文档库 最新最全的文档下载
当前位置:文档库 › 基于流体力学分析的采煤工作面“U+U”型通风方式研究

基于流体力学分析的采煤工作面“U+U”型通风方式研究

基于流体力学分析的采煤工作面“U+U”型通风方式研究
基于流体力学分析的采煤工作面“U+U”型通风方式研究

采煤工作面“U+U”型通风方式研究

(1.中国矿业大学,安全工程学院,江苏徐州,221008)摘要:瓦斯问题的本质就是其随风流流动的浓度分布问题,而矿井通风系统及采煤工作面通风方式于流体力学有着密切的关系,风流沿着一维巷道连续流动,在流动中涉及能量方程的转换和消耗、压力在不同地点的分布、瓦斯浓度随风流的变化等,所以认识这些问题的本质规律并准确地用流体力学语言表达出来。文章结合流体力学知识分析U+L型通风方式的优缺点,并提出新的“U+U”型通风方式,对于改进煤矿工作面的通风方式、减少瓦斯超限频率和存在盲巷等问题有一定的借鉴意义。

关键词:煤矿通风方式流体力学分析

Research on“U+U”Type Ventilation of Coal Face (1.China University of Mining and Technology,Faculty of Safety Engineering ,

xuzhou221008)

Abstact:Gas nature problem is its concentration with the romantic movement, and mine ventilation systems and ventilation at the coal face is closely related to fluid mechanics, romantic roadway along the one-dimensional continuous flow, flow involved in the conversion of the energy equation and consumption, the pressure distribution at different locations, the gas concentration changes with the romantic, so understanding the nature of these problems with the law and accurately express language of fluid mechanics. In combination with knowledge of fluid mechanics analysis of U + L-type ventilation system advantages and disadvantages, and propose new "U+U" type ventilation, for the improvement of coal face of ventilation to reduce the frequency and the presence of gas gauge issues such as Blind Lane some reference.

Key words:Mine Ventilation type Fluid mechanics analysis

0 引言

瓦斯问题是困扰高瓦斯矿井实施高产高效生产的一大难题。实践表明,工作面采空区瓦斯涌出量占工作面瓦斯涌出量的60%以上,传统的“U”型、“U+L”通风方式,由于采空区漏风携带采空区高浓度瓦斯汇集至工作面上隅角并由风流排出。无论采用高位钻孔、埋管抽放,还是利用高抽巷,都不能从根本上解决上隅角瓦斯超限和瓦斯积聚问题,严重影响采煤工作面的安全、高效生产[1]。瓦斯问题的本质就是其随风流流动的浓度分布问题,而矿井通风是典型的稳定流,风流流动过程中会出现层流和紊流。稳定流指流体在某点的速度v、压力p、密度

和温度t 不随时间而变化,层流是指流体各层的质点互不混合,质点流动的轨迹为直线或有规则的平滑曲线,并与管道轴线方向基本平行。紊流是指流体的质点强烈互相混合,质点的流动轨迹极不规则,除了沿流动总方向发生位移外,还有垂直于流动总方向的位移,且在流体内部存在着时而产生、时而消失的旋涡。

风流沿着一维巷道连续流动,在流动中涉及能量方程的转换和消耗、压力在不同地点的分布、瓦斯浓度随风流的变化等,所以认识这些问题的本质规律并准确地用流体力学语言表达出来,是非常重要的。用流体力学的观点分析现在煤矿常用的“U+L ”型通风方式存在的问题,提出“U+U ”通风方式以满足现代矿山高产高效的要求[2]。

1 通风基本方程

分析矿井通风系统所以用到的方程由能量守恒方程和连续方程等。

1.1 能量守恒方程

能量方程表达了空气在流动过程中的压能、动能和位能的变化规律,是能量守恒的转换定律在矿井通风中的应用,而矿井基本上某点的速度v 、压力p 、密度ρ和温度t 不随时间而变化,所以采用不可压缩方程[8]。

221211221222

u u Z g P Z g P h ρρρρ-++=+++ (1-1) 或 ()()()2

2121212122h P P u u g Z Z ρρ-=-+-+- (1-2)

公式1-1、1-2即不可压缩单位质量流体常规的伯努利方程表达式。

1.2 连续方程

流出微团的净质量流量必须等于微团内质量的减少,则连续性方程的偏微分方程如公式1-3所示。

0=??+V Dt

D ρρ (1-3) 而采空区变密度混合气体非线性渗流的连续方程则可表示为公式1-4所示。

ωρρρ'=??+??)(V t

(1-4) 式中 ρ为混合气体密度;

ρ'瓦斯密度;

ω单位时间、单位采空区内冒落煤体解析出的瓦斯体积量。

公式1-1、1-2、1-3和1-4都是分析矿井通风方式及采空区煤体解析瓦斯流动的基本方程。

2 “U+L ”型通风方式合理性评价

U+L 型通风方式由一条进风巷、一条回风巷、一条专用排瓦斯尾巷所组成,尾巷与回风巷之间每隔一定距离施工联络巷并予以封闭,随着工作面的推进,再将滞后于工作面的联络巷依次打开,使得采空区及邻近层卸压瓦斯通过联络巷排至尾巷,如图1-1所示。

设图1-1中的进风巷风流速度v 1、密度ρ1、压力P 1及高度Z 1;回风巷风流速度v 2、密度ρ2、压力P 2及高度Z 2;专用排瓦斯巷风流速度v 3、密度ρ3、压力P 3及高度Z 3。

则能量守恒公式(1-5)知:

()()

ρρρρρρ2222112322213

322112331212332222111v v v z Q Q z Q z Q Q Q Q p Q p Q p Q h g -+????? ??--+--=- (1-5) 式中 Q 1、Q 2和Q 3分别为进风巷、回风巷及专用排瓦斯巷风量,单位m 3/min 。 由上式知:风流自进风巷流入采空区然后携带瓦斯进入回风巷和专用排瓦斯巷,能量逐渐减弱,若能量不足,无法将瓦斯从专用排瓦斯巷带出,则专用排瓦斯巷的瓦斯浓度就会增加,甚至超过规程,具有潜在危险。

图1-1 “U+L”型通风方式

由以上的分析可以看出U+L 型通风方式适用于瓦斯涌出量大的采煤工作面,其优点为:

(1)可减少采煤工作面回风流中的瓦斯排放量和防止上隅角瓦斯超限;

(2)尾巷不作回风用时可用于钻孔施工、铺设管路抽放瓦斯,还可用于下一邻近工作面的进风巷。

其缺点为:当尾巷作专用排瓦斯巷用时,会有盲巷出现,一旦出现管理不到位或采空区漏风等因素,此巷道的风量就会减少低于规程规定,瓦斯浓度就会增大超过规程规定,存在很大安全隐患。

