小角度向前方散射的讯号用于检测细胞等离子的表面属性,信号强弱与细胞体积大小成正比。 21.亲和层析:利用共价连接有特异配体的层析介质分离蛋白质混合物中能特异结合配体的目的蛋白或其他分子的一种层析法。(利用分子与其配体间特殊的、可逆性的亲和结合

细胞生物学实验

1. 什么是细胞培养? 细胞生物学实验 指从动物活体体内取出组织,并将其分散为单个细胞(机械或酶消化),在体外模拟体内的生理环境,使其在人工培养条件下保持生长、分裂繁殖、细胞的接触性抑制以及细胞衰老过程等生命现象。 最常见的细胞一般有两种,一种是原代细胞,另一种是传代细胞。 原代细胞是指动物组织经过胰酶或胶原酶等酶类的消化,使其分散,从而获得单个细胞,再使这些单个细胞生长于培养容器中的过程。大多数组织可以制备原代细胞,但制备的方法略有不同,制备的细胞生长快慢及难易程度也不相同。 不同的原代细胞,其形态也不尽相同。一般将10代以内的细胞称之为原代细胞。 传代细胞一般指无限繁殖的细胞系,理论上这类细胞可以无限次的传代。做实验的时候也会经常使用这类细胞,如Hela、293、Vero 等细胞。 2. 细胞的生长周期 游离期:细胞刚接种到新的培养容器中到贴壁前的一段时期,这个时期的长短由细胞类型决定,从几分钟到几个小时不等。 贴壁期:细胞从游离状态变为贴附到培养器皿表面并展现出一定细胞形态的时期。 潜伏期:细胞在完成贴壁后,并不会马上进行增殖,会进行增殖所必须的物质和能量的储备,这个时候称之为潜伏期。

对数生长期:细胞在完成物质和能量储备后,开始大量的增殖的时期。这个时期的细胞活力旺盛,且状态稳定,我们所做的绝大多数实验都是在这个时期开展的。 停止期:随着细胞的生长,细胞密度越来越大,由于营养物质的消耗、细胞间的接触抑制等因素,细胞生长缓慢,甚至停止生长。这个时候,我们就要给细胞进行传代了,使细胞可以继续进行增殖,保持旺盛的活力。 3. 细胞生长所需要营养条件 细胞的培养所需要的营养成份一般来自于基础培养基(比如DMEM培养基)和血清。 基础培养基:主要是提供细胞生长所需要的氨基酸(组成蛋白质的基本单位)、维生素(细胞代谢中辅酶的组成成分)、无机离子(K+,Na+等)、碳水化合物(碳源和能量来源)和一些激素等营养物质。 血清:主要是提供一些基础培养基不能提供的生长因子和低分子的营养物质,此外它还有促进细胞的贴壁、中和有害重金属离子等作用。如果只提供基础培养基而不提供血清,绝大多数细胞是无法生长的。血清对于我们实验的重要性就不言而喻了,那么什么样的血清才算是合格的血清呢? 合格的血清需要通过各种检测,包括无细菌,无真菌,无支原体检测,无病毒污染。血清一般呈现为淡黄色,透明状液体,由于含有大量的蛋白质等成分,会略有黏稠。以全式金公司的TransSerum EQ Fetal Bovine Serum (FS201-02)为例,它通过了牛腹泻病毒、牛副

山大分子细胞生物学题库

ft大分子细胞生物学题库 一、填空 1、第一个观察到细胞的是英国物理学家,他把它称为cell,并记载在书名为的书里,这被认为是细胞学史上第一个细胞模式图。第一个观察到活细胞的是 --------- 。目前发现的最小的细胞是------ 。 2、次级溶酶体根据内含物的不同分为-----------和 ------ 两种。 3、线粒体各组成部分的标志酶分别为:外膜:-------------;膜间隙:------------;内膜: ------- ;基质中--------------。 4、染色体的三个关键序列为、、。 5、细胞表面受体根据传导机制不同分以下三类:------------、----------------、-------- 。 6、具分拣信号的蛋白有以下3 种不同的基本转运途径--------------、-------------、--------- ,上述三种运输均需消耗能量。 7、不同的细胞有不同的基因表达,表达的基因可分为两类--------------和 -------- 。细胞的分化是由于基因的----------- 。 8 、原癌基因激活的方式有--------------- 、------------ 、--------------- 、---------- 。 9、骨骼肌中细肌丝的组成包括-----------------、-------------、----------- 。 10、根据蛋白质与膜脂的结合方式,质膜蛋白可分为----------------、-------------、----------- 三类。 10、组成糖氨聚糖的重复二糖单位是和。 11、细胞学说的创始人是德国植物学家------------和德国动物学家------ 。 12、动物细胞之间对一些水溶性小分子具有通透作用的连接方式是-------- ,其基本结构单位称为------------。 13、物质穿膜中主动运输有和两种方式,被动运输有和两种。 14、在蛋白质合成过程中,核糖体大亚单位为------------中心,小亚单位为-------------- 中心。 15、核膜上孔膜区的特征性蛋白为一种跨膜糖蛋白----------;核纤层通过 ------ 与核 膜相连,其主要功能是--------------、-------------和------- 。 16、信号分子根据分泌方式可分为--------------、-------------、-------------、--------- 四种。 17、动物细胞表面存在由糖类物质组成的结构称为------- 。 18、内质网驻留蛋白的特点为C 端有由4 个氨基酸组成的驻留信号序列,在动物中为------- 。 19、再生的类型可分---------------和---------- 两种。 20、桥粒、半桥粒与胞内的------------相连,黏合带、黏合斑与胞内的------- 相连。 21、肌球蛋白的两个酶切位点分别是--------------- 和-------- 。 22、在细胞周期调控中,组成MPF 分子的CDC 是---------亚基,Cyclin 是 ----- 亚基。 23、负责联系细胞与细胞外基质(基膜)的细胞连接形式分别为------和 --- 。参与这两种连接方式的跨膜连接蛋白质又称为。 24、细胞中的离子泵主要有、和。 25、膜泡运输中的内吞作用主要包括和两种方式,其中--- 也是原生生物获取食物的重要方式。 26、肌球蛋白的两个“活动关节”分别能够被-----酶和------酶作用,--- 酶可将肌球蛋白从头部和杆部连接处断开。 27、细胞凋亡时细胞膜的主要变化为-----,细胞核的主要变化为-----;此外还会形成--- ,从而被其它细胞吞噬掉。

