文档库 最新最全的文档下载
当前位置:文档库 › 高等无机化学-钙钛矿太阳能电池

高等无机化学-钙钛矿太阳能电池

高等无机化学-钙钛矿太阳能电池
高等无机化学-钙钛矿太阳能电池

通过蒸汽辅助平面异质结钙钛矿太阳能电池溶液处理

(Planar HeterojunctionPerovskite Solar Cells via Vapor-Assisted

Solution Process)

摘要:ABSTRACT:Hybrid organic/inorganic perovskites (e.g.,CH3NH3PbI3) as light absorbers are promising players inthe field of third-generation photovoltaics. Here wedemonstrate a low-temperature

vapor-assistedsolutionprocess to construct polycrystalline perovskitethinfilmswith full surface coverage, small surface roughness, andgrain size up to microscale. Solar cells based on the aspreparedfilms achieve high power conversion efficiency of12.1%, so far the highest efficiency based on CH3NH3PbI3with the planar heterojunction configuration. This methodprovides a simple approach to perovskitefilm preparationand paves the way for high reproducibility of films anddevices. The underlying kinetic and thermodynamicparameters regarding the perovskite film growth arediscussed as well.

摘要:有机/无机杂化材料(如,CH3NH3PbI3)吸收光线是一种很有前途的球员第三代光伏领域。我们在这里演示低温蒸汽辅助溶液方法构建多晶钙钛矿薄膜

表面覆盖度,表面粗糙度小晶粒尺寸微尺度。基于aspreparedfilms实现高功率转换效率的太阳能电池12.1%,到目前为止,最高效率的基础上3NH3PbI3平面

异质结结构。这种方法提供了一种简单的方法制备perovskitefilm为电影和高重现性的方式装置。潜在的动力学和热力学钙钛矿薄膜生长参数讨论了。

Hybrid organic/inorganic perovskite materials (e.g.,CH3NH3PbI3) are currently among the most competitivecandidates for absorber materials for thin-film photovoltaic (PV)applications.Within the past 4 years, perovskite solar cells havebeen reported to achieve remarkably high efficiency of~15%.The reason for this rapid increase in power conversion efficiency(PCE) of such devices is that perovskite materials possess mostof the properties required to be excellent absorbers: appropriatedirectbandgap, high absorption coefficient, excellent carriertransport, and apparent tolerance of defects.

有机/无机杂化材料(例如,CH3NH3PbI3)目前最有竞争力的薄膜光伏(光伏)吸收材料的候选人应用。在过去的4年中,钙钛矿太阳能电池有据报道,~15%

实现非常高的效率。这种快速提高功率转换效率的原因

Besides theirextremely low cost and ease of fabrication, perovskite materialsoffer a wide tunability on composition and structure by adjustingthe metal halide framework and the intercalated organic species.Pioneering work suggested that these perovskitefilms exhibit composition-/structure-dependent properties, which can beaccessed by various processing approaches.It is essential toachievefine control over the reaction between the inorganic andorganic species, resulting in perovskites with desired propertiesand device performance

除了他们极低的成本和易于制造,钙钛矿材料提供通过调整和结构组成一个广泛的可调性金属卤化物框架与插层有机物种类。开创性的工作建议,这些彼罗夫裙边films展览组成/结构相关特性,可各种处理方法访问。这是必要的Althoughfirst implemented in dye-sensitized solar cells basedonmesoporousstructures,theperovskites have been graduallyfound to assume all of the principal roles of PV operation,andPV devices with planar architecture have been demonstrated.Planar architecture potentially provides enhancedflexibility fordevice optimization, multijunction construction, and investigation of the underlying device physics, but it requires tremendouseffort to fabricate high-quality perovskitefilms. Similar to otherthin-film PV technologies (e.g., α-Si, Cu(InGa)S

andCdTe),vacuum evaporation is one of the most promising techniques to constructperovskitethinfilms for planar junctions. The resulting perovskites prepared by co-evaporation of two precursors (PbCl2and CH 3NH3I) exhibit satisfactoryfilm coverage and uniformity withinexpectations.However, this technique demands high

vacuum, which is too energy consuming and hinders mass

production. Alternatively, solution-based techniques have also

been proposed to fabricate thinfilms, in which a mixture of two precursors is used to form the completed absorber. Due to the

lack of suitable solvents that can dissolve both components, and

the high reaction rate of the perovskite component, this process

often results in thinfilms with pinhole formation and incomplete surface coverage, which deteriorates thefilm quality and hampers thedevice performance.As a variation to this method, a twostep approach was demonstrated to fabricate efficient PV devicesby dipping previously deposited inorganic precursorfilms intosolutions containing organic species.Unfortunately, thismethod has been largely successful infilms with nanostructuredTiO2scaffoldsbut is seldom reported to be applicable forfabricating planar heterojunctions. Constructing a CH3NH3PbI3

film with a thickness of several hundred nanometers requires

long reaction times due to the limited reaction interface area. The two-step process also often results in films with strikingly enhanced surface roughness that frequently peel offfrom the substrate.As such, there is an urge to develop a facile solution approach to perovskite materials with enhanced controllability of

the film quality to construct planar structured devices with competitiveperformance.In this Communication, we demonstrate use of the vaporassisted solution process (VASP) to fabricate perovskite thin films and subsequently PV devices with planar geometry. Thekey step isfilm growth via in situ reaction of the as-depositedfilmof PbI2 with CH3NH3I vapor (Scheme 1). This method isconceptually different from the current

solution process andvacuum deposition, by avoiding co-deposition of organic and

Received: November 12, 2013

Published: December 20, 2013

althoughfirst实现在染料敏化太阳电池

介孔结构,钙钛矿已逐渐发现光伏发电的主要作用,和具有平面结构的光伏器件已被证明。2B,平面体系结构提供了对潜在enhancedflexibility装置的优化多结结构,和调查潜在的物理装置,但它需要巨大的为了制备出高质量perovskitefilms。类似于其他薄膜光伏技术(例如,α- Si,Cu(InGa),和CdTe),真空蒸发是最有前途的技术之一构建平面结钙钛矿薄膜。由此产生的由两个前体共蒸发法制备钙钛矿(PbCl2和甲烷3nh3i)表现出satisfactoryfilm 均匀覆盖内在的期望。然而,这种技术要求很高真空,这是太耗费精力和阻碍质量生产。另外,基于解决方案的技术也提出了制备薄膜,其中混合了两

前体是用来形成完整的吸收剂。由于的缺乏合适的溶剂,可以溶解这两个组件,和钙钛矿组分的高反应速率结果往往与针孔形成的和不完整的薄膜表面覆盖,影响薄膜质量和阻碍设备性能。6A作为一个变化的这种方法,一个两步的方法是制备高效光伏设备通过浸渍之前沉积的无机precursorfilms成

含有机物的溶液。2A不幸的是,这方法取得了很大的成功电影中的纳米结构TiO2支架但很少有报道是适用的制作平面异质结。构建一个通道3NH3PbI3厚度为几百纳米的薄膜反应界面面积有限的反应时间长。这个两步过程也往往导致在电影与惊人提高表面粗糙度,经常从皮衬底。因此,有一个迫切的要求开发一个浅显的解决方案增强可控性的钙钛矿材料方法构建平面结构器件的膜质量

竞争绩效。在这种沟通中,我们展示了使用的vaporassisted求解过程(VASP)制备钙钛矿薄膜薄膜和随后的光伏器件与平面几何。这个关键的一步isfilm增长通过在depositedfilm原位反应碘化铅和CH3NH3我蒸汽(计划1)。这种方法是从概念上不同于当前的解决方案和真空沉积,避免共沉积的有机和

无机物种。它利用的动力学反应性在ch3nh3i和钙钛矿结构的热力学稳定性

原位生长过程和providesfilms良好定义的晶粒晶粒尺寸为微尺度的结构,全表面覆盖,和小的表面粗糙度,适合光伏应用。设备通过实验实现了12.1%的最佳效率的基础onfilms准备,到目前为止最高的效率3NH3

VASP:实验制备的有机/无机杂化perovskitefilm(例如,CH3nh3pbx3,X = Cl,Br,I),其中无机骨架膜是由沉积前体形成的在基板上的溶液,并随后用