3 问题的提出

基于以上流体能量方程分析可知采用U+L型通风系统的效果是显而易见的,但是在工作面正常推进过程中,排瓦斯尾巷的回风利用回风巷和排瓦斯尾巷之间的贯眼回风,当回采工作面推进到快靠近下一个贯眼(该贯眼还未打开)时,由于排瓦斯尾巷的风量仍然需要靠上一个贯眼回风,但上一个贯眼随着回采工作面的推进顶板冒落后,严重影响贯眼回风,造成瓦斯尾巷内风量减少,风速低于规定要求,与《煤矿安全规程》(2011年版)第137条规定相抵触。瓦斯尾巷瓦斯浓度超限或经常处于临界状态,严重影响工作面的安全生产。因此采用U+L 型通风系统的采煤工作面,存在一定的安全隐患,故需对其合理性进行改造设计。

4 “U+U”型通风系统的基本原理

采煤工作面的瓦斯治理是矿井通风瓦斯管理的一个重要部分,采煤工作面应当有独立的通风系统,并达到合理、可靠、安全的要求。在通风瓦斯管理上,首要目的是要保证采煤工作面人员呼吸和排除瓦斯的需要,因此在选择采煤工作面通风系统时,治理瓦斯是必然考虑的因素。采用U型通风系统的采煤工作面,其上隅角是最易积聚瓦斯的地方,故如何防治上隅角瓦斯积聚超限[3~5],一直是防止瓦斯事故的重点,而采煤工作面U+L型通风方式的应用,极大地提高了瓦斯处理能力。但现有大多数煤矿综采工作面现用U+L型通风方式存在一定的不足,其主要就存在专用排瓦斯巷回风流的瓦斯浓度超过2.5%,风速低于0.5m/s,留有盲巷等危险因素。

4.1 概念及基本原理

为消除开采过程中出现的专用排瓦斯巷瓦斯超限及风量降低的问题,在工作面的另一侧开掘一条配风巷,或在工作面后部保留一条巷道,从而使工作面系统形成专用排瓦斯巷掺新风的“两进两回”或“三进两回”的新型通风系统,有效提高了工作面专用排瓦斯巷的配风量,减少了工作面开采过程中的瓦斯超限问题,并且消除了盲巷,这种通风方式就是U套U、U并U型通风系统,我们可以把这二者统一定义为“U+U”型通风系统。

4.2 U套U型通风方式分析

回采工作面仍然采用一进两回的通风方式,只是在回采工作面布置双切眼,

第一切眼留设在工作面后部,该切眼与瓦斯尾巷相通,第二切眼与回风巷相通,瓦斯尾巷除仍然利用贯眼通风外,还利用第一切眼通过全负压给瓦斯尾巷配风,这样将会大大提高瓦斯尾巷的配风量,提高风速,从而有效稀释了瓦斯浓度,确保了工作面安全生产(见图1-2),实质是U 套U 型通风方式。

进风配巷

图1-2 “U 套U ”型通风方式

设图1-2中的轨道顺槽风流速度v 1、密度ρ1、压力P 1及高度Z 1;胶带顺槽风流速度v 2、密度ρ2、压力P 2及高度Z 2;回风顺槽风流速度v 3、密度ρ3、压力P 3及高度Z 3;瓦斯尾巷风流速度v 4、密度ρ4、压力P 4及高度Z 4。 ()()ρρρρρρρρ4

4222211242322214

4332211234431212442332222111v v v v z Q z Q Q z Q z Q Q Q Q Q p Q p Q p Q p Q h g -+-+????

? ??--++--+= (1-6) 式中 Q 1、Q 2、Q 3和Q 4分别为轨道顺槽、胶带顺槽、回风顺槽和瓦斯巷风

量,单位m 3/min 。

4.3 U 并U 型通风方式分析 采用三进两回的通风方式,在方案一的基础上,瓦斯尾巷处开掘进风配巷,专门给瓦斯尾巷配风(见图1-3)。排瓦斯尾巷除仍然利用贯眼通风外,还利用新开的专用配风巷通过全负压给其掺新配风,达到加瓦斯尾巷的配风量,稀释其内的瓦斯浓度的目的,使其内的瓦斯浓度始终保持在《煤矿安全规程》规定以下,确保工作面安全生产,实质是U 并U 型通风方式[6]。

图1-3 “U 并U ”型通风方式

设图1-2中的轨道顺槽风流速度v 1、密度ρ1、压力P 1及高度Z 1;胶带顺槽风流速度v 2、密度ρ2、压力P 2及高度Z 2;回风顺槽风流速度v 3、密度ρ3、压力P 3及高度Z 3;瓦斯尾巷风流速度v 4、密度ρ4、压力P 4及高度Z 4;进风配巷风流速度v 5、密度ρ5、压力P 5及高度Z 5。

则由能量方程可得:

()()ρρρρρρρρρρ4

42255221124232522214

433552211234543551212442332552222111v v v v v z Q z Q Q z Q Q z Q z Q Q Q Q Q Q p Q p Q p Q p Q p Q h g -++-+????

? ??--+++--++= (1-7) 式中 Q 1、Q 2、Q 3、Q 4和Q 5分别为轨道顺槽、胶带顺槽、回风顺槽、瓦斯

巷风量和进风配巷,单位m 3/min 。 4.4 U 套U 及U 并U 型通风方式对比

U 套U 及U 并U 型通风方式均能够实现对瓦斯尾巷的掺新配风,且系统稳定可靠。但方U 套U 及U 并U 型通风方式相比,随着采空区的加大,其绕采空区的线路增长,经过的采空密闭墙也增多,通风负压作用的采空面积也变大,这就会把采空瓦斯带入方案一的大U 中的回风巷,如密闭不严密、煤柱压疏漏风,则会造成瓦斯超限,增加风量会带出更大瓦斯量,大U 失去效用。而并列双U 型通风方式中相当于大U 的U 线路不经过采空区,或者说经过的通风负压作用的采空区面积小,且可任意增大风量,并有抑制采空区瓦斯涌出的作用,因此其处理瓦斯能力大[7]。虽说并列双U 型通风方式比大U 套小U 通风方式多施工一条巷道,但均可为下一工作面复用,而且不用留设工作面切眼与通风巷之间的煤柱。另外,从管理上讲并列双U 型通风方式中的U 比大U 更易于风量调配和密闭施工。

5 结论

文章利用流体力学能量方程对U+L型通风系统进行分析,得出其优缺点,并基于此提出采煤工作面的U+U型通风方式。并得出结论,U+U型通风系统,为综采工作面通风系统设计增加一种新的通风方式,其通风能力大、处理瓦斯能力强,能消除上隅角风流涡流状态,使工作面上隅角、回风尾部联络巷及两条回风巷瓦斯浓度始终处于受控状态且有较大的富余系数。U+U型通风系统使用,拓展了采煤工作面利用通风系统治理瓦斯的新型途径,有效地降低了该巷道的瓦斯浓度,为工作面安全正常生产提供了有力的保障,具有良好的经济效益和社会效益。

