文档库 最新最全的文档下载
当前位置:文档库 › 材料成型设备课后答案

材料成型设备课后答案

材料成型设备课后答案
材料成型设备课后答案

第二章

2-1、曲柄压力机由那几部分组成?各部分的功能如何?

答:曲柄压力机由以下几部分组成:1、工作机构。由曲柄、连杆、滑块组成,将旋转运动转换成往复直线运动。2、传动系统。由带传动和齿轮传动组成,将电动机的能量传输至工作机构。3、操作机构。主要由离合器、制动器和相应电器系统组成,控制工作机构的运行状态,使其能够间歇或连续工作。4、能源部分。由电动机和飞轮组成,电动机提供能源,飞轮储存和释放能量。5、支撑部分。由机身、工作台和紧固件等组成。它把压力机所有零部件连成一个整体。

6、辅助系统。包括气路系统、润滑系统、过载保护装置、气垫、快换模、打料装置、监控装置等。提高压力机的安全性和操作方便性。

2-2、曲柄压力机滑块位移、速度、加速度变化规律是怎样的?它们与冲压工艺的联系如何?

答:速度的变化规律为正弦曲线,加速度的变化规律为余弦曲线,位移的变化规律为

2-3、分析曲柄滑块机构的受力,说明压力机许用负荷图的准确含义答:曲柄压力机工作时,曲柄滑块机构要承受全部的工艺力,是主要的受力机构之一

理想状态下滑块上受到的作用力有:工件成形工艺力F、连杆对滑块的作用力FAB、导轨对滑块的反作用力FQ,实际上,曲柄滑块机构各运动副之间是有摩擦存在的,考察摩擦的影响以后,各环节的受力方向及大小发生了变化,加大了曲轴上的扭矩。曲柄压力机曲轴所受的扭矩Mq除与滑块所承受的工艺力F成正比外,还与曲柄转角a有关,在较大的曲柄转角下工作时,曲轴上所受扭矩较大。

通过对曲柄滑块的受力分析,结合实际情况得出的许用负荷图用以方便用户正确选择设备。

2-5装模高度的调节方式有哪些?各有何特点?P19

三种调节方法有:1、调节连杆长度。该方法结构紧凑,可降低压力机的高度,但连杆与滑块的铰接处为球头,且球头和支撑座加工比较困难,需专用设备。螺杆的抗弯性能亦不强。2、调节滑块高度。柱销式连杆采用此种结构,与球头式连杆相比,柱销式连杆的抗弯强度提高了,铰接柱销的加工也更为方便,较大型压力机采用柱面连接结构以改善圆柱销的受力。3、调节工作台高度。多用于小型压力机。

2-6、比较压塌块过载保护装置和液压式过载保护装置。P23

压塌式过载保护装置结构简单,制造方便,但在设计时无法考虑它的疲劳极限,可能引起提前的剪切破坏,或者使压力只能工作在小于标称压力的情况下,降低设备使用效率。同时压塌式过载保护装置只能用于单点压力机,用于多点压力机时会因偏载引起某个压塌块先行剪切断裂。

液压式过载保护装置多运用于多点和大型压力机,其特点是过载临界点可以准确地设定,且过载后设备恢复容易。

2-7、开式机身和闭式机身各有何特点?应用于何种场合?P26

开式机身:操作空间三面敞开,工作台面不受导轨间距的限制,安装、调整模具具有较大的操作空间,与自动送料机构的连接也很方便。但由于床身近似C 形,在受力变形时产生角位移和垂直位移,角位移会加剧模具磨损和影响冲压力质量,严重时会折断冲头。开式机身多用于小型压力机。

闭式机身:形成一个对称的封闭框形结构,受力后仅产生垂直变形,刚度比开式机身好。但由于框形结构及其它因素,它只能前后两面操作。整体机身加工装配工作量小,需大型加工设备,运输和安装困难。但采用组合机身可以解决运输和安装方面的困难。闭式机身广泛运用于中大型压力机。

2-9、转键离合器的操作机构是怎样工作的?它是怎样保证压力机的单次操作?P28

答:单次行程:先用销子11将拉杆5与右边的打棒3连接起来,后踩下踏板使电磁铁6通电,衔铁7上吸,拉杆向下拉打棒,离合器接合。

在曲轴旋转一周前,由于凸块2将打棒向右撞开,经齿轮带动关闭器回到工作位置挡住尾板,迫使离合器脱开,曲轴在制动器作用下停止转动,滑块完成一次行程.

2-10、分析摩擦离合器—制动器的工作原理P33

答:摩擦离合器是借助摩擦力使主动部分与从动部分接合起来,依靠摩擦力传递扭矩。而摩擦制动器是靠摩擦传递扭矩,吸收动能的。摩擦离合器--制动器是通过适当的连锁方式(即控制接合与分离的先后次序)将二者结合在一起,并由同一操纵机构来控制压力机工作的装置.

摩擦离合器—制动器从运动状态上可以分为主动、从动和静止三部分,通过摩擦盘使主动和从动、从动和静止部分产生结合和分离状态,常态下弹簧使离合器中摩擦盘分开、制动器中摩擦盘压紧,工作时气压使离合器中摩擦盘压紧、制动器中的摩擦盘分开。

2-12、曲柄压力机为何要设置飞轮?P35

答:利用飞轮储存空载时电动机的能量,在压力机短时高峰负荷的瞬间将部分能量释放使电动机的负荷均匀,使电动机功率降低。

2-13、拉深垫的作用如何?气垫和液压垫各有什么特点?P42

答:作用:可以在模具内增加一个相对动作,完成如冲裁压边、顶料、拉深压边等功能,扩大了压力机的使用范围,简化了模具结构。

气垫的压紧力和顶出力相等,等于压缩空气气压乘活塞的有效面积。但受压力机底座下的安装空间限制,工作压力有限

液压垫顶出力和压料力可分别控制,以较小的尺寸获得较大的压边力,与冲压工艺相符合。但结构复杂,在工作过程中油压不够稳定,会产生脉动,也有冲击振动,形成噪声

2-14、掌握压力机主要技术参数以及设备的选用方法。P47 ,P50 答:主要参数:1.公称压力Fg及公称压力行程Sg; 2.滑块行程S; 3.滑块行程次数n; 4.最大装模高度H及装模高度调节量△H; 5.工作台板及滑块底面尺寸; 6.喉深C和立柱间距A; 7.工作台孔尺寸; 8.模柄孔尺寸;

设备选用: 1.曲柄压力机的工艺与结构特性; 2.曲柄压力机的压力特性;

3.设备做功校核; 4、模具与压力机的校核关系

2-15、分析双动拉深压力机工作循环图,结合拉深工艺描述设备拉深过程。P53 压力机的型号表示:J(A、B、C变形设计代号、次要参数)(2为开式3为闭式)(1为固定台式2为活动台式)—(工作能力*10=标称压力)(A、B、C改进设计代号、结构性能)

第三章

液压机动作过程为:工作活塞空行程向下运动→工作行程→保压→回程→顶出缸顶出工件

1、液压机典型的结构形式有哪3种P92

2、液压机的型号表示方法,意义。P90-P91

3-1、液压机的工作原理是什么,具有哪些特点?P87

答:工作原理:液压机是根据静态下密闭容器中液体压力等值传递的帕斯卡原理制成的,是一种利用液体的压力来传递能量以完成各种成形加工工艺的机器。

特点:(1)易获得最大压力;(2)易获得大的工作行程,并能在行程的任意位置发挥全压;(3)易获得大的工作空间;(4)压力与速度可在大范围内方便地进行无级调节;(5)液压元件已标准化、通用化、系列化,设计、制造和维修方便

第四章

4-1、塑料挤出机一般由哪几部分组成?每部分的作用是什么?P117 答:由主机(由挤压,传动,加热冷却三部分系统组成.)作用主要是塑化并挤出塑料、辅机(由剂透定型装置,冷却装置,牵引装置,切割装置以及制品的卷取或堆放装置等部分组成)作用是塑料成型和控制系统组成(由电器,仪表和执行机构组成)作用可以控制挤出机主机和辅机的拖动电动机、驱动液压泵、液压缸和其他各种执行机构,使其能按所需的功率、速度和轨迹运行,同时可以检测主机和辅机的温度、压力、流量的参数,从而实现对整个挤出机组的自动控制和对产品质量的控制。

4-2、国产塑料挤出机如何分类?P119

按螺杆数目分,可分为单螺杆挤出机和多螺杆挤出机;按可否排气分,可分为排气式挤出机和非排气式挤出机;按有无螺杆,可分为螺杆挤出机和无螺杆挤出机;按螺杆的位置,可分为立式挤出机和卧式挤出机等。生产中常用的是卧式单螺杆非排气式挤出机。

