文档库 最新最全的文档下载
当前位置:文档库 › 初中数学竞赛专题选讲

初中数学竞赛专题选讲

初中数学竞赛专题选讲
初中数学竞赛专题选讲

初中数学竞赛专题选讲(初三.2)

完全平方数和完全平方式

一、内容提要

一定义

1. 如果一个数恰好是某个有理数的平方,那么这个数叫做完全平方数. 例如0,1,0.36,25

4,121都是完全平方数. 在整数集合里,完全平方数,都是整数的平方.

2. 如果一个整式是另一个整式的平方,那么这个整式叫做完全平方式. 如果没有特别说明,完全平方式是在实数范围内研究的.

例如:

在有理数范围 m 2, (a+b -2)2, 4x 2-12x+9, 144都是完全平方式. 在实数范围 (a+3)2, x 2+22x+2, 3也都是完全平方式.

二. 整数集合里,完全平方数的性质和判定

1. 整数的平方的末位数字只能是0,1,4,5,6,9.所以凡是末位数字为2,3,7,8的整数必不是平方数.

2. 若n 是完全平方数,且能被质数p 整除, 则它也能被p 2整除..

若整数m 能被q 整除,但不能被q 2整除, 则m 不是完全平方数.

例如:3402能被2整除,但不能被4整除,所以3402不是完全平方数. 又如:444能被3整除,但不能被9整除,所以444不是完全平方数.

三. 完全平方式的性质和判定

在实数范围内

如果 ax 2+bx+c (a ≠0)是完全平方式,则b 2-4ac=0且a>0;

如果 b 2-4ac=0且a>0;则ax 2+bx+c (a ≠0)是完全平方式.

在有理数范围内

当b 2-4ac=0且a 是有理数的平方时,ax 2+bx+c 是完全平方式.

四. 完全平方式和完全平方数的关系

1. 完全平方式(ax+b )2 中

当a, b 都是有理数时, x 取任何有理数,其值都是完全平方数;

当a, b 中有一个无理数时,则x 只有一些特殊值能使其值为完全平方数.

2. 某些代数式虽不是完全平方式,但当字母取特殊值时,其值可能是完全平方数. 例如: n 2+9, 当n=4时,其值是完全平方数.

所以,完全平方式和完全平方数,既有联系又有区别.

五. 完全平方数与一元二次方程的有理数根的关系

1. 在整系数方程ax 2+bx+c=0(a ≠0)中

① 若b 2-4ac 是完全平方数,则方程有有理数根;

② 若方程有有理数根,则b 2-4ac 是完全平方数.

2. 在整系数方程x 2+px+q=0中

① 若p 2-4q 是整数的平方,则方程有两个整数根;

② 若方程有两个整数根,则p 2-4q 是整数的平方.

二、例题

例1. 求证:五个连续整数的平方和不是完全平方数.

证明:设五个连续整数为m -2, m -1, m, m+1, m+2. 其平方和为S.

那么S =(m -2)2+(m -1)2+m 2+(m+1)2+(m+2)2

=5(m 2+2).

∵m 2的个位数只能是0,1,4,5,6,9

∴m 2+2的个位数只能是2,3,6,7,8,1

∴m 2+2不能被5整除.

而5(m 2+2)能被5整除,

即S 能被5整除,但不能被25整除.

∴五个连续整数的平方和不是完全平方数.

例2 m 取什么实数时,(m -1)x 2+2mx+3m -2 是完全平方式?

解:根据在实数范围内完全平方式的判定,得

当且仅当???>-0

10m △=时,(m -1)x 2+2mx+3m -2 是完全平方式 △=0,即(2m )2-4(m -1)(3m -2)=0.

解这个方程, 得 m 1=0.5, m 2=2.

解不等式 m -1>0 , 得m>1.

即?

??>==125.0m m m 或 它们的公共解是 m=2.

答:当m=2时,(m -1)x 2+2mx+3m -2 是完全平方式.

例3. 已知: (x+a)(x+b)+(x+b)(x+c)+(x+c)(x+a)是完全平方式.

求证: a=b=c.

证明:把已知代数式整理成关于x 的二次三项式,得

原式=3x 2+2(a+b+c)x+ab+ac+bc

∵它是完全平方式,

∴△=0.

即 4(a+b+c)2-12(ab+ac+bc)=0.

∴ 2a 2+2b 2+2c 2-2ab -2bc -2ca=0,

(a -b)2+(b -c)2+(c -a)2=0.

要使等式成立,必须且只需:

??

???=-=-=-000a c c b b a

解这个方程组,得a=b=c.

例4. 已知方程x 2-5x+k=0有两个整数解,求k 的非负整数解.

解:根据整系数简化的一元二次方程有两个整数根时,△是完全平方数.

可设△= m 2 (m 为整数),

即(-5)2-4k=m 2 (m 为整数),

解得,k=4

252

m -. ∵ k 是非负整数,

∴ ?????-≥-的倍数

是42502522m m 由25-m 2≥0, 得 5≤m , 即-5≤m ≤5;

由25-m 2是4的倍数,得 m=±1, ±3, ±5.

以 m 的公共解±1, ±3, ±5,分别代入k=4

252

m -. 求得k= 6, 4, 0.

答:当k=6, 4, 0时,方程x 2-5x+k=0有两个整数解

例5. 求证:当k 为整数时,方程4x 2+8kx+(k 2+1)=0没有有理数根.

证明: (用反证法)设方程有有理数根,那么△是整数的平方.

∵△=(8k )2-16(k 2+1)=16(3k 2-1).

设3k 2-1=m 2 (m 是整数).

由3k 2-m 2=1,可知k 和m 是一奇一偶,

下面按奇偶性讨论3k 2=m 2+1能否成立.

当k 为偶数,m 为奇数时,

左边k 2是4的倍数,3k 2也是4的倍数;

右边m 2除以4余1,m 2+1除以4余2.

∴等式不能成立.; 当k 为奇数,m 为偶数时,

左边k 2除以4余1,3k 2除以4余3

右边m 2是4的倍数,m 2+1除以4余1

∴等式也不能成立.

综上所述,不论k, m 取何整数,3k 2=m 2+1都不能成立.

∴3k 2-1不是整数的平方, 16(3k 2-1)也不是整数的平方.

∴当k 为整数时,方程4x 2+8kx+(k 2+1)=0没有有理数根

三、练习

1.如果m是整数,那么m2+1的个位数只能是____.

分析: m2的个位数是0,1,4,5,6,9

∴m2+1的个位数是1,2,5,7,0

2.如果n是奇数,那么n2-1除以4余数是__,n2+2除以8余数是___,3n2除以4

的余数是__.