参考文献

[1] 吴玉国,邬剑明,王俊峰等综放工作面“U+L”型与“U+I”型通风方式下排放瓦斯效果对比[J].中国煤炭2010年3月

[2] 王志玉.三进两回偏Y型通风方式在寺河矿一次采全高工作面的实践[J]华北科技学院学报2005年4月

[3] 马益民,谢军.“Y”型通风技术在谢一矿5121工作面的应用[J].煤矿安全,2010年

[4] 简俊杰,吴增光.“J+E”型通风方式在王庄煤矿的应用[J]煤矿开采,2008年[5] 李秀琴,胡永忠,肖代兵.薄煤层高瓦斯矿井高产高效工作面通风方式—“双U”型通风方式的探讨[J]地下空间与工程学报,2006年

[6] 崔海威长壁采煤法采煤工作面通风方式的确定[J].煤炭技术,2009年

[7] 柏发松,郑群,周汝洪.高瓦斯煤层群开采沿空留巷U型通风煤与瓦斯共采试验研究矿业安全与环保,2008年

[8] 王德明.矿井通风与安全中国矿业大学出版社2007年10月

长壁采煤法采煤工作面通风方式的确定讲解

长壁采煤法采煤工作面通风方式的确定 2006年8月17日16:22:0 长壁采煤法有后退式与前进式两种类型。无论是后退式工作面还是前进式工作面,沼气主要都来源于两部分:一是正被开采的煤层;二是相邻的岩层或煤层。如果不实行沼气抽放,相邻岩层或煤层的沼气将聚集在采空区。来源于上述两方面的沼气总涌出量,直接影响工作面的安全生产。工作面的沼气浓度,无论是后退式工作面,还是前进式工作面,皆由工作面风量来控制。 前进式工作面,由于采空区的漏风而减少了工作面的有效风量,但风流能有效地清洗工作面上隅角处的沼气。后退式工作面,采空区的漏风大大地减少,但在走向长壁工作面上隅角处会出现沼气的聚集(见图1)。仰斜长壁工作面,沼气上浮,沼气集中于工作面空间,不利于工作面的安全生产。俯斜长壁工作面,沼气集中于上部采空区,有利于工作面的安全生产。 图1 工作面上隅角处沼气的聚集 采用合理的工作面通风方式,可以有效地排出工作面沼气,特别是高沼气矿井、高温矿井需要风量大,是工作面安全生产的重要保证。 长壁式工作面通风方式的选择与回采顺序、通风能力和巷道布置有关。通风方式是否合理,成为影响采煤工作面正常生产的重要因素。 一、工作面通风应满足的要求 (一)采煤工作面要有足够的风量,并符合《煤矿安全规程》的要求,特别要防止在工作面上隅角处沼气的积聚; (二)采用沿空留巷时,巷旁应采取防漏风措施; (三)风流最好是单向顺流,尽量减少折返、逆流,力求系统简单、风路短; (四)根据通风要求,进风巷、回风巷应有足够的断面和数目。 二、工作面通风方式的确定 长壁式采煤工作面通风方式主要有U型、U+L型、Z型、Y型、W型以及H

流体力学的应用

重庆理工大学 关于流体力学应用的论文 重庆理工大学 2012年03月01日

流体力学的应用 【摘要】 流体力学是在人类同自然界作斗争和在生产实践中逐步发展起来的。古时中国有大禹治水疏通江河的传说;秦朝李冰父子带领劳动人民修建的都江堰,至今还在发挥着作用;大约与此同时,古罗马人建成了大规模的供水管道系统等等。对流体力学学科的形成作出第一个贡献的是古希腊的阿基米德,他建立了包括物理浮力定律和浮体稳定性在内的液体平衡理论,奠定了流体静力学的基础。 流体力学是力学的一个重要分支,它主要研究流体本身的静止状态和运动状态,以及流体和固体界壁间有相对运动时的相互作用和流动的规律。在生活、环保、科学技术及工程中具有重要的应用价值。 【关键词】流体力学流体阻力牛顿流体涡流 【正文】 流体是气体和液体的总称。在人们的生活和生产活动中随时随地都可遇到流体,所以流体力学是与人类日常生活和生产事业密切相关的。大气和水是最常见的两种流体,大气包围着整个地球,地球表面的70%是水面。大气运动、海水运动(包括波浪、潮汐、中尺度涡旋、环流等)乃至地球深处熔浆的流动都是流体力学的研究内容。 流体力学在生产生活中的应用很广泛,例如航空航天航海技术、

水利工程、环境保护以及生活中很多不起眼的小物件也利用了流体力学的基础知识。 例如生活中常见的高尔夫球,高尔夫球运动起源于15世纪的苏格兰,不知道大家有没有发现,高尔夫球的表面做成有凹点的粗糙表面,而不是平滑光趟的表面,就是利用粗糙度使层流转变为紊流的临界雷诺数减小,使流动变为紊流,以减小阻力的实际应用例子。最初,高尔夫球表面是做成光滑的,后来发现表面破损的旧球反而打的更远。原来是临界Re数不同的结果。高尔夫球的直径为41.1毫米,光滑球的临界RE数为3.85×E5,相当的自由来流空气的临界速度为135米/秒,实际上由于制造得不可能十分完善,速度要稍微低一些。 一般高尔夫球的速度达不到这么大,因此,空气绕流球的情况属于小于临界Re数的情况,阻力系数Cd较大。将球的表面做成粗糙面,促使流动提早转变为紊流,临界RE数降低到E5,相当的临界速度为35米/秒,一般高尔夫球的速度要大于这个速度。因此,流动属于大于临界Re数的情况,阻力系数Cd较小,球打得更远。 同样在游泳的时候,也受到流体的作用。游泳是在水中进行的周期性运动。人在水中的漂浮能力与身体所持姿势直接相关。身体保持

工程流体力学及水力学实验报告及分析讨论

工程流体力学及水力学实验报告及分析讨论

工程流体力学及水力学实验报告及分析讨论 实验一流体静力学实验 验原理 重力作用下不可压缩流体静力学基本方程 (1.1) 中: z被测点在基准面的相对位置高度; p被测点的静水压强,用相对压强表示,以下同; p0水箱中液面的表面压强; γ液体容重; h被测点的液体深度。 对装有水油(图1.2及图1.3)U型测管,应用等压面可得油的比重S0有下列关系: (1.2) 此可用仪器(不用另外尺)直接测得S0。 验分析与讨论 同一静止液体内的测管水头线是根什么线? 测压管水头指,即静水力学实验仪显示的测管液面至基准面的垂直高度。测头线指测压管液面的连线。实验直接观察可知,同一静止液面的测压管水头线是一根。 当P B<0时,试根据记录数据,确定水箱内的真空区域。 ,相应容器的真空区域包括以下三部分:

)过测压管2液面作一水平面,由等压面原理知,相对测压管2及水箱内的水体而言,面为等压面,均为大气压强,故该平面以上由密封的水、气所占的空间区域,均为真。 )同理,过箱顶小水杯的液面作一水平面,测压管4中,该平面以上的水体亦为真空区)在测压管5中,自水面向下深度某一段水柱亦为真空区。这段高度与测压管2液面低液面的高度相等,亦与测压管4液面高于小水杯液面高度相等。 若再备一根直尺,试采用另外最简便的方法测定γ0。 最简单的方法,是用直尺分别测量水箱内通大气情况下,管5油水界面至水面和油 至油面的垂直高度h和h0,由式,从而求得γ0。 如测压管太细,对测压管液面的读数将有何影响? 设被测液体为水,测压管太细,测压管液面因毛细现象而升高,造成测量误差,毛由下式计算 中,为表面张力系数;为液体的容量;d为测压管的内径;h为毛细升高。常温(t=20℃,=7.28dyn/mm,=0.98dyn/mm。水与玻璃的浸润角很小,可认为cosθ=1.0。于是有 单位为mm) 一般来说,当玻璃测压管的内径大于10mm时,毛细影响可略而不计。另外,当水质,减小,毛细高度亦较净水小;当采用有机玻璃作测压管时,浸润角较大,其h较普管小。 如果用同一根测压管测量液体相对压差值,则毛细现象无任何影响。因为测量高、时均有毛细现象,但在计算压差时,互相抵消了。 过C点作一水平面,相对管1、2、5及水箱中液体而言,这个水平面是不是等压面?

流体力学第七章习题

第七章 相似原理与因次分析 7-1 20℃的空气在直径为600 mm 的光滑风管中以8 m/s 的速度运动,现用直径为60 mm 的光滑水管进行模拟试验,为了保证动力相似,水管中的流速应为多大?若在水管中测得压力降为450 mmH 2O ,那么在原型风管中将产生多大的压力降? 已已知知::d a =600mm ,u a =8m/s ,ρa =1.2kg/m 3,νa =15.0×10-6m 2/s ,d w =60mm ,ρw =998.2kg/m 3, νw =1.0×10- 6m 2/s ;Δp w =450mmH 2O 。 解析:(1) 根据粘性力相似,有Re w =Re a ,即 w w w a a a ννd u d u = 则水管中的流速应为 m/s 33.5)10 0.15100.1)(60600(8))((6 6a w w a a w =???==--ννd d u u (2) 根据压力相似,有Eu a =Eu w ,即 2 w w w 2a a a u p u p ρ?ρ?= 则在原型风管中将产生的压力降为 Pa 95.1181.9450)33 .58)(2.9982.1())(( 2 w 2w a w a a =??=?=?p u u p ρρ 7-2 用20℃的空气进行烟气余热回收装置的冷态模型试验,几何相似倍数为1/5,已知实际装置中烟气的运动粘度为248×10- 6m 2/s ,流速为2.5m/s ,问模型中空气流速为多大时,才能保证流动相似? 已已知知::l C =1/5,ν=248×10-6m 2/s ,νm =15×10- 6m 2/s ,u =2.5m/s 。 解析:根据雷诺数相等,即 m m m νν d u d u = ,得 m/s 76.05.2)10 2481015(5))((6 6m m m =????==--u d d u νν 只有模型中空气的流速为0.76m/s 时,才能保证流动相似。 7-3 用直径为25mm 的水管模拟输油管道,已知输油管直径500mm ,管长100m ,输油量为0.1m 3/s ,油的运动粘度为150×10- 6m 2/s ,水的运动粘度为1.0×10- 6m 2/s ,试求: (1) 模型管道的长度和模型的流量; (2) 若在模型上测得压差为2.5cm 水柱,输油管上的压差是多少? 已已知知::d =500mm ,d m =25mm ,l =100m ,Q =0.1m 3/s ,ν=150×10-6m 2/s ,νm =1.0×10- 6m 2/s ; (Δp/γ)m =2.5cmH 2O 。

综采工作面通风设计

综采工作面通风设计 一、工作面概况 (1)****回采工作面相应地表南段位于老猫顶西侧山坡,北段位于茶叶沟上端。地表地势南高北低,高程971~1132米,盖山厚441~492米。地表大部分为原岩裸露,零星分布着黄土覆盖层。地表无建筑物,北部有林地。 (2)井下:****回采工作面位于2118工作面采空区西侧40米,南邻矿界,西部为未采区,北与12#煤的采区轨道巷相接。工作面与下部15#煤层8122工作面采空区水平投影位置相距65米。工程自北向南推进,南北延伸长980米。 二、通风方式及方法 ****工作面采用“U+L”全负压通风。即:运输顺槽作为进风巷,回风顺槽作为回风巷,尾巷作为专用排瓦斯巷。在回风顺槽和尾巷每隔30米布置一个联络巷,平时封闭,当工作面推进到联络巷附近时,把密闭拆开,调节回风、尾巷的风量,解决上隅角瓦斯。另外****尾巷利用采外配风,选用2×22KW对旋局扇通风,风机位置在****尾巷进风联巷调节窗外,风筒直径800 mm,风筒出口距尾巷掌头必须小于5米。 三、配风量计算 1、按工作面瓦斯涌出量计算(考虑抽放因素) 2008年瓦斯等级鉴定12#煤瓦斯相对涌出量在43.04m3/t,回采时按日产量2000t计算,瓦斯绝对涌出量为59.78 m3/min,根据以往工作面回采经验,工作面抽放率在80%以上,因此****工作面风排瓦斯绝对涌出量为11.95m3/min。 Q采回=q回ch4/1.0%×K回ch4=4.5/1.0%×1.6=720m3/min Q采尾= q尾ch4/2.5%×K尾ch4=7.45/2.5%×1.6=480m3/min Q采=Q采回+Q采尾=1200m3/min(含采外配风300 m3/min) 通过工作面的风量为:1200-300=900 m3/min。 其中: Q采——采煤工作面所需风量m3/min; q回ch4、q尾ch4——采煤工作面回风、尾巷瓦斯绝对涌出量m3/min;(取2008年瓦斯等级鉴定值计算得); K回ch4、K尾ch4——瓦斯涌出不均衡系数,取1.6; 2、按工作面温度与风速计算 Q采=60V采S采=60×2×6.06=727m3/min 其中:Q采——采煤工作面所需风量m3/min; V采——工作面良好气候条件下的风速m/s; S采——工作面断面 6.06m2。 3、按工作面人数计算 Q采=4N=4×60=240m3/min 其中:4——每人所供给风量不得少于4 m3/min; N——采煤工作面同时工作最多人数。 4、风速验算: 依照《煤矿安全规程》第101条规定,12#煤****综采工作面在采取煤层注水、采煤机喷雾降尘等综合防尘措施后的最低风速为0.25m/s,最高风速不得高于 5 m/s,通过上面三种方法计算后,取最大值进行验算。 0.25×60×S大≤Q采≤5×60×S小 0.25×60×6.69≤900≤5×60×5.43(不含采外配风) 100.35≤900≤1629