4-5、挤出理论是研究哪些内容的?P120

答:挤出理论是研究物料在螺杆和口模中运动、变化规律的基本理论。包括1、固体输送理论;2、熔融理论;3、熔体输送理论

4-8、熔体在螺槽内流动有几种形式?造成这几种流动的主要原因是什么?P125 答:熔体在螺槽内有以下四种流动形式:1、正流,正流是熔料沿螺槽向机头方向的流动,是料筒表面作用到熔体上的力而产生的流动。2、逆流,也叫压力流,方向与正流相反,是由机头、分流板、过滤网等对流体熔体的反压力引起的流动。3、横流,是一种与螺纹方向垂直的流动,这种流动到达螺纹侧面时被挡回,便沿着螺槽侧面向上流动,又为料筒所挡,再作与螺纹方向垂直相反的流动,形成环流;4、漏流,由机头、分流板、过滤网等对熔体的反作用力引起的流动。

4-9、何谓挤出机综合工作点?挤出机的流率与螺杆、机头有何关系?如何提高挤出的流率?P128

螺杆特性线与口模特性线的交点称综合工作点

给定螺杆和口模、转速一定时挤出机头的压力和流率(生产率)改变工作条件时挤出机可产生的变化

意义:生产前由该图确定工作区域、选定最佳操作条件,在保证质量前提下获得较高的产量

4-14、挤出机的加热冷却系统有何作用?为什么加热冷却系统多是分段设置的?P143

作用:使料筒和螺杆具有适当的温度分布,保持在工艺要求的范围之内,从而保证制品的质量

因为不同位置要求热量不同:加料段:螺槽深、物料散、摩擦少,靠外热升温;均化段:螺槽浅、料温高、摩擦热多,有时还需降温;压缩段:介于二者之间;加料口:为使此处料流顺利,常采取冷却

4-16、挤出辅助机有何作用?一般由哪几个部分组成P146?

答:作用:与主机配合,使挤出的塑料冷却定型获得所需的形状、尺寸、表面质量的制品或半成品。

组成部分:冷却定型(吹胀)装置—冷却装置—牵引装置—切割装置—卷取(堆放)装置

4-17、管材的定径方法有哪几种?P148

答:(1)压缩空气外定径 (2)真空定径法 (3)内压定径法

定径方法的选择主要决定于管子的尺寸是以外径还是内径为标准。

第五章

5-1、注射机有哪几部分组成?各部分的功用如何?P163

答:1、注射装置,作用是将塑料均匀地塑化,并以足够的压力和速度将一

定量的熔料注射到模具的型腔之中。

2、合模装置,作用是实现模具的启闭,在注射时保证成型模具可靠地合紧,以及脱出制品。

3、液压系统和电气控制系统,作用是保证注射机按工艺过程预定的要求(压力、速度、温度、时间)和动作程序准确有效地工作。

5-2、试述注射成型循环过程。P165

答:合模→注射装置前移→注射与保压→制件冷却与预塑化→开模→顶出制件

5-5、怎样表示注射机的型号?常见的注射机型号表示方法有几种?P167 (课件)型号表示方法

1. 注射量表示法

标准螺杆注射的80%理论注射量(cm3),如XS-ZY-125

2. 合模力表示法

注射机的最大合模力(×10kN),如LY180

3. 注射量-合模力表示法(cm3,×10kN )

国际通用的方法,如SZ-63 / 50

有三种表示方法:1、注射量表示法。如XS—ZY—125,125表示注射容量为1253

cm,XS—ZY中X表示成型、S表示塑料、Z表示注塑、Y表示预塑式。

2、合模力表示法。如LY180,LY表示利源机械有限公司的缩写,180表示合模力为1800kN。

3、注射量与合模力表示法。如SZ—63/50,其中60表示注射量cm,50表示合模力500kN,S表示塑料,Z表示注射机。

633

5-6、简述柱塞式和螺杆式注射装置的结构组成和工作原理,并比较两者的优缺点。P170

答:柱塞式注射装置:由定量加料装置、塑化部件、注射油缸、注射座移动油缸等组成。原理:加入料斗中的颗粒料,经过定量加料装置使每次注射所需的一定数量的塑料落入料筒加料室,当注射油缸活塞推动柱塞前进时,将加料室中的塑料推向料简前端熔融塑化。熔融塑料在柱塞向前移动时,经过喷嘴注入模具型腔.

螺杆式注射装置:由两个料筒组成,一个是螺杆预塑料筒,另一个是注射料筒,两料筒之间有单向阀,粒料通过螺杆预塑料筒而塑化,熔料经过单向阀进入注射料筒。当注射料筒中熔料达到预定量时,螺杆塑化停止,注射柱塞前进并将熔料注入模腔预塑料筒中的螺杆转动过程中不仅输送塑料,还对塑料产生剪切摩擦加热和搅拌混合作用。

柱塞式注射装置1、塑化不均匀。 2、注射量的提高受到限制 3、注射压力损失大。 4、熔料充模速度不均匀。优点架构简单,容易操作。

螺杆式注射装置优点:取消了分流梭,注射时的压力损失减小;注射速率较稳定;塑化质量和效率提高。缺点:结构较复杂,单向阀处易引起塑料的停滞和分解。

5-10、螺杆头有哪些形式?如何选用?P176

答:螺杆头有圆形或锥形的普通螺杆头和带止逆环的螺杆头.

因为螺杆头不仅承受预塑时的扭矩,而且经受带负荷的频繁启动,以及承受注射时的高压。受到的腐蚀和磨损(特别是加工玻璃纤维增强塑料)也相当严重。在小直径螺杆中,也常有因疲劳而发生断裂破坏的现象发生。因此要求选用高强度耐磨耐腐蚀的材料,

5-11、喷嘴有哪些类型和特点,如何选用?P177

答:喷嘴特点:1)预塑建背压,排气,防流涎; 2)与模具主流道接触,形成高速料流; 3)补料,防回流; 4)调温,保温,断料。

类型:1)直通式喷嘴:通用,延伸,远射程

2)自锁式喷嘴:杜绝流涎现象、适用于低粘度塑料

5-13、试述液压—曲肘式合模装置的工作原理和特点?P185

答:原理利用肘杆和楔块的增力和自锁作用,使模具可靠锁紧。特点1、有增力作用; 2、具有自锁作用; 3、运动特性好; 4、模板间距、锁模力、合模速度调节困难。

5-14、液压式合模装置为何多采用组合液压缸结构?P182

材料科学基础课后作业及答案(分章节)

第一章 8.计算下列晶体的离于键与共价键的相对比例 (1)NaF (2)CaO (3)ZnS 解:1、查表得:X Na =0.93,X F =3.98 根据鲍林公式可得NaF 中离子键比例为:21 (0.93 3.98)4 [1]100%90.2%e ---?= 共价键比例为:1-90.2%=9.8% 2、同理,CaO 中离子键比例为:21 (1.00 3.44)4 [1]100%77.4%e ---?= 共价键比例为:1-77.4%=22.6% 3、ZnS 中离子键比例为:2 1/4(2.581.65)[1]100%19.44%ZnS e --=-?=中离子键含量 共价键比例为:1-19.44%=80.56% 10说明结构转变的热力学条件与动力学条件的意义.说明稳态结构与亚稳态结构之间的关系。 答:结构转变的热力学条件决定转变是否可行,是结构转变的推动力,是转变的必要条件;动力学条件决定转变速度的大小,反映转变过程中阻力的大小。 稳态结构与亚稳态结构之间的关系:两种状态都是物质存在的状态,材料得到的结构是稳态或亚稳态,取决于转交过程的推动力和阻力(即热力学条件和动力学条件),阻力小时得到稳态结构,阻力很大时则得到亚稳态结构。稳态结构能量最低,热力学上最稳定,亚稳态结构能量高,热力学上不稳定,但向稳定结构转变速度慢,能保持相对稳定甚至长期存在。但在一定条件下,亚稳态结构向稳态结构转变。 第二章 1.回答下列问题: (1)在立方晶系的晶胞内画出具有下列密勒指数的晶面和晶向: (001)与[210],(111)与[112],(110)与 [111],(132)与[123],(322)与[236] (2)在立方晶系的一个晶胞中画出(111)和 (112)晶面,并写出两晶面交线的晶向指数。 (3)在立方晶系的一个晶胞中画出同时位于(101). (011)和(112)晶面上的[111]晶向。 解:1、 2.有一正交点阵的 a=b, c=a/2。某晶面在三个晶轴上的截距分别为 6个、2个和4个原子间距,求该晶面的密勒指数。 3.立方晶系的 {111}, 1110}, {123)晶面族各包括多少晶面?写出它们的密勒指数。 4.写出六方晶系的{1012}晶面族中所有晶面的密勒指数,在六方晶胞中画出[1120]、 [1101]晶向和(1012)晶面,并确定(1012)晶面与六方晶胞交线的晶向指数。 5.根据刚性球模型回答下列问题:

材料成型设备复习题

题型 填空1×20=20 名词解释2×5=10 简答题6×6=36 计算说明12×2=24 分析题10×1=10 名词解释 1.标称压力滑块距下死点某一特定距离(标称压力行程)时滑块上所容许承受的最大 作用力 2.标称压力角与标称压力行程对应的曲柄转角 3.滑块行程指滑块从上死点至下死点所经过的距离,其值是曲柄半径的两倍 4.封闭高度指滑块处于下死点时,滑块下表面与压力机工作台上表面的距离 5.注射压力(一次压力):为了克服熔料流经喷嘴流动型腔流动阻力,螺杆(或柱塞)对 熔料施加的力。 6.保压压力(二次压力):为了生产出质量致密的制件,对熔料还需保持一定的压力以进 行补缩,螺杆作用于熔料的压力 7.注射速率:将公称注射量的熔料在注射时间内注射出去,单位时间内所能达到的体积 流量 8.背压:克服螺杆后退的运动阻力 9.理论注射量:在对空注射条件下,注射机作一次最大行程注射时,注射装置所能注射 出的聚氯乙烯(ps)熔料的体积。 简答题 1、充液增压式合模装置 适用于大吨位注射机,该装置有三种液压缸,分别是增压液压缸、合模液压缸和移模液压缸 增压液压缸使合模液压缸内的油增压 合模液压缸直径大 移模液压缸小直径长行程 2、液压机的工作原理 根据静态下密闭容器中液体压力等值传递的帕斯卡原理,利用小柱塞上较小的作用力在大柱塞上产生很大的力。 3、梁柱组合式立柱与横梁的连接形式及特点 双螺母式——通过四个内外螺母与上下横梁固定在一起。 特点:加工、维修方便,被普遍采用;但螺母易松动。 锥台式——通过两个外螺母及立柱上的内锥台与上下横梁固定在一起。 特点:刚性较好,可防止横梁与立柱相对水平运动; 但锥台加工困难,尺寸公差要求高,精度难保证; 锥套式——通过与立柱分离的锥形套来代替下横梁的内螺母或锥台。 特点:多用于大型液压机。 4、双柱下拉式的结构和特点 结构:由两根立柱及上下横梁组成一个可动的封闭式框架,工作缸安装在下横梁上,工作柱塞固定在不动的固定梁上。固定梁上还装有立柱的导套和回程缸,立柱按对角线布置。

工程材料课后习题答案

土木工程材料课后习题 第一章 2、当某种材料得孔隙率增大时,表17内其她性质如何变化?(用符号表示:↑增大、↓下降、不变、?不定) 材料长期在水得作用下不被破坏,强度也不显著降低得性质称耐水性 用软化系数来表示K R=f b/f g 工程中将K R>0、85得材料瞧做就是耐水材料,可以用在水中或潮湿环境中得重要结构;用于受潮较轻或次要结构时,材料得K R值也不得低于0、75 4、材料发生渗水与冻融破坏得主要原因就是什么?如何提高材料得抗渗性与抗冻性?材料得孔隙率大,孔径大、开口并连通得空隙多、强度低就是发生渗水与冻融破坏得主要原因。 工程上常采用降低孔隙率、提高密实度、提高闭口孔隙比例、减少裂缝或进行憎水处理等方法提高材料得抗渗性。 工程上常采用降低孔隙率、提高密实度、提高闭口孔隙比例、提高材料得强度等方法提高材料得抗冻性。 5、什么就是材料得导热性?用什么表示?一般如何利用孔隙提高材料得保温性能?导热性就是指材料传导热量得能力。用导热系数来表示。 减少开口孔隙率,提高闭口孔隙率比例。 7、什么就是材料得耐久性?通常用哪些性质来反映? 材料得耐久性就是指其在长期得使用过程中,能抵抗环境得破坏作用,并保持原有性质不变、不破坏得一项综合性质。 通常用抗渗性、抗冻性、抗老化与抗碳化等性质。 8、某工地有砂50t,密度为2、65g/cm3,堆积密度为1450kg/m3;石子100t,密度为2、70g/cm3,堆积密度为1500kg/m3、试计算砂石得空隙率,若堆积高度为1、2m,各需要多大面积存放? 砂:绝对密实体积V1=50*1000/2650=18、87m3 自然状态下得体积V2=50*1000/1450=34、48m3 砂得空隙率为P1=(34、4818、87)/34、48=45、28% 存放面积为S1=3*34、48/1、2=86、2m2 石:绝对密实体积V3=100*1000/2700=37、04m3 自然状态下得体积V4=100*1000/1500=66、67m3 砂得空隙率为P2=(66、6737、04)/66、67=44、44% 存放面积为S2=3*66、67/1、2=166、675m2 第二章 3、花岗石与大理石各有何特性及用途? 花岗石特性:(1)、密度大。(2)、结构致密,抗压强度高。(3)、孔隙率小,吸水率低。(4)、材质坚硬。(5)、装饰性好。(6)、耐久性好。 用途:用于高级建筑结构材料与装饰材料

工程材料习题册 打印 答案

第一章 金属的性能 一、填空(将正确答案填在横线上。下同) 1、金属材料的性能一般分为两类。一类是使用性能,它包括物理性能、化学性能和力学性能等。另一类是工艺性能,它包括铸造性能、锻造性能、焊接性能和切削加工性能等。 2、大小不变或变化很慢的载荷称为静载荷,在短时间内以较高速度作用于零件上的载荷称为冲击载荷,大小和方向随时间发生周期变化的载荷称为交变载荷。 3、变形一般分为弹性变形和塑性变形两种。不能随载荷的去除而消失的变形称为塑性变形。 4、强度是指金属材料在静载荷作用下,抵抗塑性变形或断裂的能力。 5、强度的常用衡量指标有抗拉强度和屈服强度,分别用符号σb 和σs 表示。 6、如果零件工作时所受的应力低于材料的σb 或σ0.2,则不会产生过量的塑性变形。 7、有一钢试样其截面积为100mm 2,已知钢试样的MPa S 314=σ MPa b 530=σ 。拉伸试验时,当受到拉力为—————— 试样出现屈服现象,当受到拉力为—————— 时,试样出现缩颈。 8、断裂前金属材料产生永久变形的能力称为塑性。金属材料的延伸率和断面收缩率的数值越大,表示材料的塑性越好。 9、一拉伸试样的原标距长度为50mm,直径为10mm 拉断后试样的标距长度为79mm ,缩颈处的最小直径为4.9 mm ,此材料的伸长率为—————,断面收缩率为——————。 10.金属材料抵抗冲击载荷作用而不破坏能力。称为冲击韧性。 11.填出下列力学性能指标的符号:屈服点σs ,抗拉强度σb ,洛氏硬度C 标尺HRC , 伸长率δ,断面收缩率ψ,冲击韧度αk ,疲劳极限σ-1。 二、判断(正确打√,错误打×。下同) 1、弹性变形能随载荷的去除而消失。(√ ) 2、所有金属材料在拉伸试验时都会出现显着的屈服现象。(× ) 3、材料的屈服点越低,则允许的工作应力越高。(× ) 4、洛氏硬度值无单位。(√ ) 5、做布氏硬度试验时,当试验条件相同时,其压痕直径越小,材料的硬度越低。(× ) 6、材料对小能量多次冲击抗力的大小主要取决于材料的强度和塑性。( ×) 7、布氏硬度测量法不宜于测量成品及较薄零件。( √) 8、洛氏硬度值是根据压头压入被测定材料的压痕深度得出的。(√ ) 9、铸铁的铸造性能比钢好,故常用来铸造形状复杂的工件。(√ ) 三.选择(把正确答案填入括号内。下同) 1、拉伸试验时,试样拉断前所能承受的最大应力称为材料的(B )。 A.屈服点 B.抗拉强度 C.弹性极限 2、做疲劳试验时,试样承受的载荷为(C ) A.静载荷 B.冲击载荷 C 交变载荷 3、洛氏硬度C 标尺所用的压头是( B ) A..淬硬钢球 B.金刚石圆锥体 C.硬质合金球 4.金属材料抵抗塑性变形或断裂的能力称为(C ) A..塑性 B.硬度 C.强度 5.用拉伸试验可测定材料的(A )性能指标。 A..强度 B.硬度 C.韧性

