文档库 最新最全的文档下载
当前位置:文档库 › A Ring Shaped Embedded Young Stellar (Proto)Cluster

A Ring Shaped Embedded Young Stellar (Proto)Cluster

A Ring Shaped Embedded Young Stellar (Proto)Cluster
A Ring Shaped Embedded Young Stellar (Proto)Cluster

a r

X

i

v

:a

s t

r o

-

p

h

/

3

8

2

7

5v

1

1

5

A

u

g

2

3

A Ring Shaped Embedded Young Stellar (Proto)Cluster M.S.Nanda Kumar 1,D.K.Ojha 2and C.J.Davis 3ABSTRACT We present sub-arcsec (FWHM ~0.5′′)J,H,K and L ′images of a young stellar cluster associated with a candidate massive protostar IRAS 22134+5834.The observations reveal a centrally symmetric,?attened cluster enclosing a central dark region.The central dark region is possibly a cavity within the ?attened cluster.It is surrounded by a ring composed of 5bright stars and the candidate massive protostar IRAS 22134+5834.We construct JHKL ′color-color and HK color-magnitude diagrams to identify the young stellar objects and estimate their spectral types.All the bright stars in the ring are found to have intrinsic infrared excess emission and are likely to be early to late

B type stars.We estimate an average foreground extinction to the cluster of A v ~5mag and individual extinctions to the bright stars in the range A v ~20-40mag indicating possible cocoons surrounding each massive star.This ring of bright stars is devoid of any HII region.It is surrounded by an embedded cluster making this an example of a (proto)cluster that is in one of the dynamically least relaxed states.These observations are consistent with the recent non-axisymmetric calculations of Li &Nakamura,who present a star formation scenario in which a magnetically subcritical cloud fragments into multiple magnetically supercritical cores,leading to the formation of small stellar groups.Subject headings:ISM:clouds —stars:formation —open clusters and associa-

tions:general

1.Introduction

Star formation is traditionally classi?ed into isolated and clustered modes and the ma-jority of stars that contribute to the galactic ?eld population are thought to form via the

clustered mode.Adams&Myers(2001)(Hereafter AM01)have recently demonstrated the importance of distinguishing large clusters(Ex:the Orion Nebula Cluster)from stellar groups and associations.These authors de?ne stellar groups as an independent entity with the number of stars N?~100and show that such groups have dynamical relaxation times much smaller than their formation times.Such short dynamical relaxation times imply that small groups form and disperse quickly after the parent cloud gas removal,so the majority of these stellar groups are thought to be overlooked in observational open cluster surveys(see AM01).AM01also suggest that stellar groups and small clusters with the number of stars N?<100-300may contribute to90%of the galactic?eld population and state that many or most stars form in systems with10

In the last few years there has been considerable progress in theoretical models and numerical simulations of multiple-star formation(Klessen et al.1998;Li&Nakamura2002). These simulations predict several physical conditions and parameters that are yet to be observationally veri?ed.In particular,Li&Nakamura(2002)(Hereafter LN02)and Li(2001) predict the formation of ring like structures in magnetically subcritical clouds leading to multiple-star formation.Finding a good example of ring like structures in star-forming regions is di?cult because of the high degree of geometrical and projectional symmetry that is needed.Kumar et al.(2002)discovered one such stellar cluster with a high degree of geometrical symmetry around IRAS22134+5834,a putative massive protostar.In this paper we present infrared photometric observations of this symmetric ring-shaped stellar cluster, which is all the more unique given its“central dark patch”.We shall use these observations to evaluate some general properties of the cluster and estimate the spectral types of the young stellar population.

2.Observations and Data Reduction

All observations presented here were made on the nights of June25/26,2002with the3.8m United Kingdom Infrared Telescope(UKIRT)on Mauna Kea,Hawaii.J,H and K band observations were made using the facility imager UFTI which is equipped with a1024×1024HgCdTe Hawaii array.The plate scale was0.09′′/pixel with a?eld of view (FOV)of90′′.The average seeing in the K band was0.46′′.L′images were obtained using UKIRT’s secondary imager IRCAM,which has a256×256InSb array with a plate scale of0.08′′/pixel.The chop/dither pattern utilized for the observations resulted in a FOV of 38′′covering the central region of the cluster.Standard data reduction procedures were followed,involving dark subtraction,division by a?at and subtraction of a sky frame.We used the DAOPHOT package in IRAF to extract J,H,K&L′magnitudes from the data.

The instrumental magnitudes were calibrated using observations of UKIRT faint standards (FS29,FS35&FS149)(Hawarden et al.2001)which were observed at air masses closest to the target observations.The resulting photometric data are in the natural system of the Mauna Kea Consortium Filters(Simons&Tokunaga2002).For the purposes of plotting these data in Fig.2and Fig.3,we have converted them to the Bessell&Brett(1988)(BB) system since the main sequence references are in BB system.The completeness limits of the images were evaluated by adding arti?cial stars of di?erent magnitudes to the images and determining the fraction of stars recovered in each magnitude bin.The recovery rate was greater than90%for magnitudes brighter than18,17.5,17and12in the J,H,K and L′bands respectively.Our observations are complete(100%)to the level of16,15.5,14and11 magnitudes in J,H,K and L′respectively.

Fig.1.—a)A K-band image of IRAS22134+5834displayed with a log scale.The star symbol represents the FIR/sub(mm)emission peak(Beuther et al.2002).The circles mark all stars detected in the L-band image.The labels designate the identi?cations of stars from Table.1.

b)H-band image of IRAS22134+5834overlayed by C18O contours from Dobashi&Uehara (2001).Contour levels start at3K km s?1and increase in steps of0.5K km s?1.

Fig. 2.—Color-Color diagram for the144stars detected in the JHK bands.We indicate sequences for?eld dwarfs(solid curve)and gaints(thick dashed curve)from Bessell&Brett (1988).Dashed straight lines represent the reddening vectors.The Crosses on the dashed lines are separated by A v=5mag.The dotted line represents the locus of T-Tauri stars (Meyer et al.1997).Sources that lie to the right(red)of the main-sequence reddening vectors

are marked with star symbols.

O6

O9

B0

B1

B2

B3

B5

A0

F0

G0

G5

K0

FIR Source Fig.3.—Color-Magnitude diagram for the 270stars detected in the HK bands.Stars rep-resent the YSOs identi?ed from Fig.2.The vertical solid lines from left to right indicate the track of main-sequence dwarfs reddened by 0,20and 40magnitudes respectively.The slant-ing horizontal lines identify the reddening vectors.FIR source refers to the star associated with the FIR peaks marked in Fig.1.

