文档库 最新最全的文档下载
当前位置:文档库 › PQM电能质量管理无功补偿系统-下

PQM电能质量管理无功补偿系统-下

PQM电能质量管理无功补偿系统-下
PQM电能质量管理无功补偿系统-下

负荷计算及无功补偿

第三章 负荷计算及无功补偿 广东省唯美建筑陶瓷有限公司 刘建川 3.1 负荷曲线与计算负荷 负荷曲线(load curve )是指用于表达电力负荷随时间变化情况的函数曲线。在直角坐标糸中,纵坐标表示负荷(有功功率和无功功率)值,横坐标表示对应的时间(一般以小时为单位) 日负荷曲线 年负荷曲线 年每日最大负荷曲线 年最大负荷和年最大负荷利用小时数 3.1.2 计算负荷 计算负荷是按发热条件选择电气设备的一个假定负荷,其物理量含义是计算负荷所产生的恒定温升等于实际变化负荷所产生的最高温升。通常将以半小时平均负荷依据所绘制的负荷曲线上的“最大负荷”称为计算负荷,并把它作为按发热条件选择电气设备的依据。 3.2 用电设备额定容量的确定 3.2.1 用电设备的一作方式 (1)连续工作方式 在规定的环境温度下连续运行,设备任何部份温升不超过最高允许值,负荷比较稳定。 (2)短时运行工作制 (3)断续工作制 用电设备以断续方式反复进行工作,其工作时间与停歇时间相互交替。取一个工作时间内的工作时间与工作周期的百分比值,称为暂载率,即 *100%%100%0 t t T t t ε==+ 暂载率亦称为负荷持续率或接电率。根据国家技术标准规定,重复短暂负荷下电气设备的额定工作周期为10min 。吊车电动机的标准暂载率为15%、25%、40%、60%四种,电焊设备的标准暂载率为50%、65%、75%、100%,其中草药100%为自动焊机的暂载率。 3.2.2 用电设备额定容量的计算 (1)长期工作和短时工作制的设备容量 等于其铭牌一的额定功率,在实际的计算中,少量的短时工作制负荷可忽略不计。 (2)重复短时工作制的设备容量 ○ 1吊车机组用电动机的设备容量统一换算到暂载率为ε=25%时的额定功 率,若不等于25%,要进行换算,公式为:2Pe Pn ==Pe 为换算到ε=25%时的电动机的设备容量 εN 为铭牌暂载率

国家电网公司电力系统无功补偿配置技术原则

国家电网公司电力系统无功补偿配置技术原则 为进一步加强国家电网公司无功补偿装置的技术管理工作,规范电网无功补偿的配置要求,提高电网的安全、稳定、经济运行水平,国家电网公司在广泛征求公司各有关单位意见的基础上,制定完成了《国家电网公司电力系统无功补偿配置技术原则》,并于8月24日以国家电网生[2004]435号印发,其全文如下: 国家电网公司电力系统无功补偿配置技术原则 第一章总则 第一条为保证电压质量和电网稳定运行,提高电网运行的经济效益,根据《中华人民共和国电力法》等国家有关法律法规、《电力系统安全稳定导则》、信息来源:《电力系统电压和无功电力技术导则》、《国家电网公司电力系统电压质量和无功电力管理规定》等相关技术标准和管理规定,特制定本技术原则。 第二条国家电网公司各级电网企业、并网运行的发电企业、电力用户均应遵守本技术原则。 第二章无功补偿配置的基本原则 第三条电力系统配置的无功补偿装置应能保证在系统有功负荷高峰和负荷低谷运行方式下,分(电压)层和分(供电)区的无功平衡。分(电压)层无功平衡的重点是220kV及以上电压等级层面的无功平衡,分(供电)区就地平衡的重点是110kV及以下配电系统的无功平衡。无功补偿配置应根据电网情况,实施分散就地补偿与变电站集中补偿相结合,电网补偿与用户补偿相结合,高压补偿与低压补偿相结合,满足降损和调压的需要。 第四条各级电网应避免通过输电线路远距离输送无功电力。500(330)kV 电压等级系统与下一级系统之间不应有大量的无功电力交换。500(330)kV电压等级超高压输电线路的充电功率应按照就地补偿的原则采用高、低压并联电抗器基本予以补偿。 第五条受端系统应有足够的无功备用容量。当受端系统存在电压稳定问题时,应通过技术经济比较,考虑在受端系统的枢纽变电站配置动态无功补偿装置。 第六条各电压等级的变电站应结合电网规划和电源建设,合理配置适当规模、类型的无功补偿装置。所装设的无功补偿装置应不引起系统谐波明显放大,并应避免大量的无功电力穿越变压器。35kV~220kV变电站,在主变最大负荷时,其高压侧功率因数应不低于0.95,在低谷负荷时功率因数应不高于0.95。 第七条对于大量采用10kV~220kV电缆线路的城市电网,在新建110kV 及以上电压等级的变电站时,应根据电缆进、出线情况在相关变电站分散配置适当容量的感性无功补偿装置。

无功补偿及电能计算

北极星主页 | 旧版 | 电力运营 | 电信运营 | 工业控制 | 电子技术 | 仪器仪表 | 大学院校 | 科研院所 | 协会学会新闻中心| 技术天地| 企业搜索| 产品中心| 商务信息| 人才招聘| 期刊媒体| 行业展会| 热点专题| 论坛| 博客| 高级搜索 帐号 密码 个人用户注册企业免费注册 能源工程 ENERGY ENGINEERING 2003年第1卷第1期 工矿企业无功补偿技术及其管理要求 方云翔 (浙江信息工程学校,湖州 313000)