流体力学实验报告

流体力学 实验指导书与报告 静力学实验 雷诺实验 中国矿业大学能源与动力实验中心

学生实验守则 一、学生进入实验室必须遵守实验室规章制度,遵守课堂纪律,衣着整洁,保持安静,不得迟到早退,严禁喧哗、吸烟、吃零食和随地吐痰。如有违犯,指导教师有权停止基实验。 二、实验课前,要认真阅读教材,作好实验预习,根据不同科目要求写出预习报告,明确实验目的、要求和注意事项。 三、实验课上必须专心听讲,服从指导教师的安排和指导,遵守操作规程,认真操作,正确读数,不得草率敷衍,拼凑数据。 四、预习报告和实验报告必须独自完成,不得互相抄袭。 五、因故缺课的学生,可向指导教师申请一次补做机会,不补做的,该试验以零分计算,作为总成绩的一部分,累计三次者,该课实验以不及格论处,不能参加该门课程的考试。 六、在使用大型精密仪器设备前,必须接受技术培训,经考核合格后方可使用,使用中要严格遵守操作规程,并详细填写使用记录。 七、爱护仪器设备,不准动用与本实验无关的仪器设备。要节约水、电、试剂药品、元器件、材料等。如发生仪器、设备损坏要及时向指导教师报告,属责任事故的,应按有关文件规定赔偿。 八、注意实验安全,遵守安全规定,防止人身和仪器设备事故发生。一旦发生事故,要立即向指导教师报告,采取正确的应急措施,防止事故扩大,保护人身安全和财产安全。重大事故要同时保护好现场,迅速向有关部门报告,事故后尽快写出书面报告交上级有关部门,不得隐瞒事实真相。 九、试验完毕要做好整理工作,将试剂、药品、工具、材料及公用仪器等放回原处。洗刷器皿,清扫试验场地,切断电源、气源、水源,经指导教师检查合格后方可离开。 十、各类实验室可根据自身特点,制定出切实可行的实验守则,报经系(院)主管领导同意后执行,并送实验室管理科备案。 1984年5月制定 2014年4月再修订 中国矿业大学能源与动力实验中心

流体力学 课后习题答案

第一章习题答案 选择题(单选题) 1.1 按连续介质的概念,流体质点就是指:(d) (a)流体的分子;(b)流体内的固体颗粒;(c)几何的点;(d)几何尺寸同流动空间相比就是极小量,又含有大量分子的微元体。 1.2 作用于流体的质量力包括:(c) (a)压力;(b)摩擦阻力;(c)重力;(d)表面张力。 1.3 单位质量力的国际单位就是:(d) (a)N;(b)Pa;(c)kg N /;(d)2/s m 。 1.4 与牛顿内摩擦定律直接有关的因素就是:(b) (a)剪应力与压强;(b)剪应力与剪应变率;(c)剪应力与剪应变;(d)剪应力与流速。 1.5 水的动力黏度μ随温度的升高:(b) (a)增大;(b)减小;(c)不变;(d)不定。 1.6 流体运动黏度ν的国际单位就是:(a) (a)2/s m ;(b)2/m N ;(c)m kg /;(d)2/m s N ?。 1.7 无黏性流体的特征就是:(c) (a)黏度就是常数;(b)不可压缩;(c)无黏性;(d)符合 RT p =ρ 。 1.8 当水的压强增加1个大气压时,水的密度增大约为:(a) (a)1/20000;(b)1/10000;(c)1/4000;(d)1/2000。 1.9 水的密度为10003 kg/m ,2L 水的质量与重量就是多少? 解: 10000.0022m V ρ==?=(kg) 29.80719.614G mg ==?=(N) 答:2L 水的质量就是2 kg,重量就是19、614N 。 1、10 体积为0、53 m 的油料,重量为4410N,试求该油料的密度就是多少? 解: 44109.807899.3580.5 m G g V V ρ= ===(kg/m 3) 答:该油料的密度就是899、358 kg/m 3。 1.11 某液体的动力黏度为0、005Pa s ?,其密度为8503 /kg m ,试求其运动黏度。 解:60.005 5.88210850 μνρ-= ==?(m 2/s) 答:其运动黏度为6 5.88210-? m 2/s 。

煤矿综采一队工作面安装期间通风技术安全措施

煤矿综采一队工作面安装期间通风技术安全措施 一、通风系统、风量计算及通风设施管理: 1、相关参数: 95200工作面处于已回采结束的74107、75202工作面下部,平均距离28m左右,属于被解放层。施工期间参照95204工作面瓦斯涌出情况作为计算依据,95204工作面目前瓦斯绝对瓦斯涌出量平均为3m3/min。该面发火期参照“950工作面三带研究项目”确定,发火期为6~9个月,该面煤尘爆炸性确定为:挥发份vdaf=45.91%。 2、风量计算: (1)采煤工作面按气象条件确定需要风量,其计算公式为: q采=q基本×k采高×k采面长×k温(m3/min) 式中:q采——采煤工作面需要风量,m3/min; q基本——不同采煤方式工作面所需的基本风量,m3/min。 k采高——采煤工作面采高调整系数(见表1); k采面长——采煤工作面倾斜长度调整系数(见表2); k温——采煤工作面温度调整系数(见表3)。 q基本=60×v采×s采max×70%(m3/min) 式中:v采——采煤工作面适宜风速,从防尘角度考虑,取v采=1m/s;s采——采煤工作面最大控顶时断面积,m2; s采max=采煤工作面最大控顶距×工作面实际采高-输送机、支架(支柱)、梁子等所占的面积(m2)

表1k采高——采煤工作面采高调整系数 采高(m);4n(m3/min) 综采工作面风量计算: q采=4×76=304(m3/min) (工作面同时工作的最多人数为76人) (5)按采煤工作面风速进行验算: 15s采平均3、通风设施及管理: 根据该地区通风系统分析,控制影响该面的通风设施主要有:94107运煤下山调节墙、9煤回风上山绕道调节墙、95200皮带机道绕道调节墙、95200皮带机道绕道风门,以上通风设施对保证该面系统稳定极为重要,任何人都不得随意损坏或将两道风门同时打开,以防风流短路,威胁工作面安全。 4、根据生产需要,该工作面安装期间采用下行通风模式,即材料道作为进风系统,皮带机道作为回风系统;为此需对现通风系统进行调整。方案如下: (1)分别在949运煤下山、9煤回风上山绕道、-1025夏桥系皮带石门中段砌筑调节墙,同时堵好95200皮带机道绕道调节孔形成挡风墙,为调整系统作好准备工作。 (2)分别摘除夏桥系皮带石门绕道及-1025夏桥系皮带石门中段风门,形成-1025运输大巷→-1025运输大巷绕道→-1025夏桥系皮带石门→95200材料道→95200工作面→95200皮带机道→95200皮带机道绕道