分析:(1) n2-1=(n+1)(n-1)且n为奇数

∴n+1与n-1同为偶数,故被4整除,∴n2-1除以4余数是0

(2)设n=2k+1(k为正整数),∴n2+2=(2k+1)2+2=4k(k+1)+3,

而k(k+1)是偶数,4k(k+1)是8的倍数,∴n2+2除以8余数是3,(3)设n=2k+1(k为正整数),∴3n2=3(2k+1)2=3[4k(k+1)+1]=12 k(k+1)+3

而k(k+1)是偶数,12k(k+1)是4的倍数,∴3n2除以4的余数是3

3.如果k不是3的倍数,那么k2-1 除以3余数是_____.

分析: k不是3的倍数, ∴k被3除的余数是1或2,不妨设k=3m+1或k=3m+2,当k=3m+1时,k2-1=(k+1)(k-1)=3m(3m+2)是3的倍数,

∴那么k2-1 除以3余数是0;

当k=3m+2时,k2-1=(k+1)(k-1)=(3m+3)(3m+1)是3的倍数,

∴那么k2-1 除以3余数也是0;综上所述,k2-1 除以3余数是0。

4.一个整数其中三个数字是1,其余的都是0,问这个数是平方数吗?为什么?

分析:不是平方数,原因是能被3整除,却不能被9整除。

5.一串连续正整数的平方12,22,32,………,1234567892的和的个位数是__.

分析: 因为平方数的个位数是

(1+4+9+6+5+6+9+4+1+0)×12345678+(1+4+9+6+5+6+9+4+1)

即个位数为5×8+5

6.m取什么值时,代数式x2-2m(x-4)-15是完全平方式?

分析:

7.m取什么正整数时,方程x2-7x+m=0的两个根都是整数?

8.a, b, c满足什么条件时,代数式(c-b)x2+2(b-a)x+a-b是一个完全平方式?

9. 判断下列计算的结果,是不是一个完全平方数:

① 四个连续整数的积; ②两个奇数的平方和.

10. 一个四位数加上38或减去138都是平方数,试求这个四位数.

11. 已知四位数aabb 是平方数,试求a, b.

12. 已知:n 是自然数且n>1. 求证:2n -1不是完全平方数.

13. 已知:整系数的多项式4x 4+ax 3+13x 2+bx+1 是完全平方数,求整数a 和b 的值.

14. 已知:a, b 是自然数且互质,试求方程x 2-abx+

21(a+b)=0的自然数解.

初中数学竞赛辅导讲义及习题解答 第21讲 从三角形的内切圆谈起

第二十一讲 从三角形的内切圆谈起 和多边形的各边都相切的圆叫做多边形的内切圆,这个多边形叫做圆的外切多边形.三角形的内切圆的圆心叫做这个三角形的内心,圆外切三角形、圆外切四边形有下列重要性质: 1.三角形的内心是三角形的三内角平分线交点,它到三角形的三边距离相等; 2.圆外切四边形的两组对边之和相等,其逆亦真,是判定四边形是否有外切圆的主要方法. 当圆外切三角形、四边形是特殊三角形时,就得到隐含丰富结论的下列图形: 注:设Rt △ABC 的各边长分别为a 、b 、c (斜边),运用切线长定理、面积等知识可得到其内切圆半径的不同表示式: (1)2 c b a r -+=; (2)c b a ab r ++= . 请读者给出证 【例题求解】 【例1】 如图,在Rt △ABC 中,∠C=90°°,BC=5,⊙O 与Rt △ABC 的三边AB 、

BC、AC分相切于点D、E、F,若⊙O的半径r=2,则Rt△ABC的周长为.思路点拨AF=AD,BE=BD,连OE、OF,则OECF为正方形,只需求出AF(或AD)即可. 【例2】如图,以定线段AB为直径作半圆O,P为半圆上任意一点(异于A、B),过点P作半圆O的切线分别交过A、B两点的切线于D、C,AC、BD相交于N点,连结ON,NP,下列结论:①四边形ANPD是梯形;②ON=NP:③DP·P C为定值; ④FA为∠NPD的平分线,其中一定成立的是( ) A.①②③ B.②③④ C.①③④ D.①④ 思路点拨本例综合了切线的性质、切线长定理、相似三角形,判定性质等重要几何知识,注意基本辅助线的添出、基本图形识别、等线段代换,推导出NP∥AD∥BC是解本例的关键. 【例3】如图,已知∠ACP=∠CDE=90°,点B在CE上,CA=CB=CD,过A、C、D 三点的圆交AB于F,求证:F为△CDE的内心.

人教版九年级数学上下册培优讲义机构辅导资料(共30讲)

九年级讲义目录

专题01 二次根式的化简与求值 阅读与思考 二次根式的化简与求值问题常涉及最简根式、同类根式,分母有理化等概念,常用到分解、分拆、换元等技巧. 有条件的二次根式的化简与求值问题是代数变形的重点,也是难点,这类问题包含了整式、分式、二次根式等众多知识,又联系着分解变形、整体代换、一般化等重要的思想方法,解题的基本思路是: 1、直接代入 直接将已知条件代入待化简求值的式子. 2、变形代入 适当地变条件、适当地变结论,同时变条件与结论,再代入求值. 数学思想: 数学中充满了矛盾,如正与负,加与减,乘与除,数与形,有理数与无理数,常量与变量、有理式与无理式,相等与不等,正面与反面、有限与无限,分解与合并,特殊与一般,存在与不存在等,数学就是在矛盾中产生,又在矛盾中发展. =x , y , n 都是正整数) 例题与求解 【例1】 当x = 时,代数式32003 (420052001)x x --的值是( ) A 、0 B 、-1 C 、1 D 、2003 2- (绍兴市竞赛试题) 【例2】 化简 (1(b a b ab b -÷-- (黄冈市中考试题) (2 (五城市联赛试题)

(3 (北京市竞赛试题) (4 (陕西省竞赛试题) 解题思路:若一开始把分母有理化,则计算必定繁难,仔细观察每题中分子与分母的数字特点,通过分解、分析等方法寻找它们的联系,问题便迎刃而解. 思想精髓:因式分解是针对多项式而言的,在整式,分母中应用非常广泛,但是因式分解的思想也广泛应用于解二次根式的问题中,恰当地作类似于因式分解的变形,可降低一些二次根式问题的难度. 【例3】比6大的最小整数是多少? (西安交大少年班入学试题) 解题思路:直接展开,计算较繁,可引入有理化因式辅助解题,即设x y == 想一想:设x=求 432 32 621823 7515 x x x x x x x --++ -++ 的值. (“祖冲之杯”邀请赛试题) 的根式为复合二次根式,常用配方,引入参数等方法来化简复合二次根式.