摘要:分析了工矿企业采用无功补偿技术的必要性,介绍了无功补偿方式的确定及补偿容量的计算方法,并论述了加强无功补偿装置管理、提高运行效率应注意的问题。 关键词:无功补偿;技术管理;工矿企业 1 前言 供电部门在向用电单位(以下简称用户)输送的三相交流功率中,包括有功功率和无功功率两部分。将电能转换成机械能、热能、光能等那一部分功率叫有功功率,用户应按期向供电部门交纳所用有功电度的电费;无功功率为建立磁场而存在并未做功,所以供电部门不能向用户收取无功电度电费,但无功功率在输变电过程中要造成大量线路损耗和电压损失,占用输变电设备的容量,降低了设备利用率。因此,供电部门对输送给用户的无功功率实行限制,制订了功率因数标准,采用经济手段———功率因数调整电费对用户进行考核。用户功率因数低于考核标准,调整电费是正值,用户除了交纳正常电费之外,还要增加支付调整电费(功率因数罚款);用户功率因数高于考核标准,调整电费是负值,用户可以从正常电费中减去调整电费(功率因数奖励)。 用电设备如变压器、交流电动机、荧光灯电感式镇流器等均是电感性负荷,绝大多数用户的自然功率因数低于考核标准,都要采取一些措施进行无功补偿来提高功率因数。安装移相电力电容器是广大用户无功补偿的首选方案。 2 无功补偿的经济意义 2.1 提高输变电设备的利用率 有功功率

电力系统无功补偿论文

电力系统的无功优化、补偿及无功补偿技术对低压电网功率因数的影响 电气与信息工程学院 自动化13-2 马春野 20131802

电力系统的无功优化、补偿及 无功补偿技术对低压电网功率因数的影响 一前言 随着国民经济的迅速发展,用电量的增加,电网的经济运行日益受到重视。降低网损,提高电力系统输电效率和电力系统运行的经济性是电力系统运行部门面临的实际问题,也是电力系统研究的主要方向之一。特别是随着电力市场的实行,输电公司(电网公司)通过有效的手段,降低网损,提高系统运行的经济性,可给输电公司带来更高的效益和利润。电力系统无功功率优化和无功功率补偿是电力系统安全经济运行研究的一个重要组成部分。通过对电力系统无功电源的合理配置和对无功负荷的最佳补偿,不仅可以维持电压水平和提高电力系统运行的稳定性, 而且可以降低有功网损和无功网损,使电力系统能够安全经济运行。 无功补偿,就其概念而言早为人所知,它就是借助于无功补偿设备提供必要的无功功率,以提高系统的功率因数,降低能耗,改善电网电压质量。 二无功优化和补偿的原则和类型 1、无功优化和补偿的原则 在无功优化和无功补偿中,首先要确定合适的补偿点。无功负荷补偿点一般按以下原则进行确定: 1)根据网络结构的特点,选择几个中枢点以实现对其他节点电压的控制; 2)根据无功就地平衡原则,选择无功负荷较大的节点。 3)无功分层平衡,即避免不同电压等级的无功相互流动,以提高系统运行的经济性。 4)网络中无功补偿度不应低于部颁标准0.7的规定。 2、无功优化和补偿的类型 电力系统的无功补偿不仅包括容性无功功率的补偿而且包括感性无功功率的补偿。在超高压输电线路中(500kV及以上),由于线路的容性充电功率很大,据统计在500kV 每公里的容性充电功率达1.2Mvar/km。这样就必须对系统进行感性无功功率补偿以抵消线路的容性功率。如实际上,电网在500kV的变电所都进行了感性无功补偿,并联了高压电抗和低压电抗,使无功在500kV电网平衡。

无功补偿节电计算案例中英文版

Plans for saving electricity 节电方案计划 Today's companies face a wide range of competition, and constantly reduce the power consumption is not only an important way to reduce costs to improve competitiveness over a long period of time, and is the realization of their own is the effective means to make contributions to reduce emissions 当今企业面临广泛的竞争,不断降低电力能耗不仅是长期降低成本提高竞争力的重要途径,而且是实现自身为降低排放作贡献的有效手段。 The way of energy saving of enterprises 企业电力节能的途径 First, because of the power efficiency of the electric power sector, the improvement of power factor can make no work penalty. 一是由于电力部门考核的电力效能,即功率因素提高方面,可使无功罚款转变为无功奖励。 Second,The energy saving effect can be about 8 ~ 15% of the compensation of the load on the side of the load 二是自身负载侧的无功修正及线损补偿,其节能效果可以达到8~15%左右。 Third,Electric power special aspects: such as load management, may reduce power load peak power 5 ~ 30%, for a lot of electricity companies such as steel mills, a year can save electricity cost millions 三是电力能源的特殊方面:比如负荷管理,可能使电力负荷高峰功率降低5~30%,对一个大量用电企业如钢厂,每年可节约用电费用几百万之巨! Fourth,Clean energy saving on electricity, with a focus on the possible power grid harmonic filter, on the basis of conventional energy saving effect, improve skills 3 ~ 50%, especially can improve the reliability of the system 四是着力于电力清洁节能,重点是滤除可能存在的电网谐波,可在常规节能效果的基础上,提高技能率3~50%,特别是可以提高系统的可靠性。 Fifth,Comprehensive energy management, comprehensive, scientific and efficient management of electricity, water and gas can increase comprehensive energy efficiency to about 10-20% 五是综合性的能源管理,对电、水、气等实行综合、科学、高效的管理,可将综合能源利用率提高到10~20%左右。 The enterprise is reactive power and harm 企业无功功率及危害 The reverse of the magnetic field generated by the current hysteresis of a transformer,