流体力学在土木工程中的应用

流体力学在土木工程中的应用 摘要:流体力学作为土木工程的重要学科,对于土木工程中的一些建筑物的工程设计,施工与维护有着重要作用,不仅是在工程时间上降低了成本,还在材料等物质方面降低了成本。对于实现科学,合理施工有这很高的地位。 关键词:高层渗流地基稳定风荷载给排水路桥高铁风炮隧道 流体力学是力学的一个分支,是研究以水为主体的流体的平衡和运动规律及其工程应用的一门学科, 土木工程是建造各类工程设施的科学技术的统称。它既指所应用的材料、设备和所进行的勘测、设计、施工、保养维修等技术活动;也指工程建设的对象,即建造在地上或地下、陆上或水中,直接或间接为人类生活、生产、军事、科研服务的各种工程设施,例如房屋、道路、铁路、运输管道、隧道、桥梁、运河、堤坝、港口、电站、飞机场、海洋平台、给水和排水以及防护工程等。 土木建构物的建筑环境不可避免会有地下及地表流水的影响,对于高层,或者高出建筑物,风对建筑物的影响也是不可小觑的。在建

筑物设计之初不但要考虑这些流体对施工的影响,在建成后,也得防范流体的长期作用对建构物的负面影响。怎么认识这些影响正如兵家所言,知己知彼,百战不殆,流体力学作为土木工程一门重要学科,通过对流体力学的学习,会使我们对流体形成一种客观正确的认识。 流体力学在工业民用建筑中的应用: 工业民用建筑是常见建筑,对于低层建筑,地下水是最普遍的结构影响源,集中表现为对地基基础的影响。 如果设计时对建筑地点的地下基地上水文情况了解不到位,地下水一旦渗流会对建筑物周围土体稳定性造成不可挽救的破坏,进而严重影响地基稳定,地基的的破坏对整个建筑主体来说是寿命倒计时的开始。一些人为的加固可能及耗材费力,又收效甚微。地下水的浮力对结构设计和施工有不容忽视的影响,结构抗浮验算与地下水的性状、水压力和浮力、地下水位变化的影响因素及意外补水有关。对于这些严重影响建筑物寿命和甚至波及人生安全的有水的流动性造成问题可以通过水力学知识在建筑物的实际和施工之前给以正确的设计与施工指导。避免施工时出现基坑坍塌等重大问题,也能避免施工结束后基地抵抗地下水渗流能力差的问题。 现在建筑越来越趋向于高层,高层节约了土地成本,提供了更多的使用空间,但也增加了设计施工问题。因为随着高度的增加,由于

工程流体力学课后习题(第二版)答案

第一章 绪论 1-1.20℃的水2.5m 3 ,当温度升至80℃时,其体积增加多少? [解] 温度变化前后质量守恒,即2211V V ρρ= 又20℃时,水的密度3 1/23.998m kg =ρ 80℃时,水的密度32/83.971m kg =ρ 32 1 125679.2m V V == ∴ρρ 则增加的体积为3 120679.0m V V V =-=? 1-2.当空气温度从0℃增加至20℃时,运动粘度ν增加15%,重度γ减少10%,问此时动力粘度μ增加多少(百分数)? [解] 原原ρννρμ)1.01()15.01(-+== 原原原μρν035.1035.1== 035.0035.1=-=-原 原 原原原μμμμμμ 此时动力粘度μ增加了3.5% 1-3.有一矩形断面的宽渠道,其水流速度分布为μρ/)5.0(002.02 y hy g u -=,式中ρ、μ分别为水的密度和动力粘度,h 为水深。试求m h 5.0=时渠底(y =0)处的切应力。 [解] μρ/)(002.0y h g dy du -= )(002.0y h g dy du -==∴ρμ τ 当h =0.5m ,y =0时 )05.0(807.91000002.0-??=τ Pa 807.9= 1-4.一底面积为45×50cm 2,高为1cm 的木块,质量为5kg ,沿涂有润滑油的斜面向下作等速运动,木块运动速度u=1m/s ,油层厚1cm ,斜坡角22.620 (见图示),求油的粘度。 δ

[解] 木块重量沿斜坡分力F 与切力T 平衡时,等速下滑 y u A T mg d d sin μθ== 001 .0145.04.062 .22sin 8.95sin ????= = δθμu A mg s Pa 1047.0?=μ 1-5.已知液体中流速沿y 方向分布如图示三种情况,试根据牛顿内摩擦定律y u d d μ τ=,定性绘出切应力沿y 方向的分布图。 [解] 1-6.为导线表面红绝缘,将导线从充满绝缘涂料的模具中拉过。已知导线直径0.9mm ,长度20mm ,涂料的粘度μ=0.02Pa .s 。若导线以速率50m/s 拉过模具,试求所需牵拉力。(1.O1N ) [解] 2533 10024.5102010 8.014.3m dl A ---?=????==π y u u u u y u u y ττ= 0y ττy 0 τττ=0 y

综采工作面通风设计

****综采工作面通风设计 一、工作面概况 (1)****回采工作面相应地表南段位于老猫顶西侧山坡,北段 位于茶叶沟上端。地表地势南高北低,高程971~ 1132米,盖山 厚441~ 492米。地表大部分为原岩裸露,零星分布着黄土覆盖层。地表无建筑物,北部有林地。 (2)井下:****回采工作面位于2118工作面采空区西侧40米,南邻矿界,西部为未采区,北与12#煤的采区轨道巷相接。 工作面与下部15#煤层8122工作面采空区水平投影位置相距65米。工程自北向南推进,南北延伸长980米。 二、通风方式及方法 ****工作面采用“U+L”全负压通风。即:运输顺槽作为进风巷,回风顺槽作为回风巷,尾巷作为专用排瓦斯巷。在回风顺槽和 尾巷每隔30米布置一个联络巷,平时封闭,当工作面推进到联 络巷附近时,把密闭拆开,调节回风、尾巷的风量,解决上隅角瓦斯。另外****尾巷利用采外配风,选用2×22KW对旋局扇通风,风 机位置在****尾巷进风联巷调节窗外,风筒直径800 mm,风筒 出口距尾巷掌头必须小于5米。 三、配风量计算 1、按工作面瓦斯涌出量计算(考虑抽放因素) 2008年瓦斯等级鉴定12#煤瓦斯相对涌出量在43.04m3/t,回采时按日产量2000t计算,瓦斯绝对涌出量为59.78 m3/min,根据以往工作面回采经验,工作面抽放率在80%以上,因此****工 作面风排瓦斯绝对涌出量为11.95m3/min。 Q采回=q回ch4/1.0%×K回ch4=4.5/1.0%×1.6= 720m3/min Q采尾= q尾ch4/2.5%×K尾ch4=7.45/2.5%×1.6= 480m3/min Q采=Q采回+Q采尾= 1200m3/min(含采外配风300 m3/min)通过工作面的风量为:1200-300=900m3/min。 其中: Q采——采煤工作面所需风量m3/min; q回ch4、q尾ch4——采煤工作面回风、尾巷瓦斯绝对涌出量 m3/min;(取2008年瓦斯等级鉴定值计算得); K回ch4、 K尾ch4——瓦斯涌出不均衡系数,取1.6; 2、按工作面温度与风速计算 Q采=60V采S采=60×2×6.06=727m3/min 其中:Q采——采煤工作面所需风量m3/min; V采——工作面良好气候条件下的风速m/s;