所需的有机蒸汽(计划1)。作为一个例子,碘化铅,ch3nh3i有相应的前体对形成CH3NH3PbI3在这项工作(见支持信息(硅)详情)。PBI2薄膜沉积在氟掺杂的锡氧化物(FTO)涂上一层致密的TiO2(穿过玻璃2),在甲烷中退火3nh3i 蒸气在150°cinn22小时形成perovskitefilms氛围。图1a显示所制备的相应的X射线衍射(X射线衍射)CH3NH3在FTO / C-TiO PbI3膜2基板。一套强有力的峰在14.08个,28.41个,31.85个,43.19个,分配给(110),(220)、(310)、()及(330)3NH3PbI3晶体,4A,8表明一种卤化物钙钛矿高斜方晶系的晶体结构结晶度。根据文献,2B通常有一个小签名峰为12.65,对应一个低级别的杂质碘化铅。在目前的上述峰值的情况下钙钛矿薄膜显示PBI完全消耗

2通过VASP。这部电影的钙钛矿质量进一步评估扫描电子显微镜和原子力显微镜(原子力显微镜)。如图1b所示,所形成的钙钛矿薄膜具有全表面特征覆盖在

基板上,具有显着的晶粒尺寸微尺度。测定薄膜的表面粗糙度原子力显微镜(图1C),计算为23.2 nm的范围在5μM×5μM.电影备VASP粗糙度相对较小的相比,其他解决方案处理的电影,7无论微尺度晶粒尺寸。典型截面SEM图像显示resultingfilm厚度有~350nm,具有良好定义的晶粒在薄膜厚度。100%表面覆盖度,微尺度晶粒尺寸,均匀晶粒所制备的薄膜的结构表明其前景光伏器件的适用性。这些压倒性的特点可能是由于相结合的相对平滑度预制的碘化铅薄膜,对CH3NH3有效嵌入我蒸汽进入无机框架,将讨论后。膜的形成是制作平面异质结的关键大多数薄膜光伏技术,因此需要了解基本的动力学和热力学机制

钙钛矿薄膜制造用VASP。钙钛矿薄膜进化是由退火~200 nm厚的碘化铅的研究甲烷存在下的薄膜在150°cinn2 3nh3i气氛不同长度的时间。四具代表性样品制备了不同的退火时间:初始阶段(0小时,图2b),中期(0.5 h,图2C),完成阶段(2小时,图1b),和后阶段(4小时,图2d)。(扫描电镜图像

1和3 h的样品中包括图S2)的XRD图谱。(图2a)清楚地表明,在初始阶段,这部电影是由PBI2阶段,而在中间阶段,两者阶段,pbi2and钙钛矿,共存于这部电影证明了其对应峰的出现。随着时间的推移进化的pbi2phase消失,在完成阶段,和在后阶段没有新的峰值。相应的depositedfilm晶粒结构

与插层反应,以及惊人的变化以及。最初的碘化铅薄膜表现出均匀的多边形晶粒数百纳米,以及相邻的分散的空隙谷物。作为pbi2film暴露于CH3nh3i蒸气30最小,它表现出不同的形状与不同的对比度。这个黑暗的颗粒形态类似于那些在图2b,被认为是未反应的PBI2。相对较轻的谷物出现了对原有的PBI的顶部2膜较大晶粒尺寸和晶粒形貌。作为共存电影中的两阶段是由X射线衍射证实,他们是推测新形成的钙钛矿。这些物种PBI的顶部薄膜显著促进膜增厚,为

图1B所示,可能是由于体积膨胀甲烷插层3nh3i,伴随着转型的on the FTO/c-TiO 2 substrate, obtained byreacting PbI2 film and CH3NH3I vapor at 150 °C for 2 h in N2atmosphere: (a) XRD pattern; (b) top-view SEM image (inset imagewith higher resolution, scale bar 1μm); (c) tapping-mode AFM height images (5 ×5μm) (inset: the corresponding 3D topographic image); and (d) cross-sectional SEM image.图1。在FTO / C-TiOperovskitefilm

2基板,通过反应型2电影和电影3nh3i蒸气在150°C 2 H N2氛围:(一)XRD 图;(b)俯视SEM图像(插入图像具有更高的分辨率,刻度尺1μm);(c++)叩模式图片(5×5μm)(插图:相应的三维地形图像);和(三维)截面扫描电镜图像。

碘化铅框架从原来的边缘共享八面体钙钛矿结构中的角点共八面体结构

电影8A注意外观的一些点的大小为数对未反应的PbI2表面纳米。它是高度

怀疑这些微小的点是反应性的“核”的增长谷物,源自之间PbI2和反应

ch3nh3i蒸气。随着新形成的存在顶部的钙钛矿晶体,以及“核”饰左右,我们认为,插层反应发生在顶部的PBI在这个阶段,研究2电影。随着反应时间的增加2小时,与晶粒尺寸达微型perovskitefilms是观察。相比原来的pbi2film,perovskitefilm在形态和大小不等,其中薄膜厚度钙钛矿型增加到350 nm~从原来的pbi2film~200 nm(图1A)。钙钛矿的面内晶粒尺寸为3次薄膜厚度,表明钙钛矿的生长polycrystallinefilms遵循正常晶粒生长模式。9在

此外,在相邻的晶体中存在的空隙原pbi2film消失后钙钛矿晶体形成。有趣的是,进一步延长反应时间为4小时不影响颗粒结构(图2)。没有明显的

成熟,或在后阶段,通常出现的粗化过程在polycrystallinefilm生长,

10说明热力学stablefilm是反应结束后形成中等温度。进一步延长反应时间

虽然目前的研究范围以外。在全面perovskitefilms目前VASP的结果覆盖范围,表面粗糙度小,完全转化碘化铅解决最重要的问题,对于形成钙钛矿薄膜光伏应用。显著不同以前报道的溶液处理方法,两步VASP具有其特殊性。第一步,无机前体沉积形成平滑均匀的pbi2film随着< 20 nm的表面粗糙度(图三)。它避免了对perovskitefilm中经常观察到的反应率非常高共沉积过程。

7这部电影不仅作为一个优越的钙钛矿结构的框架,但也作为一个水库

提供良好的动力学反应物中的一个进一步钙钛矿形成的“核”中心。在第二步暴露在ch3nh3i蒸气,的原位插层反应同时发生多晶薄膜的生长,在特定的表面和界面能最大限度地减少晶体取向的青睐。增强的晶粒尺寸可以归因于体积膨胀pbi2to钙钛矿转化过程中的甲烷的插层3nh3i,以及重排的PBI的聚集态结构

2driven通过边界的减少长度,以尽量减少晶界能量。10缺席的在影片的最后空隙,相对于原来的PBI2膜,表明VASP促进重排PBI2和/或重组的PBI2、甲烷3NH3我通过密集扩散duringfilm生长。11注意,VASP尤其适用于制造三维结构薄膜相比,常规两步溶液法。因为没有运动有利范德瓦尔斯差距在碘化铅/ CH3NH3PbI3界面的转换可以发生,7,12相当长的将无机前体转化为反应时间

完全钙钛矿。电影经常在扩展后恶化浸渍。然而,VASP,溶剂介质的情况下,适度加工温度共同贡献碘化铅和CH3NH3之间完全反应iwithout影响薄膜质量。

所形成的perovskitefilms完全转换碘化铅,适当的退火时间后,随后用对于光伏器件制造。详细的设备制造工艺在硅中描述。扫描电镜图像设备揭示了它的平面结构,其中的吸收层是实施到设备与亲密接触相邻层:FTO基板上涂布一层致密二氧化钛(~70 nm),其次是CH3NH3PbI3350层(~纳米)。2′,7,7′-四(n,n-di-p-methoxyphenylamine)- 9′-等厚度在300 nm作为~空穴传输层。热蒸发的银层(~100 nm)形成器件的背接触。相应的设备性能的特点

电流密度(J)?电压(V)测量在模拟AM 1.5G(100毫瓦/厘米2)太阳照射在空中。如图所示图3a,最佳的器件具有出色的表现,withjsc = 19.8毫安/厘米2,Voc = 0.924 V,填充因子(FF)= 66.3%,和PCE = 12.1%,到目前为止最高效率的基础上CH3NH3PbI3平面结构。在一般情况下,设备exhibitvoc = 0.83?0.94 V,JSC = 17.3?20.8毫安/厘米2?,FF = 5668.2%,和由此产生的PCE = 9.3?12.1%。图3b显示外部量子效率(EQE)的钙钛矿型谱细胞。光电流产生780纳米,在协议中通道带隙3NH3PbI3,4C并达到峰值~80%在可见光谱。结合EQE 重叠与AM 1.5G太阳能photonflux产生电流频谱密度为18.5毫安/厘米2