材料科学基础习题与答案

- 第二章 思考题与例题 1. 离子键、共价键、分子键和金属键的特点,并解释金属键结合的固体材料的密度比离子键或共价键固体高的原因 2. 从结构、性能等方面描述晶体与非晶体的区别。 3. 何谓理想晶体何谓单晶、多晶、晶粒及亚晶为什么单晶体成各向异性而多晶体一般情况下不显示各向异性何谓空间点阵、晶体结构及晶胞晶胞有哪些重要的特征参数 4. 比较三种典型晶体结构的特征。(Al 、α-Fe 、Mg 三种材料属何种晶体结构描述它们的晶体结构特征并比较它们塑性的好坏并解释。)何谓配位数何谓致密度金属中常见的三种晶体结构从原子排列紧密程度等方面比较有何异同 5. 固溶体和中间相的类型、特点和性能。何谓间隙固溶体它与间隙相、间隙化合物之间有何区别(以金属为基的)固溶体与中间相的主要差异(如结构、键性、性能)是什么 6. 已知Cu 的原子直径为A ,求Cu 的晶格常数,并计算1mm 3Cu 的原子数。 ( 7. 已知Al 相对原子质量Ar (Al )=,原子半径γ=,求Al 晶体的密度。 8 bcc 铁的单位晶胞体积,在912℃时是;fcc 铁在相同温度时其单位晶胞体积是。当铁由 bcc 转变为fcc 时,其密度改变的百分比为多少 9. 何谓金属化合物常见金属化合物有几类影响它们形成和结构的主要因素是什么其性能如何 10. 在面心立方晶胞中画出[012]和[123]晶向。在面心立方晶胞中画出(012)和(123)晶面。 11. 设晶面(152)和(034)属六方晶系的正交坐标表述,试给出其四轴坐标的表示。反之,求(3121)及(2112)的正交坐标的表示。(练习),上题中均改为相应晶向指数,求相互转换后结果。 12.在一个立方晶胞中确定6个表面面心位置的坐标,6个面心构成一个正八面体,指出这个八面体各个表面的晶面指数,各个棱边和对角线的晶向指数。 13. 写出立方晶系的{110}、{100}、{111}、{112}晶面族包括的等价晶面,请分别画出。

材料成型设备复习资料--课后习题部分

第二章 2-1、曲柄压力机由那几部分组成?各部分的功能如何? 答:曲柄压力机由以下几部分组成:1、工作机构。由曲柄、连杆、滑块组成,将旋转运动 转换成往复直线运动。2、传动系统。由带传动和齿轮传动组成,将电动机的能量传输至工作机构。3、操作机构。主要由离合器、制动器和相应电器系统组成,控制工作机构的运行状态,使其能够间歇或连续工作。4、能源部分。由电动机和飞轮组成,电动机提供能源,飞轮储存和释放能量。5、支撑部分。由机身、工作台和紧固件等组成。它把压力机所有零部件连成一个整体。6、辅助系统。包括气路系统、润滑系统、过载保护装置、气垫、快换模、打料装置、监控装置等。提高压力机的安全性和操作方便性 2-2、曲柄压力机滑块位移、速度、加速度变化规律是怎样的?它们与冲压工艺的联系如何? 答:速度的变化规律为正弦曲线,加速度的变化规律为余弦曲线,位移的变化规律为 滑块位移与曲柄转角的关系:??????-+ -=)2cos 1(4)cos 1(S αλαR 滑块速度与曲柄转角的关系:)2sin 2R(sin v αλαω+ = 滑块速度与转角的关系:)2cos (cos a 2αλαω+- =R 曲轴受转矩:)2sin 2sin (αλα+=FR M L 2-5装模高度的调节方式有哪些?各有何特点? 1. 调节连杆长度。该方法结构紧凑,可降低压力机的高度,但连杆与滑块的铰接处为球头, 且球头和支撑座加工比较困难,需专用设备。螺杆的抗弯性能亦不强。 2. 调节滑块高度。柱销式连杆采用此种结构,与球头式连杆相比,柱销式连杆的抗弯强度 提高了,铰接柱销的加工也更为方便,较大型压力机采用柱面连接结构以改善圆柱销的受力。 3. 调节工作台高度。多用于小型压力机。 2-7、开式机身和闭式机身各有何特点?应用于何种场合?P26 1. 开式机身:操作空间三面敞开,工作台面不受导轨间距的限制,安装、调整模具具有较 大的操作空间,与自动送料机构的连接也很方便。但由于床身近似C 形,在受力变形时产生角位移和垂直位移,角位移会加剧模具磨损和影响冲压力质量,严重时会折断冲头。开式机身多用于小型压力机。 2. 闭式机身:形成一个对称的封闭框形结构,受力后仅产生垂直变形,刚度比开式机身好。 但由于框形结构及其它因素,它只能前后两面操作。整体机身加工装配工作量小,需大型加工设备,运输和安装困难。但采用组合机身可以解决运输和安装方面的困难。闭式机身广泛运用于中大型压力机。 2-9、转键离合器的操作机构是怎样工作的?它是怎样保证压力机的单次操作?P28 答:单次行程:先用销子11将拉杆5与右边的打棒3连接起来,后踩下踏板使电磁铁6通 电,衔铁7上吸,拉杆向下拉打棒,离合器接合。 在曲轴旋转一周前,由于凸块2将打棒向右撞开,经齿轮带动关闭器回到工作位置挡住尾板,迫使离合器脱开,曲轴在制动器作用下停止转动,滑块完成一次行程.

(完整版)工程材料课后习题参考答案

工程材料 第一章金属的晶体结构与结晶 1.解释下列名词 点缺陷:原子排列不规则的区域在空间三个方向尺寸都很小,主要指空位间隙原子、置换原子等。 线缺陷:原子排列的不规则区域在空间一个方向上的尺寸很大,而在其余两个方向上的尺寸很小。 如位错。 面缺陷:原子排列不规则的区域在空间两个方向上的尺寸很大,而另一方向上的尺寸很小。如晶界和亚晶界。 亚晶粒:在多晶体的每一个晶粒内,晶格位向也并非完全一致,而是存在着许多尺寸很小、位向差很小的小晶块,它们相互镶嵌而成晶粒,称亚晶粒。 亚晶界:两相邻亚晶粒间的边界称为亚晶界。 刃型位错:位错可认为是晶格中一部分晶体相对于另一部分晶体的局部滑移而造成。滑移部分与未滑移部分的交界线即为位错线。如果相对滑移的结果上半部分多出一半原子面,多余半 原子面的边缘好像插入晶体中的一把刀的刃口,故称“刃型位错”。 单晶体:如果一块晶体,其内部的晶格位向完全一致,则称这块晶体为单晶体。 多晶体:由多种晶粒组成的晶体结构称为“多晶体”。 过冷度:实际结晶温度与理论结晶温度之差称为过冷度。 自发形核:在一定条件下,从液态金属中直接产生,原子呈规则排列的结晶核心。 非自发形核:是液态金属依附在一些未溶颗粒表面所形成的晶核。 变质处理:在液态金属结晶前,特意加入某些难熔固态颗粒,造成大量可以成为非自发晶核的固态质点,使结晶时的晶核数目大大增加,从而提高了形核率,细化晶粒,这种处理方法即 为变质处理。 变质剂:在浇注前所加入的难熔杂质称为变质剂。 2.常见的金属晶体结构有哪几种?α-Fe 、γ- Fe 、Al 、Cu 、Ni 、Pb 、Cr 、V 、Mg、Zn 各属何种晶体结构?