细胞生物学第五至第八章作业答案

第五章物质的跨膜运输 1 物质跨膜运输有哪三种途径?ATP驱动泵可分哪些类型? 答:物质跨膜运输有简单扩散、被动运输和主动运输三种途径。ATP驱动泵可分P型泵、V型质子泵和F型质子泵以及ABC 超家族,其中P型泵包括Na+—K+泵、Ca+泵和P型H+泵。 各种ATP驱动泵的比较: 2.简述钠钾泵的结构特点及其转运机制。 答:Na+—K+泵位于动物细胞的质膜上,由2个α和2个β亚基组成四聚体。Na+—K+泵的转运机制总结如下:在细胞内侧α亚基与Na+相结合促进ATP水解,α亚基上的一个天冬氨酸残基磷酸化引起α亚基构象发生变化,将Na+泵出细胞,同时细胞外的K+与α亚基的另一位点结合,使其失去磷酸化,α亚基的构象再次发生变化,将K+泵入细

胞,完成整个循环。 3、简述葡萄糖载体蛋白的结构特点及其转运机制。 答:葡萄糖载体蛋白,简称为GLUT,是一个蛋白质家族,包括十多种葡糖糖转运蛋白,他们具有高度同源的氨基酸序列,都含有12次跨膜的α螺旋。GLUT中多肽跨膜部分主要由疏水性氨基酸残基组成,但有些α螺旋带有Ser、Thr、Asp和Glu残基,他们的侧链可以同葡萄糖羟基形成氢键。葡萄糖载体蛋白的转运机制为:氨基酸残基为形成载体蛋白内部朝内和朝外的葡萄糖结合位点,从而通过构象改变完成葡萄糖的协助扩散。转运方向取决于葡萄糖的浓度梯度,从高浓度向低浓度顺梯度转运。 4、举例说明协同运输的机制。 答:协同运输是一类靠间接提供能量完成的主动运输方式。物质跨膜运动所需要的能量来自膜两侧离子的电化学浓度梯度,而维持这种电化学势的是钠钾泵或质子泵。根据物质运输方向与离子沿浓度梯度的转移方向,协同运输又可分为:同向协同与反向协同。 ①同向协同指物质运输方向与离子转移方向相同。如人体及动物体小肠细胞对葡萄糖的吸收就是伴随着Na+的进入,细胞内的Na+离子又被钠钾泵泵出细胞外,细胞内始终保持较低的钠离子浓度,形成电化学梯度。 ②反向协同物质跨膜运动的方向与离子转移的方向相反,如动物细胞常通过Na+/H+反向协同运输的方式来转运H+以调节细胞内的PH值,即Na+的进入胞内伴随者H+的排出。选做:5、举例说明受体介导的内吞作用。 答:受体介导内吞作用大致分为四个基本过程∶①配体与膜受体结合形成一个小窝;②小窝逐渐向内凹陷,然后同质膜脱离形成一个被膜小泡;③被膜小泡的外被很快解聚,形成无被小泡,即初级内体;④初级内体与溶酶体融合,吞噬的物质被溶酶体的酶水解。具有两个特点,即:①配体与受体的结合是特异的,具有选择性;②要形成特殊包被的内吞泡。 例如LDL受体蛋白是一个单链的糖蛋白,为单次跨膜蛋白。LDL受体蛋白合成后被运输到细胞质膜,即使没有相应配体的存在,LDL受体蛋白也会在细胞质膜集中浓缩并形成被膜小窝,当血液中有LDL颗粒,可立即与LDL的apoB-100结合形成LDL-受体复合物。一旦LDL与受体结合,就会形成被膜小泡被细胞吞入,接着是网格蛋白解聚,受体回到质膜再利用,而LDL被传送给溶酶体,在溶酶体中蛋白质被降解,胆固醇被释放出来用于质膜的装配,或进入其他代谢途径。 名词:

细胞生物学作业

题目: 一、光学显微镜、电子显微镜分别有哪些?说明其工作原理、观察对象和主要构造。请查阅文献资料截图举出每种显微镜拍摄的细胞生物学照片3张以上的图片。 二、试述单克隆抗体技术、FRET、荧光漂白恢复技术的原理与应用。 解答: 一、 (一)、光学显微镜 观察对象: 光学显微镜适用于比较大的物质,最小能看到十几微米尺寸的物体。且需要该物体对光的散射比较良好,景深不大。可用于观察细胞,细菌,以及大结构的金属组织。 1.普通光学显微镜 尼康E-600显微镜 (1)原理:

普通的光学显微镜是根据凸透镜的成像原理,要经过凸透镜的两次成像。第一次先经过物镜(凸透镜①)成像,这时候的物体应该在物镜(凸透镜①)的一倍焦距和两倍焦距之间,根据物理学的原理,成的应该是放大的倒立的实像。而后以第一次成的物像作为“物体”,经过目镜的第二次成像。由于我们观察的时候是在目镜的另外一侧,根据光学原理,第二次成的像应该是一个虚像,这样像和物才在同一侧。因此第一次成的像应该在目镜(凸透镜②)的一倍焦距以内,这样经过第二次成像,第二次成的像是一个放大的正立的虚像。如果相对实物说的话,应该是倒立的放大的虚像。 (2)主要构造: 普通生物显微镜由3部分构成,即:①照明系统,包括光源和聚光器;②光学放大系统,由物镜和目镜组成,是显微镜的主体,为了消除球差和色差,目镜和物镜都由复杂的透镜组构成;③机械装置,用于固定材料和观察方便。 (3)图片: 蛔虫

钩虫 2.荧光显微镜 尼康E800荧光DIC显微镜 (1)原理: 细胞中有些物质,如叶绿素等,受紫外线照射后可发荧光;另有一些物质本身虽不能发荧光,但如果用荧光染料或荧光抗体染色后,经紫外线照射亦可发荧光,荧光显微镜就是对这类物质进行定性和定量研究的工具之一。 荧光显微镜依据光路可分为透射式和落射式两种,目前新型荧光显微镜多为落射式荧光显微镜,某些大型荧光显微镜中兼有透射利落射两种方式的激发光路。 ①透射式荧光显微镜,激发光源是从标本下方经过聚光镜穿过标本材料来激发荧光,适于观察对光可透的标本。其优点是低倍镜时荧光强,而缺点是随放大

2015年厦门大学分子细胞生物学考研真题及答案解析

厦门大学2015年招收攻读硕士学位研究生 入学考试试题 科目代码:620 科目名称:分子细胞生物学 招生专业:生命科学学院、医学院、化学系、海洋与地球学院、环境与生态学院、药学院各相关专业 一、选择题(单选,每题2分,共30分) 1.病毒与细胞在起源上的关系,下面()的观点越来越有说服力 A.生物大分子→病毒→细胞 B.生物大分子→细胞→病毒 C.细胞→生物大分子→病毒 D都不对 2.已克隆人的rDNA,用()确定rDNA分布在人的哪几条染色体上 A.单克隆抗体技术 B.免疫荧光技术 C.免疫电镜技术 D.原位杂交技术 3.关于弹性蛋白的描述,()是对的 A.糖基化、高度不溶、很少羟基化、富含脯氨酸和甘氨酸 B.非糖基化、高度不溶、羟基化、富含脯氨酸和甘氨酸 C.非糖基化、可溶、很少羟基化、富含脯氨酸和甘氨酸 D.非糖基化、高度不溶、很少羟基化、富含脯氨酸和甘氨酸 4.乙酰胆碱受体属于()系统 A.通道耦联受体 B.G蛋白耦联受体 C.酶耦联受体 D.都不对 5.内质网还含有( ),可以识别不正确折叠的蛋白或未装配好的蛋白亚基,并促进它们重新折叠和装配 A.Dp B.Bip C.SRP D.Hsp90 6.染色体骨架的主要成分是() A.组蛋白 B.非组蛋白 C.DNA D.RNA 7.溶酶体内所含有的酶为( ) A.碱性水解酶 B.中性水解酶 C.酸性水解酶 D.氧化磷酸化酶 8.用特异性药物松弛素B可以阻断( )的形成 A.胞饮泡 B.吞噬泡 C.分泌小泡 D.包被小泡 9.有丝分裂中期最主要的特征是( ) A.染色体排列在赤道面上 B.纺锤体形成 C.核膜破裂 D.姐妹染色单体各移向一极 二、名词解释(每题6分,共30分)

细胞生物学实验

实验室规则和要求 一般规定 1.上课第一天请先熟悉环境,牢记“安全”是进行任何实验最重要的事项。 2.在实验室内请穿著实验衣(最好长及膝盖下),避免穿著凉鞋、拖鞋(脚 趾不要裸露)。留有长发者,需以橡皮圈束于后,以防止引火危险或污染实验。 3.在实验室内禁止吸烟、吃东西、饮食、化妆、嚼口香糖、嬉戏奔跑,食 物饮料勿存放于实验室的冰箱中,实验桌上勿堆放书包、书籍、衣服外 套及杂物等。 4.所有实验仪器、耗材、药品等均属实验室所有,不得携出实验室外。每 组分配之仪器、耗材请在课程开始前确定清点与保管,课程结束后如数 清点缴回。公用仪器请善加爱惜使用。实验前后,请把工作区域清理擦 拭,并随时保持环境清洁。 5.实验前详阅实验内容,了解实验细节的原理及操作,注意上课所告知的 注意事项。实验进行中有任何状况或疑问,随时发问,切勿私自变更实 验程序。打翻任何药品试剂及器皿时,请随即清理。实验后,适切记下 自己的结果,严禁抄袭,确实关闭不用之电源、水、酒精灯及瓦斯等。 6.身体不适、睡眠不足、精神不济或注意力无法集中,请立即停止实验。 实验时间若延长,请注意时间的管制及自身的安全,不可自行逗留实验 室。 7.实验完毕,请清理实验室、倒垃圾、灭菌、关闭灯光及冷气,离开实验 室前记得洗手。 8.任何意外事件应立即报告教师或实验室管理人员,并应熟知相关之应变 措施。