工程流体力学及水力学实验报告(实验总结)

工程流体力学及水力学实验报告实验分析与讨论 1.同一静止液体内的测管水头线是根什么线? 测压管水头指,即静水力学实验仪显示的测管液面至基准面的垂直高度。测压管水头线指测 压管液面的连线。实验直接观察可知,同一静止液面的测压管水头线是一根水平线。 2.当P B <0时,试根据记录数据,确定水箱内的真空区域。 ,相应容器的真空区域包括以下三部分: (1)过测压管2液面作一水平面,由等压面原理知,相对测压管2及水箱内的水体而言,该水平面为等压面,均为大气压强,故该平面以上由密封的水、气所占的空间区域,均为真空区域。 (2)同理,过箱顶小水杯的液面作一水平面,测压管4中,该平面以上的水体亦为真空区域。 (3)在测压管5中,自水面向下深度某一段水柱亦为真空区。这段高度与测压管2液面低于水箱液面的高度相等,亦与测压管4液面高于小水杯液面高度相等。 3.若再备一根直尺,试采用另外最简便的方法测定γ 。 最简单的方法,是用直尺分别测量水箱内通大气情况下,管5油水界面至水面和油水界面至油面的垂 直高度h和h 0,由式,从而求得γ 。 4.如测压管太细,对测压管液面的读数将有何影响? 设被测液体为水,测压管太细,测压管液面因毛细现象而升高,造成测量误差,毛细高度由下式计算 式中,为表面张力系数;为液体的容量;d为测压管的内径;h为毛细升高。常温(t=20℃)的水,=7.28dyn/mm, =0.98dyn/mm。水与玻璃的浸润角很小,可认为cosθ=1.0。于是有(h、d单位为mm) 一般来说,当玻璃测压管的内径大于10mm时,毛细影响可略而不计。另外,当水质不洁时,减小,毛细高度亦较净水小;当采用有机玻璃作测压管时,浸润角较大,其h较普通玻璃管小。 如果用同一根测压管测量液体相对压差值,则毛细现象无任何影响。因为测量高、低压强时均有毛细现象,但在计算压差时,互相抵消了。 5.过C点作一水平面,相对管1、2、5及水箱中液体而言,这个水平面是不是等压面?哪一部分液体是同一等压面? 不全是等压面,它仅相对管1、2及水箱中的液体而言,这个水平面才是等压面。因为只有全部具备下列5个条件的平面才是等压面:(1)重力液体;(2)静止;(3)连通;(4)连通介质为同一均质液体;(5)同一水平面。而管5与水箱之间不符合条件(4),因此,相对管5和水箱中的液体而言,该水平面不是等压面。 6.用图1.1装置能演示变液位下的恒定流实验吗? 关闭各通气阀门,开启底阀,放水片刻,可看到有空气由c进入水箱。这时阀门的出流就是变液位下的恒定流。因为由观察可知,测压管1的液面始终与c点同高,表明作用于底阀上的总水头不变,故为恒

流体力学实验思考题解答(全)

流体力学课程实验思考题解答 (一)流体静力学实验 1、 同一静止液体内的测压管水头线是根什么线? 答:测压管水头指γ p Z + ,即静水力学实验仪显示的测压管液面至基准面的垂直高度。测 压管水头线指测压管液面的连线。从表1.1的实测数据或实验直接观察可知,同一静止液面的测压管水头线是一根水平线。 2、 当0

采煤工作面串联通风安全技术措施(最新版)

采煤工作面串联通风安全技术 措施(最新版) Security technology is an industry that uses security technology to provide security services to society. Systematic design, service and management. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0650

采煤工作面串联通风安全技术措施(最新 版) 根据采煤工作面的生产情况,目前急须布置准备接替工作面,但在通风系统中,掘进工作面与回采工作面相连接,目前还未形成独立的通风系统,根据《煤矿安全规程》规定串联通风次数不得超过一次,为了保证串联通风期间的安全生产,特制定以下安全技术措施,在施工时,要求严格执行。 一、通风管理 1、掘进工作面时,乏风串入回采工作面,必须在采掘工作面的配风要求保证有足够的风量。掘进工作面用风后的回风进入回采工作面的风流中,瓦期和CO2浓度必须在0.5%以下,其它有害气体应符合《煤矿安全规程》的要求。 2、加强通风设施管理,减少风门漏风。在进入回采工作面的风

流中,必须装有瓦斯自动检测报警断电仪。 3、保持采煤工作面的进风、回风有4m2以上的断面,保持畅通无阻。 4、测风人员要经常测定风量,如有变化,应查明原则,及时处理。 二、瓦斯管理 1、加强采掘工作面的瓦期检查,如有瓦斯增加,即要查明原因,及时处理。 2、串入采煤工作面的瓦斯含量不得超过0.5%,如有超限,要立即停止采煤工作面的一切作业,然后查明超限原因,进行处理。 3、在采煤工作面进风巷距采面下出口煤壁10m处安设瓦斯监测探头,随时掌握串入采面的风流中瓦斯浓度,探头或监测主机如有超限报警,要立即通知采面停止作业,汇报矿领导并检查处理。 4、在采面下出口10m处还要设瓦斯检查牌板,瓦检员每次检查结果都要写在牌板上,瓦斯浓度有变化时,要与当班采面作业人员讲清楚,作好防范。