3.IRAS22134+5834:A ring like star cluster enclosing a dark patch

IRAS22134+5834is a luminous Far-infrared(FIR)source(1.7×103L⊙)that is character-ized as a candidate precursor to an ultra-compact HII region(Sridharan et al.2002).Situated inside a compact molecular cloud at a distance of2.6kpc(Sridharan et al.2002),this source is also known to drive a massive molecular out?ow(Dobashi&Uehara2001).FIR maps of this region at450,850,1300μm(Chini et al.2001)and at1.3mm(Beuther et al.2002), all reveal extended elliptical?ux distributions with a single resolved peak centered on the IRAS source.Figure.1a shows our K-band image of the target.This reveals a rich,centrally symmetric embedded cluster and a central dark region associated with the FIR/(sub)mm emission.The star symbol in Fig.1represents the position of the FIR/(sub)mm peaks and coincides with a star visible at wavelengths longward of1.6μm.Although the FIR emis-sion encircles the infrared dark region,there are no signatures of any condensations within the extended emission.Note the faint stars that delineate the northern triangular shaped boundary of the dark region.The neat alignment of the stars along this boundary suggests that the central dark region cannot be caused by a foreground object.Assuming that the dark region is an integral part of the cluster implies that the cluster is?attened in a plane perpendicular to the line of sight.A spherically symmetric cluster would have produced an image with several stars seen in projection against the dark patch.Thus,the image in Fig.1 probably represents the true distribution of stars and cannot result from an arbitrary3D distribution.The bright stars surrounding the dark patch in the image must be arranged in a true ring-like pattern around the dark patch.However,for comparision with cluster formation models we must also establish whether the dark region is an empty cavity or a molecular core?

It can be seen from the overlay of C18O contours on the H-band image(see Fig.1b)that the dark region is immersed in the C18O emission;both the C18O emission and the dark region are elongated approximately in an east-west direction with a similar aspect ratio.Dobashi &Uehara(2001)estimated a total mass of206M⊙for this core and a velocity gradient of 0.9km s?1pc?1along the core’s major axis.Richards et al.(1987)detected strong HCO+ emission from this source,con?rming the presence of a dense molecular cloud.Sridharan et al.(2002)detected NH3(J,K)=(1,1)and(2,2)lines and measured a rotation temperature of18K for this region.However,the peaks of these molecular line emission regions,like the FIR emission peaks,are all centered on IRAS22134+5834which is situated on the periphery of the ring of stars.These dust continuum and dense molecular tracers are not centered on the dark patch.These results favour the idea that the dark region is an empty cavity rather than a dense core.There is,however,one fact which suggests that the dark region is a dense core;the faint stars in Fig.1a which delineate the northern triangular shaped boundary of the dark region are visible only in the K-band and not in the H(Compare Fig.1a and1b)or

J bands.These stars could therefore be deeply embedded along the boundary of this dark region.Nevertheless,conclusive proof as to whether the dark patch is a cavity or a molecular core can only be obtained from a higher-resolution map of the dense molecular gas in this region.

3.1.Photometric Analysis

Inside a100′′×100′′?eld centered on IRAS22134+5834we found145stars in J,286 stars in H and357stars in K,with magnitude errors less than0.2.Of these,144stars are found to be common to all three JHK bands and270stars are common to the HK bands only. Note that almost all the stars detected in the J and H bands are also detected in the K-band. Since many of the stars are detected in the K band and not in the J band,the cluster itself must be deeply embedded in the parent molecular cloud.Thus a H-K vs J-H color-color (CC)diagram can not completely identify the embedded young stellar population.However, in Fig.2we show a CC diagram for the144stars detected in the JHK bands.The solid and broken heavy curves represents the main-sequence dwarf and giant stars,respectively, and the dashed parallel lines are the reddening vectors that enclose reddened main-sequence objects.The dotted line indicates the locus of T-Tauri stars(Meyer et al.1997).25stars lie outside the region of reddened main-sequence objects;these are young stellar objects(YSOs) with intrinsic color excesses.By dereddening the stars(on the CC diagrams)that fell within the reddening vectors encompassing the main sequence stars and giants,we found the visual extinction to each star.We deredenned the stars to the K6-M6part of the sequence of stars.The individual extinction values range from0to14magnitudes.From a histogram of these values,we estimate the average foreground extinction to be A v~5mag.Similarly, for sources detected in the H,K and L′bands,we constructed an K-L′vs H-K CC diagram. Among the11stars detected in the H,K and L′bands,7stars were found to be YSOs with intrinsic color excesses.Four of them show extinctions of A v~20-40mag,indicating that the individual extinctions to the cocoons that contain these stars are much higher than the average extinction through the molecular cloud that hosts the cluster.These four stars are among the bright stars that form the ring around the central dark patch.We note that all the bright stars surrounding the central dark patch in Fig.1are also seen in the L′image and are found to have an intrinsic infrared excess.

Figure.3shows a H-K vs K color-magnitude(CM)diagram for all the sources detected in the H&K bands.YSOs found from the CC diagram(Fig.2)are shown as star symbols. However,it is important to note that even those stars not shown with a star symbol may also be YSOs with an intrinsic color excess.The vertical solid lines(from left to right)

represent the main-sequence curve reddened by0,20and40magnitudes respectively.We have assumed a distance of2.6kpc and an A v~5mag to the source to reproduce the main sequence data on this plot.The CM diagram is a useful tool for estimating the nature of the stellar population within the cluster in the absence of any spectroscopic data.However, it can be highly misleading if the sources have intrinsic color excesses.In the pretext of this work,it is of interest to obtain a census of massive stars in the region.The horizontal slanting lines in Fig.3trace the reddening zones for each spectral type.Since the sources we are interested in have intrinsic infrared excesses,the spectral type estimation will be misleading. We therefore considered the candidate massive protostar(FIR source)IRAS22134+5834, as the reference point on the CM diagram(marked in Fig.2)to identify other massive stars.It can be seen that there are6-8points lying either above or in the same range as IRAS22134+5834.These stars are identi?ed on the K-band image(Fig.1a)and are found to constitute the ring of bright stars.This suggests that there are at least four stars(appearing more massive than IRAS22134+5834)and two stars(similar to IRAS22134+5834)that are all situated in a ring enclosing the central dark patch.We also estimated the spectral types of the same sources on a J-H vs H CM diagram and obtained similar results thus verifying the consistency.Table.1lists the positions,individual extinctions,?uxes in the K and L′bands and corresponding?ux ratios indicating approximate colors.The candidate massive protostar IRAS22134+5834is also situated along the periphery of the ring and is estimated to be of spectral type B3.The luminosity of this FIR point source(logL=3.23)indicates a luminosity equal to that of a Zero Age Main Sequence(ZAMS)star of B2-B3(Panagia 1973).