药品 1.使用任何药品,请先看清楚标示说明、注意事项,翻阅物质安全资料, 查明是否对人体造成伤害,使用完毕请放回原位。 2.新配制的试剂请清楚注明内容物、浓度、注意事项及配制日期,为避免 污染,勿将未用完的药剂倒回容器内。 3.挥发性、腐蚀性、有毒溶剂(如甲醇、丙酮、醋酸、氯仿、盐酸、硫酸、 -巯基乙醇、甲醛、酚等)要在排烟柜中戴手套量取配制,取用完应随即盖好盖子,若不小心打翻试剂,马上处理。 4.有毒、致癌药剂例如丙稀酰胺(神经毒)、溴化乙啶(突变剂)、SDS(粉 尘)请戴手套及口罩取用,并勿到处污染,脱下手套后,养成洗手的好 习惯。 5.使用后的实验试剂和材料,应放在专用的收集桶内。固体培养基、琼脂 糖或有毒物品不得倒入水槽或下水道中。 6.使用刻度吸管取物时,切勿用嘴吸取,请用自动吸管或吸耳球。 仪器 1.使用仪器前先了解其性能、配备及正确操作方法,零件及附件严禁拆卸, 勿私自调整,并注意插座电压(110V或220V)之类别。 2.使用离心机时,离心管要两两对称、重量平衡,离心机未停下不得打开 盖子。冷冻离心机于开机状态时,务必盖紧盖子,以保持离心槽之低温并避免结霜。 3.电源供应器有高电压,切勿触摸电极或电泳槽内溶液,手湿切勿开启电 源。

细胞生物学课后练习及参考答案

细胞生物学课后练习参考答案 作业一 ●一切活细胞都从一个共同的祖先细胞进化而来,证据是什么想像地球上生命进化的很早时期。可否假设那个原始的祖先细胞是所形成的第一个仅有的细胞 1、关于一个共同祖先的假说有许多方面的证据。对活细胞的分析显示出其基本组分有着令人惊异的相似程度,例如,各种细胞的许多新陈代谢途径是保守的,在一切活细胞中组成核酸与蛋白质的化合物是一样的。同样,在原核与真核细胞中发现的一些重要蛋白质有很相似的精细结构。最重要的过程仅被“发明”了一次,然后在进化中加以精细调整去配合特化细胞的特定需要。●人脑质量约1kg并约含1011个细胞。试计算一个脑细胞的平均大小(虽然我们知道它们的大小变化很大),假定每个细胞完全充满着水(1cm3的水的质量为1g)。如果脑细胞是简单的正方体,那么这个平均大小的脑细胞每边长度为多少 2、一个典型脑细胞重10-8g (1000g/1011)。因为1g水体积为1 cm3,一个细胞的体积为10-14m3。开立方得每个细胞边长2.1 × 10-5m即21 μm。 ●假定有一个边长为100μm,近似立方体的细胞 (1)计算它的表面积/体积比; (2)假设一个细胞的表面积/体积比至少为3才能生存。那么将边长为100μm,总体积为1 000 000μm3的细胞能在分割成125个细胞后生存吗 3、(1) 如图1所示,该细胞的表面积(SA)为每一面的面积(长×宽)乘以细胞的面数,即SA=100 μm ×100 μm ×6 = 60 000 μm2。细胞的体积是长×宽×高,即(100 μm)3=1 000 000 μm3因而SA/体积的比率=SA/体积=60 000μm/ 1 000 000μm= 0. 06 μm-1。 (2) 分割后的细胞将不能存活。125个立方体细胞应有表面积300 000μm2, SA/体积的比率为0.3。如果要使总表面积/体积达到3,可以假设将立方体边长分割成n份,每个小方块的表面积为SA l,总面积为SA t则有: 分割后的小方块表面积为SA l = 6 × (100/n) 2(1) 总面积为SA t = 6 × (100/n) 2 × n3(2) 根据细胞存活要求SA t/V = 3 (3) 即: 6 × (100/n) 2 × n3 / 1003 = 3 (4) 由(4)可知n=50,即细胞若要存活必须将其分割成125000个小方块。 ●构成细胞最基本的要素是________、________ 和完整的代谢系统。 4、基因组,细胞质膜和完整的代谢系统 图1 边长为100μm的立方体与分割成125块后的立方体

细胞生物学作业讲解

细胞生物学作业 姓名:学号:班级:学院:一、名词解释 细胞生物学的概念: 细胞外被(糖萼): 易化扩散: ATP驱动泵: 协同运输: 配体门控通道: 电压门孔通道:

连续分泌: 受调分泌: 小泡运输: 受体介导的胞吞:分子伴侣: 信号肽: 蛋白分选: 膜流:

细胞呼吸: 呼吸链: 氧化磷酸化偶联: 细胞骨架: 核型: 核型分析: 染色体显带技术:踏车运动: 端粒:

二、填空 1、生物界的细胞分为三大类型:(如支原体、、、、 及蓝藻等),古核细胞和(包括、、和人类)。 是最小最简单的细胞;是原核细胞的典型代表;多生活在极端的环境。 2、在生物界中,是唯一的非细胞形态的生命体,它是不“完全”的生命体,是彻底的寄生物。 3、生物小分子主要包括,和;而、、 和是细胞中4种主要的有机小分子,它们是组成生物大分子的;生物大分子主要包括,和三大类。 4、膜脂包括,和三类;其中糖脂位于细胞膜的 面。 5、细胞膜蛋白根据与脂双层结合的方式不同,分为,和 三种基本类型;在膜蛋白中有些是,转运特定的分子或离子进出细胞;有些膜蛋白是结合于质膜上的,催化相关的生化反应进行;有些膜蛋白起,连接相邻细胞或细胞外基质成分;有些膜蛋白作为,接受细胞周期环境中的各种化学信号,并转导至细胞内引起相应的反应。 6、膜的生物学特性包括和,其中决定膜功能的方向性,而 是膜功能活动的保证;膜的不对称性包括, 和。 7、脂双分子层中不饱和脂肪酸的含量越,膜的流动性越;脂肪酸链越短,膜脂的流动性越;胆固醇对膜的流动性具有;卵磷脂与鞘脂的比值越大,膜的流动性越,脂双层中嵌入的蛋白质越多,膜的流动性越。 8、模型较好地解释了生物膜的功能特点,为普遍接受的膜结构模型。 9、小分子物质和离子的穿膜运输包括,, 和;膜运输蛋白包括和两类; 介导水的快速转运。 10、小分子物质和离子的主动运输,根据利用能量的方式不同,可分为(ATP 直接供能)和(ATP间接供能)。

细胞生物学作业(答案)

08生教1班细胞生物学课外作业 第一章绪论 1.名词解析:细胞生物学、细胞学说 细胞生物学:是一门从显微、亚显微、分子水平3个层次以及细胞间的相互作用关系,研究细胞生命活动基本规律的学科。 **细胞学说:1838年,德国植物学家施莱登发表了《植物发生论》,指出细胞是构成植物的基本单位。1839年,德国动物学家施旺发表了《关于动植物的结构和生长的一致性的显微研究》,指出,动植物都是细胞的聚合物。两人共同提出:一切植物、动物都是由细胞组成的,细胞是一切动植物的基本单位,这就是著名的“细胞学说”。 **2. 如何认识细胞学说的重要意义以及当今细胞生物学发展的主要趋势? 细胞学说的主要内容: (1)认为细胞是有机体,一切动植物都是由细胞发育而来,并由细胞和细胞产物所构成;(2)每个细胞作为一个相对独立的单位,既有它“自己的”生命,又对与其他细胞共同组成的整体的生命有所助益;(3)新的细胞可以通过老的细胞繁殖而产生。 当今细胞生物学发展的主要趋势: (1)细胞生物学的形成和发展与物理化学相关仪器、技术的发明与改进密不可分,因此与最先进、最前沿的仪器和技术相结合进行细胞生物学研究是其发展的一个趋势; (2)无论是对细胞结构与功能的深入研究,还是对细胞重大生命活动规律的探索,都需要用分子生物学的新概念与新方法,在分子水平上进行研究,因此细胞生物学与分子生物学相互渗透与总的交融是总的发展趋势之一。 第二章细胞基本知识概要 1.名词解析:原核生物、真核生物、荚膜、病毒 **原核生物:没有典型的细胞核,由原核细胞构成的生物称为原核生物。 **真核生物:由真核细胞构成的生物称为真核生物。其细胞含有由膜围成的细胞核,含有核糖体并有由质膜包裹的许多细胞器。 荚膜:为细菌的特殊结构之一,是包绕在某些细菌细胞壁外的一层透明胶状黏液层,与细菌的致病性和细菌的鉴别有关。 病毒:是指能在活细胞中繁殖的、非细胞的、具有传染性的核酸-蛋白质复合体。 2.为什么细胞是生命活动的基本单位?细胞在结构体系上又有哪些共性? 细胞是生命活动的基本单位: ①一切有机体都由细胞构成,细胞是构成有机体的基本单位。 ②细胞具有独立的、有序的自控代谢体系,细胞是代谢与功能的基本单位。 ③细胞是有机体生长和发育的基础。有机体的生长与发育是依靠细胞增殖、分化与凋 亡来实现的。 ④细胞是遗传的基本单位,细胞具有遗传的全能性。 **构成各种生物有机体的细胞种类繁多,结构与功能各异,但它们具有一些基本共性:

细胞生物学第十三至十七章作业答案

第十三章细胞增殖及其调控 1 什么是细胞周期?简述细胞周期各时相及其主要事件。 答:细胞周期: 是指连续分裂的细胞从一次有丝分裂结束后开始生长到下次有丝分裂终止所经历的全过程。 细胞周期各时相的生化事件: ①G1期:DNA合成启动相关,开始合成细胞生长所需要的多种蛋白质、RNA、碳水化合物、脂等,但不合成DNA; ②S期: 开始合成DNA和组蛋白;在真核细胞中新和成的DNA立即与组蛋白结合,组成核小体串珠结构; ③G2期:主要大量合成ATP、RNA和蛋白质,包括微管蛋白和成熟促进因子等; ④M期: 为细胞分裂期,一般包括前期,中期,后期,末期4个时期。 2 细胞通过什么机制将染色体排列到赤道板上?有何生物学意义? 答:细胞将染色体排列到赤道板上的机制可以归纳为牵拉假说和外推假说。 ①牵拉假说:染色体向赤道面方向运动,是由于动粒微管牵拉的结果。动力微管越长,拉力越大,当来自两级的动粒微管拉力相等时,即着丝粒微管形成的张力处于动态平衡时,染色体即被稳定在赤道面上; ②外推假说:染色体向赤道方向移动,是由于星体的排斥力将染色体外推的结果。染色体距离中心体越近,星体对染色体的外推力越强,当来自两极的推力达到平衡时,推力驱动染色体移到并稳定在赤道板上。 染色体排列到赤道板上具有重要的生物学意义,染色体排列到赤道板后,Mad2和Bub1消失,才能启动细胞分裂后期,并为染色体成功分开并且平均分配向两极移动做准备。 3 细胞周期有哪些主要检验点?各起何作用? 答:细胞周期有以下主要检验点: ①G1/S期检验点:检验DNA是否损伤、能否启动DNA的复制,作用是仿制DNA损伤或是突变的细胞进入S期; ②S期检验点:检验DNA复制是否完毕,DNA复制完毕才能进入G2期; ③G2/M期检验点:DNA是否损伤、能否开始分裂、细胞是否长到合适大小、环境是否利于细胞分裂,作用是使得细胞有充足的时间将损伤的DNA得以修复; ④中-后期检验点:纺锤体组装的检验,作用是抑制着丝点没有正确连接到纺锤体上的染色体,确保纺锤体正确组装。 4、细胞周期时间是如何测定的? 答:测定细胞周期的方法很多,有同位素标记法、细胞计数法等,其中标记有丝分裂百分率法是常用的一种测定方法。 标记有丝分裂百分率法的原理是对测定细胞进行脉冲标记、定时取材、利用放射自显影技术显示标记细胞,通过统计标记有丝分裂百分数的办法来测定细胞周期。 实验中常用的方法是BrdU渗入测定细胞周期的方法。BrdU(5-溴脱氧尿嘧啶核苷)加入培养基后,可做为细胞DNA复制的原料,经过两个细胞周期后,细胞中两条单链均含BrdU 的DNA将占l/2,反映在染色体上应表现为一条单体浅染。如经历了三个周期,则染色体中约一半为两条单体均浅染,另一半为一深一浅。细胞如果仅经历了一个周期,则两条单体均深染。计算分裂相中各期比例,可算出细胞周期的值。 5、细胞周期同步化有哪些方法? 比较其优缺点? 答:①自然同步化:自然界存在的细胞周期同步化过程。 ②人工同步化包括人工选择同步化和人工诱导同步化两种方法,比较如下:

【西大2017版】[0590]《细胞生物学》网上作业及课程考试复习资料(有答案]

[0590]《细胞生物学》第二次作业 [论述题] 以cAMP信号通路为例详细说明G蛋白偶联受体所介导的细胞信号通路? 参考答案: 在cAMP信号途径中,细胞外信号与相应受体结合,调节AC活性,通过第二信使cAMP 水平的变化,将胞外信号转变为胞内信号。 (1)cAMP信号通路的组分: ①、激活型激素受体(Rs)或抑制型激素受体(Ri); ②、活化型调节蛋白(Gs)或抑制型调节蛋白(Gi); ③、腺苷酸环化酶(AC):是相对分子量为150KD的糖蛋白,跨膜12次。在Mg2+或Mn2+的存在下,腺苷酸环化酶催化ATP生成cAMP。 ④、蛋白激酶A(PKA):由两个催化亚基和两个调节亚基组成,在没有cAMP时,以钝化复合体形式存在。 ⑤、环腺苷酸磷酸二酯酶(cAMP phosphodiesterase):可降解cAMP生成5'-AMP,起终止信号的作用 (2)、Gs调节模型: 该信号途径涉及的反应链可表示为:激素→G蛋白耦联受体→G蛋白→腺苷酸环化酶→cAMP→依赖cAMP的蛋白激酶A→基因调控蛋白→基因转录 (3)、Gi调节模型: Gi对腺苷酸环化酶的抑制作用可通过两个途径:①通过α亚基与腺苷酸环化酶结合,直接抑制酶的活性;②通过βγ亚基复合物与游离Gs的α亚基结合,阻断Gs的α亚基对腺苷酸环化酶的活化。 [论述题] 受体介导的内吞中, 内吞泡中的配体、受体和膜成分的去向如何? 参考答案: 答:在受体介导的内吞作用中,随内吞泡进入细胞内的物质可分为三大类∶配体(猎物)、受体和膜组分, 它们有着不同的去向:

在受体介导的内吞中,配体基本被降解, 少数可被利用。大多数受体能够再利用, 少数受体被降解。通常受体有四种可能的去向: ① 受体内吞之后,大多数受体可形成载体小泡重新运回到原来的质膜上再利用,这些受体主要是通过次级内体的分拣作用重新回到细胞质膜上(如M6P受体、LDL受体);②受体和配体一起由载体小泡运回到原来的质膜上再利用,如转铁蛋白及转铁蛋白受体就是通过这种方式再循环;③受体和配体一起进入溶酶体被降解, 如在某些信号传导中,信号分子与受体一起被溶酶体降解;④受体和配体一起通过载体小泡被转运到相对的细胞质膜面, 这就是转胞吞作用。 被内吞进来的膜成分有三种可能的去向: 第一种是随着细胞质膜受体分选产生的小泡一起重新回到质膜上再循环利用;第二种可能是同高尔基体融合,成为高尔基体膜的一个部分,这些膜有可能通过小泡的回流同内质网融合;第三种可能是随着溶酶残体的消失而消失。 [论述题] 请说明内膜系统的形成对于细胞的生命活动具有哪些重要的意义? 参考答案:至少有六方面的意义: ① 首先是内膜系统中各细胞器膜结构的合成和装配是统一进行的,这不仅提高了合成的效率,更重要的是 保证了膜结构的一致性,特别是保证了膜蛋白在这些膜结构中方向的一致性。 ② 内膜系统在细胞内形成了一些特定的功能区域和微环境,如酶系统的隔离与衔接, 细胞内不同区域形成 pH值差异, 离子浓度的维持, 扩散屏障和膜电位的建立等等,以便在蛋白质、脂类、糖类的合成代谢、加工修饰、浓缩过程中完成其特定的功能。 ③ 内膜系统通过小泡分泌的方式完成膜的流动和特定功能蛋白的定向运输,这不仅保证了内膜系统中各细 胞器的膜结构的更新,更重要的是保证了一些具有杀伤性的酶类在运输过程中的安全,并能准确迅速到达作用部位。 ④ 细胞内的许多酶反应是在膜上进行的,内膜系统的形成,使这些酶反应互不干扰。 ⑤ 扩大了表面积,提高了表面积与体积的比值。 ⑥ 区室的形成,相对提高了重要分子的浓度,提高了反应效率。 [论述题] 如何理解"被动运输是减少细胞与周围环境的差别,而主动运输则是努力创造差别,维持生命的活力”? 参考答案: 主要是从创造差异对细胞生命活动的意义方面来理解这一说法。主动运输涉及物质输入和输出细胞和细胞器,并且能够逆浓度梯度或电化学梯度。

细胞生物学实验

细胞培养基本理论 一细胞培养概述 细胞培养(cell culture)模拟机体内生理条件,将细胞从机体中取出,在人工条件下使其生存、生长、繁殖和传代,进行细胞生命过程、细胞癌变、细胞工程等问题的研究。 群体培养(mass culture)将大量细胞置于培养瓶中,让其贴壁或悬浮生长,形成均匀的单层细胞或单细胞悬液。 克隆培养(clone culture)即将少数的细胞加入培养瓶中,贴壁后彼此间隔距离较远,经过繁殖每一个细胞形成一个集落,称为克隆。 组织培养(tissue culture)指把活体的组织取出,分成小块,直接置于培养瓶底或通过胶原纤维血浆支持物的培养瓶底来进行培养。 特点:1.,组织不失散,细胞保持原有的组织关系。2,形成生长(cut growth)或形成由扁薄细胞构成的单层细胞培养物。3,在体外生长时,细胞间呈相互依存、互相影响的关系。 器官培养(organ culture)将活体中器官或器官一部分取出,在体外生长、生存,并使其保持器官原有的结构和功能特征的培养。 特点:1,培养的器官在合适的条件下能生长和分化,存活数周或1 年。2,观察受限,只能用组织切片的方法观察或用透射电镜、扫描电镜观察。 细胞培养优点:.1.活细胞:同时、大量、均一性、重复性;2.可控制:各种物理、化学、生物等因素可调控;3.研究方法多样:倒置、荧光、电子、激光共焦显微镜、流式细胞术、免疫组织化学、原位杂交、同位素标记;4.应用广:不同物种、年龄、组织,正常或异常缺点:人工所模拟的条件与体内实际情况仍不完全相同;当细胞被置于体外培养后, 生活在缺乏动态平衡的环境中,时间久了,必然发生变化。 三细胞的形态和类型由不同生长方式造成的差异 呈悬浮生长时,因生长在液体环境中,胞内渗透压高于周围液体环境,因此胞体基本呈圆形。呈贴附于支持物上生长的细胞,开始为圆形,很快过渡成扁平形,并逐渐恢复至原先的细胞形态. 细胞来源:成纤维型细胞;上皮型细胞;其它,不定型 细胞按生长方式:贴壁型细胞(Monolayer cells);悬浮型细胞(Suspension cells)绝大多数有机体细胞属贴壁型细胞,只有少数细胞类型如某些肿瘤细胞和白细胞可在悬浮状态下生长。 按细胞形态(贴壁细胞):成纤维型细胞;上皮型细胞;其它,不定型 贴壁型生长细胞或锚着依存性细胞 处于体外培养状态下的贴附生长型细胞在形态上表现单一而失去了在体内原有的某些特征。形态各异反映其胚层起源。如来源于内外胚层的细胞多呈上皮型;来自中胚层的则易呈成纤维细胞型。分为成纤维型细胞;皮型细胞;游走型细胞;多形型细胞 贴壁型细胞形态比较 成纤维型细胞:梭形或不规则三角形;中央有卵圆形核;胞质向外伸出长短不同的突起;中胚层间质起源 上皮型细胞:扁平不规则多角形;细胞中央有圆形核;紧密相连单层膜样生长;内、外胚层细胞如皮肤、表皮衍生物、消化管上皮等 游走型细胞:散在生长,一般不连成片;细胞质经常伸出伪足或突起;活跃的游走或变形运动;羊水细胞培养的早期 多形细胞型:难以确定规律和稳定的形态;如神经组织的细胞等