初中数学竞赛专题辅导因式分解一

因式分解 多项式的因式分解是代数式恒等变形的基本形式之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具.因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.本讲及下一讲在中学数学教材基础上,对因式分解的方法、技巧和应用作进一步的介绍. 1.运用公式法 在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如: (1)a2-b2=(a+b)(a-b); (2)a2±2ab+b2=(a±b)2; (3)a3+b3=(a+b)(a2-ab+b2); (4)a3-b3=(a-b)(a2+ab+b2). 下面再补充几个常用的公式: (5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2; (6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca); (7)a n-b n=(a-b)(a n-1+a n-2b+a n-3b2+…+ab n-2+b n-1)其中n为正整数; (8)a n-b n=(a+b)(a n-1-a n-2b+a n-3b2-…+ab n-2-b n-1),其中n为偶数; (9)a n+b n=(a+b)(a n-1-a n-2b+a n-3b2-…-ab n-2+b n-1),其中n为奇数. 运用公式法分解因式时,要根据多项式的特点,根据字母、系数、指数、符号等正确恰当地选择公式.

例1 分解因式: (1)-2x5n-1y n+4x3n-1y n+2-2x n-1y n+4; (2)x3-8y3-z3-6xyz; (3)a2+b2+c2-2bc+2ca-2ab; (4)a7-a5b2+a2b5-b7. 解 (1)原式=-2x n-1y n(x4n-2x2n y2+y4) =-2x n-1y n[(x2n)2-2x2n y2+(y2)2] =-2x n-1y n(x2n-y2)2 =-2x n-1y n(x n-y)2(x n+y)2. (2)原式=x3+(-2y)3+(-z)3-3x(-2y)(-Z) =(x-2y-z)(x2+4y2+z2+2xy+xz-2yz). (3)原式=(a2-2ab+b2)+(-2bc+2ca)+c2 =(a-b)2+2c(a-b)+c2 =(a-b+c)2. 本小题可以稍加变形,直接使用公式(5),解法如下:原式=a2+(-b)2+c2+2(-b)c+2ca+2a(-b) =(a-b+c)2 (4)原式=(a7-a5b2)+(a2b5-b7) =a5(a2-b2)+b5(a2-b2) =(a2-b2)(a5+b5)

初中数学竞赛辅导讲义及习题解答第14讲图第14讲图表信息问题51

第十四讲图表信息问题 21世纪是一个信息化的社会,从纷繁的信息中,捕捉搜集、处理、加工所需的信息,是新世纪对一个合格公民提出的基本要求. 图表信息问题是近年中考涌现的新问题,即运用图象、表格及一定的文字说明提供问题情境的一类试题. 图象信息题是把需要解决的问题借助图象的特征表现出来,解题时要通过对图象的解读、分析和判断,确定图象对应的函数解析式中字母系数符号特征和隐含的数量关系,然后运用数形结合、待定系数法等方法解决问题. 表格信息题是运用二维表格提供数据关系信息,解题中需通过对表中的数据信息的分析、比较、判断和归纳,弄清表中各数据所表示的含义及它们之间的内在联系,然后运用所学的方程(组)、不等式(组)及函数知识等解决问题. 【例题求解】 【例1】一慢车和一快车沿相同的路线从A到B地,所行的路程与时间的函数图象如图所示,试根据图象,回答下列问题: (1)慢车比快车早出发小时,快车追上慢车时行驶了千米,快车比慢车 早小时到达6地; (2)快车追上慢车需小时,慢车、快车的速度分别为千米/时; (3)A、B两地间的路程是. 思路点拨对于(2),设快车追上慢车需t小时,利用快车、慢车所走的路程相等,建立t的方程. 注:股市行情走势图、期货市场趋势图、工厂产值利润表、甚而电子仪器自动记录的地震波等,它们广泛出现在电视、报刊、广告中,渗透到现实生活的每一角落,这些图表、图象中蕴涵着丰富的信息,我们应学会收集、整理与获取. 【例2】已知二次函数c + =2的图象如图,并设M=b y+ ax bx + + - + 2, +2 - - + a a- a c b b b c a 则( ) A.M>0 B.M=0 C.M<0 D.不能确定M为正、为负或为0 思路点拨由抛物线的位置判定a、b、c的符号,并由1 x,推出相应y值的正负性. = ±

初中数学竞赛专题选讲-配方法(含答案)

初中数学竞赛专题[配方法] 一、内容提要 1. 配方:这里指的是在代数式恒等变形中,把二次三项式a 2 ±2ab+b 2 写成完全平方式 (a ±b )2. 有时需要在代数式中添项、折项、分组才能写成完全平方式. 常用的有以下三种: ①由a 2 +b 2 配上2ab , ②由 2 ab 配上a 2 +b 2 , ③由a 2 ±2ab 配上b 2 . 2. 运用配方法解题,初中阶段主要有: ① 用完全平方式来因式分解 例如:把x 4 +4 因式分解. 原式=x 4 +4+4x 2 -4x 2 =(x 2 +2)2 -4x 2 =…… 这是由a 2 +b 2配上2ab. ② 二次根式化简常用公式:a a =2,这就需要把被开方数 写成完全平方式. 例如:化简6 25-. 我们把5-2 6写成 2-232+3 =2)2(-232+2)3( =( 2-3) 2 . 这是由2 ab 配上a 2 +b 2 .

③ 求代数式的最大或最小值,方法之一是运用实数的平方是非负数,零就是最小值.即∵a 2 ≥0, ∴当a=0时, a 2 的值为0是最小值. 例如:求代数式a 2 +2a -2 的最值. ∵a 2 +2a -2= a 2 +2a+1-3=(a+1)2 -3 当a=-1时, a 2 +2a -2有最小值-3. 这是由a 2 ±2ab 配上b 2 ④ 有一类方程的解是运用几个非负数的和等于零,则每一个非负数都是零,有时就需要配方. 例如::求方程x 2 +y 2 +2x-4y+5=0 的解x, y. 解:方程x 2 +y 2 +2x-4y+1+4=0. 配方的可化为 (x+1)2 +(y -2)2 =0. 要使等式成立,必须且只需? ??=-=+0201y x . 解得 ???=-=2 1 y x 此外在解二次方程中应用根的判别式,或在证明等式、不等式时,也常要有配方的知识和技巧.