4.Discussion

The results of sections2and3show that IRAS22134+5834represents an embedded young star cluster associated with a luminous FIR source but not with an HII region.The K-band image reveals208stars in the central1pc region(slightly larger than the area displayed in Fig.1).If we consider incompleteness in sampling,and volume?lling factors,this cluster represents an upper limit example of a cluster with a number of stars N?<100-300,which, according to AM01is a small cluster,a type that contributes to the majority of the galactic ?eld population.The embedded nature,?attened appearance of the cluster and the ring of bright stars,together with the lack of a signi?cant HII region,demonstrates the extreme youth of this small cluster.It thus makes an excellent target for verifying predictions of the theories of cluster formation.The standard scenario for the formation of isolated low-mass stars involves an axisymmetric cloud evolution leading to a single dense core.Recently LN02presented calculations of the non-axisymmetric evolution of a magnetically subcritical

molecular cloud under thin-disk approximation(?attened cloud)fragmenting into multiple magnetically super-critical cores.Such calculations are believed to be fundamental to the formation of all varieties of star formation including singles,binaries,multiples and clusters. These authors predict that the supercritical cores resulting from fragmentation are arranged in a ring shape because the magnetic?eld tension prohibits the formation of a central singularity.The observations presented here tend to support their predictions since the ?attened cluster of IRAS22134+5834shows a ring of young massive stars which has not yet formed an HII region.Further,the central dark patch appears to be a cavity rather than a core(§.3),as predicted by LN02.Indeed,the K-band image of Fig.1is strikingly similar to the numerical simulations of LN02for an arbitrary case of a perturbation with mode m=5 (Fig.3c of LN02).Rings of stars at the center of a molecular cloud containing several jeans masses can also be seen in the numerical simulations of Klessen et al.(1998).The estimated average foreground extinction to the cluster is A v~5mag and the individual extinctions to the stars are as high as A v~20-40mag.This indicates that the massive stars composing the ring in Fig.1are surrounded by independent cocoons that may represent individual dense cores.

While the CM diagram estimates demonstrate that there are at least?ve stars in the cluster with masses similar to IRAS22134+5834,there is no signi?cant HII region associated with this source.The intrinsic colors of massive stars are not well understood and a CM diagram takes into account only reddening and not intrinsic colors.Thus any star with intrinsic color would move not only along the reddening line on a CM diagram but also upwards(along the y-axis)resulting in an overestimation of the mass.To evaluate the magnitude of such an overestimation we placed the candidate low mass protostars in Taurus on CM diagram by taking the K and H-K data from Park&Kenyon(2002).These Class I or Class0low mass protostellar sources were found to be distributed between spectral types G5and B5.We?nd that a1-2M⊙star can be mistaken for a6M⊙star.Exactly how this behaviour transforms at higher masses can not be judged with this simple exercise.We would need a detailed understanding of the intrinsic colors of the massive young stars and some identi?cation of their exact protostellar phases.In the present context we can only state that there are at least5stars with similar or higher masses than the candidate protostar IRAS22134+5834.While the candidate protostar is bright at FIR wavelengths and not at NIR wavelengths,the remaining4stars are bright at2μm.Weak radio free-free emission is detected at3.6cm centered within1′′of the FIR source(Kurtz,S.Pvt Communication); this is also evident in the NRAO VLA Sky Survey data.In the light of the above results,it is surprising that even this weak radio emission is centered on the FIR source and not on the other bright stars which are estimated to have masses greater than the FIR source.Further investigations to establish the clear association of these bright stars with the molecular gas,

and spectroscopic studies to infer the exact spectral types of the stars,can resolve the issue. We summarize this work by noting that the cluster is associated with a ring of candidate massive young stars.While rings of massive stars are not a new phenomenon(ex:W49A Welch et al.(1987)),a ring of candidate massive young stars devoid of ionized regions is relatively unique.IRAS22134+5834thus represents an early phase in massive star formation when the associated cluster is in one of the dynamically least relaxed states known.

5.Summary

Infrared photometric studies of an embedded young stellar cluster associated with IRAS22134+5834are presented.1)The cluster is centrally symmetric,?attened and encloses a central dark region that appears to be an empty cavity.This dark region is surrounded by a ring of bright stars.2)The ring of bright stars are estimated to be composed of four stars likely to be more massive than the FIR source IRAS22134+5834and two stars with similar masses to that of IRAS22134+5834.However,the cluster does not have any associated HII region,implying its extreme youth.While an average foreground extinction to the cluster is estimated to be A v~5mag,extinction to the individual bright stars in the ring are as much as A v~40mag indicating cocoons of dense gas surrounding each star.3)The results are consistent with the calculations of LN02who present a star formation scenario in a mag-netically subcritical cloud fragmenting into multiple magnetically supercritical cores leading to the formation of small stellar groups.The central dark patch in IRAS22134+5834and the surrounding ring of massive stars display striking similarity to the numerical simulations presented by these authors.

We thank Mario Tafalla for useful comments and K.Dobashi for providing the original C18O data.

REFERENCES

Adams,F.C.,&Myers,P.C.2001,ApJ,553,744AM01

Beuther,H.,Schilke,P.,Menten,K.M.,Motte,F.,Sridharan,T.K.,&Wyrowski,F.2002, ApJ,566,945

Bessell,M.S.,&Brett,J.M.1988,PASP,100,1134

Chini,R.,Ward-Thompson,D.,Kirk,J.M.,Nielblock,M.,Reipurth,B.,&Sievers,A.2001, A&A,369,155

Dobashi,K.,&Uehara,H.2001,PASJ,53,799

Haisch,K.E.Jr.,Lada,E.A.,&Lada,C.J.2000,AJ,120,1396

Hawarden,T.G.,Leggett,S.K.,Letawsky,M.B.,Ballantyne,D.R.,&Casali,M.M.2001, MNRAS,325,563

Klessen,R.S.,Burkert,A.,&Bate,M.R.1998,ApJ,501,L205

Kumar,M.S.N.,Bachiller,R.,&Davis,C.J.2002,ApJ,576,313

Li Zhi-Yun.2001,ApJ,556,813

Li Zhi-Yun.,&Nakamura,F.2002,ApJ,578,256,LN02

Meyer,M.R.,Calvet,N.,&Hillenbrand,L.1997,AJ,114,288

Park,S.,&Kenyon,S.C.2002,AJ,1233370

Panagia,N.1973,AJ,78,929

Richards,P.J.,Little,L.T.,Heaton,B.D.,&Toriseva,M.MNRAS,228,43

Simons,D.A.,&Tokunaga,A.2002,PASP,114,169

Sridharan,T.K.,Beuther,H.,Schilke,P.,Menten,K.M.,&Wyrowski,F.2002,ApJ,566, 931

Welch,Wm.J.,Dreher,J.W.,Jackson,J.M.,Terebey,S.,&Vogel,S.N.1987,Science, 238,1550