细胞生物学作业-2

细胞生物学作业 姓名:学号:班级:学院: 一、名词解释 细胞生物学的概念: P1 细胞外被(糖萼):P75 动物细胞表面存在着一层富含糖类物质的结构,称为细胞外被或糖萼。用重金属染料如:钌红染色后,在电镜下可显示厚约10~20nm的结构,边界不甚明确。细胞外被是由构成质膜的糖蛋白和糖脂伸出的寡糖链组成的,实质上是质膜结构的一部分。 在紧密连接处,一般无细胞外被 易化扩散:P84 ATP驱动泵:P86 协同运输:P88 配体门控通道:P90 电压门控通道:P91

连续分泌:P98 受调分泌:P98 小泡运输:P93 受体介导的胞吞:P94 分子伴侣:P109 信号肽:P107 蛋白分选:P111

膜流:细胞的各种膜性结构间相互联系和转移的现象称为“膜流” 所谓膜流,是指由于膜泡运输,真核细胞生物膜在各个膜性细胞器及质膜之间的常态性转移。 高尔基体是细胞膜流的枢纽,细胞的膜流参与细胞质膜的更新,在细胞不同区隔之间或细胞内外转运物质,参与细胞器的发生与功能过程,因此我们说,细胞的膜流对于维持细胞生存是必要的。 P132 细胞呼吸:P147 呼吸链:P150 氧化磷酸化偶联:P151 细胞骨架:P156 核型:P196

核型分析:P196 染色体显带技术:P197 踏车运动:P166 端粒: 二、填空 1、生物界的细胞分为三大类型:(如支原体、、、、 及蓝藻等),古核细胞和(包括、、和人类)。 是最小最简单的细胞;是原核细胞的典型代表;多生活在极端的环境。 2、在生物界中,是唯一的非细胞形态的生命体,它是不“完全”的生命体,是彻底的寄生物。 3、生物小分子主要包括,和;而、、 和是细胞中4种主要的有机小分子,它们是组成生物大分子的;生物大分子主要包括,和三大类。 4、膜脂包括,和三类;其中糖脂位于细胞膜的 面。 5、细胞膜蛋白根据与脂双层结合的方式不同,分为,和 三种基本类型;在膜蛋白中有些是,转运特定的分子或离子进出细胞;有些膜蛋白是结合于质膜上的,催化相关的生化反应进行;有些膜蛋白起,连接相邻细胞或细胞外基质成分;有些膜蛋白作为,接受细胞周期环境中的各种化学信号,并转导至细胞内引起相应的反应。 6、膜的生物学特性包括和,其中决定膜功能的方向性,而 是膜功能活动的保证;膜的不对称性包括,

常用分子生物学和细胞生物学实验技术介绍

常用分子生物学和细胞生物学实验技术介绍 (2011-04-23 11:01:29)转载▼ 标签:分子生物学细胞生物学常用实用技术基本实验室技术生物学实验教育 常用的分子生物学基本技术 核酸分子杂交技术 由于核酸分子杂交的高度特异性及检测方法的灵敏性,它已成为分子生物学中最常用的基本技术,被广泛应用于基因克隆的筛选,酶切图谱的制作,基因序列的定量和定性分析及基因突变的检测等。其基本原理是具有一定同源性的原条核酸单链在一定的条件下(适宜的温室度及离子强度等)可按碱基互补原成双链。杂交的双方是待测核酸序列及探针(probe),待测核酸序列可以是克隆的基因征段,也可以是未克隆化的基因组DNA和细胞总RNA。核酸探针是指用放射性核素、生物素或其他活性物质标记的,能与特定的核酸序列发生特异性互补的已知DNA或RNA片段。根据其来源和性质可分为cDNA探针、基因组探针、寡核苷酸探针、RNA探针等。 固相杂交 固相杂交(solid-phase hybridization)是将变性的DNA固定于固体基质(硝酸纤维素膜或尼龙滤膜)上,再与探针进行杂交,故也称为膜上印迹杂交。 斑步杂交(dot hybridization) 是道先将被测的DNA或RNA变性后固定在滤膜上然后加入过量的标记好的DNA或RNA探针进行杂交。该法的特点是操作简单,事先不用限制性内切酶消化或凝胶电永分离核酸样品,可在同一张膜上同时进行多个样品的检测;根据斑点杂并的结果,可以推算出杂交阳性的拷贝数。该法的缺点是不能鉴定所测基因的相对分子质量,而且特异性较差,有一定比例的假阳性。 印迹杂交(blotting hybridization)

相关文档
相关文档 最新文档