电能质量概述

遵义长征电器开关设备有限责任公司致力于电能质量综合管理和电力系统供用电安全领域相关技术的研究和应用,为客户提供电能质量监视、功率因数校正、电力谐波治理、电气火灾监控等系统解决方案,利用现代通讯和物联网技术,对服务客户电力系统的所有电气设备提供在线检测并对可能存在的故障提供预警信息,确保电力系统用电安全。 检测供电质量、掌握电能消耗状况,并依据此制订节能降耗方案提供解决方案 ?电气参数测量及电能质量监视系统; ?电能量管理系统及电力自动化监控系统; ?电能质量(电力谐波与无功)检测服务; ?照明节能降耗产品。 提供功率因数校正及电力谐波治理方案 ?综合电能质量调控系统 ?有源及电力滤波与补偿系统 ?智能电力电容器及模块化无功补偿系统 ?谐波保护设备 电气火灾预防性解决方案 ?预防性电气火灾监控系统 我们的技术服务和您的收益 ?专业的技术服务专家具有多年经验,并透彻掌握电能应用、维护和管理知识。 ?无功功率补偿及功率因数调节方案提高您的电能应用效率,降低惩罚性电费损失。 ?电力谐波治理保障您用电设备的安全和设备使用效率。 ?电气火灾监视系统协助您查找电气火灾隐患,预防电气火灾发生,保障设备和生命安全。 电能质量治理对于企业的意义 许多企业对无功补偿、谐波治理的节能意义认识不足,不知道为什么要装,仅仅是因为供电部门力调罚款,才不得不装。客观地讲,无功补偿及谐波治理确实对供电部门有诸多好处,但对企业自身也有许多益处: ?电力部门对各企业的功率因数有规定的标准,如果达不到标准,要对其进行罚款,收取力率电 费,功率因数提高后可以消除力率罚款电费。 ?安装无功补偿装置后电网传输的无功功率减少,这样就增加了电网的传输有功功率的能力,提 高了设备利用率。 ?功率因数提高后,线路的总电流下降,线路损失和变压器有功损失会降低,可以减少一部分动 力电费。 ?功率因数提高后,线路的总电流下降,线路的电压降减小,从而改善了电压质量。 ?在变压器出力不够时,安装无功补偿装置,提高功率因数可使变压器的带载能力增强。 ?电能质量治理可有效避免谐波引起的误动作/拒动作,避免发生电力谐振,降低变压器和电动机 的损耗,可显著提升用电质量,降低损耗,节约电费,确保企业安全可靠用电。

《国家电网公司电力系统无功补偿配置技术原则》

《国家电网公司电力系统无功补偿配置技术原则》 第一章总则 第一条为保证电压质量和电网稳定运行,提高电网运行的经济效益,根据《中华人民共和国电力法》等国家有关法律法规、《电力系统安全稳定导则》、信息来源:《电力系统电压和无功电力技术导则》、《国家电网公司电力系统电压质量和无功电力管理规定》等相关技术标准和管理规定,特制定本技术原则。 第二条国家电网公司各级电网企业、并网运行的发电企业、电力用户均应遵守本技术原则。 第二章无功补偿配置的基本原则 第三条电力系统配置的无功补偿装置应能保证在系统有功负荷高峰和负荷低谷运行方式下,分(电压)层和分(供电)区的无功平衡。分(电压)层无功平衡的重点是220kV 及以上电压等级层面的无功平衡,分(供电)区就地平衡的重点是110kV及以下配电系统的无功平衡。无功补偿配置应根据电网情况,实施分散就地补偿与变电站集中补偿相结合,电网补偿与用户补偿相结合,高压补偿与低压补偿相结合,满足降损和调压的需要。 第四条各级电网应避免通过输电线路远距离输送无功电力。500(330)kV电压等级系统与下一级系统之间不应有大量的无功电力交换。500(330)kV电压等级超高压输电线路的充电功率应按照就地补偿的原则采用高、低压并联电抗器基本予以补偿。 第五条受端系统应有足够的无功备用容量。当受端系统存在电压稳定问题时,应通过技术经济比较,考虑在受端系统的枢纽变电站配置动态无功补偿装置。 第六条各电压等级的变电站应结合电网规划和电源建设,合理配置适当规模、类型的无功补偿装置。所装设的无功补偿装置应不引起系统谐波明显放大,并应避免大量的无功电力穿越变压器。35kV~220kV变电站,在主变最大负荷时,其高压侧功率因数应不低于0.95,在低谷负荷时功率因数应不高于0.95。 第七条对于大量采用10kV~220kV电缆线路的城市电网,在新建110kV及以上电压等级的变电站时,应根据电缆进、出线情况在相关变电站分散配置适当容量的感性无功补偿装置。 第八条35kV及以上电压等级的变电站,主变压器高压侧应具备双向有功功率和无功功

电力系统电压与无功补偿

现代生产和现代生活离不开电力。电力部门不仅要满足用户对电力数量不断增长的需要,而且也要满足对电能质量上的要求。所谓电能质量,主要是指所提供电能的电压、频率和波形是否合格,在合格的电能下工作,用电设备性能最好、效率最高,电压质量是电能质量的一个重要方面,同时,电压质量的高低对电网稳定、经济运行也起着至关重要的作用。 1 电压与无功补偿 电压顾名思义就是电(力)的压力。在电压的作用下电能从电源端传输到用户端,驱动用电设备工作。 交流电力系统需要电源供给两部分能量,一部分将用于作功而被消耗掉,这部分电能将转换为机械能、光能、热能或化学能,我们称 为“有功功率”。另一部分能量是用来建立磁场,用于交换能量使用的,对于外部电路它并没有作功,由电能转换为磁能,再由磁能转换为电能,周而复始,并没有消耗,这部分能量我们称为“无功功率”,无功是相对于有功而言,不能说无功是无用之功,没有这部分功率,就不能建立感应磁场,电动机、变压器等设备就不能运转。在电力系统中,除了负荷无功功率外,变压器和线路的电抗上也需要大量无功功率。