西南交通大学 材料成型技术基础复习纲要

第一篇 金属铸造成形工艺 一.掌握铸造定义与实质及其合金的铸造性能。 A铸造:将熔融金属浇入铸型型腔, 经冷却凝固后获得所需铸件的方法。 B铸造实质:液态成形。 C合金:两种或两种以上的金属元素、或金属与非金属元素(碳)熔和在一起,所构成具有金属特性的物质。 D合金的铸造性能:是指合金在铸造过程中获得尺寸精确、结构完整的铸件的能力,流动性和收缩性是合金的主要铸造工艺特性。 二.掌握合金的充型能力及影响合金充型能力的因素。 A合金的充型能力:液态合金充满铸型,获得轮廓清晰、形状准确的铸件的能力。 B影响合金充型能力的因素: (1)铸型填充条件 a. 铸型材料; b. 铸型温度; c. 铸型中的气体 (2)浇注条件 a. 浇注温度(T) T 越高(有界限),充型能力越好。 b. 充型压力 流动方向上所受压力越大, 充型能力越好。 (3)铸件结构

结构越复杂,充型越困难。 三.掌握合金收缩经历的三个阶段及其铸造缺陷的产生。 A合金的收缩:合金从浇注、凝固、冷却到室温,体积 和尺寸缩小的现象。 B合金收缩的三个阶段: (1)液态收缩 合金从 T浇注→ T凝固开始 间的收缩。 (2)凝固收缩 合金从 T凝固开始→T凝固终止 间的收缩。 液态收缩和凝固收缩是形成铸件缩孔和缩松缺陷的基本原因。 (3)固态收缩(易产生铸造应力、变形、裂纹等。) 合金从 T凝固终止→T室 间的收缩。 四.了解形成铸造缺陷(缩孔,缩松)的主要原因及其防止措施。 A产生缩孔和缩松的主要原因:液态收缩 和 凝固收缩 导致。 B缩孔形成原因:收缩得不到及时补充; 缩松形成原因:糊状凝固,被树枝晶体分隔区域难以实现补缩。 C缩孔与缩松的预防: (1)定向凝固,控制铸件的凝固顺序; (2)合理确定铸件的浇注工艺 五.掌握铸件产生变形和裂纹的根本原因。 铸件产生变形和裂纹的根本原因:铸造内应力(残余内应力) 六.掌握预防热应力的基本途径。 预防热应力的基本途径:缩小铸件各部分的温差,使其均匀冷却。借助于冷铁使铸件实现同时凝固。

工程材料课后习题答案附后

【最新资料,WORD文档,可编辑修改】

工程材料 思考题参考答案 第一章金属的晶体结构与结晶 1.解释下列名词 点缺陷,线缺陷,面缺陷,亚晶粒,亚晶界,刃型位错,单晶体,多晶体,过冷度,自发形核,非自发形核,变质处理,变质剂。 答:点缺陷:原子排列不规则的区域在空间三个方向尺寸都很小,主要指空位 间隙原子、 置换原子等。 线缺陷:原子排列的不规则区域在空间一个方向上的尺寸很大,而在其余两个 方向 上的尺寸很小。如位错。 面缺陷:原子排列不规则的区域在空间两个方向上的尺寸很大,而另一方向上 的尺 寸很小。如晶界和亚晶界。 亚晶粒:在多晶体的每一个晶粒内,晶格位向也并非完全一致,而是存在着许 多尺寸 很小、位向差很小的小晶块,它们相互镶嵌而成晶粒,称亚晶粒。 亚晶界:两相邻亚晶粒间的边界称为亚晶界。 刃型位错:位错可认为是晶格中一部分晶体相对于另一部分晶体的局部滑移而 造成。 滑移部分与未滑移部分的交界线即为位错线。如果相对滑移的结果上半部

口,故称“刃型位错”。 单晶体:如果一块晶体,其内部的晶格位向完全一致,则称这块晶体为单晶体。 多晶体:由多种晶粒组成的晶体结构称为“多晶体”。 2 过冷度:实际结晶温度与理论结晶温度之差称为过冷度。 自发形核:在一定条件下,从液态金属中直接产生,原子呈规则排列的结晶核 心。 非自发形核:是液态金属依附在一些未溶颗粒表面所形成的晶核。 变质处理:在液态金属结晶前,特意加入某些难熔固态颗粒,造成大量可以成 为非自 发晶核的固态质点,使结晶时的晶核数目大大增加,从而提高了形核率, 细化晶粒,这种处理方法即为变质处理。 变质剂:在浇注前所加入的难熔杂质称为变质剂。 2. 常见的金属晶体结构有哪几种?α-Fe 、γ- Fe 、Al 、Cu 、Ni 、Pb 、 Cr 、V 、 Mg 、Zn 各属何种晶体结构? 答:常见金属晶体结构:体心立方晶格、面心立方晶格、密排六方晶格; α-Fe、Cr、V 属于体心立方晶格; γ-Fe 、Al、Cu、Ni、Pb 属于面心立方晶格; Mg、Zn 属于密排六方晶格; 3. 配位数和致密度可以用来说明哪些问题? 答:用来说明晶体中原子排列的紧密程度。晶体中配位数和致密度越大,则晶

工程材料课后答案

1- 5在下面几种情况下,该用什么方法来测试硬度?写出硬度符号。 (1 )检查锉刀、钻头成品硬度;(2)检查材料库中钢材硬度;(3)检查薄壁工件的硬度或工件表面很薄的硬化层;(4)黄铜轴套;(5)硬质合金刀片; (1 )检查锉刀、钻头成品硬度采用洛氏硬度试验来测定,硬度值符号HRC。 (2)检查材料库中钢材硬度采用布氏硬度试验来测定,硬度值符号 HBW。 (3 )检查薄壁工件的硬度或工件表面很薄的硬化层硬度采用洛氏硬度试验来测定,硬度值符号HRC。 (4)黄铜轴套硬度采用布氏硬度试验来测定,硬度值符号HBW。(5)硬质合金刀片采用洛氏硬度试验来测定,硬度值符号HRC。 2- 4单晶体和多晶体有何差别?为什么单晶体具有各向异性,多晶体具有各项同性? 单晶体是由原子排列位向或方式完全一致的晶格组成的;多晶体是由很多个小的单晶体所组成的,每个晶粒的原子位向是不同的。因为单晶体内各个方向上原子排列密度不同,造成原子间结合力不同,因而表现出 各向异性;而多晶体是由很多个单晶体所组成,它在各个方向上的力相互抵消平衡,因而表现各向同性。 2-5简述实际金属晶体和理想晶体在结构与性能上的主要差异。理想晶体中原子完全为规则排列,实际金属晶体由于许多因素的影响,使这些原子排列受到干扰和破坏,内部总是存在大量缺陷。如果金属中 无晶体缺陷时,通过理论计算具有极高的强度,随着晶体中缺陷的增加,金属的强度迅速下降,当缺陷增加到一定值后,金属的强度又随晶体缺陷的增加而增加。因此,无论点缺陷,线缺陷和面缺陷都会造成晶格崎变,从而使晶体强度增加。同时晶体缺陷的存在还会增加金属的电阻,

降低金属的抗腐蚀性能。 2- 6简述间隙固溶体和间隙化合物的异同点。 间隙固溶体和间隙化合物都是溶质原子嵌入晶格间隙形成的。间隙固溶体的晶体结构与溶剂的结构相同,而间隙化合物的晶体结构不同于组成它的任一组元,它是以分子式来表示其组成。 3- 3常用的管路焊锡为成分w(Pb=50%)、w(Sn=50%)的Pb-Sn合金。 若该合金以及慢速度冷却至室温,求合金显微组织中相组成物和组织组成物的相对量。 吨r-i ⑷ I叽 Sn

材料科学基础课后习题答案第二章

第2章习题 2-1 a )试证明均匀形核时,形成临界晶粒的△ G K 与其临界晶核体积 V K 之间的关系式为 2 G V ; b )当非均匀形核形成球冠形晶核时,其△ 所以 所以 2-2如果临界晶核是边长为 a 的正方体,试求出其厶G K 与a 的关系。为什么形成立方体晶核 的厶G K 比球形晶核要大? 解:形核时的吉布斯自由能变化为 a )证明因为临界晶核半径 r K 临界晶核形成功 G K 16 故临界晶核的体积 V K 4 r ; G V )2 2 G K G V b )当非均匀形核形成球冠形晶核时, 非 r K 2 SL G V 临界晶核形成功 3 3( G ;7(2 3cos 3 cos 故临界晶核的体积 V K 3(r 非)3(2 3 3cos 3 cos V K G V 1 ( 3 卸2 3 3cos cos )G V 3 3(書 (2 3cos cos 3 ) G K % G K 与V K 之间的关系如何? G K