Table1.Bright Stars constituting the Ring

ID R.A J2000DEC J2000A v Fλ(K)Fλ(L′)λFλ(L′) 122:15:6.858:49:0712.10.07940.0577 1.2476 222:15:7.158:49:0038.40.15320.04900.5492 322:15:7.358:49:18~00.01160.00320.4674 422:15:8.658:49:0226.70.03630.01670.7910 522:15:8.758:49:1613.90.12920.06550.8695 622:15:9.158:49:07 5.40.00210.0041 3.3918

中国姓氏英文翻译大全S-Z

A: 艾--Ai 安--Ann/An 敖--Ao B: 巴--Pa 白--Pai 包/鲍--Paul/Pao 班--Pan 贝--Pei 毕--Pih 卞--Bein 卜/薄--Po/Pu 步--Poo 百里--Pai-li C: 蔡/柴--Tsia/Choi/Tsai 曹/晁/巢--Chao/Chiao/Tsao 岑--Cheng 崔--Tsui 查--Cha 常--Chiong 车--Che 陈--Chen/Chan/Tan 成/程--Cheng 池--Chi 褚/楚--Chu 淳于--Chwen-yu D: 戴/代--Day/Tai 邓--Teng/Tang/Tung 狄--Ti 刁--Tiao 丁--Ting/T 董/东--Tung/Tong 窦--Tou 杜--To/Du/Too 段--Tuan 端木--Duan-mu 东郭--Tung-kuo 东方--Tung-fang E: F:

范/樊--Fan/Van 房/方--Fang 费--Fei 冯/凤/封--Fung/Fong 符/傅--Fu/Foo G: 盖--Kai 甘--Kan 高/郜--Gao/Kao 葛--Keh 耿--Keng 弓/宫/龚/恭--Kung 勾--Kou 古/谷/顾--Ku/Koo 桂--Kwei 管/关--Kuan/Kwan 郭/国--Kwok/Kuo 公孙--Kung-sun 公羊--Kung-yang 公冶--Kung-yeh 谷梁--Ku-liang H: 海--Hay 韩--Hon/Han 杭--Hang 郝--Hoa/Howe 何/贺--Ho 桓--Won 侯--Hou 洪--Hung 胡/扈--Hu/Hoo 花/华--Hua 宦--Huan 黄--Wong/Hwang 霍--Huo 皇甫--Hwang-fu 呼延--Hu-yen I: J: 纪/翼/季/吉/嵇/汲/籍/姬--Chi 居--Chu 贾--Chia 翦/简--Jen/Jane/Chieh 蒋/姜/江/--Chiang/Kwong 焦--Chiao 金/靳--Jin/King 景/荆--King/Ching

图像处理中值滤波器中英文对照外文翻译文献

中英文资料对照外文翻译 一、英文原文 A NEW CONTENT BASED MEDIAN FILTER ABSTRACT In this paper the hardware implementation of a contentbased median filter suitabl e for real-time impulse noise suppression is presented. The function of the proposed ci rcuitry is adaptive; it detects the existence of impulse noise in an image neighborhood and applies the median filter operator only when necessary. In this way, the blurring o f the imagein process is avoided and the integrity of edge and detail information is pre served. The proposed digital hardware structure is capable of processing gray-scale im ages of 8-bit resolution and is fully pipelined, whereas parallel processing is used to m inimize computational time. The architecturepresented was implemented in FPGA an d it can be used in industrial imaging applications, where fast processing is of the utm ost importance. The typical system clock frequency is 55 MHz. 1. INTRODUCTION Two applications of great importance in the area of image processing are noise filtering and image enhancement [1].These tasks are an essential part of any image pro cessor,whether the final image is utilized for visual interpretation or for automatic an alysis. The aim of noise filtering is to eliminate noise and its effects on the original im age, while corrupting the image as little as possible. To this end, nonlinear techniques (like the median and, in general, order statistics filters) have been found to provide mo re satisfactory results in comparison to linear methods. Impulse noise exists in many p ractical applications and can be generated by various sources, including a number of man made phenomena, such as unprotected switches, industrial machines and car ign ition systems. Images are often corrupted by impulse noise due to a noisy sensor or ch annel transmission errors. The most common method used for impulse noise suppressi on n forgray-scale and color images is the median filter (MF) [2].The basic drawback o f the application of the MF is the blurringof the image in process. In the general case,t he filter is applied uniformly across an image, modifying pixels that arenot contamina ted by noise. In this way, the effective elimination of impulse noise is often at the exp ense of an overalldegradation of the image and blurred or distorted features[3].In this paper an intelligent hardware structure of a content based median filter (CBMF) suita ble for impulse noise suppression is presented. The function of the proposed circuit is to detect the existence of noise in the image window and apply the corresponding MF

中国姓氏英语翻译大全

中国姓氏英语翻译大全 A: 艾--Ai 安--Ann/An 敖--Ao B: 巴--Pa 白--Pai 包/鲍--Paul/Pao 班--Pan 贝--Pei 毕--Pih 卞--Bein 卜/薄--Po/Pu 步--Poo 百里--Pai-li C: 蔡/柴--Tsia/Choi/Tsai 曹/晁/巢--Chao/Chiao/Tsao 岑--Cheng 崔--Tsui 查--Cha

常--Chiong 车--Che 陈--Chen/Chan/Tan 成/程--Cheng 池--Chi 褚/楚--Chu 淳于--Chwen-yu D: 戴/代--Day/Tai 邓--Teng/Tang/Tung 狄--Ti 刁--Tiao 丁--Ting/T 董/东--Tung/Tong 窦--Tou 杜--To/Du/Too 段--Tuan 端木--Duan-mu 东郭--Tung-kuo 东方--Tung-fang E: F:

范/樊--Fan/Van 房/方--Fang 费--Fei 冯/凤/封--Fung/Fong 符/傅--Fu/Foo G: 盖--Kai 甘--Kan 高/郜--Gao/Kao 葛--Keh 耿--Keng 弓/宫/龚/恭--Kung 勾--Kou 古/谷/顾--Ku/Koo 桂--Kwei 管/关--Kuan/Kwan 郭/国--Kwok/Kuo 公孙--Kung-sun 公羊--Kung-yang 公冶--Kung-yeh 谷梁--Ku-liang H:

韩--Hon/Han 杭--Hang 郝--Hoa/Howe 何/贺--Ho 桓--Won 侯--Hou 洪--Hung 胡/扈--Hu/Hoo 花/华--Hua 宦--Huan 黄--Wong/Hwang 霍--Huo 皇甫--Hwang-fu 呼延--Hu-yen I: J: 纪/翼/季/吉/嵇/汲/籍/姬--Chi 居--Chu 贾--Chia 翦/简--Jen/Jane/Chieh 蒋/姜/江/--Chiang/Kwong

图像处理外文翻译 (2)

附录一英文原文 Illustrator software and Photoshop software difference Photoshop and Illustrator is by Adobe product of our company, but as everyone more familiar Photoshop software, set scanning images, editing modification, image production, advertising creative, image input and output in one of the image processing software, favored by the vast number of graphic design personnel and computer art lovers alike. Photoshop expertise in image processing, and not graphics creation. Its application field, also very extensive, images, graphics, text, video, publishing various aspects have involved. Look from the function, Photoshop can be divided into image editing, image synthesis, school tonal color and special effects production parts. Image editing is image processing based on the image, can do all kinds of transform such as amplifier, reducing, rotation, lean, mirror, clairvoyant, etc. Also can copy, remove stain, repair damaged image, to modify etc. This in wedding photography, portrait processing production is very useful, and remove the part of the portrait, not satisfied with beautification processing, get let a person very satisfactory results. Image synthesis is will a few image through layer operation, tools application of intact, transmit definite synthesis of meaning images, which is a sure way of fine arts design. Photoshop provide drawing tools let foreign image and creative good fusion, the synthesis of possible make the image is perfect. School colour in photoshop with power is one of the functions of deep, the image can be quickly on the color rendition, color slants adjustment and correction, also can be in different colors to switch to meet in different areas such as web image design, printing and multimedia application. Special effects production in photoshop mainly by filter, passage of comprehensive application tools and finish. Including image effects of creative and special effects words such as paintings, making relief, gypsum paintings, drawings, etc commonly used traditional arts skills can be completed by photoshop effects. And all sorts of effects of production are

双语:中国姓氏英文翻译对照大合集

[ ]

步Poo 百里Pai-li C: 蔡/柴Tsia/Choi/Tsai 曹/晁/巢Chao/Chiao/Tsao 岑Cheng 崔Tsui 查Cha 常Chiong 车Che 陈Chen/Chan/Tan 成/程Cheng 池Chi 褚/楚Chu 淳于Chwen-yu

D: 戴/代Day/Tai 邓Teng/Tang/Tung 狄Ti 刁Tiao 丁Ting/T 董/东Tung/Tong 窦Tou 杜To/Du/Too 段Tuan 端木Duan-mu 东郭Tung-kuo 东方Tung-fang F: 范/樊Fan/Van

房/方Fang 费Fei 冯/凤/封Fung/Fong 符/傅Fu/Foo G: 盖Kai 甘Kan 高/郜Gao/Kao 葛Keh 耿Keng 弓/宫/龚/恭Kung 勾Kou 古/谷/顾Ku/Koo 桂Kwei 管/关Kuan/Kwan

郭/国Kwok/Kuo 公孙Kung-sun 公羊Kung-yang 公冶Kung-yeh 谷梁Ku-liang H: 海Hay 韩Hon/Han 杭Hang 郝Hoa/Howe 何/贺Ho 桓Won 侯Hou 洪Hung 胡/扈Hu/Hoo

花/华Hua 宦Huan 黄Wong/Hwang 霍Huo 皇甫Hwang-fu 呼延Hu-yen J: 纪/翼/季/吉/嵇/汲/籍/姬Chi 居Chu 贾Chia 翦/简Jen/Jane/Chieh 蒋/姜/江/ Chiang/Kwong 焦Chiao 金/靳Jin/King 景/荆King/Ching

图像处理中常用英文词解释

Algebraic operation 代数运算一种图像处理运算,包括两幅图像对应像素的和、差、积、商。 Aliasing 走样(混叠)当图像像素间距和图像细节相比太大时产生的一种人工痕迹。Arc 弧图的一部分;表示一曲线一段的相连的像素集合。 Binary image 二值图像只有两级灰度的数字图像(通常为0和1,黑和白) Blur 模糊由于散焦、低通滤波、摄像机运动等引起的图像清晰度的下降。 Border 边框一副图像的首、末行或列。 Boundary chain code 边界链码定义一个物体边界的方向序列。 Boundary pixel 边界像素至少和一个背景像素相邻接的内部像素(比较:外部像素、内部像素) Boundary tracking 边界跟踪一种图像分割技术,通过沿弧从一个像素顺序探索到下一个像素将弧检测出。 Brightness 亮度和图像一个点相关的值,表示从该点的物体发射或放射的光的量。 Change detection 变化检测通过相减等操作将两幅匹准图像的像素加以比较从而检测出其中物体差别的技术。 Class 类见模或类 Closed curve 封闭曲线一条首尾点处于同一位置的曲线。 Cluster 聚类、集群在空间(如在特征空间)中位置接近的点的集合。 Cluster analysis 聚类分析在空间中对聚类的检测,度量和描述。 Concave 凹的物体是凹的是指至少存在两个物体内部的点,其连线不能完全包含在物体内部(反义词为凸) Connected 连通的 Contour encoding 轮廓编码对具有均匀灰度的区域,只将其边界进行编码的一种图像压缩技术。 Contrast 对比度物体平均亮度(或灰度)与其周围背景的差别程度 Contrast stretch 对比度扩展一种线性的灰度变换 Convex 凸的物体是凸的是指连接物体内部任意两点的直线均落在物体内部。Convolution 卷积一种将两个函数组合成第三个函数的运算,卷积刻画了线性移不变系统的运算。 Corrvolution kernel 卷积核1,用于数字图像卷积滤波的二维数字阵列,2,与图像或信号卷积的函数。 Curve 曲线1,空间的一条连续路径,2 表示一路径的像素集合(见弧、封闭曲线)。 Deblurring 去模糊1一种降低图像模糊,锐化图像细节的运算。2 消除或降低图像的模糊,通常是图像复原或重构的一个步骤。 Decision rule 决策规则在模式识别中,用以将图像中物体赋以一定量的规则或算法,这种赋值是以对物体特征度量为基础的。 Digital image 数字图像 1 表示景物图像的整数阵列,2 一个二维或更高维的采样并量化的函数,它由相同维数的连续图像产生,3 在矩形(或其他)网络上采样一连续函数,并才采样点上将值量化后的阵列。 Digital image processing 数字图像处理对图像的数字化处理;由计算机对图片信息进