国际电工委员会给出的无功功率的定义是:电压与无功电流的乘积 为无功功率。其物理意义是:电路中电感元件与电容元件活动所需要的功率交换称为无功功率。

我们以电感元件和电容元件的并联回路来说明这个问题,见图1a,在电压的作用下,电感回路中电流滞后电压90°,而在电容回路中电流却是超前电压90°,即在同一电压作用下,任一瞬时,IL和IC在时间轴对称。我们将每一瞬间电感上的电压与电感电流IL相乘得到电感的功率曲线PL(图1b),同样的,将电容上的电压与电容电流IC相乘得到电容的功率曲线PC(图1c)。 如图2a所示,功率在第二个和第四个1/4周期内电感在吸收功率,并把所吸 电感收的能量转化为磁场能量;而在第一和第三个1/4周期内

6、电能质量-无功补偿解决方案

电能质量-无功补偿解决方案 1.方案背景 电力系统中阻感负荷的存在,如变压器、异步电动机,都会消耗大量的无功功率,而大量的冲击性无功负载还会导致电压发生快速波动。电力电子变流设备,特别是各种相控整流装置的普及及应用,同样会消耗大量的无功功率。由此引发了电能质量恶化、网损增加、三相不平衡、输变电设备有效利用率降低等各种问题。系统中整流器、变流器等非线性负荷的应用,会产生大量的谐波电流注入电网,造成电网电压畸变,谐波不仅使电力电子设备和线路产生涡流损耗,导致线损增加,甚至还会引发系统谐振,从而产生谐波过电压,造成设备损坏。大量的谐波还可能影响继电保护和自动控制系统的可靠性,令正常的生产活动无法进行。 图1系统示意图 2.应用场景 2.1.场景1:风电场并网 随着风力发电技术的发展,风力发电装机容量在电网中所占的比例越来越高,风力发电的随机性会影响电力系统的有功无功,从而引起电压的波动。此外,电力系统的低电压故障又会影响到风电场的并网。

图2应用场景1-风电场并网 2.2.场景2:冶金 电弧炉是冲击性非线性负荷,工作时产生大量的谐波和负序电流,使得电网电压发生较大的波动和闪变,功率因数极低。 图3应用场景2-冶金 3.方案实现 3.1.概述 PRS-7586系列动态无功补偿装置(SVG)可直接接入35kV电压等级及以下电力系统,为电网或用电系统快速提供动态无功补偿,可有效提高系统电压暂态稳定性、抑制母线电压闪变、补偿不平衡负荷、滤除系统谐波及提高功率因数。

图4方案实现原理图示3.2.设计原则 表1系统主要设计原则

3.3.装置列表 表2装置列表 4. 1)模块化的电路结构 a)SVG的核心是基于IGBT器件的(链式)逆变器,链式逆变器每相由多个功率模块输出串联而成,功率模块采用N+1或N+2冗余运行结构; b)模块控制采用大规模FPGA芯片载波移相多电平空间矢量PWM控制策略,电路简单,抗干扰能力强,可靠性高; c)采用自励起动技术,使得装置投入时冲击电流小; d)模块面板共四个电气端子,2个光纤端子,接线简单,还设有若干状态及故障指示灯,方便维护及检修。 2)控制 a)采用基于DSP及多FPGA的全数字化控制平台,具有集成度高,可靠性高的优点; b)现场可设定控制方式:系统补偿、负荷补偿,同时可设定谐波补偿次数; c)采用瞬时无功电流控制策略,可在系统短路故障时,快速连续的发出无功,为系统提供充足的无功支撑; d)采用进口PLC实现多组固定电容器的综合投切控制; e)控制器采用全封闭防尘设计,无需冷却风扇,大大提高可靠性。

电力系统无功补偿

毕业论文(设计) 题目电力系统的无功优化、补偿及无功补 偿技术对低压电网功率因数的影响

2007年8月30日 电力系统的无功优化、补偿及 无功补偿技术对低压电网功率因数的影响 电气工程及其自动化专业 学生:指导教师: 摘要:电力系统的无功优化和无功补偿是提高系统运行电压,减小网损,提高系统稳定水平的有效手段。本文对当前常用的无功优化和无功补偿进行了总结,对目前无功补偿和优化存在的问题进行了一定的探讨和研究。电压是电能质量的重要指标之一,电压质量对电网稳定及电力设备安全运行、线路损失、工农业安全生产、产品质量、用电单耗和人民生活用电都有直接影响。无功电力是影响电压质量的一个重要因素,电压质量与无功是密不可分的,电压问题本质上就是一个无功问题。解决好无功补偿问题,具有十分重要的意义。 关键词:无功优化无功补偿网损电压质量功率因数 Reactive power system optimization, compensation and Reactive power compensation of low voltage network of power factor Electrical Engineering and Automation Student:Luobifeng Supervisor:Qingyuanjiu Abstract:Reactive optimization and reactive compensation of power system is a valid way to increse the sy stem’s operating voltage and maintenance level .It’s also the way to reduce the internet loss . This essay summarize what Reactive optimization and reactive compensation are in our daily life. It also discusses and studies some problems existing in reactive optimization and reactive compensation. Voltage is one of the important targets of Quality of power supply, whose quality will affect stabilization of power grids and electric equipment functioning well