G V G v A a3G v 6a2 3 得临界晶核边长a K G V

临界形核功 将两式相比较 可见形成球形晶核得临界形核功仅为形成立方形晶核的 1/2。 2-3为什么金属结晶时一定要有过冷度?影响过冷度的因素是什么?固态金属熔化时是否 会出现过热?为什么? 答:金属结晶时要有过冷度是相变热力学条件所需求的, 只有△ T>0时,才能造成固相的自 由能低于液相的自由能的条件,液固相间的自由能差便是结晶的驱动力。 金属结晶需在一定的过冷度下进行,是因为结晶时表面能增加造成阻力。固态金属熔 化时是否会出现过热现象,需要看熔化时表面能的变化。如果熔化前后表面能是降低的, 则 不需要过热;反之,则可能出现过热。 如果熔化时,液相与气相接触,当有少量液体金属在固体表面形成时,就会很快覆盖 在整个固体表面(因为液态金属总是润湿其同种固体金属 )。熔化时表面自由能的变化为: G 表面 G 终态 G 始态 A( GL SL SG ) 式中G 始态表示金属熔化前的表面自由能; G 终态表示当在少量液体金属在固体金属表面形成 时的表面自由能;A 表示液态金属润湿固态金属表面的面积;b GL 、CSL 、CSG 分别表示气液相 比表面能、固液相比表面能、固气相比表面能。因为液态金属总是润湿其同种固体金属,根 据润湿时表面张力之间的关系式可写出:b SG 》6GL + (SL 。这说明在熔化时,表面自由能的变 化厶G 表w o ,即不存在表面能障碍,也就不必过热。实际金属多属于这种情况。如果固体 16 3 3( G v )2 1 32 3 6 2 (G v )2 b K t K 4 G V )3 G V 6( 4 G v )2 64 3 96 3 32 r K 2 ~G ?, 球形核胚的临界形核功 (G v )2 (G v )2 (G v )2 G b K 2 G v )3 16 3( G v )2

材料成型设备期末复习

第一章连续铸造设备: 1. 连续铸造:将液态金属通过连铸机浇铸、凝固成形、切割而直接得到铸坯的新工艺、新技术。 2. 连铸机的分类: (1)按台、机、流分:?台钢包;?铸机驱动系统(机);?流。 (2)按结晶器类型分:固定式、随动式。 (3)按连铸机型分:立式连铸、立弯式连铸、直结晶器立弯式、结晶器弧形、全弧形连铸、多半径椭圆形连铸、水平连铸、轮带式连铸、履带式连铸等。 (4)按铸坯弯曲矫直方式分:单点矫直连铸机、多点弯矫连铸、连续弯矫连铸(又分固定辊和浮动辊两类)、渐进矫直连铸(又称固定辊连续矫直连铸)等。 (5)按铸造材料:连续铸钢、连续铸铝、连续铸镁、特殊钢连铸、不锈钢板坯(方坯)连铸、合金钢板坯(方坯)连铸等。 (6)按所浇铸的断面形状分:板坯连铸、带坯连铸、小方坯连铸、大方坯连铸、圆坯连铸、异型(如,工字形、八角形)断面坯连铸、板方坯兼容连铸(板方坯复合连铸)。 (7)按照铸坯厚度分: 常规板坯连铸<150mm中厚度板坯连铸90~150mm薄板坯连铸40~70(90)mm; 带坯连铸~25mm 薄带连铸~10mm极薄带连铸<3mm,最薄可达0.15~0.3mm (8)按是否接近最终产品形状分:传统连铸、近终形连铸。 3. 传统连铸设备的组成:钢包、中间包、结晶器(一次冷却)、结晶器振动装置、二次冷却和铸坯导向装置、拉坯矫直装置、切割装置、出坯装置等组成。 4. 传统连铸过程:钢水→钢包(二次精炼)→中间包→打开塞棒或滑动水口(或定径水口)→水冷结晶器(引锭杆头封堵)→凝成钢壳→启动拉坯机和结晶器振动装置→带液芯铸坯进入弧形导向段→喷水强制冷却→矫直→切割→出坯。 5. 立式、弧形、水平连铸机的特点。 立式连铸机的特点: (1)钢水在结晶器内,四周冷却条件相同,易于调节控制,钢水中各种非金属夹杂物易于上浮,铸坯内夹杂物少,横断面结晶组织对称。 (2)连铸机主体设备结构简单、不需矫直装置。 (3)铸坯在结晶凝固过程中,不受机械外力作用,有利于获得更好质量。 (4)由于机身很高,钢水静压力大,极易产生鼓肚变形,设备维修不方便,投资较多。 (5)铸坯定尺长度受到限制,随着生产率的提高,需增大铸坯尺寸,提高拉速,这就需要提高立式连铸机的高度,使其缺点更加突出,从而使立式连铸机的发展受到限制。 弧形连铸机的特点: (1)机身高度低,为立式连铸机的1/3,克服了立式连铸机的部分缺点。 (2)水平出坯,定尺长度不受限制,有利于高速浇铸。 (3)钢水在圆弧中进行凝固,夹杂物上浮受到阻碍,并容易向内弧富集,造成夹杂物偏析,占地面积比立式连铸机大。 (4)铸机中与弧形有关设备的制造、安装、对弧等均比较麻烦。 水平连铸机的特点: (1)连铸机各单体设备完全在地面上水平布置,机身高度很低(高度小于或等于3m)。钢水静压力小,利于结晶凝固,特别是从钢水到成坯的全过程不受弯曲和矫直等机械外力作用,裂纹明显减少。 (2)连铸机结构简单,重量轻(比普通弧形连铸机约轻43%-45%),投资和维护成本大幅降低,一次投资省50%以上。 (3)由于中间包和结晶器直接相连,钢水完全在封闭系统内流动和凝固,易于实现无氧化浇铸,铸坯质量好。 (4)目前只能浇铸较小断面的铸坯,只适宜生产小批量的钢坯,特别是特殊钢铸坯。 6. 连铸机的组成、各组成部分的构造、功能、类型。 (1)连铸机的组成:钢包、中间包、结晶器(一次冷却)、结晶器振动装置、二次冷却和铸坯导向装置、拉坯矫直装置、切割装置、出坯装置等组成。 (2)以结晶器为例,说明其构造、功能、类型。 结晶器的构造:内外结构,内部为导热性好的铜模,外部为钢质外壳。 结晶器的功能:是一个水冷的铜模,是连铸机中的“心脏“部件,钢水在结晶器内冷却,初步凝固成型,并具有一定厚度的坯壳。 对结晶器性能的要求:良好的导热性和刚性,不易变形,重量轻,内表面耐磨性要好。 结晶器的分类:按内断面分:直形结晶器和弧形结晶器;按结构分:管式、组合式。 8. 连铸连轧:由连铸机生产出来的高温无缺陷坯,无需清理和再加热(但需经短时均热和保温处理)而直接轧制成材,这样把“铸”和“轧”直接连成一条生产线的工艺流程。 9. CSP、ISP、FTSC或FTSRQ、CONROLL等典型连铸连轧工艺及特点。 (1)CSP称为紧凑式热带生产工艺。特点:采用漏斗形结晶器以便浸入式水口容易插入结晶器;可浇铸50mm厚的板坯;流程短、生产简便稳定、产品质量好、市场竞争力强等。(2)ISP称为在线热带生产工艺。特点:采用平行结晶器和液芯压下技术。 (3)FTSC或FTSRQ称为生产高质量产品的灵活性薄板坯轧制工艺。特点:可提供表面和内部质量、力学性能、化学成分均优的汽车工业用热轧带卷。 (4)CONROLL与CSP工艺相似,奥钢联工程技术公司开发,用以生产不同钢种高质量的热轧带卷。特点:具有生产率高、产品价格便宜的优势。 10. 连续铸轧:将熔融金属由高温陶瓷喷嘴导入内部通有冷却水的旋转两轧辊的辊缝间,直接轧辊做结晶器,一边凝固一边轧制,直接获得20mm以下至几毫米厚的薄带坯。。 第二章轧制机械设备概论: 1. 轧机机械设备分类:主要设备-轧机和辅助设备-除轧机以外的其它设备。 2. 轧机定义:以实现金属在旋转的轧辊之间依靠轧制压力作用而发生塑性变形的机械设备。 3. 轧机的分类:有按用途、结构、布置三种分类方法。按用途:型材轧机、板带轧机、管材轧机、特殊用途轧机;按布置形式:水平配置、垂直配置、倾斜配置;按工作机座中轧辊数目:二辊、三辊、四辊和多辊轧机。 4. 轧机机械设备的辅助设备:切断设备、矫直设备、控制轧件尺寸与形状的设备、表面加工设备、改善组织性能设备、输送设备、包装设备。 5. 轧机的工作机座:轧辊、轧辊轴承、轧辊调整装置、机架及有关的附件(导卫装置、轨座)的全部装配体。 6. 工作机座各部分的作用: (1)轧辊:以轧制方式直接完成金属塑性变形的核心零部件。 (2)轧辊轴承:支持、固定轧辊,与轧辊构成辊系。 (3)轧辊调整装置:调整轧辊间位置并在调整后固定,以保证所要求的变形,包括轴向、径向、水平调整装置、轧辊平衡装置等。 (4)机架:安装和固定轧辊、轧辊轴承、轧辊调整装置、轧辊平衡装置、导卫装置等。 (5)轧辊导卫装置:用以正确、顺利地引导轧件进出轧辊。 (6)轨座(地脚板):将机架固定于基础上。 7. 轧机的标称 (1)型材轧机:主要性能参数是轧辊名义直径,(2)板带轧机:主要性能参数是轧辊辊身长度,。 (3)钢管轧机:以能够轧制管材的最大外径来标称;热轧机组以该机组品种规格和轧管机类型表示;焊管机组以其产品规格、成型方法、焊接方式来表示;冷轧机和冷旋压机规格用其产品规格和轧机形式表示;冷拔机用其允许的额定拔制力表示。 第三章轧辊与轧辊轴承 1. 轧辊所受载荷 (1)机械载荷:弯曲应力、辊面间接触应力、传动辊上的扭转应力;咬入瞬间及轧制速度变化时,引起动载荷,导致辊上应力变化。 (2)摩擦:变形区中的前、后滑,咬入打滑、卡钢等造成辊身表面与轧件间相对运动,导致辊身表面受到剧烈摩擦。 (3)热负荷:热轧时,轧件高温和冷却水交替作用,产生热循环应力;冷轧时,轧件变形热效应,轧辊表层也产生热循环应力。 2. 轧辊的主要失效形式 (1)磨损:辊身磨损达到允许的总车削量后,因表层硬度丧失、强度削弱而报废。 (2)辊面剥落:轧辊受循环接触应力作用,表面产生掉块形成凹坑而报废。 (3)折断:过大轧制压力产生的机械应力是断辊的主要原因。 3. 轧制生产对轧辊的要求 (1)工艺要求:有合理的结构、尺寸、材质,以保证轧件尺寸、表面质量、产量。 (2)寿命要求:不致过早、或不正常破坏、失效。 (3)性能要求:要有一定的强韧性、耐磨性、耐热性、耐剥落性等,其材质特性则以机械性能和硬度为主。 (4)总体要求:轧制生产对轧辊的基本要求可归纳为对轧辊的结构、尺寸的确定,对轧辊材质、制造方法的选择,对轧辊强度、刚度的校核。 4. 轧辊的结构 (1)辊身:是轧辊的工作部分;对于型材轧辊,辊身有各种形状轧槽,即孔型;对于板材轧辊,辊身基本呈圆柱形,为补偿弯曲、不均匀热膨胀、不均匀磨损对辊缝的影响,可将辊身加工成较复杂的曲线形状,即辊型。 (2)辊头:是轧辊与连接轴相接的部分;起连接传动或吊装作用,其形状由连接轴形式而异,主要有梅花型、键槽型、万向节型三种。 (3)辊颈:是轧辊的支承部分;辊颈的形状由轴承形式及装卸要求确定,主要有圆柱形和圆锥形两种形式。 注意:辊颈与辊身交界处为应力集中的部位,属于轧辊强度的薄弱环节,因而该处应用适当的过渡圆弧连接。 5. 轧辊的参数 轧辊的尺寸参数包括:辊身直径D、辊身长度L、辊颈直径d、辊颈长度l和辊头尺寸。其中辊身直径、辊身长度是表征轧辊尺寸的基本参数。