。稍低电流密度从外部量子效率测量得到,相比于?Jvcurve,也许可以归因于TiO表面陷阱2输送层。13一个促进高的重要因素PCE的制备高质量的absorberfilm VASP。对这部电影的全面覆盖提供了更多的吸收作用的highjsc。晶粒粗大的大晶粒边界,和在垂直方向上的一致性一个长度范围,可以帮助缓解表面当载流子在钙钛矿中的重组层,导致高VOC。FF的改善很大程度上归因于减少寄生损耗电流和在这无针孔薄膜器件的并联电阻。注意少数载流子扩散长度为CH3NH3PbI3是非常短的,~100 nm,导致相对低设备效率(通常是< 10%)内的平面设备建筑5a,b12.1%为基础的高效率目前CH3NH3PbI3可能会导致从改进的电气高品质薄膜的性能。进一步研究之间的相关性的理解和电影属性设备性能正

在进行中。综上所述,我们报告一种新型低温VASP,平面钙钛矿薄膜的制备方法相应的光伏器件,基于动力学有利的沉积膜的PBI之间的反应

2、甲烷3NH3我蒸汽。这种方法得到的perovskitefilm展品全表面覆盖,晶粒尺寸均匀的晶粒组织微米,和100%个前体转化的完整性。对钙钛矿转化电影演变的研究表明PBI适当重排2膜插层CH3NH3我推动的减少晶界能量。由excellentfilm质量促进,CH3NH3PbI3材料使在一个平面的12.1%个令人印象深刻的设备PCE建筑结果给出了一个简单的,可控的,多才多艺的和对高品质的追求perovskitefilm方法导致高性能光伏设备。有机结合通过蒸汽沉积无机骨架的种类有效地避免了钙钛矿高反应率的前体和薄膜沉积过程中可能关注

浸渍无机框架的劣化有机物溶液。未来的工作将集中于财产在由此产生的电影,例如,电荷传输的调查行为。更重要的是,不断进步的电影工程将使高性能的钙钛矿太阳能电池和其他有机/无机杂化光电。这个其他光电子的制造,例如,发光二极管,场效应晶体管和探测器,也可能受益于VASP。

■ASSOCIATED CONTENT

*S Supporting Information

Experimental details and Figures S1?S5. This material is

available free of charge via the Internet at https://www.wendangku.net/doc/9f10977968.html,.

■AUTHOR INFORMATION

Corresponding Authors

happyzhou@https://www.wendangku.net/doc/9f10977968.html,

yangy@https://www.wendangku.net/doc/9f10977968.html,

Author Contributions

+

Q.C. and H.Z. contributed equally to this work.

Notes

The authors declare no competingfinancial interest.

■ACKNOWLEDGMENTS

This work wasfinancially supported by a grant from the National Science Foundation (grant no. ECCS-1202231, Program

Director Dr. George N. Maracas), Air Force Office of Scientific Research (grant no. FA9550-12-1-0074, Program Manager Dr.

■相关内容

*的支持信息

实验的细节和人物?S1,S5。这种材料是

免费通过互联网在https://www.wendangku.net/doc/9f10977968.html,。

■作者信息

对应的作者

happyzhou@https://www.wendangku.net/doc/9f10977968.html,

yangy@https://www.wendangku.net/doc/9f10977968.html,

Charles Lee), and UCLA Internal Funds. The authors sincerely acknowledge Prof. King-NingTu of UCLA and Dr. Su-Huai Wei

of NREL for valuable discussion on the crystal growth

mechanism and the band structure of the perovskite crystal.

Also, we acknowledge Dr. Xiaolei Wang, Dr. Ge Li, and Eric

Richard for their help on the electrode fabrication, the graphic drawing, and English editing

查尔斯Lee),和加州大学洛杉矶分校的内部资金。作者真诚

承认王宁教授涂UCLA博士和苏淮卫

在晶体生长的有价值的讨论NREL

钙钛矿晶体的结构与结构。

同时,我们承认博士王晓雷,李革博士,和Eric

李察为他们的电极制作,图形

绘画,英文编辑

Figure 2.Time evolution characterization of the perovskitethinfilm by annealing~200 nm PbI2film in the presence of CH

3NH3I at 150°Cin

N2atmosphere: (a) XRD patterns of thefilm annealed at 0, 0.5, and 4 h; (b?d) top-view SEM images of (b) the initial stage at 0 h, (c) the intermediate stage at 0.5 h (inset: wider view, scale bar 3 μm), and (d) the post stage at 4 h

图2。时间演化特性的钙钛矿薄膜的

退火~200 nm pbi2film在CH

3nh3i 150°CIN

气氛:(一)电影在0,0.5和4 h退火后的XRD图谱;

(b?D)俯视SEM图像(b)在0小时的初始阶段,(C)的

在0.5小时的中间阶段(插图:更广阔的视野,比例尺3μm),和(D)

4小时后的后阶段

图3。(一)?电压(电流密度J?V)的太阳能的特点基于所制备的钙钛矿薄膜在AM 1.5G细胞照明,以及设备的横截面的SEM图像(插图)。(乙)EQE光谱(黑色)和集成的光(红色)预期是AM 1.5G照射下产生的装置。

精选钙钛矿太阳能电池研究综述资料

精品文档 钙钛矿太阳能电池 引言 21世纪以来,人口急剧增长,能源和环境问题日益明显。目前,人们主要消耗的是不可再生能源,例如煤、天然气、石油等化石燃料。而未来人类还需大量的能源,故人类正在积极开发新能源。 而太阳能具有清洁、无污染、分布广并且能量充分,是目前广大科研人员的研究重点。而光伏为开发太阳能的主要对象,主要其具有安全、清洁、成本低廉等优点。目前,市场上主要为第一代硅基太阳能电池,大约占了90%,其余的约10%被CdTe和GIGS为代表的第二代薄膜太阳能电池所占据。然而,硅基太阳能电池在原材料和制造上,其成本都比较高,工艺较复杂。因此,人们正在努力开发高效率、低成本的新型太阳能电池。如钙钛矿太阳能电池[1]。 近年来,钙钛矿太阳能电池由于光电效率高,工艺简单等一些优异性能而受到人们的广泛关注。现如今广大研究人员正在大力研究,开发钙钛矿太阳能电池,其光电转化效率正在不断突破、提高,有可能达到甚至超过单晶硅太阳电池(25.6%)的水平。其中钙钛矿太阳能电池的光电转化效率被证实已达到了20. 1%[2],这项重大的成就于2013 年度,成功被Science 评选为十大科学突破之一[3]。 一钙钛矿太阳能电池的发展历程 人们从十年以前就开始研究钙钛矿型结构化合物,刚开始由于其具有优异的光子传导性以及半导体特性,而被应用于薄膜晶体管和有机发光二极管中。[4] 2009 年,Miyasaka 等[5]首先制得钙钛矿结构的太阳能电池,它主要是以 CH3NH3PbBr和CHNHPbI为光敏化剂。这成功地跨出了钙钛矿太阳能电池发3333展的第一步,也为钙钛矿太阳能电池发展奠定了重要的基础。 2011年,Park 等[6]以CHNHPbI为光敏化剂,通过改善工艺及优化原料333组分比,成功制备了光电转化效率为6. 54%的钙钛矿太阳能电池,其结构和性能得到了一定的提升。 精品文档. 精品文档 2012年,Snaith 等[7]利用CHNHPbICl作为光吸收剂,并且将结构中的233TiO层用AlO层进行替代,最终电池的效率增加到10.9%。钛矿太阳能电池逐322渐引起了科研人员的广泛关注,进入了高速发展阶段。 2013 年,钙钛矿太阳能电池在结构以及性能上,都得到了进一步的优化。Gratzel 等[8]制备了光电转化效率为15% 的钙钛矿太阳能电池,所采用的方法是两步连续沉积法。同年,Snaith 等[9]采用双源蒸镀法成功制备了平面异质结钙钛矿太阳能电池,其光电转换效率为15. 4%。 2014 年,Han 等[10]采用全印刷的手段来制备无空穴传输层,同时用碳电极取代金属电极,成功制备了光电转化效率为11. 60%的钙钛矿太阳能电池。Kelly 等