流体力学-伯努利方程实验报告

中国石油大学(华东)工程流体力学实验报告 实验日期:2014.12.11成绩: 班级:石工12-09学号:12021409姓名:陈相君教师:李成华 同组者:魏晓彤,刘海飞 实验二、能量方程(伯诺利方程)实验 一、实验目的 1.验证实际流体稳定流的能量方程; 2.通过对诸多动水水力现象的实验分析,理解能量转换特性; 3.掌握流速、流量、压强等水力要素的实验量测技能。 二、实验装置 本实验的装置如图2-1所示。 图2-1 自循环伯诺利方程实验装置 1.自循环供水器; 2.实验台; 3.可控硅无极调速器;4溢流板;5.稳水孔板; 6.恒压水箱; 7.测压机;8滑动测量尺;9.测压管;10.试验管道; 11.测压点;12皮托管;13.试验流量调节阀 说明 本仪器测压管有两种: (1)皮托管测压管(表2-1中标﹡的测压管),用以测读皮托管探头对准点的总水头; (2)普通测压管(表2-1未标﹡者),用以定量量测测压管水头。 实验流量用阀13调节,流量由调节阀13测量。

三、实验原理 在实验管路中沿管内水流方向取n 个过水断面。可以列出进口断面(1)至另一断面(i )的能量方程式(i =2,3,…,n ) i w i i i i h g v p z g p z -++ + =+ + 1222 2 111 1αγυαγ 取12n 1a a a ==???==,选好基准面,从已设置的各断面的测压管中读出 z+p/r 值,测 出透过管路的流量,即可计算出断面平均流速,从而即可得到各断面测压管水头和总水头。 四、实验要求 1.记录有关常数实验装置编号 No._4____ 均匀段1d = 1.40-210m ?;缩管段2d =1.01-210m ?;扩管段3d =2.00-2 10m ?; 水箱液面高程0?= 47.6-2 10m ?;上管道轴线高程z ?=19 -2 10m ? (基准面选在标尺的零点上) 2.量测(p z γ + )并记入表2-2。 注:i i i p h z γ =+ 为测压管水头,单位:-2 10m ,i 为测点编号。 3.计算流速水头和总水头。

流体力学实验思考题解答

流体力学实验思考题解答 (一)流体静力学实验 1、 同一静止液体内的测压管水头线是根什么线? 答:测压管水头指γ p Z + ,即静水力学实验仪显示的测压管液面至基准面的垂直高度。测 压管水头线指测压管液面的连线。从表1.1的实测数据或实验直接观察可知,同一静止液面的测压管水头线是一根水平线。 2、 当0

长壁采煤法采煤工作面通风方式的确定

长壁采煤法采煤工作面通风 方式的确定 姓名: 单位名称: 申报类别:

摘要:长壁采煤法布置采煤工作面过程中如何选择合理的通风系统和通风方式,是保证采煤工作面 通风可靠、安全生产的关键,也是采煤工作面上隅角瓦斯治理的有效途径本文就长壁采煤法采煤工作面 通风方式进行了详细的剖析,为煤矿安全生产和稳产高奠定了基础。 关键词:长壁采煤;通风方式;隅角瓦斯防治;通风可靠 前言:长壁采煤法在我国煤炭开采过程中是较为常用的采煤方法,它主要体现在搬家次数少,工作 面产出率高,能达到高产高效的目的,但在布置过程中选择不同的通风系统会遇到工作面的隅角瓦斯治 理以及安全生产、稳产高产等方方面面的问题,所以长壁采煤法选择合的的通风方式至关重要。 长壁采煤法有后退式与前进式两种类型。无论是后退式工作面还是前进式工作面,沼气主要都来源 于两部分:一是正被开采的煤层;二是相邻的岩层或煤层。如果不实行沼气抽放,相邻岩层或煤层的沼 气将聚集在采空区。来源于上述两方面的沼气总涌出量,直接影响工作面的安全生产。工作面的沼气浓度,无论是后退式工作面,还是前进式工作面,皆由工作面风量来控制。 前进式工作面,由于采空区的漏风而减少了工作面的有效风量,但风流能有效地清洗工作面上隅角处的 沼气。后退式工作面,采空区的漏风大大地减少,但在走向长壁工作面上隅角处会出现沼气的聚集(见 图1)。仰斜长壁工作面,沼气上浮,沼气集中于工作面空间,不利于工作面的安全生产。俯斜长壁工作面,沼气集中于上部采空区,有利于工作面的安全生产。 采用合理的工作面通风方式,可以有效地排出工作面沼气,特别是高沼气矿井、高温矿井需要风量大,是工作面安全生产的重要保证。 长壁式工作面通风方式的选择与回采顺序、通风能力和巷道布置有关。通风方式是否合理,成为影 响采煤工作面正常生产的重要因素。 一、工作面通风应满足的要求 (一)采煤工作面要有足够的风量,并符合《煤矿安全规程》的要求,特别要防止在工作面上隅角处沼气的积聚; (二)采用沿空留巷时,巷旁应采取防漏风措施; (三)风流最好是单向顺流,尽量减少折返、逆流,力求系统简单、风路短; (四)根据通风要求,进风巷、回风巷应有足够的断面和数目。 二、工作面通风方式的确定 长壁式采煤工作面通风方式主要有U型、U+L型、Z型、Y型、W型以及H型等几种。见图2所示。从图2中可以看出,如果由后退式改变成前进式开采,除U+L型通风系统之外,其它各种通风系统对前

流体力学的应用

流体力学在航空航天工程中的应用 (洪渊,西安科技大学,能源学院采矿工程卓越1301班,1303110113) 摘要:航天航空工程综合了最新最高的现代科学与技术,是一个国家科技实力和国防现代化的重要标志之一,更是目前世界各国之间争相研究发展的顶尖科技产业,它直接关系到国家的安全和经济的发展。随着科学技术的进步和航天器的发展,遥远而深邃的宇宙已不再可望而不可及,飞天早已不再是无稽之谈。在20世纪对人类影响最大的20项技术中就包括航空航天技术,流体力学的发展对航空航天科技的发展起到了关键性的作用,而这些看似离我们非常遥远的高薪技术其实其基本原理无时无刻不伴随我们。因为我们身边有各种流体的存在。 关键词:航空航天技术、流体、流体力学 Application of fluid mechanics in Aerospace Engineering (Hong Yuan, Xi'an University of Science And Technology, the Institute of mining engineering excellence 1301, 1303110113) Aerospace Engineering integrated the latest modern science and technology, is a national science and technology strength and the important symbol of the modernization of national defense, but also the world's top scientific and technological industry, which is directly related to the national security and economic development. With the development of science and technology and the progress of the spacecraft, as remote and profound universe is no longer inaccessible and, flying already no longer is nonsense. In twentieth Century the greatest impact on human beings in the 20 technologies, including aerospace technology, the development of fluid mechanics to the development of Aerospace Science and technology has played a key role, and these seemingly away from us very far from the high paying technology in fact its basic principles are not accompanied by us. Because we have all kinds of fluid in the presence of. Key words: aerospace technology, fluid, fluid mechanics