初中数学竞赛知识点

初中数学竞赛知识点归纳 一、数的整除(一) 如果整数A除以整数B(B≠0)所得的商A/B是整数,那么叫做A被B整除. 0能被所有非零的整数整除. ①抹去个位数②减去原个位数的2倍③其差能被7整除。 如1001100-2=98(能被7整除) 又如7007700-14=686,68-12=56(能被7整除) 能被11整除的数的特征: ①抹去个位数②减去原个位数③其差能被11整除 如1001100-1=99(能11整除) 又如102851028-5=1023102-3=99(能11整除) 二、倍数.约数 1 两个整数A和B(B≠0),如果B能整除A(记作B|A),那么A叫做B的倍数,B叫做A的约数。例如3|15,15是3的倍数,3是15的约数。 2 因为0除以非0的任何数都得0,所以0被非0整数整除。0是任何非0整数的倍数,非0整数都是0的约数。如0是7的倍数,7是0的约数。 3 整数A(A≠0)的倍数有无数多个,并且以互为相反数成对出现,0,±A,±2A,……都是A的倍数,例如5的倍数有±5,±10,……。 4 整数A(A≠0)的约数是有限个的,并且也是以互为相反数成对出现的,其中必包括±1和±A。例如6的约数是±1,±2,±3,±6。 5 通常我们在正整数集合里研究公倍数和公约数,几正整数有最小的公倍数和最犬的公约数。 6 公约数只有1的两个正整数叫做互质数(例如15与28互质)。 7 在有余数的除法中,被除数=除数×商数+余数若用字母表示可记作: A=BQ+R,当A,B,Q,R都是整数且B≠0时,A-R能被B整除 例如23=3×7+2则23-2能被3整除。 三、质数.合数 1正整数的一种分类:

初中数学竞赛专题分类解析第四讲:平行四边形和梯形讲义

初中数学竞赛公益讲座:平行四边形和梯形 2018/4/7 一、基础知识: 1)平行四边形:平移、中点、中心对称(旋转180度)2)特殊的平行四边形:矩形、菱形、正方形 3)梯形:梯形问题转化、分割、拼接 三角形或者平行四边形问题 二、例题分析 例1、如下左图,在等腰△ABC中,延长边AB到点D,延长边CA到点E,连 接DE,恰有AD=BC=CE=DE,求∠BAC的度数。 例2、如上右图,在RT△ABC中,∠ACB是直角,CD⊥AB于D,AE平分∠ABC,交CD于K,F在BE上且BF=CE,求证:FK?AB。 例3、如下左图,△ABC内部一点P,满足∠PBA=∠PCA,作平行四边形PBQC,求证:∠QAB=∠PAC。

例4、如上右图,已知A、B是两个定点,C是位于直线AB某一侧的一个动点,分别以AC、BC为边,在△ABCDE外部作正方形CADI、CBEF,求证无论C点 在什么位置上,DE的中点M的位置不变。 例5、如下左图,梯形ABCD中,AB?CD,BC⊥CD,AB=2,CD=4,点E是BC上的一个动点,连接并延长EA到点F,使得EF:AE=2:1,连接并延长ED到点G,使得EG:ED=3:2,以EF和EG为临边作平行四边形EFHG,连接EH交AD于点P,1)求EH的最小长度;2)求证:P是定点。 例6、如上右图,四边形ABCD中,点E、F分别在边AB、CD上,连接BF、CE交于点P,连接AF、DE交于点Q,若四边形EQFP是平行四边形,求证: 四边形ABCD是梯形。 例7、如下图,等腰梯形ABCD,对角线AC与BD交于点O,M 、N分别为腰AB和CD上的点,且AM=CN,连接MN分别交BD、AC于点P、Q,求证: MP=QN。

初中数学竞赛辅导讲义及习题解答 第15讲 统计的思想方法

第十五讲 统计的思想方法 20世纪90年代,美国麻省理工学院教授尼葛洛庞帝写过一本畅销全球的《数字化生存》一书.事实上,我们的生活、工作离不开数据,要做到心中有数、用数据说话是信息社会对人的基本要求. 统计学是一门研究如何收集、整理、分析数据,并在此基础上作出推断的科学. 随机抽样与统计推断是统计中最重要的思想方法,也是认识客观世界的事物和现象的方法之一.即用样本的某种特征去估计总体的相应特征,用样本的平均水平、波动情况、分布规律等特征估计总体的平均水平、波动情况和分布规律. 【例题求解】 【例1】 现有A ,B 两个班级,每个班级各有45名学生参加一次测验.每名参加者可获得0,1,2,3,4,5,6,7,8,9分这几种不同的分值中的一种.测试结果A 班的成绩如下表所示,B 班的成绩如图所示. (1)由观察所得, 班的标准差较大; (2)若两班合计共有60人及格,问参加者最少获 分才可以及格. 思路点拨 对于(2),数一数两班在某一分数以上的人数即可,凭直觉与估计得出答案. 注: 平均数、中位数、众数都是反映一组数据集中趋势的特征数,但是它们描述集中趋势的侧重点是不同的: (1)平均数易受数据中少数异常值的影响,有时难以真正反映“平均”; (2)若一组数据有数据多次重复出现,则常用众数来刻画这组数据的集中趋势. 【例2】 已知数据1x 、2x 、3x 的平均数为a ,1y 、2y 、3y 的平均数为b ,则数据1132y x +、2232y x +、3332y x +的平均数为( ) A .2a+3b B .b a +3 2 C .6a+9b D .2a+b 思路点拨 运用平均数计算公式并结合已知条件导出新数据的平均数.

初中数学竞赛专题辅导--函数图像

初中数学竞赛专题选讲 函数的图象 一、内容提要 1. 函数的图象定义:在直角坐标系中,以自变量x 为横坐标和以它的函数y 的对应值为纵 坐标的点的集合,叫做函数y=f(x)的图象. 例如 一次函数y=kx+b (k,b 是常数,k ≠0)的图象是一条直线 ① l 上的任一点p 0(x 0,y 0) 的坐标,适合等式y=kx+b, 即y 0=kx ② 若y 1=kx 1+b ,则点p 1(x 1,y 1) 在直线l 上. 2. 方程的图象:我们把y=kx+b 看作是关于x, y 的 二元 一次方程kx -y+b=0, 那么直线l 就是以这个方程的解为坐标 的点的集合,我们把这条直线叫做二元一次方程的图象. 二元一次方程ax+by+c=0 (a,b,c 是常数,a ≠0,b ≠0) 叫做 直线方程. 一般地,在直角坐标系中,如果某曲线是以某二元方程的解为坐标的 点的集合,那么这曲线就叫做这个方程的图象. 例如: 二元二次方程y=ax 2+bx+c(a ≠0) (即二次函数)的图象是抛物线; 二元分式方程y= x k (k ≠0) (即反比例函数)的图象是双曲线. 3. 函数的图象能直观地反映自变量x 与函数y 的对应规律. 例如: ① 由图象的最高,最低点可看函数的最大,最小值; ② 由图象的上升,下降反映函数 y 是随x 的增大而增大(或减小); ③ 函数y=f(x)的图象在横轴的上方,下方或轴上,分别表示y>0,y<0,y=0. 图象所对应 的横坐标就是不等式f(x)>0,f(x)<0 的解集和方程f(x)=0的解. ④ 两个函数图象的交点坐标,就是这两个图象所表示的两个方程(即函数解析式)的公 共解.等等 4. 画函数图象一般是: ①应先确定自变量的取值范围. 要使代数式有意义,并使代数式所表示的实际问题有意义,还要注意是否连续,是否有界. ②一般用描点法,但对一次函数(二元一次方程)的图象,因它是直线(包括射线、线段),所以可采用两点法.线段一定要画出端点(包括临界点). ③对含有绝对值符号(或其他特殊符号)的解析式 ,应按定义对自变量分区讨论,写成几个解析式. 二、例题 例1. 右图是二次函数y=ax 2+bx+c (a ≠0), 试决定a, b, c 及b 2-4ac 的符号. 解:∵抛物线开口向下, ∴a<0. ∵对称轴在原点右边,∴x=- a b 2>0且a<0, ∴b>0. ∵抛物线与纵轴的交点在正半轴上, ∴截距c>0. ∵抛物线与横轴有两个交点, ∴b 2-4ac>0. 例2. 已知:抛物线f :y=-(x -2)2+5. 试写出把f 向左平行移动2个单位后,所得的曲线f 1的方程;以及f 关于x 轴对称的曲线f 2 的方程. 画出f 1和f 2的略图,并求:

初中数学竞赛辅导讲义及习题解答大全 (含竞赛答题技巧)

(共30套)初中数学竞赛辅导讲义及习题解答大全适合中学教师作为辅导教材使用

第一讲 走进追问求根公式 形如02=++c bx ax (0≠a )的方程叫一元二次方程,配方法、公式法、因式分解法是解一元二次方程的基本方法. 而公式法是解一元二次方程的最普遍、最具有一般性的方法. 求根公式a ac b b x 2422 ,1-±-= 内涵丰富:它包含了初中阶段已学过的全部代数运算;它回答了一元二次方程的诸如怎样求实根、实根的个数、何时有实根等基本问题;它展示了数学的简洁美. 降次转化是解方程的基本思想,有些条件中含有(或可转化为)一元二次方程相关的问题,直接求解可能给解题带来许多不便,往往不是去解这个二次方程,而是对方程进行适当的变形来代换,从而使问题易于解决. 解题时常用到变形降次、整体代入、构造零值多项式等技巧与方法. 【例题求解】 【例1】满足1)1(22=--+n n n 的整数n 有 个. 思路点拨:从指数运算律、±1的特征人手,将问题转化为解方程. 【例2】设1x 、2x 是二次方程032=-+x x 的两个根,那么1942231+-x x 的值等于( ) A 、一4 B 、8 C 、6 D 、0 思路点拨:求出1x 、2x 的值再代入计算,则计算繁难,解题的关键是利用根的定义及变形,使多项式降次,如1213x x -=,2223x x -=. 【例3】 解关于x 的方程02)1(2=+--a ax x a . 思路点拨:因不知晓原方程的类型,故需分01=-a 及01≠-a 两种情况讨论. 【例4】 设方程04122=---x x ,求满足该方程的所有根之和. 思路点拨:通过讨论,脱去绝对值符号,把绝对值方程转化为一般的一元二次方程求解. 【例5】 已知实数a 、b 、c 、d 互不相等,且x a d d c c b b a =+=+=+=+ 1 111, 试求x 的值. 思路点拨:运用连等式,通过迭代把b 、c 、d 用a 的代数式表示,由解方程求得x 的值. 注:一元二次方程常见的变形形式有: (1)把方程02=++c bx ax (0≠a )直接作零值多项式代换; (2)把方程02=++c bx ax (0≠a )变形为c bx ax --=2,代换后降次; (3)把方程02=++c bx ax (0≠a )变形为c bx ax -=+2或bx c ax -=+2,代换后使之转化关系或整体地消去x . 解合字母系数方程02=++c bx ax 时,在未指明方程类型时,应分0=a 及0≠a 两种情况讨论;解绝对值方程需脱去绝对值符号,并用到绝对值一些性质,如222 x x x ==.

初中数学竞赛辅导讲义及习题解答 第8讲 由常量数学到变量数学

第八讲由常量数学到变量数学 数学漫长的发展历史大致历经四个时期:以自然数、分数体系形成的萌芽期;以代数符号体系形成的常量数学时期;以函数概念产生的变量数学时期;以集合论为标志的现代数学时期. 函数是数学中最重要的概念之一,它是变量数学的标志,“函数”是从量的侧面去描述客观世界的运动变化、相互联系,从量的侧面反映了客观世界的动态和它们的相互制约性.函数的基本知识有:与平面直角坐标系相关的概念、函数概念、函数的表示法、函数图象概念及画法. 在坐标平面内,由点的坐标找点和由点求坐标是“数”与“形”相互转换的最基本形式.点的坐标是解决函数问题的基础,函数解析式是解决函数问题的关键,所以,求点的坐标、探求函数解析式是研究函数的两大重要课题. 【例题求解】 【例1】在平面直角坐标系内,已知点A(2,2),B(2,-3),点P在y轴上,且△APB为直角三角形,则点P的个数为. 思路点拨先在直角坐标平面内描出A、B两点,连结AB,因题设中未指明△APB的哪个角是直角,故应分别就∠A、∠B、∠C为直角来讨论,设点P(0,x),运用几何知识建立x 的方程. 注:点的坐标是数与形结合的桥梁,求点的坐标的基本方法有: (1)利用几何计算求; (2)通过解析式求; (3)解由解析式联立的方程组求. 【例2】如图,向放在水槽底部的烧杯注水(流量一定),注满烧杯后, 继续注水,直至注满水槽.水槽中水面上升高度h与注水时间t之间的 函数关系,大致是下列图象中的() 思路点拨向烧杯注水需要时间,并且水槽中水面上升高0 h. 注:实际生活中量与量之间的关系可以形象地通过图象直观地表现出来,如心电图、,股市行情走势图等,图象中包含着丰富的图象信息,要善于从图象的形状、位置、发展变化趋势等有关信息中获得启示.