浅谈钙钛矿太阳能电池技术与发展

浅谈钙钛矿太阳能电池技术与进展 全华锋BY619102 摘要:基于钙钛矿材料(CH3NH3PbI)制备的太阳能电池的效率由2009年的3.8%增长到了目前的20.2%,因为其较高的光吸收系数,较低的成本以及易于制备等优势引起了广泛的关注。钙钛矿材料不仅可以作为光吸收层,还可以作为电子传输层(ETM)和空穴传输层(HTM),由此可以制备不同结构的钙钛矿太阳电池:介孔结构、介观超结构、平面结构和有机结构等。除此之外,钙钛矿材料的制备方法的多样性也使其更具吸引力,目前已有一步溶液法、两步连续沉积法、双源共蒸发法和溶液—气相沉积法。本文主要介绍钙钛矿太阳电池的发展历程、工作原理、薄膜的制备方法以及各层的作用,最后对钙钛矿太阳电池面临的问题和发展前景进行介绍。 关键词:钙钛矿材料;太阳电池;光吸收层 1.钙钛矿太阳电池的发展历程 随着人类社会的不断发展与进步,由工业发展带来的能源和环境问题日益明显,化石燃料(石油、煤炭、天然气等)的有限储量及其燃烧带来的全球变暖问题使人们不得不去寻找和开发环保且可再生的新型能源。太阳能来源丰富,取之不尽,用之不竭,而且太阳能绿色环保无污染,是未来有希望获得大规模应用的新能源之一,受到国际社会的广泛关注与研究。将太阳能转换为电能的重要器件之一就是太阳电池。 2009年,日本人Kojim等首先将有机-无机杂化的钙钛矿材料应用到量子点敏化太阳电池中,制备出第一块钙钛矿太阳电池,并实现了 3.8%的效率。但这种钙钛矿材料在液态电介质中很容易溶解,该电池仅仅存在了几分钟级宣告失败,随后,Park等人于2011年将CH3NH3PbI纳米晶粒改为2-3nm,效率达到了6.5%。由于仍然采用液态电解质,仅仅经过10min,电池效率就衰减了80%。为解决钙钛矿的稳定性问题,2012年Kim等人将一种固态空穴传输材料(spiro-OMeTAD)引入到钙钛矿太阳电池中,制备出第一块全固态钙钛矿太阳电池,电池效率达到了9.7%。即使未经封装,电池在经过500小时后,效率衰减很小。空穴传输层(HTM)的使用,初步解决了液态电解质钙钛矿太阳电池不稳定和封装困难的问题。随后Snaith等首次将Cl元素引入到钙钛矿中,并使用Al2O3代替TiO2,证明钙钛

钙钛矿太阳能电池的光物理原理

钙钛矿太阳能电池的光物理原理 钙钛矿太阳能电池的光物理 溶液制备法制备的有机-无机杂化钙钛矿型太阳能电池,是光伏领域的一种新型太阳能电池新型材料,其光电转换效率已经超过17%,并且在该领域产生了巨大影响。这篇文章中,在这类新的光伏材料中,关于载流子动力学和电荷转移机制中的光物理和新的发现,进行了检验和提炼。一些开放性物理问题也将被讨论。 关键词:甲基氨碘化铅,钙钛矿型太阳能电池,光物理,瞬态吸收光谱,电荷动力学,电荷转移机制 有机无机杂化钙钛矿型太阳能电池(或简单的钙钛矿型太阳能电池)是在低成本光电池的研究中的最主要的突破。在这大约5年的期间里,这些溶液加工制备的太阳能电池成为第三代太阳能电池的先驱,比如有机太阳能电池,染料敏化太阳能电池,量子点太阳能电池。尽管,在最近举行的材料研究学会2014春季会议报告中声称,电池的转化效率已经达到了19.3%,但是到目前为止,能够证明确定的记录是17.9%,而在2009年,这个记录只有3.8%。相比较而言,染料敏化太阳能电池需要二十多年的研究才超过10%的转化效率。尽管在器件性能的显著增加,但钙钛矿型太阳能电池中的光物理机制仍然是不明确的。在本文中,我将首先简要地回顾了目前的钙钛矿型太阳能电池领域的进展,然后追踪一下光物理研究的发展。我还会强调一下钙钛矿中电子和空穴的扩散长度,CH3NH3PbI3的热空穴冷却动力学 和放大自发辐射的发现。最后,在这些材料中,一些关于光物理的问题也会进行讨论。 2.有机无机钙钛矿太阳能电池 2.1 三维的有机无机钙钛矿电池的结构 钙钛矿是一般化学式为AMX3 化合物的总称。A阳离子在立方晶胞的8个角上,M阳离子被6个X阴离子包围,位于[PbI6]4- 八面体的中心。如图1,CH3NH3PbI3情况。尽管钛酸钙的通用名称有着相同的“钙钛矿”标签,但有机无机钙钛矿材料与他们同名仅仅是因为他们的结构。在纳米科学发展的19世纪80年代,这类杂化材料能够形成三维(3D)到零维(0-D)与[PbI6]4- 八面体单元的类似物,直到把晶胞已作为广泛应用在半导体介观量子限制效应模型而深入研究。CH3NH3PbX3 (其中x是Cl,Br,I)是广泛调查的光伏材料的选择,这个材料由3D八面体网状结构形成。 2.2该领域和基本器件结构的概述

(完整版)钙钛矿太阳能电池研究综述

钙钛矿太阳能电池 引言 21世纪以来,人口急剧增长,能源和环境问题日益明显。目前,人们主要消耗的是不可再生能源,例如煤、天然气、石油等化石燃料。而未来人类还需大量的能源,故人类正在积极开发新能源。 而太阳能具有清洁、无污染、分布广并且能量充分,是目前广大科研人员的研究重点。而光伏为开发太阳能的主要对象,主要其具有安全、清洁、成本低廉等优点。目前,市场上主要为第一代硅基太阳能电池,大约占了90%,其余的约10%被CdTe和GIGS为代表的第二代薄膜太阳能电池所占据。然而,硅基太阳能电池在原材料和制造上,其成本都比较高,工艺较复杂。因此,人们正在努力开发高效率、低成本的新型太阳能电池。如钙钛矿太阳能电池[1]。 近年来,钙钛矿太阳能电池由于光电效率高,工艺简单等一些优异性能而受到人们的广泛关注。现如今广大研究人员正在大力研究,开发钙钛矿太阳能电池,其光电转化效率正在不断突破、提高,有可能达到甚至超过单晶硅太阳电池(25.6%)的水平。其中钙钛矿太阳能电池的光电转化效率被证实已达到了20. 1%[2],这项重大的成就于2013 年度,成功被Science 评选为十大科学突破之一[3]。 一钙钛矿太阳能电池的发展历程 人们从十年以前就开始研究钙钛矿型结构化合物,刚开始由于其具有优异的光子传导性以及半导体特性,而被应用于薄膜晶体管和有机发光二极管中。[4] 2009 年,Miyasaka 等[5]首先制得钙钛矿结构的太阳能电池,它主要是以 CH3NH3PbBr 3和CH 3 NH 3 PbI 3 为光敏化剂。这成功地跨出了钙钛矿太阳能电池发展的 第一步,也为钙钛矿太阳能电池发展奠定了重要的基础。 2011年,Park 等[6]以CH 3NH 3 PbI 3 为光敏化剂,通过改善工艺及优化原料组 分比,成功制备了光电转化效率为6. 54%的钙钛矿太阳能电池,其结构和性能得到了一定的提升。

