文档库 最新最全的文档下载
当前位置:文档库 › 外文4

外文4

山东建筑大学毕业设计外文文献及译文

本科毕业设计

外文文献及译文

文献、资料题目:Project Pathogens The

Anatomy of Omission Errors 文献、资料来源:期刊

文献、资料发表(出版)日期:2014.6.10院(部):土木工程学院

专业:土木工程(辅修)

班级:土木辅修11级

姓名:张明晨

学号:2010021089

指导教师:李晓静

翻译日期:2014.6.10

外文文献:

Project Pathogens: The Anatomy of Omission Errors in Construction and Resource Engineering Project

Abstract—Construction and engineering projects are typically complex in nature are prone to cost and schedule overruns.A significant factor that often contributes to these overruns is rework.Omissions errors, in particular, have been found to account for as much as 38% of the total rework costs experienced. To date,there has been limited research that has sought to determine the underlying factors that contribute to omission errors in construction and engineering projects. Using data derived from59 in-depth interviews undertaken with various project participants, a generic systemic causal model of the key factors that contributed to omission errors is presented. The developed causal model can improve understanding of the archetypal nature and underlying dynamics of omission errors. Error management strategies that can be considered for implementation in projects are also discussed.

Index Terms—Error, error management, omission, pathogens,

rework.

I. INTRODUCTION

IN THE construction and resource engineering sector in Australia,particularly in Western Australia, a wide range of project types have commenced to meet the increasing demand for new infrastructure and resources, such as oil and gas, bauxite, copper, iron ore, and nickel. Such projects are typically complex and often prone to cost and schedule overruns [11]. A significant factor that often contributes to these overruns is rework [66]. While several definitions of rework are available within the literature, (e.g., [6], [23], [25], [69]), a common theme arising is that which relates to ―the unnecessary of effort of redoing a process or activity that was incorrectly implemented the first time‖ [51].‖Design changes, errors, and omissions account for 79% of the total rework costs experienced in a project [13], but of this percentage, omissions errors alone account for 38% [77]. Omissions errors can be defined as failures to follow due procedure when undertaking a task(s). These are the single most common form of human error [65, p. 41]. Specifically, projects appear to progress smoothly until nearing completion, when such errors made earlier are discovered, necessitating costly rework [25], [30]. Such rework

1

transpires as overtime, additional hiring of resources (including labor and plant), schedule Manuscript received September, 2007; revised April, 2008. Current version published July 17, 2009. This work was supported by the Australian Research Council under Grant DP-0453258. Review of this manuscript was arranged by Department Editor J. K. Pinto.

P. E. D. Love is with the Department of Construction Management, Curtin University of Technology, Perth, W.A. 6845, Australia.

D. J. Edwards is with the Department of Civil and Building Engineering,Loughborough University, Loughborough, Leicestershire, LE11 3TU, U.K.

Z. Irani is with the Business School, Brunel University, Uxbridge UB8 3PH,U.K.

D. H. T. Walker is with the School of Property, Construction, and Project Management, RMIT University, Melbourne, VIC 3000, Australia.

Digital Object Identifier 10.1109/TEM.2008.927774 slippage, and reductions in project scope or quality [25]. The adverse consequences of these difficulties include reduced profit, loss of market share and reputation, increased turnover of management and workforce, lower productivity, higher costs, and, all too frequently, costly litigation betw

Determining the exact cognitive processes that are involved in omitting a crucial task is an arduous process, as even the error maker finds it difficult to identify the cause of a specific failure. Reason [65] suggests that to reduce the incidence of omission errors in a process, there needs to be a shift away from examining the underlying mental processes involved to those characteristics most likely to afford them. Several authors have identified a number of task properties that are likely to increase the probability that

a particular task in a process will be omitted, as depicted by the following examples.

1) The greater the informational loading of a particular task,i.e., items within a step are more likely to be omitted when the demands imposed upon short-term memory are higher [59].