初中数学竞赛专题选讲《完全平方数和完全平方式》

初中数学竞赛专题选讲 完全平方数和完全平方式 一、内容提要 一定义 1. 如果一个数恰好是某个有理数的平方,那么这个数叫做完全平方数. 例如0,1,0.36,25 4,121都是完全平方数. 在整数集合里,完全平方数,都是整数的平方. 2. 如果一个整式是另一个整式的平方,那么这个整式叫做完全平方式. 如果没有特别说明,完全平方式是在实数范围内研究的. 例如: 在有理数范围 m 2, (a+b -2)2, 4x 2-12x+9, 144都是完全平方式. 在实数范围 (a+3)2, x 2+22x+2, 3也都是完全平方式. 二. 整数集合里,完全平方数的性质和判定 1. 整数的平方的末位数字只能是0,1,4,5,6,9.所以凡是末位数字为2,3,7,8的整数必不是平方数. 2. 若n 是完全平方数,且能被质数p 整除, 则它也能被p 2整除.. 若整数m 能被q 整除,但不能被q 2整除, 则m 不是完全平方数. 例如:3402能被2整除,但不能被4整除,所以3402不是完全平方数. 又如:444能被3整除,但不能被9整除,所以444不是完全平方数. 三. 完全平方式的性质和判定 在实数范围内 如果 ax 2+bx+c (a ≠0)是完全平方式,则b 2-4ac=0且a>0; 如果 b 2-4ac=0且a>0;则ax 2+bx+c (a ≠0)是完全平方式. 在有理数范围内 当b 2-4ac=0且a 是有理数的平方时,ax 2+bx+c 是完全平方式. 四. 完全平方式和完全平方数的关系 1. 完全平方式(ax+b )2 中 当a, b 都是有理数时, x 取任何有理数,其值都是完全平方数; 当a, b 中有一个无理数时,则x 只有一些特殊值能使其值为完全平方数. 2. 某些代数式虽不是完全平方式,但当字母取特殊值时,其值可能是完全平方数. 例如: n 2+9, 当n=4时,其值是完全平方数. 所以,完全平方式和完全平方数,既有联系又有区别. 五. 完全平方数与一元二次方程的有理数根的关系 1. 在整系数方程ax 2+bx+c=0(a ≠0)中 ① 若b 2-4ac 是完全平方数,则方程有有理数根; ② 若方程有有理数根,则b 2-4ac 是完全平方数. 2. 在整系数方程x 2+px+q=0中 ① 若p 2-4q 是整数的平方,则方程有两个整数根; ② 若方程有两个整数根,则p 2-4q 是整数的平方.

初中数学竞赛辅导讲义及习题解答 第1讲 走进追问求根公式

第一讲 走进追问求根公式 形如02=++c bx ax (0≠a )的方程叫一元二次方程,配方法、公式法、因式分解法是解一元二次方程的基本方法。而公式法是解一元二次方程的最普遍、最具有一般性的方法。 求根公式a ac b b x 2422,1-±-=内涵丰富:它包含了初中阶段已学过的全部代数运算;它回答了一元二次方程的诸如怎样求实根、实根的个数、何时有实根等基本问题;它展示了数学的简洁美。 降次转化是解方程的基本思想,有些条件中含有(或可转化为)一元二次方程相关的问题,直接求解可能给解题带来许多不便,往往不是去解这个二次方程,而是对方程进行适当的变形来代换,从而使问题易于解决。解题时常用到变形降次、整体代入、构造零值多项式等技巧与方法。 【例题求解】 【例1】满足1)1(22=--+n n n 的整数n 有 个。 思路点拨:从指数运算律、±1的特征人手,将问题转化为解方程。 【例2】设1x 、2x 是二次方程032=-+x x 的两个根,那么1942231+-x x 的值等于( ) A 、一4 B 、8 C 、6 D 、0 思路点拨:求出1x 、2x 的值再代入计算,则计算繁难,解题的关键是利用根的定义及变形,使多项式降次,如1213x x -=,2223x x -=。 【例3】 解关于x 的方程02)1(2=+--a ax x a 。 思路点拨:因不知晓原方程的类型,故需分01=-a 及01≠-a 两种情况讨论。 【例4】 设方程04122=---x x ,求满足该方程的所有根之和。 思路点拨:通过讨论,脱去绝对值符号,把绝对值方程转化为一般的一元二次方程求解。 【例5】 已知实数a 、b 、c 、d 互不相等,且x a d d c c b b a =+=+=+=+1111, 试求x 的值。 思路点拨:运用连等式,通过迭代把b 、c 、d 用a 的代数式表示,由解方程求得x 的值。 注:一元二次方程常见的变形形式有: (1)把方程02=++c bx ax (0≠a )直接作零值多项式代换; (2)把方程02=++c bx ax (0≠a )变形为c bx ax --=2,代换后降次; (3)把方程02=++c bx ax (0≠a )变形为c bx ax -=+2或bx c ax -=+2,代换后使之转化关系或整体地消去x 。 解合字母系数方程02=++c bx ax 时,在未指明方程类型时,应分0=a 及0≠a 两种情况讨论;解绝对值方程需脱去绝对值符号,并用到绝对值一些性质,如222 x x x ==。

初中数学竞赛辅导讲义全

专业资料 初中数学竞赛辅导讲义(初三) 第一讲 分式的运算 [知识点击] 1、 分部分式:真分式化为另几个真分式的和,一般先将分母分解因式,后用待定系数法进行。 2、 综合除法:多项式除以多项式可类似于是有理数的除法运算,可列竖式来进行。 3、 分式运算:实质就是分式的通分与约分。 [例题选讲] 例1.化简 2312++x x + 6512++x x + 12 712++x x 解:原式= )2)(1(1++x x + )3)(2(1++x x + ) 4)(3(1++x x = 11+x - 21+x + 21+x - 31+x + 31+x - 4 1+x =) 4)(1(3++x x 例2. 已知 z z y x -+ = y z y x +- = x z y x ++- ,且xyz ≠0,求分式xyz x z z y y x ))()((+-+的值。

专业资料 解:易知:z y x + = y z x + = x z y + =k 则?? ???=+=+=+)3()2()1(kx z y ky z x kz y x (1)+(2)+(3)得:(k-2)(x+y+z)=0 k=2 或 x+y+z=0 若k=2则原式= k 3 = 8 若 x+y+z=0,则原式= k 3 =-1 例3.设 1 2+-mx x x =1,求 12242+-x m x x 的值。 解:显然X 0≠,由已知x mx x 12+- =1 ,则 x +x 1 = m + 1 ∴ 22241x x m x +- = x2 + 21x - m2= (x +x 1)2-2 –m2 =( m +1)2-2- m2= 2m -1 ∴原式=1 21-m 例4.已知多项式3x 3 +ax 2 +3x +1 能被x 2 +1整除,求a的值。 解:

初中数学竞赛专题选讲 一元二次方程的根(含答案)

初中数学竞赛专题选讲(初三.1) 一元二次方程的根 一 、内容提要 1.一元二次方程 ax 2 +bx+c=0(a ≠0)的实数根,是由它的系数a, b, c 的值确定的. 根公式是:x=a ac b b 242-±-. (b 2-4a c ≥0) 2.根的判别式 ①实系数方程 ax 2+bx+c=0(a ≠0)有实数根的充分必要条件是: b 2-4a c ≥0. ②有理系数方程 ax 2+bx+c=0(a ≠0)有有理数根的判定是: b 2-4a c 是完全平方式?方程有有理数根. ③整系数方程x 2+px+q=0有两个整数根?p 2-4q 是整数的平方数. 3.设 x 1, x 2 是ax 2+bx+c=0的两个实数根,那么 ①ax 12 +bx 1+c=0 (a ≠0,b 2-4ac ≥0), ax 22+bx 2+c=0 (a ≠0, b 2-4ac ≥0); ②x 1=a ac b b 242-+-, x 2=a ac b b 242--- (a ≠0, b 2-4ac ≥0); ③ 韦达定理:x 1+x 2= a b - , x 1x 2= a c (a ≠0, b 2-4ac ≥0). 4.方程整数根的其他条件 整系数方程ax 2+bx+c=0 (a ≠0)有一个整数根x 1的必要条件是:x 1是c 的因数. 特殊的例子有: C=0?x 1=0 , a+b+c=0?x 1=1 , a -b+c=0?x 1=-1. 二、例题 例1.已知:a, b, c 是实数,且a=b+c+1.