钙钛矿太阳能电池材料

背景 在能源紧缺的现代社会,为了维持人类的可持续发展,科学家们一直致力于新能源的研究,其中至少在几十亿年内都取之不尽的太阳能便成了热门的研究对象。 太阳能电池大家都不陌生,它通过光电效应或者光化学效应直接把光能转化成电能。钙钛矿材料我们也很熟悉,就是一类有着与钛酸钙(CaTiO3)相同晶体结构的材料,其结构式一般为ABX3,其中A和B是两种阳离子,X是阴离子。 但钙钛矿太阳能电池却是一个比较新的概念。 2009年日本桐荫横滨大学的宫坂力教授将碘化铅甲胺和溴化铅甲胺应用于染料敏化太阳能电池,获得了最高 3.8%的光电转化效率,此为钙钛矿光伏技术的起点 但它直到2014年左右才被人们重视起来。是因为在短短几年间其效率一直在显著提升,这是NREL上实验室最高电池效率的图,我们可以看出钙钛矿材料的效率上升速率远远超过了其他同类型材料。钙钛矿材料被认为是最有可能取代硅晶材料作为太阳能电池的材料 概述 钙钛矿太阳电池一般采用有机无机混合结晶材料——如有机金属三卤化物CH3NH3PbX3(X=Cl, Br, I)作为光吸收材料。该材料具有合适的能带结构,其禁带宽度为1.5eV,因与太阳光谱匹配而具有良好的光吸收性能,很薄的厚度就能够吸收几乎全部的可见光并用于光电转换。 如图所示,这是钙钛矿太阳能电池的一般结构结构,由上到下分别为玻璃、FTO、电子传输层(ETM)、钙钛矿光敏层、空穴传输层(HTM)和金属电极。其中电子传输层常常用TiO2 钙钛矿电池一个显著的特点是IV曲线(伏安曲线)的滞后(I-V hysteresis)(通常叫滞后现象或迟滞现象),一般从反向扫描(开路电压-短路电流)得到的曲线比正向扫描(短路电流-开路电压)看起来好很多。现在对钙钛矿的这种现象还没有一个很好的解释,目前比较合理的解释是:钙钛矿材料具有很强的铁电性能(ferroelectricity)以及巨大的介电常数,导致电池的低频电容很大,比其他任何一种光伏电池都显著。 文献 我选取了五篇有关钙钛矿太阳能电池的文献,第一篇是篇综述,主要内容是现在有机夹层在有机-无机杂化钙钛矿太阳能电池中的研究进展;第二三篇分别从滞后现象以及离子移动的机理上进行分析;第四五篇主要从介绍了的某个钙钛矿太阳能电池材料。 1

钙钛矿太阳能电池的光物理原理

钙钛矿太阳能电池的光物理 摘要 溶液制备法制备的有机-无机杂化钙钛矿型太阳能电池,是光伏领域的一种新型太阳能电池新型材料,其光电转换效率已经超过17%,并且在该领域产生了巨大影响。这篇文章中,在这类新的光伏材料中,关于载流子动力学和电荷转移机制中的光物理和新的发现,进行了检验和提炼。一些开放性物理问题也将被讨论。 关键词:甲基氨碘化铅,钙钛矿型太阳能电池,光物理,瞬态吸收光谱,电荷动力学,电荷转移机制 1.引言 有机无机杂化钙钛矿型太阳能电池(或简单的钙钛矿型太阳能电池)是在低成本光电池的研究中的最主要的突破。在这大约5年的期间里,这些溶液加工制备的太阳能电池成为第三代太阳能电池的先驱,比如有机太阳能电池,染料敏化太阳能电池,量子点太阳能电池。尽管,在最近举行的材料研究学会2014春季会议报告中声称,电池的转化效率已经达到了19.3%,但是到目前为止,能够证明确定的记录是17.9%,而在2009年,这个记录只有3.8%。相比较而言,染料敏化太阳能电池需要二十多年的研究才超过10%的转化效率。尽管在器件性能的显著增加,但钙钛矿型太阳能电池中的光物理机制仍然是不明确的。在本文中,我将首先简要地回顾了目前的钙钛矿型太阳能电池领域的进展,然后追踪一下光物理研究的发展。我还会强调一下钙钛矿中电子和空穴的扩散长度,CH3NH3PbI3的热空穴冷却动力学

和放大自发辐射的发现。最后,在这些材料中,一些关于光物理的问题也会进行讨论。 2.有机无机钙钛矿太阳能电池 2.1 三维的有机无机钙钛矿电池的结构 钙钛矿是一般化学式为AMX3 化合物的总称。A阳离子在立方晶胞的8个角上,M阳离子被6个X阴离子包围,位于[PbI6]4- 八面体的中心。如图1,CH3NH3PbI3情况。尽管钛酸钙的通用名称有着相同的“钙钛矿”标签,但有机无机钙钛矿材料与他们同名仅仅是因为他们的结构。在纳米科学发展的19世纪80年代,这类杂化材料能够形成三维(3D)到零维(0-D)与[PbI6]4- 八面体单元的类似物,直到把晶胞已作为广泛应用在半导体介观量子限制效应模型而深入研究。CH3NH3PbX3 (其中x是Cl,Br,I)是广泛调查的光伏材料的选择,这个材料由3D八面体网状结构形成。 2.2该领域和基本器件结构的概述 光电池CH3NH3PbI3和CH3NH3PbBr3 的应用可以追溯到2009年T. Miyasaka及其合作者所开展的工作,他们把这些材料作为光吸收材料,在TiO2介孔层和卤化物电解质上面,达到了3.18%的光电转换效率。随后在2011年,N.G Park和他的合作者将这种液态电解液钙钛矿电池进一步优化,使效率达到了6.45%,然而,材料的稳定性以及容易在液体中溶解的性质为这些早期的电池带来了麻烦。在2012年,N. G. Park, M. Gr?tzel 在电池的稳定性和效率上取得了重要的突破,实现了9.7%的光电转换效率。接下来的工作,H. J. Snaith,

钙钛矿太阳电池的研究进展_刘成

CHEMICAL INDUSTRY AND ENGINEERING PROGRESS 2014年第33卷第12期?3246? 化工进展 钙钛矿太阳电池的研究进展 刘成,沈璐颖,徐郑羽,王冉,赵高超,史高杨,代晓艳,史成武 (合肥工业大学宣城校区,安徽宣城242000) 摘要:介绍了卤铅铵钙钛矿(CH3NH3PbX3,X = Cl、Br、I)的结构及其在新型无机-有机杂化异质结钙钛矿太阳电池中的应用,阐述了钙钛矿太阳电池的结构与工作原理,着重从钙钛矿太阳电池的致密层、钙钛矿吸收层(有骨架层和无骨架层)及有机空穴传输层三个重要组成部分的材料、微结构及制备方法等方面分析了钙钛矿太阳电池的研究进展及存在的问题。并结合不同课题组的研究成果评价了钙钛矿太阳电池各组成部分相应的材料、微结构及制备方法等对太阳电池光伏性能和长期稳定性的影响。此外还介绍并比较了反转结构与柔性太阳电池的光伏性能,简要讨论了钙钛矿太阳电池的各层材料、结构、有毒重金属的替代、长期稳定性等方面的发展趋势。 关键词:钙钛矿太阳电池;结构;工作原理;膜;太阳能 中图分类号:O 649 文献标志码:A 文章编号:1000–6613(2014)12–3246–07 DOI:10.3969/j.issn.1000-6613.2014.12.019 Progress of perovskite solar cells LIU Cheng,SHEN Luying,XU Zhengyu,WANG Ran,ZHAO Gaochao,SHI Gaoyang,DAI Xiaoyan, SHI Chengwu (Xuancheng Campus,Hefei University of Technology,Xuancheng 242000,Anhui,China)Abstract:In this paper,the structure of methylamonium lead trihalide perovskite (CH3NH3PbX3,X = Cl,Br and I) and its application in the novel inorganic-organic hybrid hetero-junction perovskite solar cells are described. The structure and operation principle of the perovskite solar cell are presented,and the influences of material composition,microstructure and preparation method of the compact layer,perovskite absorber layer,and hole-transporting materials on photovoltaic performance and long-term stability are discussed. Photovoltaic performance of the inverted and flexible solar cells is introduced and compared. The development tendency of materials,structure,alternatives for harmful heavy metals,and long-term stability of perovskite solar cells is described. Key words:perovskite solar cell;structure;operation principle;film;solar energy 钙钛矿最初是指一种稀有矿石CaTiO3,典型的钙钛矿结构化合物可表示成AMX3[1]。在钙钛矿太阳电池中,A通常为有机铵阳离子(可替换为Cs+等阳离子),金属阳离子M2+(主要为Pb2+、Sn2+等)和卤素离子X?(Cl?、Br?、I?)通过强配位键形成八面体结构MX64?,M位于卤素八面体的体心,X 通过与八面体顶点的共顶方式连接,并在三维空间方向上无限延伸,形成了网络状的框架结构,简称卤铅铵,其晶体结构如图1所示[2]。卤铅铵钙钛矿具有合适和易调节的带隙(如CH3NH3PbI3为1.5eV,CH3NH3PbBr3为 2.3eV等)[3]、较高的吸收系数(>104cm?1)[4-5]、优异的载流子传输性能以及对杂 收稿日期:2014-08-01;修改稿日期:2014-08-30。 基金项目:国家自然科学基金(51472071、51272061、51072043)、国 家973计划重大科学问题导向项目(2011CBA00700)及合肥工业大 学大学生创新性实验计划(201410359078)项目。 第一作者:刘成(1995—),男。联系人:史成武,教授,研究方向为 太阳电池材料与器件、离子液体的合成及应用和非水溶液电化学等。 E-mail shicw506@https://www.wendangku.net/doc/9f10977968.html,。