电力系统中的无功补偿

电力系统中的无功补偿 众所周知,电源能量通过电感或电容时并没有能量消耗,只是在负荷与电源之间相互交换和三相之间流动。由于这种交换功率不对外做功,因此称为无功功率。电力系统中的设备大部分是根据电磁感应原理工作的,它们在单位周期内吸收的功率和释放的功率相同,以此建立交变的磁场,这部分功率就是无功功率。可见,无功功率在电力系统中扮演了重要的角色。可是在电力系统中为什么要进行无功补偿呢? 无功补偿的必要性 在电力系统中,如变压器、电动机等许多工作时需要励磁的设备都需要从电力系统中吸收无功功率;并且输电线路具有分布电容,在电压下将产生容性无功功率,也就是说线路也要吸收感性无功。发电机是电力系统中唯一的有功电源,也是基本的无功电源。如果只依靠发电机来提供无功功率的,由于无功功率不断地来回地交换会引起发电、输电及供配电设备上的电压损耗及功率损失。另外,发电机发出的所有功率等于有功功率与无功功率的矢量和,提供的无功功率多时,提供的有功功率也就相对就减少了,显然这种运行方式也是很不经济的。 如果不进行无功功率补偿,通常会造成两个主要问题: (1)在电力传输系统中,如果说出现了无功功率不足的现象,那么就会导致电力系统中的电压以及功率因数不断的降低,最终导致用电设备受到破坏,严重情况下甚至会导致电网系统中的电压崩溃,使得整个电网控制系统瓦解,从而造成片区大面积的停电。 (2)电力电压以及功率因素的降低,会导致电力系统中的电气传输设备无法得到有效的利用,从而造成了电力系统中传输的电能损耗不断增加,降低了电能传输的效率,给用电用户的日常生活带来的极大的困扰。 因此国家相关政策规定,各级电压的电力网和电力用户都要提高自然功率因数,并按无功分层分区和就地平衡以及便于调压的原则,安装无功补偿设备和必要的调压装置,电网用户都要提高调压装置和无功补偿设备的运行水平。 无功补偿的作用 (1)提高电压质量 将线路中的电流分为有功电流I a 和无功电流I r ,则线路中的电压损失为 l a r l 3()3PR QX U I R I X U +?=?+= 其中,P 为有功功率,Q 为无功功率,U 为额定电压,R 为线路总电阻,X l 为线路感抗。

无功补偿怎么计算

没目标数值怎么计算? 若以有功负载1KW,功率因数从0.7提高到0.95时,无功补偿电容量: 功率因数从0.7提高到0.95时: 总功率为1KW,视在功率: S=P/cosφ=1/0.7≈1.4(KVA) cosφ1=0.7 sinφ1=0.71(查函数表得) cosφ2=0.95 sinφ2=0.32(查函数表得) tanφ=0.35(查函数表得) Qc=S(sinφ1-cosφ1×tanφ)=1.4×(0.71-0.7×0.35)≈0.65(千乏) 电网输出的功率包括两部分;一是有功功率;二是无功功率.直接消耗电能,把电能转变为机械能,热能,化学能或声能,利用这些能作功,这部分功率称为有功功率;不消耗电能;只是把电能转换为另一种形式的能,这种能作为电气设备能够作功的必备条件,并且,这种能是在电网中与电能进行周期性转换,这部分功率称为无功功率,如电磁元件建立磁场占用的电能,电容器建立电场所占的电能.电流在电感元件中作功时,电流超前于电压90℃.而电流在电容元件中作功时,电流滞后电压90℃.在同一电路中,电感电流与电容电流方向相反,互差180℃.如果在电磁元件电路中有比例地安装电容元件,使两者的电流相互抵消,使电流的矢量与电压矢量之间的夹角缩小,从而提高电能作功的能力,这就是无功补偿的道理. 计算示例 例如:某配电的一台1000KVA/400V的变压器,当前变压器满负荷运行时的功率因数cosφ =0.75, 现在需要安装动补装置,要求将功率因数提高到0.95,那么补偿装置的容量值多大?在负荷不变的前提下安装动补装置后的增容量为多少?若电网传输及负载压降按5%计算,其每小时的节电量为多少? 补偿前补偿装置容量= [sin〔1/cos0.75〕-sin〔1/cos0.95〕]×1000=350〔KVAR〕安装动补装置前的视在电流= 1000/〔0.4×√3〕=1443〔A〕 安装动补装置前的有功电流= 1443×0.75=1082〔A〕 安装动补装置后视在电流降低=1443-1082/0.92=304 〔A〕 安装动补装置后的增容量= 304×√3×0.4=211〔KVA〕 增容比= 211/1000×100%=21% 每小时的节电量〔304 ×400 ×5% ×√3 ×1 〕 /1000=11 (度) 每小时的节电量(度)