求证:两个方程x 2+x+b=0与x 2+ax+c=0中,至少有一个方程有两个不相等 的实数根. 证明 (用反证法) 设 两个方程都没有两个不相等的实数根, 那么△1≤0和△2≤0. 即?? ? ??++=≤-≤ ③ ② ①-1040412c b a c a b 由①得b ≥41,b+1 ≥45代入③,得 a -c=b+1≥4 5 , 4c ≤4a -5 ④ ②+④:a 2-4a+5≤0, 即(a -2)2+1≤0,这是不能成立的. 既然△1≤0和△2≤0不能成立的,那么必有一个是大于0. ∴方程x 2+x+b=0与x 2+ax+c=0中,至少有一个方程有两个不相等的实数根. 本题也可用直接证法:当△1+△2>0时,则△1和△2中至少有一个是正数. 例2.已知首项系数不相等的两个方程: (a -1)x 2-(a 2+2)x+(a 2+2a)=0和 (b -1)x 2-(b 2+2)x+(b 2+2b)=0 (其中a,b 为正整数) 有一个公共根. 求a, b 的值. 解:用因式分解法求得: 方程①的两个根是 a 和 12-+a a ; 方程②两根是b 和1 2 -+b b . 由已知a>1, b>1且a ≠b. ∴公共根是a= 12-+b b 或b=1 2-+a a .

2017年全国初中数学联赛初二卷与详解

2017年全国初中数学联合竞赛试题 初二卷 第一试 一、选择题:(本题满分 42 分,每小题 7 分) 1.已知实数a,b,c 满足2a+13b+3c=90,3a+9b+c=72,则32b c a b ++的值为( ). A.2 B.1 C.0 D.-1 2.已知实数a,b,c 满足a+b+c=1, 1110135 a b c ++=+++,则(a+1)2+(b+3)2+(c+5)2 的值为( ). A.125 B.120 C.100 D.81 3.若正整数a,b,c 满足a ≤b ≤c 且abc=2(a+b+c),则称(a,b,c)为好数组.那么好数组的个数为( ). A.4 B.3 C.2 D.1 4.已知正整数a,b,c 满足a 2 -6b-3c+9=0,-6a+b 2 +c=0,则a 2 +b 2 +c 2 的值为( ). A.424 B.430 C.441 D.460 5.梯形ABCD 中,AD ∥BC ,AB=3,BC=4,CD=2,AD=1,则梯形的面积为( ). A. 102 B.103 C.32 D.33 6.如图,梯形ABCD 中,AD ∥BC ,∠A=90°,点E 在AB 上,若AE=42,BE=28,BC=70,∠DCE=45°,则DE 的值为( ). A.56 B.58 C.60 D.62 二、填空题:(本题满分 28 分,每小题 7 分) 7.3 11a a ++=a 的值为________. 8.已知△ABC 的三个内角满足A <B <C <100°.用θ表示100°-C,C-B,B-A 中的最小者,则θ的最大值为________. 9.设a,b 是两个互质的正整数,且3 8ab p a b =+为质数.则p 的值为________.

初中数学竞赛—奥数讲义计数专题:排列组合及答案

华杯赛计数专题:排列组合 基础知识: 1.排列:从n个对象中选出m(不超过n)个并进行排序,共有的方法数称为排列数,写成。 2.排列数的计算:约定:0!=1 排列数是由乘法原理得到的,因此排列可以看成是乘法原理的一种应用。 3.组合:从n个对象中选出m(不超过n)个,不进行排序,共有的方法数称为组合数,写成。 4.排列与组合的关系:。 5.组合数的计算: 6.排列数与组合数的一些性质: 例题: 例1.4名男生和3名女生站成一排: (1)一共有多少种不同的站法? (2)甲,乙二人必须站在两端的排法有多少种? (3)甲,乙二人不能站在两端的排法有多少种? (4)甲不排头,也不排尾,有多少种排法? (5)甲只能排头或排尾,有多少种排法? 【答案】(1)5040;(2)240;(3)2400;(4)3600;(5)略 【解答】

例2.在50件产品中有4件是次品,从中任意抽出5件,至少有3件是次品的抽法共多少种? 【答案】4186种 【解答】至少有3件是次品,分两种情况 第一种情况:3件是次品的抽法:从4件次品中中抽出3件是种,其中, ,然后,从46件正常品中抽2件,总共种。其中, 所以,3件是次品的抽法共种。 第二种情况:4件是次品的抽法共:种。 任意抽出5件产品,至少有3件是次品的抽法,是将上述两种情况加在一起, 所以,总共是4×23×45+46=23×182=4186种。 总结:有序是排列,无序是组合。 例3.3名医生和6名护士被分配到3所学校为学生体检,每校分配1名医生和2名护士,不同的分配方法共有多少种? 【答案】540种 【解答】可设三所学校为甲、乙、丙,三位医生去3所学校的分配方案:用排列数表示为 =3×2×1=6。用乘法原理表示为3!=6。 六名护士去学校甲有种选法,剩下4名护士去乙学校,有种选法,剩下两名自然去学校丙。 所以,不同的分配方法共有种。 例4.有多少个五位数,满足其数位上的每个数字均至少出现两次? 【答案】819 【解答】 方法一: (1)出现一个数字的情况是9种; (2)出现两个数字,首位不能是0,共有9种情况, (i)首位确定之后,如果首位数总共出现3次,则从后面的4个数位中,选出两位,共种情况,剩下的两个数位,还需要选相同的数,因为可以是0,所以,有9种选择。所以,这种情况总共有×9=54种。 (ii)首位确定之后,如果首位数总共出现2次,则从后面的4个数位中,选出一位,总共种情况,剩下的三个数位,还需要选相同的数,因为可以是0,所以,有9种选择。所以,这种情况总共有×9=36种。 所以,出现两个数字的情况为(36+54)×9=810.