钙钛矿太阳能电池的发展现状及展望

钙钛矿太阳能电池的发展现状及展望 最近几年,钙钛矿太阳能电池作为在低成本光伏领域的重大突破而变得很有名。此电池的光电转换效率已接近效率超过15%的硅晶太阳能电池。令人惊异的是,如此惊人的成就在短短5年就已完成。在2009年时钙钛矿太阳能电池的光电转换效率才仅有 3.8%.从那以后,这个领域就呈几何级数扩散。在这种情况下,我们归纳了钙钛矿太阳能电池的基本工作原理和实验室制备方法。同时总结了此类电池现在存在的问题和未来发展方向。 关键词:光伏、钙钛矿、太阳能电池、光电转换效率 1.1背景介绍 随着现代化社会的高速发展,能源问题日益突出。目前经济发展所需要的能源大部分来自经地球几十万年存储下来的化石能源。根据中国科学院院士、中国科学院能源研究委员会副主任严陆光在武汉四中参加武汉百万市民科学活动时作出的估计,根据现在已探明的储量和消耗水平计算,化石能源中石油可用30至50年,天然气可用60至80年,煤炭可用时间稍微长一些,大约100至200年。同时由于化石能源的消耗造成的环境污染同样不容忽视。化石能源的燃烧会产生氮、硫氧化物,形成酸雨,破坏环境(如树林、动物大量死亡,估计被腐蚀等),产生得二氧化碳会形成温室效应,破坏生态平衡,同时会产生引发呼吸道疾病的细微粉尘。化石燃料的使用也是造成雾霾问题的一大原因。因此,寻找可替代的,清洁的能源已迫在眉睫。 太阳能是世界上最为丰富的能源之一。地球上一年的太阳照射产生的能量高达1.5×1018千瓦时。而我们正在大量使用的化石能源,其已探明储量,石油为1.75×1015千瓦时,煤炭为1.4×1015千瓦时,天然气为5.5×1015千瓦时。由此

钙钛矿太阳能电池的机遇与挑战

钙钛矿太阳能电池的机遇与挑战 光伏电池组件来源:北极星太阳能光伏网 2019/9/11 13:40:18 “在新型太阳能电池中,钙钛矿太阳能电池是最有前景的。”9月10日下午,在智慧能源与绿色发展论坛上,上海科技大学教授宁志军分享了钙钛矿太阳能电池的机遇与挑战。 上海科技大学教授宁志军 专题链接:现场直播丨智慧能源与绿色发展论坛 以下为会议实录: 宁志军:非常荣幸与大家分享一下钙钛矿太阳能电池最近的进展以及我们实验室目前最新的研究。我的介绍分四个部分,第一是钙钛矿太阳能电池的现状,二是挑战,第三部分是我们最新研究进展,最后总结一下。 在5种新型太阳能电池中,钙钛矿太阳能电池是最有前景的。因为这个材料比较新,我还是给大家简单介绍材料的结构,主要是由阳离子、有机阳离子、无机3个组分组成。大家一般认为传统半导体材料要实现非常好的性质,就是高纯的晶体硅,而钙钛矿是目前唯一的溶液法就可以得到高质量的半导体。它具有非常好的半导体性质,比如载流子迁移率非常高、激子寿命长、缺陷浓度小、可见光区吸光度高,原料易得等。它的结构主要是两种,一个是正式结构,一个是反式结构,反式结构可以全部用无机的来做。 值得重视的是,钙钛矿电池还可以跟晶体硅电池做一个叠层电池,可以吸收800纳米以上的光。目前发表出来的文章电池效率达

25.2%,目前认证的最高效率是英国一家公司的28%。此外,大家很担心钙钛矿大面积制备的问题,现在这个问题也慢慢得到解决,日本东芝公司已具备了大面积制备的工艺。 下面分析一下钙钛矿太阳能电池的成本。钙钛矿电池的成本,基于这样一个结构,它是用导电玻璃在上面,再是金属电机的结构,计算下来总的成本,如果电池能达到20%的效率,它的成本大概控制到0.2美元以下,就是1块钱每瓦这样的水平。这里面主要成本来自导电玻璃这一块,本身材料很便宜,只占到14%左右的成本,钙钛矿不像晶体硅,非常薄,成本非常低。如果说导电玻璃大规模生产,钙钛矿电池成本可能继续进一步降低。进一步计算每度电的成本,如果效率20%的话,按目前成本计算,它的成本就在小于2毛钱每度电的水平上面。如果说后面效率进一步提高,它的成本可能会进一步降低。目前产业链这块,钙钛矿电池主要分为三个部分,包括原材料,包括碘化纤(音),还有ITO玻璃;组件制备,下游厂商进行电池发电贴膜、便携式电子设备。国外企业钙钛矿太阳能电池已经进入中级的阶段,国内领先的公司,如杭州纤纳光电,三个博士合伙人,在三年时间内把钙钛矿大规模组件从开始百分之六七左右很低的效率提高到17%这样的水平。还有江苏协鑫公司,他们计划1MW产线投产。国际企业包括日本东芝公司、松下公司等。松下今年发布新闻,他们组件已经通过标准稳定性的测试,在双85的条件下器件能够放置1000个小时,这个非常重要,1平方厘米效率突破20%,此外钙钛矿叠层,他们能做28%小规模组件的效率。根

钙钛矿太阳能电池的研究进展

钙钛矿太阳能电池的研究进展 人们对太阳能这一新型能源认识的不断加深,促使以太阳能作为主要能源的各类产品得以广泛应用和发展,其中,钙钛矿太阳能电池则是人们对太阳能这一新型能源不断研究的产物。为了进一步提高人们对钙钛矿太阳能的认识,文章通过对钙钛矿太阳能中的钙钛矿材料进行阐述,进而对钙钛矿太阳能电池中作为重要的部分,即光吸收层的制备方法和钙钛矿太阳能电池的结构方面的研究作出了系统的说明和分析。 标签:钙钛矿;光吸收层;太阳能电池 前言 长期以来,低成本且高转化率的光伏器件一直是光伏器件领域研究的重要方向,自2009年钙钛矿太阳能电池产生后,钙钛矿太阳能电池得到了国际学术界的高度认可和重视。作为一种新型的太阳能电池,钙钛矿太阳能电池无论在其吸光材料还是内部结构方面均具有良好的优势。基于此,加强对钙钛矿太阳能电池光吸收层以及器件结构的研究,无疑成为了理论界和学术界需要共同开展的关键工作。 1 钙钛矿材料概述 对钙钛矿太阳能电池的光吸收层进行分析可知,其实质上是一种有机—无机的杂化材料,其化学式为CH3NH3PbX3,此材料的晶胞结构为典型的钙钛矿晶体结构,其中,PbX6形成八面体,且相互接触沟通构成具有三维结构的框架,而CH3NH3+则被嵌入其内。由于钙钛矿太阳能电池的光吸收层具有电致发光与光致发光的特性,不仅具有直接带隙和较高的光吸收系数,而且还具有良好的截流子输运性能和較高的缺陷容忍度。还需说明的是,钙钛矿光吸收层的禁带宽度同AM1.5光照下的最佳带隙值,即1.4eV极为接近,但却比Br和Cl的含I(碘)的钙钛矿材料在水蒸气条件中更易分解,故在制备过程中可借助Br和Cl元素取代部分CH3NH3PbX3能够提高其抗分解的能力[1]。 2 钙钛矿太阳能电池光吸收层制备方法 就现阶段而言,钙钛矿太阳能电池的高质量光吸收层的制备方法主要以溶液法和共蒸发法为主。 2.1 基于单步法与两步法的溶液法 溶液法主要包括了单步法和两步法两种。其中,单步法通常以一定的化学计量比将CH3NH3X以及PbX2共同溶解在溶剂(N-二甲基甲酰胺)当中从而构成前驱体溶液,而后,将此前驱体溶液直接旋涂在TiO2上,并将其置于100℃的N2手套箱内进行干燥。在整个干燥过程中,前驱体溶液中的发生CH3NH3X与