材料科学基础课后习题答案

《材料科学基础》课后习题答案 第一章材料结构的基本知识 4. 简述一次键和二次键区别 答:根据结合力的强弱可把结合键分成一次键和二次键两大类。其中一次键的结合力较强,包括离子键、共价键和金属键。一次键的三种结合方式都是依靠外壳层电子转移或共享以形成稳定的电子壳层,从而使原子间相互结合起来。二次键的结合力较弱,包括范德瓦耳斯键和氢键。二次键是一种在原子和分子之间,由诱导或永久电偶相互作用而产生的一种副键。 6. 为什么金属键结合的固体材料的密度比离子键或共价键固体为高? 答:材料的密度与结合键类型有关。一般金属键结合的固体材料的高密度有两个原因:(1)金属元素有较高的相对原子质量;(2)金属键的结合方式没有方向性,因此金属原子总是趋于密集排列。相反,对于离子键或共价键结合的材料,原子排列不可能很致密。共价键结合时,相邻原子的个数要受到共价键数目的限制;离子键结合时,则要满足正、负离子间电荷平衡的要求,它们的相邻原子数都不如金属多,因此离子键或共价键结合的材料密度较低。 9. 什么是单相组织?什么是两相组织?以它们为例说明显微组织的含义以及显微组织对性能的影响。 答:单相组织,顾名思义是具有单一相的组织。即所有晶粒的化学组成相同,晶体结构也相同。两相组织是指具有两相的组织。单相组织特征的主要有晶粒尺寸及形状。晶粒尺寸对材料性能有重要的影响,细化晶粒可以明显地提高材料的强度,改善材料的塑性和韧性。单相组织中,根据各方向生长条件的不同,会生成等轴晶和柱状晶。等轴晶的材料各方向上性能接近,而柱状晶则在各个方向上表现出性能的差异。对于两相组织,如果两个相的晶粒尺度相当,两者均匀地交替分布,此时合金的力学性能取决于两个相或者两种相或两种组织组成物的相对量及各自的性能。如果两个相的晶粒尺度相差甚远,其中尺寸较细的相以球状、点状、片状或针状等形态弥散地分布于另一相晶粒的基体内。如果弥散相的硬度明显高于基体相,则将显著提高材料的强度,同时降低材料的塑韧性。 10. 说明结构转变的热力学条件与动力学条件的意义,说明稳态结构和亚稳态结构之间的关系。 答:同一种材料在不同条件下可以得到不同的结构,其中能量最低的结构称为稳态结构或平衡太结构,而能量相对较高的结构则称为亚稳态结构。所谓的热力学条件是指结构形成时必须沿着能量降低的方向进行,或者说结构转变必须存在一个推动力,过程才能自发进行。热力学条件只预言了过程的可能性,至于过程是否真正实现,还需要考虑动力学条件,即反应速度。动力学条件的实质是考虑阻力。材料最终得到什么结构取决于何者起支配作用。如果热力学推动力起支配作用,则阻力并不大,材料最终得到稳态结构。从原则上讲,亚稳态结构有可能向稳态结构转变,以达到能量的最低状态,但这一转变必须在原子有足够活动能力的前提下才能够实现,而常温下的这种转变很难进行,因此亚稳态结构仍可以保持相对稳定。 第二章材料中的晶体结构 1. 回答下列问题: (1)在立方晶系的晶胞内画出具有下列密勒指数的晶面和晶向: 32)与[236] (001)与[210],(111)与[112],(110)与[111],(132)与[123],(2 (2)在立方晶系的一个晶胞中画出(111)和(112)晶面,并写出两晶面交线的晶向指数。 解:(1)

工程材料课后答案

第一章 2.图1-79为五种材料的应力-应变曲线:①45钢,②铝青铜,③35钢,④硬铝,⑤纯铜。试问: (1)当外加应力为300MPa时,各材料处于什么状态? (2)有一用35钢制作的杆,使用中发现弹性弯曲较大,如改用45钢制作该杆,能否减少弹性变形? (3)有一用35钢制作的杆,使用中发现塑性变形较大,如改用45钢制作该杆,能否减少塑性变形? 答:(1)①45钢:弹性变形②铝青铜:塑性变形③35钢:屈服状态④硬铝:塑性变形⑤纯铜:断裂。 (2)不能,弹性变形与弹性模量E有关,由E=σ/ε可以看出在同样的条件下45钢的弹性模量要大,所以不能减少弹性变形。 (3)能,当35钢处于塑性变形阶段时,45钢可能处在弹性或塑性变形之间,且无论处于何种阶段,45钢变形长度明显低于35钢,所以能减少塑性变形。 4.下列符号表示的力学性能指标的名称和含义是什么? σb 、σs、σ0.2、σ-1、δ、αk、HRC、HBS、HBW 答:σb抗拉强度,是试样保持最大均匀塑性的极限应力。 σs屈服强度,表示材料在外力作用下开始产生塑性变形时的最低应力。 σ0.2条件屈服强度,作为屈服强度的指标。 σ-1疲劳强度,材料循环次数N次后达到无穷大时仍不发生疲劳断裂的交变应力值。 δ伸长率,材料拉断后增加的变形长度与原长的比率。 HRC洛氏硬度,表示用金刚石圆锥为压头测定的硬度值。 HBS布氏硬度,表示用淬硬钢球为压头测定的硬度值。 HBW布氏硬度,表示用硬质合金为压头测定的硬度值。 7.常见的金属晶体结构有哪几种?α-Fe 、γ- Fe 、Al 、Cu 、Ni 、Pb 、Cr 、V 、Mg、Zn 各属何种晶体结构? 答:常见金属晶体结构:体心立方晶格、面心立方晶格、密排六方晶格; α-Fe、Cr、V属于体心立方晶格; γ-Fe 、Al、Cu、Ni、Pb属于面心立方晶格; Mg、Zn属于密排六方晶格; 8.什么是固溶强化?造成固溶强化的原因是什么? 答:形成固溶体使金属强度和硬度提高,塑性和韧性略有下降的现象称为固溶强化。