电力系统的无功补偿方法和意义

电力系统的无功补偿方法和意义 摘要随着现代电力电子技术与国民经济的进一步发展,电力用户对供电电能质量水平和用电可靠性提出了更高更多的要求。由此产生了一些静止形态的动态无功补偿装置。电力电子装置不仅可以发送而且还可以吸收无功功率,其本身也成为产生无功的功率源。但动态补偿的技术目前还不成熟。 关键词配电系统;无功补偿 中图分类号TM715 文献标识码 A 文章编号1673-9671-(2012)112-0231-01 1 无功功率的作用 无功功率决不是无用功率,它的用处很大。电动机需要建立和维持旋转磁场,使转子转动,从而带动机械运动,电动机的转子磁场就是靠从电源取得无功功率建立的。变压器也同样需要无功功率,才能使变压器的一次线圈产生磁场,在二次线圈感应出电压。因此,没有无功功率,电动机就不会转动,变压器也不能变压,交流接触器不会吸合。在正常情况下,用电设备不但要从电源取得有功功率,同时还需要从电源取得无功功率。无功补偿的主要作用就是提高功率因数以减少设备容量和功率损耗、稳定电压和提高供电质量,在长距离输电中提高输电稳定性和输电能力以及平衡三相负载的有功和无功功率。安装并联电容器进行无功补偿,可限制无功功率在电网中的传输,相应减少了线路的电压损耗,提高了配电网的电压质量。 2 影响功率因数的主要因素 异步电动机和电力变压器是耗用无功功率的主要设备异步电动机的定子与转子间的气隙是决定异步电动机需要较多无功的主要因素。而异步电动机所耗用的无功功率是由其空载时的无功功率和一定负载下无功功率增加值两部分所组成。所以要改善异步电动机的功率因数就要防止电动机的空载运行并尽可能提高负载率。变压器消耗无功的主要成份是它的空载无功功率,它和负载率的大小无关。因而,为了改善电力系统和企业的功率因数,变压器不应空载运行或长其处于低负载运行状态。 电网频率的波动也会对异步电机和变压器的磁化无功功率造成一定的影响。 以上论述了影响电力系统功率因数的一些主要因素,因此必须要寻求一些行之有效的、能够使低压电力网功率因数提高的一些实用方法,使低压网能够实现无功的就地平衡,达到降损节能的效果。 3 低压配电网无功补偿的方法 3.1 变电站集中补偿方式 针对输电网的无功平衡,在变电站进行集中补偿,补偿装置包括并联电容器、同步调相机、静止补偿器等,主要目的是改善输电网的功率因数、提高终端变电所的电压和补偿主变的无功损耗。这些补偿装置一般连接在变电站的10 kV母线上,以补偿负荷的无功功率。补偿电容分为固定补偿与自动补偿两部分。因为有功负荷是变化的,其无功负荷也随之变化,但不论无功负荷如何变化,总可把它分为固定部分和变动部分,所以补偿电容应采取固定补偿与自动补偿相结合的方法,配置固定补偿电容以减少投资,配置自动补偿电容以满足补偿需要,做到二者兼顾。因此变电站集中补偿具有管理容易、维护方便等优点,但是这种方案对配电网的降损起不到什么作用。

无功补偿的计算

无功补偿的计算 一、系统基本情况 XX钢丝绳有限公司35kV变电所目前采用二台SZ11-35±3×2.5%/0.4,1600kVA(Dyn11、U%=6.5)变压器,预留一台SZ11-35±3×2.5%/0.4,1600kVA变压器,电力供电系统经35kV变压器直接降压为0.4kV低压配电系统向热处理车间、拉丝车间、捻股合绳车间和工厂照明等供电。主要负荷为电动机。全厂总供电负荷4800kVA(包括预留),总用电负荷3200kW。 系统容量一般由当地供电部门提供,也可将供电电源出线开关的开断容量作为系统容量。根据设计院图纸,每台35kV变压器额定电流为2309.5A,额定分断电流为20kA,三台35kV变压器的总分断电流为60kA,则可认为系统容量S=3×(1.73×20(kA)×35000(V))=3×1211MVA ≈3600 MVA。实际可将上一级110kV系统设为无穷大。 二、用电设备基本情况 1.用电负荷 XX钢丝绳有限公司的主要用电负荷,拉丝车间的用电负荷为2720 kW,热处理车间负荷为240 kW,捻股合绳车间负荷为903kW等。主要设备为拉丝机,捻绳机等用电动机,全厂共拥用70台不同容量的电动机,总容量为3909kW。电动机的容量、数量(由设计院提供)见表1。 表1:电动机的容量、数量

2.用电负荷的谐波 根据我们分析,用电负荷的谐波主要来自以下几方面: (1)拉丝机的动力采用电磁调速电动机 拉丝机的动力采用电磁调速电动机,电磁调速电动机普遍采用YCT系列调速电动机,该系列调速电动机由鼠笼式异步电动机、电磁转差离合器和控制器三部分组成,能在规定的调速范围均匀地、连续地无级调速,并输出额定转矩。 控制器是将速度指令信号电压和调速电动机速度负反馈信号电压比较后,经放大电路及移相触发电路,从而控制了晶闸的开放角,改变了转差离合器的励磁电流,使调速电动机转速保持恒定。调节励磁电流即能使电动机在规定的调速范围内实现无级调速。 控制器的控制电机功率、最大输出(直流)见表2。 表2:控制器控制电机功率、最大输出(直流) (2)变频整流调速电动机 全厂有110、137kW 变频调速三相异步电机10台,总负荷1316kW,占全部电动机容量的34%。。该电机由变频整流调速装置来调速,一般采用6脉动交-直-交电流型变频器。电网通过可控硅三相全控桥给变频器供电,功率因数角约等于控制角a。供电电流包含6±1次谐波(K=1、2、3…),并且在直流电流无脉动的理想情况下,n次谐波电流含量是基波电流的1/n。实际上,直流电流脉动导致五次谐波和七次谐波含量增加,大于七次谐波的高次谐波含量减少。 (3)无功补偿装置 变频器用量较大的用户,用电容器进行无功力率补偿虽然可以大副度降低基波无功电流,但是必然出现谐波放大现象。这时,供电电流和电容器电流中谐波和间谐波电流大副度增加。(4)热处理设备 热处理设备一般采用工频感应加热整流装置,小型换流装置采用6脉冲,其运行时产生大量谐