中国姓氏英语翻译大全

中国姓氏英语翻译大全 A: 艾--Ai 安--Ann/An 敖--Ao B: 巴--Pa 白--Pai 包/鲍--Paul/Pao 班--Pan 贝--Pei 毕--Pih 卞--Bein 卜/薄--Po/Pu 步--Poo 百里--Pai-li C: 蔡/柴--Tsia/Choi/Tsai 曹/晁/巢--Chao/Chiao/Tsao 岑--Cheng 崔--Tsui 查--Cha 常--Chiong 车--Che 陈--Chen/Chan/Tan 成/程--Cheng 池--Chi 褚/楚--Chu 淳于--Chwen-yu D: 戴/代--Day/Tai 邓--Teng/Tang/Tung 狄--Ti 刁--Tiao 丁--Ting/T 董/东--Tung/Tong 窦--Tou 杜--To/Du/Too 段--Tuan 端木--Duan-mu 东郭--Tung-kuo 东方--Tung-fang E: F: 范/樊--Fan/Van 房/方--Fang 费--Fei 冯/凤/封--Fung/Fong 符/傅--Fu/Foo G: 盖--Kai 甘--Kan 高/郜--Gao/Kao 葛--Keh 耿--Keng 弓/宫/龚/恭--Kung 勾--Kou 古/谷/顾--Ku/Koo 桂--Kwei 管/关--Kuan/Kwan 郭/国--Kwok/Kuo 公孙--Kung-sun 公羊--Kung-yang 公冶--Kung-yeh 谷梁--Ku-liang H: 海--Hay 韩--Hon/Han 杭--Hang 郝--Hoa/Howe 何/贺--Ho 桓--Won 侯--Hou 洪--Hung 胡/扈--Hu/Hoo 花/华--Hua 宦--Huan 黄--Wong/Hwang 霍--Huo 皇甫--Hwang-fu 呼延--Hu-yen I: J: 纪/翼/季/吉/嵇/汲/籍/姬--Chi

图像处理英文翻译

数字图像处理英文翻译 (Matlab帮助信息简介) xxxxxxxxx xxx Introduction MATLAB is a high-level technical computing language and interactive environment for algorithm development, data visualization, data analysis, and numeric computation. Using the MATLAB product, you can solve technical computing problems faster than with traditional programming languages, such as C, C++, and Fortran. You can use MATLAB in a wide range of applications, including signal and image processing, communications, control design, test and measurement, financial modeling and analysis, and computational biology. Add-on toolboxes (collections of special-purpose MATLAB functions, available separately) extend the MATLAB environment to solve particular classes of problems in these application areas. The MATLAB system consists of these main parts: Desktop Tools and Development Environment This part of MATLAB is the set of tools and facilities that help you use and become more productive with MATLAB functions and files. Many of these tools are graphical user interfaces. It includes: the

中国姓氏英文翻译大全

中国姓氏英文翻译大全 A: 艾--Ai 安--Ann/An 敖--Ao B: 巴--Pa 白--Pai 包/鲍--Paul/Pao 班--Pan 贝--Pei 毕--Pih 卞--Bein 卜/薄--Po/Pu 步--Poo 百里--Pai-li C: 蔡/柴--Tsia/Choi/Tsai 曹/晁/巢--Chao/Chiao/Tsao 岑--Cheng 崔--Tsui 查--Cha 常--Chiong 车--Che 陈--Chen/Chan/Tan 成/程--Cheng 池--Chi 褚/楚--Chu 淳于--Chwen-yu D: 戴/代--Day/Tai 邓--Teng/Tang/Tung 狄--Ti 刁--Tiao 丁 --Ting/T 董/东--Tung/Tong 窦--Tou 杜--To/Du/Too 段--Tuan 端木--Duan-mu 东郭--Tung-kuo 东方--Tung-fang E: F: 范/樊--Fan/Van 房/方--Fang 费--Fei 冯/凤/封--Fung/Fong 符/傅 --Fu/Foo G: 盖--Kai 甘--Kan 高/郜--Gao/Kao 葛--Keh 耿--Keng 弓/宫/龚/恭--Kung 勾--Kou 古/谷/顾--Ku/Koo 桂--Kwei 管/关--Kuan/Kwan 郭/国--Kwok/Kuo 公孙--Kung-sun 公羊 --Kung-yang 公冶--Kung-yeh 谷梁--Ku-liang H: 海--Hay 韩--Hon/Han 杭--Hang 郝--Hoa/Howe 何/贺--Ho 桓--Won 侯--Hou 洪--Hung 胡/扈--Hu/Hoo 花/华--Hua 宦--Huan 黄--Wong/Hwang 霍--Huo 皇甫--Hwang-fu 呼延--Hu-yen I: J: 纪/翼/季/吉/嵇/汲/籍/姬--Chi 居--Chu 贾--Chia 翦/简 --Jen/Jane/Chieh 蒋/姜/江/--Chiang/Kwong 焦--Chiao 金/靳--Jin/King 景/荆 --King/Ching 讦--Gan K: 阚--Kan 康--Kang 柯--Kor/Ko 孔--Kong/Kung 寇--Ker 蒯--Kuai 匡--Kuang L: 赖--Lai 蓝--Lan 郎--Long 劳--Lao 乐--Loh 雷--Rae/Ray/Lei 冷--Leng 黎/郦/利/李--Lee/Li/Lai/Li 连--Lien 廖--Liu/Liao 梁--Leung/Liang 林/蔺--Lim/Lin

中国姓氏英文翻译大全

中国姓氏英文翻译大全 A: 艾--Ai 安--Ann/An 敖--Ao B: 巴--Pa 白--Pai 包/鲍--Paul/Pao 班--Pan 贝--Pei 毕--Pih 卞--Bein 卜/薄--Po/Pu 步--Poo 百里--Pai-li C: 蔡/柴--Tsia/Choi/Tsai 曹/晁/巢--Chao/Chiao/Tsao 岑--Cheng 崔--Tsui 查--Cha 常--Chiong 车--Che 陈--Chen/Chan/Tan 成/程--Cheng 池--Chi 褚/楚--Chu 淳于--Chwen-yu D: 戴/代--Day/Tai 邓--Teng/Tang/Tung 狄--Ti 刁--Tiao 丁--Ting/T 董/东--Tung/Tong 窦--Tou 杜--To/Du/Too 段--Tuan 端木--Duan-mu 东郭--Tung-kuo 东方--Tung-fang

E: F: 范/樊--Fan/Van 房/方--Fang 费--Fei 冯/凤/封--Fung/Fong 符/傅--Fu/Foo G: 盖--Kai 甘--Kan 高/郜--Gao/Kao 葛--Keh 耿--Keng 弓/宫/龚/恭--Kung 勾--Kou 古/谷/顾--Ku/Koo 桂--Kwei 管/关--Kuan/Kwan 郭/国--Kwok/Kuo 公孙--Kung-sun 公羊--Kung-yang 公冶--Kung-yeh 谷梁--Ku-liang H: 海--Hay 韩--Hon/Han 杭--Hang 郝--Hoa/Howe 何/贺--Ho 桓--Won 侯--Hou 洪--Hung 胡/扈--Hu/Hoo 花/华--Hua 宦--Huan 黄--Wong/Hwang 霍--Huo 皇甫--Hwang-fu 呼延--Hu-yen I: J:

中国姓氏英文翻译大全

中国姓氏英文翻译大全- - [b][u]中国姓氏英文翻译大全- -[/u][/b] A: 艾--Ai 安--Ann/An 敖--Ao B: 巴--Pa 白--Pai 包/鲍--Paul/Pao 班--Pan 贝--Pei 毕--Pih 卞--Bein 卜/薄--Po/Pu 步--Poo 百里--Pai-li C:

蔡/柴--Tsia/Choi/Tsai 曹/晁/巢--Chao/Chiao/Tsao 岑--Cheng 崔--Tsui 查--Cha 常--Chiong 车--Che 陈--Chen/Chan/Tan 成/程--Cheng 池--Chi 褚/楚--Chu 淳于--Chwen-yu D: 戴/代--Day/Tai 邓--Teng/Tang/Tung 狄--Ti 刁--Tiao 丁--Ting/T 董/东--Tung/Tong 窦--Tou 杜--To/Du/Too

段--Tuan 端木--Duan-mu 东郭--Tung-kuo 东方--Tung-fang E: F: 范/樊--Fan/Van 房/方--Fang 费--Fei 冯/凤/封--Fung/Fong 符/傅--Fu/Foo G: 盖--Kai 甘--Kan 高/郜--Gao/Kao 葛--Keh 耿--Keng 弓/宫/龚/恭--Kung 勾--Kou

古/谷/顾--Ku/Koo 桂--Kwei 管/关--Kuan/Kwan 郭/国--Kwok/Kuo 公孙--Kung-sun 公羊--Kung-yang 公冶--Kung-yeh 谷梁--Ku-liang H: 海--Hay 韩--Hon/Han 杭--Hang 郝--Hoa/Howe 何/贺--Ho 桓--Won 侯--Hou 洪--Hung 胡/扈--Hu/Hoo 花/华--Hua 宦--Huan 黄--Wong/Hwang

图像处理外文翻译

杭州电子科技大学 毕业设计(论文)外文文献翻译 毕业设计(论文)题目基于遗传算法的自动图像分割软件开发 翻译(1)题目Image Segmentation by Using Threshold Techniques 翻译(2)题目 A Review on Otsu Image Segmentation Algorithm 学院计算机学院 专业计算机科学与技术 姓名刘xx 班级11xxxxxx 学号1115xxxx 指导教师孔xx

使用阈值技术的图像分割 1 摘要 本文试图通过5阈值法作为平均法,P-tile算法,直方图相关技术(HDT),边缘最大化技术(EMT)和可视化技术进行了分割图像技术的研究,彼此比较从而选择合的阈值分割图像的最佳技术。这些技术适用于三个卫星图像选择作为阈值分割图像的基本猜测。 关键词:图像分割,阈值,自动阈值 1 引言 分割算法是基于不连续性和相似性这两个基本属性之一的强度值。第一类是基于在强度的突然变化,如在图像的边缘进行分区的图像。第二类是根据预定义标准基于分割的图像转换成类似的区域。直方图阈值的方法属于这一类。本文研究第二类(阈值技术)在这种情况下,通过这项课题可以给予这些研究简要介绍。阈分割技术可分为三个不同的类: 首先局部技术基于像素和它们临近地区的局部性质。其次采用全局技术分割图像可以获得图像的全局信息(通过使用图像直方图,例如;全局纹理属性)。并且拆分,合并,生长技术,为了获得良好的分割效果同时使用的同质化和几何近似的概念。最后的图像分割,在图像分析的领域中,常用于将像素划分成区域,以确定一个图像的组成[1][2]。 他们提出了一种二维(2-D)的直方图基于多分辨率分析(MRA)的自适应阈值的方法,降低了计算的二维直方图的复杂而提高了多分辨率阈值法的搜索精度。这样的方法源于通过灰度级和灵活性的空间相关性的多分辨率阈值分割方法中的阈值的寻找以及效率由二维直方图阈值分割方法所取得的非凡分割效果。实验的结果表明,这种方法可以得到的分割结果与详尽二维直方图方法相类似,而计算复杂度与分辨率等级的增加而呈指数下降[3]。 图像的阈值问题,被视为在图像处理的一个重要问题,它不仅可以减少图像数据,同时也奠定了多目标识别和图像认知提供了良好的基础。全局阈值分割和局部阈值的字符图像分割进行了分析。一个新的阈值统计迭代算法,提出要克服的直接阈值,针对一些光照不对称和明显的缺陷,或者更大的数字比例在各种各样的背景灰度图像中。统计迭代阈值分割,基于图像灰度直方图和高斯分布的统计,获得统计迭代法理论表达和最值得阈值法和步骤。航空图像通过分别使用统计迭代算法,直方图技术和自适应方法进行阈值分割。比较三种阈值结果,它表明统计迭代方法大大提高了图像分割的抗噪能力,并且有更好的图像结果,并且不容易在阈值方法中分段[4]。 模糊C均值改进算法和遥感图像分割策略,可以提供较少的迭代次数收敛到全局1Salem Saleh Al-amri1, N.V. Kalyankar2 and Khamitkar S.D 3JOURNAL OF COMPUTING,

图像处理 毕业设计 英文翻译

本科毕业设计外文翻译 专业名称测控技术与仪器 学生学号2010302302 学生姓名汪杰 指导教师何鹏举 完成时间2014年4月

本科毕业设计英文翻译 指导教师评阅意见 学生姓名:汪杰班级:090510卓越得分: 请指导教师用红笔在译文中直接进行批改,并就以下几方面填写评阅意见,给出综合得分(满分按100分计)。 1、专业术语、词汇翻译的准确性; 2、翻译材料是否与原文的内容一致; 3、翻译材料字数是否符合要求; 4、语句是否通顺,是否符合中文表达习惯。 中文译文: 一个自定义图像处理系统的高级设计工具 摘要——实时图像处理是一种应用在各种工程领域的计算密集型任务。在一些图像处理应用中,庞大的计算能力致力于图像增强操作、基本分割和进一步分析感兴趣的区域的识别。这种类型的前端过程可以被自定义数据流处理器紧密耦合到一个图像传感器来有效地完成。本文提出一种视觉设计环境,它支持自定义数据流处理器的实时图像分析应用程序的高级设计。该工具嵌入在Matlab/Simulink,系统建模是通过使用一个可以实现共同的低级图像处理操作的大型库。功能验证是在逐帧基础上,被Simulink的模拟工具模型有效的执行,使用Matlab提供的功能——图像处理工具箱。可合成的RTL(Real Time Logistics 实时物流)模型的自动生成保证了系统的逻辑实现,在用户和目标可重构设计强加的约束下,系统符合高级模型验证。 1.简介 一些工程领域需要实时图像处理系统,例如工业视觉检查系统。遵守实时要求的紧时间的必要条件是强大的计算能力,在一些情况下,不能通过传统的、低成本的处理器来完成。这特别适用于嵌入式系统,这里并行处理各种流程很重要,物理空间的实时需求和限制以及能量消耗可以自定义计算系统,特别是