材料科学基础(武汉理工大学,张联盟版)课后习题及答案 第二章

第二章答案 2-1略。 2-2(1)一晶面在x、y、z轴上的截距分别为2a、3b、6c,求该晶面的晶面指数;(2)一晶面在x、y、z轴上的截距分别为a/3、b/2、c,求出该晶面的晶面指数。 答:(1)h:k:l==3:2:1,∴该晶面的晶面指数为(321); (2)h:k:l=3:2:1,∴该晶面的晶面指数为(321)。 2-3在立方晶系晶胞中画出下列晶面指数和晶向指数:(001)与[],(111)与[],()与[111],()与[236],(257)与[],(123)与[],(102),(),(),[110],[],[] 答:

2-4定性描述晶体结构的参量有哪些?定量描述晶体结构的参量又有哪些? 答:定性:对称轴、对称中心、晶系、点阵。定量:晶胞参数。 2-5依据结合力的本质不同,晶体中的键合作用分为哪几类?其特点是什么? 答:晶体中的键合作用可分为离子键、共价键、金属键、范德华键和氢键。 离子键的特点是没有方向性和饱和性,结合力很大。共价键的特点是具有方向性和饱和性,结合力也很大。金属键是没有方向性和饱和性的的共价键,结合力是离子间的静电库仑力。范德华键是通过分子力而产生的键合,分子力很弱。氢键是两个电负性较大的原子相结合形成的键,具有饱和性。 2-6等径球最紧密堆积的空隙有哪两种?一个球的周围有多少个四面体空隙、多少个八面体空隙? 答:等径球最紧密堆积有六方和面心立方紧密堆积两种,一个球的周围有8个四面体空隙、6个八面体空隙。 2-7n个等径球作最紧密堆积时可形成多少个四面体空隙、多少个八面体空隙?不等径球是如何进行堆积的? 答:n个等径球作最紧密堆积时可形成n个八面体空隙、2n个四面体空隙。 不等径球体进行紧密堆积时,可以看成由大球按等径球体紧密堆积后,小球按其大小分别填充到其空隙中,稍大的小球填充八面体空隙,稍小的小球填充四面体空隙,形成不等径球体紧密堆积。 2-8写出面心立方格子的单位平行六面体上所有结点的坐标。 答:面心立方格子的单位平行六面体上所有结点为:(000)、(001)(100)(101)(110)(010)(011)(111)(0)(0)(0)(1)(1)(1)。

材料成型设备复习资料0答案

B2.框架式液压机的特点。为什么组合框架式需要采用预紧螺杆,简介组合式机架立柱、螺杆受力特点。 特点:刚性好,导向精度高,疲劳能力较强。预紧目的①增加刚性②提高框架抗疲劳性能。拉紧螺杆承受拉力,空心立柱承受弯矩及轴向压力。 B3. 梁柱组合式液压机立柱受力特点,立柱与横梁连接的主要方式及特点,简介预紧方式。 特点当受到偏心载荷时,偏心载荷作用下立柱将承受拉弯联合作用,而处于复杂受力状态。连接方式①双螺母式,结构加工、安装与维修都比较方 便,需要随时检修②锥台式,结构理论上刚性较好;尺寸公差要求较高,其尺寸精度不易保证;立柱安装困难,不宜维修③锥套式,应力集中可以消除或减轻,立柱与下横梁间没有间隙,便于调整对中,但机架刚度低。预紧方式①加热预紧:在立柱及横梁安装到位后,先将内外螺母冷态拧紧, 之后利用电阻丝或蒸汽等方法使立柱两端加热伸长,达到一定温度后,将外螺母拧紧,待立柱冷却后,会产生很大的预紧力②超压预紧:在总压力超过公称压力的倍的情况下使液压机加载,立柱由于超载受到拉力作用,产生弹性伸长,此时拧紧内螺母。 B5.说明顶出装置,活动横梁保险装置,液压打料装置,冲裁缓冲器的作用与工作原理。顶处装置作用:顶出工件,完成浮动压边、浮动压制的功能或动作。活动横梁保险装置作用:防止事故发生。打料装置作用:打料以上模中顶出工件。冲裁缓冲器的作用:有效地减缓冲断后的弹性能释放,降低设备的振动以及扩大液压机的工艺用途。冲裁缓冲器的原理:在材料被冲断的瞬间,活动横梁以很大的加速度下冲,缓冲器内活塞下的液体压力急剧上升,产生很大的反力,对活动横梁下冲起到冲的作用。 C1.简述挤出过程的应用,挤出设备组成,挤出机主要技术参数。 挤出过程将塑料从料斗加入料筒中,随着螺杆的转动将其向前输送,塑料在向前移动的过程中,受到料筒的加热,螺杆的剪切作用和压缩作用,使塑料由粉状或粒状逐渐熔融塑化为粘流态,塑化后的溶料在压力的作用下,通过分流板和一定形状的口模,成为截面与口模形状相仿的高温连续体,最后冷却定型为玻璃态,得到所需的具有一定强度、刚度、几何形状和尺寸精度的等截面制品。组成由主机(挤出机)、辅机和控制系统组成技术参数1.螺杆直径D,指螺杆的外直径;2.螺杆的长径比L/D,指螺杆工作部分长度与外圆直径比;3.螺杆的转速范围nmin~nmax 4.主螺杆的驱动电动机功率P; 5.挤出机生产能力Q 6.料筒的加热功率E;7.机器的中心高度H,指螺杆中心线到地面的高度;8.机器的外形尺寸(长*宽*高)。C2.简要说明挤出机基础过程的三个区域,固体输送理论研究的内容、基本结论及在提高输送效率的措施方面(螺杆、料筒)的实际应用。 三个区域:固体输送区、熔融区、均化区。固体输送内容:螺槽中被压实的无聊像固体塞子一样移动,密度不变;塞子与所有面相接触;螺杆与料 筒对塞子的摩擦因数不同;料筒相对螺杆运动;螺杆相对静止不动。基本结论①固体输送效率同螺杆表面与物料的摩擦因数、料筒内表面与物料的 摩擦因数有关②在固体输送区尽早建立较大的压力有利于稳定基础过程, 温度低有利输送③固体输送速率与螺杆转速、螺槽深度成正比,与螺杆直径接近于平方的关系。应用:①提高转速越高②提高螺杆表面质量,减少摩擦,提高料筒切向阻力,如开沟槽,减少料筒轴向摩擦③尽早建立较大的压力,提高输送段起始压力;降低加料段温度。 C4.简要说明熔体输送理论研究的内容及基本理论,应用。融料在螺槽中的流动情况。 熔体输送内容:是研究如何保证塑料在均化段完全塑化并使其定压、定量和定温地从机头挤出,以获得稳定的产量和高质量的产品。基本结论①熔体在螺槽中得流动是正流、逆流、漏流、横流这四种流动的组合②均化段流率是由正流、逆流、漏流所决定的③横流对总的挤出量影响不大,但对熔体的传热、混合影响较大。应用:为提高挤出机的生产效率,可采取提高螺杆转速,加大螺杆直径,增大均化段长度,减小料筒与螺杆间隙等方法。熔体在料筒出口出所受压力越大,逆流和漏流越大,有利于物料的均化与混合。 C6. 说明螺杆的基本结构与功能,普通螺杆的形式及适用性;简述常规螺杆各段作用螺杆由入料段、压缩段和计量段三个功能段组成,完成物料塑化与输送。渐变型螺杆大多用于非结晶型塑料的加工;突变型螺杆用于粘度较低、具有突变熔点的结晶型塑料。螺杆分段作用①加料段:输送固态物料给压缩段和均化段②压缩段:物料在这一段得到进一步的压缩,以排除气体并使物料熔融③均化段:将来自压缩段的温度、密度和粘度达到均匀的熔料定压、定量、定温地输送到机头。

相关文档
相关文档 最新文档