电力系统无功补偿的意义

龙源期刊网 https://www.wendangku.net/doc/9211017927.html, 电力系统无功补偿的意义 作者:王建 来源:《中国科技博览》2013年第25期 [摘要]针对电力系统中日益严重的电能质量问题,阐述进行无功补偿的意义,分析了各种无功补偿技术的原理、优、缺点以及在电力系统中的应用情况,及无功补偿有哪些经济效益及社会效益 [关键词]电能质量;无功补偿: 中图分类号:TM714.3 文献标识码:B 文章编号:1009-914X(2013)25-0076-01 近年来,随着国民经济的发展,电力行业也得到快速发展,特别是大范围的高压输电网络逐渐形成,负荷的快速增长对无功的需求大幅上升。无功功率并不是无用功率,而是在电能传输和转换过程中建立电磁场和提供电网稳定不可缺少的功率之一,无功经不同的电磁耦合反映不同的电压等级,同一等级电压的电网中,电压高低直接反映本级的无功平衡。无功功率的传输不但会产生很大的有功损耗,而且沿传输途径还会产生很大的电压降落,并使电网的视在功率增加,这将对系统产生以下一系列的负面影响。 (1)电网总电流增加,在传送同样的有功功率情况下,总电流的增加,使设备及线路的损耗增加,并使线路及变压器的电压损耗增加。 (2)电网的无功不足,会导致用户端的电压降低,影响正常生产和生活用电,因功率因数太低用户要多付电费;反之,如果无功过剩,会造成电网的运行损耗过高。 一、无功补偿的原理 在交流电路中,由电源供给负载率有两种:一种是有功功率,一种是无功功率。有功功率是保持用电设备正常运行所需的电功率。无功补偿的道理就是将同一电路中的电感电流与电容电流方向互差180~C,可采用一定比例安装特定的电容元件,实现通过电磁元件中的电路达到相互抵消电流,电流矢量与电压矢量的夹角缩小,从而能显著提高电能作功。 无功补偿的意义 (1)依据用电设备的功率因数测算输电线路的电能损失进而进行技术改造,能及时实现节电目的。 (2)用无功补偿设备提供相应无功功率,提高系统功率因数,达到降低能耗、改善电压质量,从而使设备运行稳定、减少损耗。

负荷计算及无功补偿.

负荷计算及无功补偿 第3章负荷计算及无功补偿 供配电技术 南京师范大学电气工程系 第3章负荷计算及无功补偿 3.1 负荷曲线与计算负荷 3.2 用电设备额定容量的确定 3.3 负荷计算的方法 3.4 功率损耗与电能损耗 3.5 变电所中变压器台数与容量的选择 3.6 功率因数与无功功率补偿 3.1 负荷曲线与计算负荷 3.1.1 负荷曲线 负荷曲线(load curve)是指用于表达可分为有功负荷曲线和无功负荷曲线; 按所表示的负荷变动的时间分: 可分为日负荷,月负荷和年负荷曲线. 2.年最大负荷和年最大负荷利用小时数 (1)年最大负荷Pmax 年最大负荷Pmax就是全年中负荷最大的工作班内消耗电能最大的半小时的平均功率,因此年最大负荷也称为半小时最大负荷P30. (2)年最大负荷利用小时数Tmax 年最大负荷利用小时数又称为年最大负荷使用时间Tmax,它是一个假想时间,在此时间内,电力负荷按年最大负荷Pmax (或P30)持续运行所消耗的电能,恰好等于该电力负荷全年实际消耗的电能. 下图为某厂年有功负荷曲线,此曲线上最大负荷Pmax就是年最大负荷,Tmax为年最大负荷利用小时数. 3.平均负荷Pav 平均负荷Pav,就是电力负荷在一定时间t内平均消耗的功率,也就是电力负荷在该时间内消耗的电能W除以时间t的值,即Pav=W/t 年平均负荷为Pav=Wa/8760 3.1.2 计算负荷(calculated load) 通常将以半小时平均负荷为依据所绘制的负荷曲线上的"最大负荷"称为计算负荷,并把它作为按发热条件选择电气设备的依据,用Pca(Qca,Sca,Ica)或 P30(Q30,S30,I30)表示. 规定取"半小时平均负荷"的原因: 一般中小截面导体的发热时间常数τ为10min以上,根据经验表明,中小截面导线达到稳定温升所需时间约为 3τ=3×10=30(min),如果导线负载为短暂尖峰负荷,显然不可能使导线温升达到最高值,只有持续时间在30min以上的负荷时,才有可能构成导线的最高温升. 3.1.3 计算负荷的意义和计算目的 负荷计算主要是确定计算负荷,如前所述,若根据计算负荷选择导体及计算负荷