钙钛矿太阳能电池的研究进展

40 第 44 卷 第 9 期2015 年 9 月 Vol.44 No.9Sep.2015 化工技术与开发 Technology & Development of Chemical Industry 钙钛矿太阳能电池的研究进展 杨 林1,左智翔2,于凤琴1,纪三郝 1,王天华1,王鸣魁 2 (1.中化化工科学技术研究总院,北京 100083;2. 华中科技大学光电国家实验室(筹),湖北 武汉 430074)摘 要: 近年来,得益于钙钛矿材料突出的光学和电学特性,全固态钙钛矿基太阳电池效率不断取得突破,现已超过20%。业界纷纷期待着钙钛矿电池的产业化前景。文章介绍了钙钛矿作为光电材料的一些光学、电学性能,回顾了钙钛矿电池的发展历程。围绕基本结构,论述了钙钛矿电池中的基本光电转换过程,并对各种衍生结构的钙钛矿电池进行了罗列、分类,重点介绍了无空穴传输层的钙钛矿电池,阐明了无空穴传输层电池在稳定性和使用寿命、成本控制等关键问题上的优势所在,同时基于廉价碳电极的无空穴传输层太阳电池效率也已接近15%,且仍有较大提升空间。 关键词:钙钛矿电池;光电转换效率;异质结;空穴传输层;碳电极 中图分类号:TM 914.4+3 文献标识码: A 文章编号:1671-9905(2015)09-0040-06作者简 介:杨林(1978-),男,博士,高级工程师,河北石家庄人,主要从事有机合成的研究。E-mail: yanglin@https://www.wendangku.net/doc/9f10977968.html, 通讯联系人:王鸣魁收稿日期:2015-07-02 根据美国能源信息局的报告,预计到2035年,全球能源消耗将比现在增加50%,其中,化石能源消耗将占世界能源消耗总量的86%[1]。可以说用“能源危机”来描述当前的形势丝毫不为过。而化石能源链条一旦中断,必将导致世界经济危机和冲突的加剧,最终葬送现代市场经济。与此同时,大量消耗化石能源导致的温室气体排放,不仅使全球气候发生变化,海平面上升,还将造成全球大气环流调整和气候带向极地扩展。总之,在世界能源现状日益拮据,化石能源迟早面临枯竭,环境污染问题频发的今天,寻求新能源成了当今世界、当今中国最迫切的选择。 太阳能作为一种清洁的可再生能源,开发利用太阳能,能够同时解决环境污染问题和满足全球范围内日益增长的能源需求。目前对太阳能的利用主要是基于光伏原理的太阳能电池。太阳能电池的种类有很多,按照出现的先后顺序,大体可以分为三代。一代单晶硅、多晶硅太阳能电池是目前市场 上的主流产品,工艺成熟,光电转换效率高,但是高纯硅材料成本太高,工艺复杂,限制了它的大规模应用。二代多元化合物薄膜太阳能电池虽然也有较高的光电转换效率,但是它的一些原材料属稀有元素,而且像镉具有严重的污染性。这样就催生了三代太阳能电池,该代太阳能电池具有取材广泛、性能提升空间大等诸多优点,虽尚未发展到实际应用阶段,但它们是目前学术界广泛研究的热点。 在三代太阳能电池中,钙钛矿太阳电池(Perovskite Solar Cell, PSC)最近几年发展势头尤为迅猛。图1是各种太阳能电池效率发展史及最高效率,从图1中可以看到PSC 在2009年效率只有3.8%[2], 到现在已经超过20%,发展速度远远快于同为三代太阳能电池的染料敏化太阳能电池(DSC)和有机聚合物太阳能电池(OPV)。基于有机金属卤化物的PSC 被认为是近年来光伏领域最重要的发明之一。自从2012年报道第一篇关于全固态太阳能电池用CH 3NH 3PbI 3作为吸光材料以后,通过调整PSC 内部界面的能级结构和改善控制电池薄膜的质量和形态以及设计一系列不同的电池结构,PSC 的效率不断取得突破。 1975E f f i c i e n c y /% 50 48444036322824201612840 199519802000198520051990 20102015 图1 各种太阳能电池的效率发展史及最高效率

钙钛矿太阳能电池材料的研究进展

第46卷第3期材料工程V。1.46 No.3 2018 年3月第 142 —150 页Journal of MaterialsEngmeering Mar. 2018 pp.142-150 钙钛矿太阳能电池材料的 研究进展 Research Progress on Materials for Perovskites Solar Cells 邱婷,苗晓亮,宋文佳,楼冬,张树芳 (南京理工大学材料科学与工程学院,南京210094) QIU Ting,MIAO Xiao-liang,SONG Wen-jia, LOU Dong,ZHANG Shu-fang (School of Materials Science and Engineering,Nanjing University of Science and Technology,Nanjing 210094, China) 摘要:钙钛矿太阳能电池的研究在近5年内迅速发展,已经成为非常有活力的研究领域,在较短的时间内电池的效率得 到了显著的提升。钙钛矿太阳能电池中钙钛矿材料的研究对于提高电池的效率有着重要的意义。本文综述了近年来在 钙钛矿层制备方法、新材料的合成等方面存在的主要问题和研究进展。对各种制备方法的特点及改进优化进行了详细 的介绍,并分析了新材料合成的必要性和所面临的问题。最后,指出了在降低钙钛矿毒性、大面积制备钙钛矿太阳能电 池,以及降低成本等方面的研究前景,为今后高效、稳定的钙钛矿太阳能电池的研究提供方向。 关键词:钙钛矿;太阳能电池;制备;薄膜 doi: 10.11868/-.issn.1001-4381. 2015. 001329 中图分类号:O475 文献标识码:A文章编号:1001-4381(2018)03-0142-09 Abstract:Perovskite solar cells(PSCs)have been developed rapidly as one of the most growing photovoltaic technologies in the last five years.The power conversion efficiency(PCE)of the solar cells has been unprecedentedly increased over the relatively short period.It is of great signii-cance to study the perovskite materials in this kind of solar cells for improving the efficiency.The most focused issues asw ell as themain progress in varied fabrication techniques and synthesis of new materials in recent years were reviewed in this paper.The characteristics and improvements of varied fabrication techniques are introduced in detail,the necessity and the problems facing for new materials synthesis were analyzed.Finally,a perspective view on reducing the toxicity of perovskite,preparing large-scale perovskite solar cells,and the cost reduction was given to p rovide the direction ture research of high-efficiency and stable perovskite solar cells. Key words:perovskite;solar cell;fabrication;thin film 近几十年来,随着工业发展和人口増长,全球能源 需求不断増加,特别是对传统能源,如石油、煤炭和天 然气的依赖仍在继续。到目前为止,超过80%的能源 消耗来自化石燃料,这导致了环境污染和气候变暖等 问题。更重要的是,化石燃料是不可再生能源,未来终 将耗尽。而现代社会的发展需要更多低污染、可持续 的能源。太阳能是人类取之不尽、用之不竭的可再生 能源,同时也是清洁能源,在使用过程中不会产生任何 的环境污染。利用太阳能进行发电是近些年来发展最 快、最具活力的研究领域。人们已经研制和开发了各 种太阳能电池。目前,硅基太阳能电池,特别是单晶硅太阳能电池由于转化效率较高已经实现了商品化,并 在大规模应用和工业生产中占据主导地位,但由于其 高昂的材料价格以及繁琐的制备工艺,使得其成本居 高不下,而大幅度降低其成本又非常困难[1]。为此,发 展硅电池的替代产品是非常有必要的。在这种情况 下,成本相对较低的多晶硅薄膜太阳能电池和叠层(多结)非晶硅太阳能电池应用而生。但由于在多晶硅薄 膜电池的生产工艺中,需要高温、高真空的气相沉积过 程,成本仍然较高。对于成本更为低廉的非晶硅太阳 能电池来说,非晶硅大约1. 7e V的光学带隙只能利用 波长在730n m以下的太阳光辐射,明显减少了对近红