英文文献及翻译:图像处理操作的层次结构

Image processing is not a one step process.We are able to distinguish between several steps which must be performed one after the other until we can extract the data of interest from the observed scene.In this way a hierarchical processing scheme is built up as sketched in Fig.The figure gives an overview of the different phases of image processing. Image processing begins with the capture of an image with a suitable,not necessarily optical,acquisition system.In a technical or scientific application,we may choose to select an appropriate imaging system.Furthermore,we can set up the illumination system,choose the best wavelength range,and select other options to capture the object feature of interest in the best way in an image.Once the image is sensed,it must be brought into a form that can be treated with digital computers.This process is called digitization. With the problems of traffic are more and more serious. Thus Intelligent Transport System (ITS) comes out. The subject of the automatic recognition o f license plate is one of the most significant subjects that are improved from the connection of computer vision and pattern recognition. The image imputed to the computer is disposed and analyzed in order to localization the position and recognition the characters on the license plate express these characters in text string form The license plate recognition system (LPSR) has important application in ITS. In LPSR, the first step is for locating the license plate in the

BMP图像处理软件的设计和实现(中英文翻译)

译文 BMP图像处理软件的设计与实现 摘要 随着时代的发展,科技的进步,一些简单的图片已经不能满足人们的需求。图像运用的扩大与对图像本身的精益求精,使人们越来越依赖于各种图像处理软件,各种图像处理软件也越来越完善,普及程度不断的提高。 C++是可视化的快速应用程序开发语言,它提供了可视化的集成开发环境,这一环境为应用程序设计人员提供了一系列灵活而先进的工具,可以广泛地用于种类应用程序设计。在Visual C++的集成开发环境中,用户可以设计程序代码、运行程序、进行程序错误的调试等,可视化的开发方法降低了应用程序开发的难度。Visual C++的基础编程语言是具有面向对象特性的C++语言,C++具有代码稳定、可读性好、编译速度快,效率高等优点,并将面向对象的概念得到充分的发挥,使这种语言有了全新的发展空间。 文章用Visual C++作为开发工具,设计了一个BMP图像处理软件。本图像处理软件实现对BMP图像的基本操作,如图像的打开,关闭,保存,图像的基本处理,如图像放大、缩小、旋转、转置、二值化处理、中值滤波、边缘检测、直方图、图像的腐蚀与膨胀以及马赛克效果等等。 BMP是bitmap的缩写,即为位图图片。位图图片是用一种称作“像素”的单位存贮图像信息的。这些“像素”其实就是一些整齐排列的彩色(或黑白)点,如果这些点被慢慢放大,就会看到一个个的“像素”中添充着自己的颜色,这些“像素”整齐地排列起来,就成为了一幅BMP图片,并以.bmp(.rle,.dib等)为扩展名。BMP(Bitmap-File)图形文件是Windows采用的图形文件格式,在Windows 环境下运行的所有图象处理软件都支持BMP图象文件格式。BMP:Windows位图可以用任何颜色深度(从黑白到24位颜色)存储单个光栅图像。Windows 位图文件格式与其他Microsoft Windows 程序兼容。它不支持文件压缩,也不适用于Web 页。从总体上看,Windows 位图文件格式的缺点超过了它的优点。 图像处理方法的研究源于两个主要应用领域:其一是为了便于人们分析而对图像信息进行改进;其二是为使机器自动理解而对图像数据进行存储、传输及显示。 一幅图像可定义为一个二维函数f(x,y),这里x和y是空间坐标,而在任何一对空间坐标(x,y)上的幅值f称为该点图像的强度或灰度。当x,y和幅值f为有限的、离散的数值时,称该图像为数字图像。数字图像处理是指借用数字计算机处理数字图像,值得提及的是数字图像是由有限的元素组成的,每一个元素都有一个特定的位置和幅值,这些元素称为图像元素、画面元素或像素。像素是广泛用于表示数字图像元素的词汇。 图像处理涉及的范畴或其他相关领域(例如,图像分析和计算机视觉)的界定在初创人之间并没有一致的看法。有时用处理的输入和输出内容都是图像这一

中国姓氏英文翻译大全教学内容

中国姓氏英文翻译大 全

中国姓氏英文翻译大全- - [b][u]中国姓氏英文翻译大全- -[/u][/b] A: 艾--Ai 安--Ann/An 敖--Ao B: 巴--Pa 白--Pai 包/鲍--Paul/Pao 班--Pan 贝--Pei 毕--Pih 卞--Bein 卜/薄--Po/Pu 步--Poo 百里--Pai-li C:

蔡/柴--Tsia/Choi/Tsai 曹/晁/巢--Chao/Chiao/Tsao 岑--Cheng 崔--Tsui 查--Cha 常--Chiong 车--Che 陈--Chen/Chan/Tan 成/程--Cheng 池--Chi 褚/楚--Chu 淳于--Chwen-yu D: 戴/代--Day/Tai 邓--Teng/Tang/Tung 狄--Ti 刁--Tiao 丁--Ting/T 董/东--Tung/Tong 窦--Tou 杜--To/Du/Too

段--Tuan 端木--Duan-mu 东郭--Tung-kuo 东方--Tung-fang E: F: 范/樊--Fan/Van 房/方--Fang 费--Fei 冯/凤/封--Fung/Fong 符/傅--Fu/Foo G: 盖--Kai 甘--Kan 高/郜--Gao/Kao 葛--Keh 耿--Keng 弓/宫/龚/恭--Kung 勾--Kou

古/谷/顾--Ku/Koo 桂--Kwei 管/关--Kuan/Kwan 郭/国--Kwok/Kuo 公孙--Kung-sun 公羊--Kung-yang 公冶--Kung-yeh 谷梁--Ku-liang H: 海--Hay 韩--Hon/Han 杭--Hang 郝--Hoa/Howe 何/贺--Ho 桓--Won 侯--Hou 洪--Hung 胡/扈--Hu/Hoo 花/华--Hua 宦--Huan 黄--Wong/Hwang

相关文档
相关文档 最新文档