无功补偿与节电

无功补偿与节电 现在,国内节电市场方兴未艾,国外的,合资的,国产的各种节电器也在市场上纷纷亮相,可是针对广大用户的有关节电的宣传却相对滞后,人们好多模糊的的概念得不到正面的引导,错误 的观念也得不到正面解释与纠正. 就拿街头小贩卖的节电器来讲吧.有些地方的报导说只不过是些电容器,根本没有节电效果...都是骗人的...有些根本就是偷电.....等等;这就给人们一个错误的信息:加装电容器是不节电的,是偷电. 那应该如何解释这个问题呢?先让我们来了解一下什么是无功功率补偿. 无功电源同有功电源一样,是保证电能质量不可缺少的部分。在电力系统中应保持无功平衡,否则,将会使系统电压降低.设备损坏.功率因数下下降,严重时,会引起电压崩溃,系统解裂,造成大面积停电事故。因此,解决电网的无功容量不足,增装无功补偿设备,提高网络的功率因数,对电网的降损节电,安全可靠运行有着极为重要的意义。 当电网需要增设的确定后,即应按照“全面规划,合理布局,分级补偿,就地平衡”的总原则,进行合理的配置,以便取得最大的综合补偿效益。具体要求是: 既要满足全区(地区或县)的无功功率平衡,还要满足分区(供电区).分站(变电站)的无功平衡,尽可能地使长距离输送的无功量小,最大限度地减少功率及电能损耗。集中补偿与分散补偿相结合,以分散补偿为主。既要在变电站进行集中补偿,又要在配电线路及部分用户进行分散补偿,但大部分补偿设备应配置在配电网络中,以实现就地就近补偿。 电力部门补偿与用户补偿相结合。据统计分析,无功功率大约有50%消耗在用户方面,剩下的约50%左右消耗在电力网的损耗上。因此,电力部门与用户共同进行补偿是适宜的。降损与调压相结合,以降损为主。 1.同步发电机 同步发电机既是有功电源,又是无功的主要电源。一般中.小型发电机的额定功率因数为0.80-0.85,即每供给万kw的有功功率,同时还供给7.5-6.2万kw的无功功率,如果发电机的有功输出未满载,在保证发电机的电压为额定电压,并且定转子电流不超过额定值的条件下,发电机的无功出力还可以适当增加。 2.输电线路的充电功率 架空线路的导线是平行排列的。导线之间形成电容,当电压加在输电线上时,线路便产生充电电流。即使线路不接负载,也有电容电流流过。由于电容电流的存在,运行中的输电线路将产生充电功率,影响沿线路各点的电压,输电功率和功率因数。因此,分析电力网的运行情时,必须计算线路的电容和充电功率。3.并联电容器 并联电容器(又称移相电容器)是一种无功电源,他的主要用余是补偿电力网中感性负荷需要的无功,提高网络的功率因数,并兼有调压的辅助作用。 并联电容器补偿的联结方式分为单相.三相星形.三相三角形三种。在实际接电中,为了满足补偿容量的需要,往往采用多台电容器并联或串联组成电容器组,若每台电容器的容量均为C0,则由m组并联,由n台串联组成的电容器组总容量为: C=m/n* C0 并联电容器发出的无功功率与电压平方成正比,当电网传输的无功较大,补偿点的电压偏低,需要大量无功使电压恢复时,电容器发出的无功反而随电压的下降成平方关系减小,促使电压更趋于下降。相反,当补偿点电压偏高,需要减少无功时,电容器随电压升高而增发无功,又促使电压升高。电容器这种无功特性满足不了电网调压要求,为此,常用带负荷调压变压器与并联电容补偿配合使用的运行方式。如果没有带负荷调压装置,一般是将电容器组分成

电力系统中无功补偿的重要性及其主要方式分析

电力系统中无功补偿的重要性及其主要方式分析 【摘要】随着我国电力系统的逐步建设和完善,无功补偿在电力系统运行中的重要作用也逐渐得到了人们的认可与关注,无功补偿有助于提高电力资源供应质量,最大限度降低系统损耗,保持电压问题,减轻设备功率损耗等。然而,在我国的现阶段电力系统无功补偿过程中,仍然存在着一些较为明显的问题,因而有必要对无功补偿的基本方式及其重要意义进行更加深入的研究。本文就对电力系统中无功补偿的基本原理和意义进行了分析,在此基础上探讨了无功补偿的基本方式。 【关键词】电力系统;无功补偿;重要性;主要方式 无功补偿就是无功功率补偿,在电子供电系统中起提高电网的功率因数的作用,降低供电变压器及输送线路的损耗,提高供电效率,改善供电环境。所以无功功率补偿装置在电力供电系统中处在一个不可缺少的非常重要的位置。随着近年来我国电力行业的快速发展,以及电力网络覆盖范围的逐步扩大,电力系统无功补偿已经逐渐成为了决定电网运行质量、稳定性与安全性的主要影响因素,加强电力系统无功补偿,有助于供电质量的提高,以及电力系统设备损耗的降低和电力系统功率因数的提高,因而具有十分重要的意义[1]。 1、无功补偿的意义和原理 电磁感应效应是电力系统很多用电设备的基本工作原理,在各种用电设备的能量转换过程中,系统会产生一个交变磁场,无功补偿一个周期内释放和吸收的视在功率、无功功率和有功功率之间关系。 如果无功功率的来源并非电容器,则一定会造成电力系统无功功率的大量损耗,进而增大变压器和供电线路导线的容量。如果用户端的无功功率补偿不足,则会导致严重的线路损耗,影响供电设备的利用率,造成供电投资的增加。电力系统无功补偿的主要作用机制在于:在相同的电路中并联接入具有感性功率负荷和容性功率负荷的设备,在两种负荷之间能量能够相互交换,因此,容性负荷的无功功率补偿输出能够负担感性负荷所需的无功功率。在电力系统运行过程中,不仅仅有功功率需要保持平衡,无功功率也应保持平衡。因此,《供用电营业规则》中进行了下述规定,即电力无功补偿应实现就地平衡,用户应在用电自然功率因数提高的基础上,进行无功补偿设备的装置和设计,从而保证电压与负荷的随时切除与投入,避免发生无功倒送现象。《供用电营业规则》中还对用户的功率因数标准进行了明确规定,从而避免供电部门发生拒绝供电现象。所以,不管是用电企业还是供电部门,均应进行无功功率动态补偿,从而提高电力系统运行效率,降低能源消耗,避免无功倒送现象,实现功率因数的逐步提高[2]。 2、电力系统无功补偿原则 第一,调压和降损相结合,以调压为辅、降损为主;第二,低压补偿与高压

相关文档