2) Procedural steps that are functionally isolated, i.e., ones that are not obviously cued by preceding actions nor follow in a direct linear succession from are more likely to be left out [65].

3) Recursive or repeated procedural steps are particularly prone to omission. In the

2

case where two similar steps are required to achieve a particular goal, it is the second of these two steps that is most likely to be neglected [39].

4) Steps in which the item to be acted is concealed is liable to omission [65].

5) Steps located near the end of a task sequence are likely to be omitted. Such premature exits are due, in part, to the actor’s preoccupation with the next task, particularly, when the current activity involves largely routine tasks [63].

6) Tasks that involve planned departures from standard operating procedures or from habitual action sequences are liable to strong intrusions in which the currently intended actions are supplanted by a more frequently used routine in that context, and thus, omitted [65].

A number of the aforesaid omissions may occur simultaneously and be combined into a single task. When this happens, the effects are additive and the result is a recurrent error trap for those involved [63].

A. Error Cycle

B. Data Analysis

The text derived from the interviews was analyzed using QSR N5 (which is a version of NUD?IST and combines the efficient management of nonnumerical unstructured data with powerful processes of indexing and theorizing) and enabled the development of themes to be identified. One advantage of such a software is that it enables additional data sources and journal notes to be incorporated into the analysis. The development and reassessment of themes as analysis progresses accords with the calls for avoiding confining data to predetermined sets of categories [72]. Kvale [50] suggests that ad hoc methods for generating meaning enable the researcher access to ―a variety of common-sense approaches to interview text using an interplay of techniques such as noti VI. ERROR MANAGEMENT

Identification of the underlying causes of omission errors can assist with the development of error management strategies. Traditional quality control methods identify variation as nemesis in a process. The control of variation by itself can never achieve the significant low nonconformance levels that are expected by organizations and those required in projects. Mistakes are the most common cause of error in health care and industrial environments [40]. Excessive product and process complexity have been

3

reported as being the underlying contributors to errors. Projects in the resource and construction engineering are typically complex and the pressures associated with satisfying clients and stakeholders are inexorable for those organizations given the responsibility for the delivery of a project. Invariably, pressures associated with the timely delivery of projects (e.g., processing plants, offshore platforms, roads, hospitals, schools, etc.) are of central concern to industry clients. Key drivers facilitating the need for the timely delivery of projects are the increasing costs of capital, increased shareholder expectations for a return on investment, the need to be responsive to market needs, environmental concerns, and the requirement for physical infrastructure to meet the growing needs of an increasing population.

task adversely influence project performance or design integrity? Should the consequences of such omissions be severe, then this would warrant the use of suitable reminders to undertake the task at hand. Omission-based strategies that can be used include [65]: notes and post-its, dairies, lists, getting others to act as reminders, mental checking, and mental rehearsal. While such strategies can be effective for addressing slips and lapses, and possibly even mistakes, they are ineffectual for preventing indiv An organization’s culture influences the behavioral practices adopted by individuals. Effective risk management in a project is dependent upon a culture of reporting being in place [20]. Such a culture is integral to those organizations that have openly embraced total quality management (TQM) or significant aspects thereof.Without a detailed analysis of errors that have occurred using techniques such as causal loop diagramming [53], Pareto analysis [44], and fault tree analysis [22], there is no way of determining the ―recurrent error traps‖ and risks that may reside within an organization and the project system. When a reporting culture is embedded within an organization, then it is important that there be a collective understanding of where the line should be drawn between blameless and blameworthy actions [54]. The development of an organization and project culture based on ―objectivity and learning‖ is needed in this case. Many construction organizations, for example, have not actively embraced learning and quality practices. Such practices are critical components of an effective continuous improvement program, which invariably aims to negate errors.