钙钛矿太阳能电池基本原理和制备方法

钙钛矿太阳能电池基本原理和制备方法 2.1基本原理 钙钛矿太阳能电池作为一种新出现的太阳能电池,其电池结构目前主要有两种,第一种是由染料敏化太阳能电池演化而来的“敏化”结构,此结构与染料敏化太阳能电池极为相似,具有高吸光性的钙钛矿材料作为光敏化剂,其层状结构 的每一层物质依次为透明导电玻璃、ZnO或TiO 2致密层、钙钛矿敏化的多孔TiO 2 或Al 2O 3 层、空穴传输层(HTMs)、金属电极,结构图如图2.1左。第二种是平面 异质结薄膜结构,其层状结构每一层物质依次为透明导电玻璃、ZnO或TiO 2 致密层、钙钛矿层、空穴传输层(HTMs)、金属电极,结构图如图2.1右。这种结构下钙钛矿既是光吸收层又是电子传输层和空穴传输层,其优良性能被充分利用。由于作为空穴传输层(HTMs)的Spiro-OMeTAD材料制备起来相对比较复杂和昂贵,因而无空穴传输层(HTMs)的钙钛矿太阳能电池的研发也成为科研热点。 图2.1 (a)“敏化”钙钛矿太阳能电池结构(b)平面异质结钙钛矿太阳能电池结构 2.1.1“敏化”钙钛矿太阳能电池 H.S.Kim等科学家制作出了光电转化效率为9.7%的敏化全固态钙钛矿太阳 能电池,作为光吸收层的钙钛矿CH 3NH 3 PbI 3 的光吸收系数很高,较薄的钙钛矿敏 化的多孔TiO 2 层可以吸收大量的光源,因而电池可以产生高达17.6mA/cm2的短

路电流密度。此后tzel a Gr 等科学家优化了电池制备方法,在TiO2光阳极表面上 形成CH 3NH 3 PbI 3 纳米晶,此纳米晶具有高吸附性和该覆盖性。此方法使得太阳能 电池光电转换效率达到15%,并且具有极高的稳定性,500小时后光电转化效率仍然达到一开始的80%. 一维的TiO 2纳米结构,包括纳米棒、纳米管、纳米线等,相比较于由TiO 2 纳米颗粒组成的薄膜,其电子传输效率更高,电子寿命更长,晶界的电荷复合效 率更低。TiO 2 薄膜因其有利于电子传输,具有恰当的能级,在传统的敏化结构太阳能电池中可以作为光阳极。其电荷转移示意图如图 2.2左。而由于钙钛矿 CH 3NH 3 PbI 3 具有长的电子扩散长度,且具有双极性输运性质,光生电荷载流子可 以被钙钛矿有效的分别传输到两端电极,因而绝缘的Al 2O 3 便可替代TiO 2 。Al 2 O 3 仅作为钙钛矿CH 3NH 3 PbI 3 的支架,光生电子被限制在CH 3 NH 3 PbI 3 内,只能在钙钛 矿内传输。J.M.Ball等科学家优化了Al 2O 3 的厚度,使得钙钛矿太阳能电池的光 电转换效率最高达到12.3%. 其电荷转移示意图如图2.2右。 图2.2 TiO2、Al2O3为光阳极的太阳能电池电荷转移示意图

钙钛矿太阳能电池

1.引言 面对日益紧张的能源和环境危机,对新能源、可再生能源的需求日趋迫切,如何更有效、更低成本地利用取之不尽用之不竭的太阳能一直备受关注。然而传统的硅太阳能电池由于成本高、硅提纯过程对环境污染大等问题,使其大规模应用受到一定限制。因此,寻找低成本、环境友好的新型太阳能电池成为普遍关注的重点。 钙钛矿太阳电池是由染料敏化电池演化而来.CH 3NH 3PbX 3 材料吸收系数高达 10 5; 通过调节钙钛矿材料的组成, 可改变其带隙 [2 ] 和电池的颜色,制备彩色电池 [3 ] . 另外, 钙钛矿太阳电池还具有成本低, 制备工艺简单, 以及可制备柔性 [4 ]、透明 [5 ]及叠层电池 [6 ] 等一系列优点, 而且其独特的缺陷特性 [7 ,8] , 使钙钛矿晶体材料既可呈现 n 型半导体的性质, 也可呈现p 型半导体的性质, 故而其应用更加多样化. 而且 CH3NH3PbX3 具有廉价、可溶液制备的特点, 便于采用不需要真空条件的卷对卷技术制备, 这为钙钛矿太阳电池的大规模、低成本制造提供可能. 2009 年, 日本人 Kojima 等[1] 首次将有机、无机杂化的钙钛矿材料应用到量子点敏化太阳电池中,制备出第一块钙钛矿太阳电池, 并实现了 3.8%的效率. 但是这种钙钛矿材料在液态电解质中很容易溶解, 该电池仅仅存在了几分钟即宣告失败. 随后, Park 等 [9] 于 2011 年将 CH3NH3PbI3 纳米晶粒改为2—3 nm, 效率提高到 6.5%. 但是由于仍然采用液态电解质, 仅仅经过 10min, 电池效率就衰减了 80%. 为解决钙钛矿太阳电池的稳定性问题, 2012年 Kim 等人 [10 ] 将一种固态的空穴传输材料 (spiroOMeTAD) 引入到钙钛矿太阳电池中, 制备出第一块全固态钙钛矿太阳电池, 电池效率达到 9.7%. 即使未经封装, 电池在经过 500 h 后, 效率衰减很小.空穴传输层 (hole transport material, HTM) 的使用, 初步解决了液态电解质钙钛矿电池不稳定与难封装的问题. 随后 Snaith等 [11 ]首次将 Cl 元素引入钙钛矿中, 并使用 Al 2O 3 替代 TiO 2, 证明钙钛矿不仅可作为光吸收层, 还可作为电子传输层(electron transport material, ETM), 所得电池 效率为 10.9%. 同样是在 2012 年, 瑞士的 Etgar等 [12 ] 在 CH 3NH 3PbI 3

钙钛矿太阳能电池研究

目录 中文摘要 (1) 引言 (2) 第1章钙钛矿太阳能电池简介 (3) 1.1 钙钛矿材料的研究 (3) 1.2 钙钛矿太阳能电池的由来和发展 (3) 1.3 钙钛矿太阳能电池的结构 (3) 1.4 钙钛矿太阳能电池的原理 (4) 1.5 钙钛矿薄膜的制备方法 (5) 1.6本论文的研究意义和内容 (6) 第 2 章钙钛矿太阳能电池的制备以及退火时间对电池的影响 (7) 2.1 实验部分 (7) 2.1.1 实验材料 (7) 2.1.2 实验仪器 (7) 2.1.3 实验过程 (8) 2.2 器件的测试与分析 (9) 第3章总结与发展 (14) 参考文献 (15) 致谢 (16)

中文摘要 钙钛矿吸收层对于太阳能电池光电转换效率的影响是至关重要的。本文采用溶液法制备 了钙钛矿太阳能电池,研究了在特定退火温度下退火时间对钙钛矿吸收层结构、形貌及其 吸收的影响。研究结果表明:退火时间的增加有利于薄膜的晶化,晶粒变大,吸收增强; 的峰,从而使材料的吸收强度降低。我们进一 但退火时间太长易使钙钛矿材料中出现PbI 2 步探索了材料的退火时间对电池器件的性能产生怎样的影响,通过测试电池的J-V(电流-电压)特性,研究发现:随着材料退火时间的增加,开路电压(V oc)、短路电流(J sc)、 和填充因子(FF)先增大到一个极大值点,然后减小,所以得出结论,在退火温度为95℃, 退火时间为20分钟时,制备获得的钙钛矿太阳能电池的各方面性能达到最好。 关键词:钙钛矿吸收层退火时间 Abstract Perovskite absorption layer is a key factor to affect photoelectric conversion efficiency of the solar cells. This article used solution process to make perovskite solar cells. We have researched how the annealing time influence the structure and morphology and absorption of the perovskite absorption layer. It shows that annealing time is important for the crystallization of membrane, crystal grain size and absorption of membrane, but if annealing time is too long, the perovskite materials will decompose into PbI2, and then reduce the absorption of the material strength. We further studied the influence of the annealing time to the performance of the device, through the J-V, it shows that with the increase of the annealing time,the short-circuit current、open circuit voltage、and fill factor first increases and then decreases. For the experimental condition of 20 minutes of annealing time at 95℃,all the aspects of the perovskite solar cells are best. Keywords: perovskite solar cells, absorb layer, annealing time.

相关文档
相关文档 最新文档