初中数学竞赛专题选讲-三点共线

初中数学竞赛专题选讲 三点共线 一、内容提要 1. 要证明A ,B ,C 三点在同一直线上, A 。 B 。 C 。 常用方法有:①连结AB ,BC 证明∠ABC 是平角 ②连结AB ,AC 证明AB ,AC 重合 ③连结AB ,BC ,AC 证明 AB +BC =AC ④连结并延长AB 证明延长线经过点C 2. 证明三点共线常用的定理有: ① 过直线外一点有且只有一条直线和已知直线平行 ② 经过一点有且只有一条直线和已知直线垂直 ③ 三角形中位线平行于第三边并且等于第三边的一半 ④ 梯形中位线平行于两底并且等于两底和的一半 ⑤ 两圆相切,切点在连心线上 ⑥ 轴对称图形中,若对应线段(或延长线)相交,则交点在对称轴上 二、例题 例1.已知:梯形ABCD 中,AB ∥CD ,点P 是形内的任一点,PM ⊥AB , PN ⊥CD 求证:M ,N ,P 三点在同一直线上 证明:过点P 作EF ∥AB , ∵AB ∥CD ,∴EF ∥CD ∠1+∠2=180 ,∠3+∠4=180 ∵PM ⊥AB ,PN ⊥CD ∴∠1=90 ,∠3=90 ∴∠1+∠3=180 ∴ M ,N ,P 三点在同一直线上 例2.求证:平行四边形一组对边的中点和两条对角线的交点,三点在同一直 线上 已知:平行四边形ABCD 中,M ,N 分别是AD 和BC 的中点,O 是AC 和 BD 的交点 求证:M ,O ,N 三点在同一直线上 证明一:连结MO ,NO ∵MO ,NO 分别是△DAB 和△CAB 的中位线 ∴MO ∥AB ,NO ∥AB 根据过直线外一点有且只有一条直线和已知直线平行

∴ M ,O ,N 三点在同一直线上 证明二:连结MO 并延长交BC 于N , ∵MO 是△DAB 的中位线 ∴MO ∥AB 在△CAB 中 ∵AO =OC ,ON ,∥AB ∴BN ,=N ,C ,即N ,是BC 的中点 ∵N 也是BC 的中点, ∴点N ,和点N 重合 ∴ M ,O ,N 三点在同一直线上 例3.已知:梯形ABCD 中,AB ∥CD ,∠A +∠B =90 ,M ,N 分别是AB 和CD 的中点,BC ,AD 的延长线相交于P 求证:M ,N ,P 三点在同一直线上 证明:∵∠A +∠B =90 , ∠APB =Rt ∠ 连结PM ,PN 根据直角三角形斜边中线性质 PM =MA =MB ,PN =DN =DC ∴∠MPB =∠B ,∠NPC =∠B ∴PM 和PN 重合 ∴M ,N ,P 三点在同一直线上 例4.在平面直角坐标系中,点A 关于横轴的对称点为B ,关于纵轴的对称 点是C ,求证B 和C 是关于原点O 解:连结OA ,OB ,OC ∵A ,B 关于X 轴对称, ∴OA =OB ,∠AOX =∠BOX 同理OC =OA ,∠AOY =∠COY ∴∠COY +∠BOX =90 X ∴B ,O ,C 三点在同一直线上 ∵OB =OC ∴ B 和C 是关于原点O 的对称点 例5.已知:⊙O 1和⊙O 2相交于A ,B O 1 和⊙O 2于E ,F 。 求证:AE ,AF 和⊙O 1和⊙O 2的直径成比例 ,

初中数学竞赛专题选讲对称式(含答案)

初中数学竞赛专题选讲(初三.5) 对称式 一、内容提要 一.定义 1. 在含有多个变量的代数式f (x,y,z)中,如果变量x, y, z 任意交换两个后,代数式的值不变,则称这个代数式为绝对对称式,简称对称式. 例如: 代数式x+y , xy , x 3+y 3+z 3-3xyz, x 5+y 5+xy, y x 11+, xyz x z xyz z y xyz y x +++++. 都是对称式. 其中x+y 和xy 叫做含两个变量的基本对称式. 2. 在含有多个变量的代数式f (x,y,z)中,如果变量x, y, z 循环变换后代数式的值不变,则称这个代数式为轮换对称式,简称轮换式. 例如:代数式 a 2(b -c)+b 2(c -a)+c 2(a -b), 2x 2y+2y 2z+2z 2x, abc c b a 1111-++, (xy+yz+zx )( )111z y x ++, 2 22222222111b a c a c b c b a -++-++-+. 都是轮换式. 显然,对称式一定是轮换式,而轮换式不一定是对称式. 二.性质 1. 含两个变量x 和y 的对称式,一定可用相同变量的基本对称式来表示.这将在下一讲介绍. 2. 对称式中,如果含有某种形式的一式,则必含有,该式由两个变量交换后的一切同型式,且系数相等. 例如:在含x, y, z 的齐二次对称多项式中, 如果含有x 2项,则必同时有y 2, z 2两项;如含有xy 项,则必同时有yz, zx 两项,且它们的系数,都分别相等. 故可以表示为: m(x 2+y 2+z 2)+n(xy+yz+zx) 其中m, n 是常数. 3. 轮换式中,如果含有某种形式的一式,则一定含有,该式由变量字母循环变换后所得的一切同型式,且系数相等.

最新的全国初中数学联赛试题及详解

2013年全国初中数学联合竞赛试题及详解 第一试 一、选择题(本题满分42分,每小题7分) 1.计算=( ) (A 1 (B )1 (C (D )2 【答案】(B ) 【解析】原式=1)3)1-=-=,故选(B ). 2.满足等式()2221m m m ---=的所有实数m 的和为( ) (A )3 (B )4 (C )5 (D )6 【答案】(A ) 【解析】分三种情况进行讨论: (1)若21m -=,即1m =时,满足已知等式; (2)若21m -=-,即3m =时,()2242(1)1m m m ---=-=满足已知等式; (3)若21m -≠±,即1m ≠且3m ≠时,由已知,得22020 m m m -≠??--=?解得,1m =- 故满足等式()2221m m m ---=的所有实数m 的和13(1=3++-),故选(A ). 3.已知AB 是圆O 的直径,C 为圆O 上一点,15CAB ∠= ,ABC ∠的平分线交圆O 于 点D ,若CD =,则AB =( ) (A )2 (B (C ) (D )3 【答案】(A ) 【解析】连接OC ,过点O 作ON CD ⊥于点N ,则 CN DN ==,OC OA =,从而15OCA CAB ∠=∠= ,由AB 是圆O 的直径,得90ACB ∠= ,因CD 平分ACB ∠,故45ACD ∠= ,30OCN ACD OCA ∠=∠-∠= , 在Rt ONC ?中,∵cos CN OCN OC ∠= =,1OC =∴,∴22AB OC ==,故选(A ). 4.不定方程23725170x xy x y +---=的全部正整数解(,)x y 的组数为( ) (A )1 (B )2 (C )3 (D )4 【答案】(B )

相关文档
相关文档 最新文档