VII. CONCLUSION

4

Omission errors are a problematic issue in construction and resource engineering projects. The competitive environment within which firms operate often results in shortcuts and procedural tasks being neglected in order to achieve the demands being imposed on them. Organizations and individuals tend to repeat such practices because they become complacent as there appear to be no direct consequences for their actions. Even when errors do arise, there appears to be no transfer of learning fromprevious experiences. This is because organizations operating in a project environment are subject to new demands and constraints by different client organizations. The causal model that has been presented can be used to provide project managers with a better understanding of the omission affording features inherent to projects, and therefore, aid them in identifying and implementing error containment and reduction strategies. The caveat to this is that no one strategy is a panacea for reducing omissions, but focusing on the reduction of violations and adhering to procedures and protocols is the first step that is required in this instance.

ACKNOWLEDGMENT

The authors would like to acknowledge the constructive comments provided by the three anonymous reviewers and the Associate Editor, Professor Jeff Pinto.

REFERENCES

[1] F. Ackermann, C. Eden, and T. Williams, ―Modelling litigation: Mixing qualitative and quantitative approaches,‖ Interfaces, vol. 27, no. 2, pp. 48– 65, 1997.

[2] D. E.Allen, ―Human error and structural practice,‖ J. Build. Phys., vol. 18, no. 4, pp. 313–319, 1995.

[3] Andi and T. Minato, ―Representing causal mechanism of defective designs:A system approach considering human errors,‖ Constr. Manage. Econ., vol. 21, pp. 297–305, 2003a.

[4] Andi and T. Minato, ―Design documents in the Japanese construction industry: Facto rs influencing and impacts on construction process,‖ Int. J. Proj. Manage., vol. 21, pp. 537–546, 2003b.

[5] Andi and T. Minato, ―Representing causal mechanism of defective designs: Exploration through case studies,‖ Constr. Manage. Econ., vol. 22, pp. 183–192, 2004.

[6] J. L. Ashford, The Management of Quality in Construction. London, U.K.: E & F

5

Spon, 1992.

[7] A. R. Atkinson, ―The pathology of building defects: A human error approach,‖Eng., Constr. Archit. Manage., vol. 9, no. 1, pp. 53–61, 1998a.

[8] A. R. Atkinson, ―Human error in the management of building projects,‖Constr. Manage. Econ., vol. 16, pp. 339–349, 1998b.

[9] A. R. Atkinson, ―The role of human error in construction defects,‖ Struct. Surv., vol. 17, no. 2, pp. 231–236, 1999.

[10] R. Amalbe rti and L. Wioland, ―Human error in aviation,‖ in Aviation Safety, H. M. Soekkha, Ed. Utrecht, The Netherlands: VSP, 1997, pp. 91–108.

[11] B. D. Waldron, ―Scope for improvement: A survey of pressure points in Australian construction and infrastructure pro jects,‖ A Report Prepared for the Australian Constructors Association by Blake Dawson Waldron Lawyers, Sydney, Australia, 2006.

[12] D. Blockley, Engineering Safety. London, U.K.: McGraw-Hill, 1992.

Peter E. D. Love received the M.Sc. degree in construction management from the University of Bath, Bath, U.K., in 1994, and the Ph.D. Degree in operations management from Monash University, Melbourne, Vic., Australia, in 2001.

He is the inaugural Chair of Construction Innovation in the Department of Construction Management at Curtin University of Technology, Perth, WA, Australia. He has a multidisciplinary background and his current research interests include project management, engineering forensics, operations management, and information systems evaluation. He has coauthored/edited five books and has authored/coauthored over 300 internationally refereed research papers, which have appeared in leading international journals such as, the Journal of Management Information Systems, the European Journal of Operational Research, the Information and Management, the Information and Organisation, the European Journal of Information Systems, the IEEE TRANSACTION ON ENGINEERING MANAGEMENT, the International Journal of Production Economics, and the International Journal of Production Research.

DavidJ. Edwards is a Member of the U.K. Home Office’s Plant Theft ActionGroup. He is on the technical and editorial panels of several international conferences and is a Peer Referee for 18 academic journals in his field. He is a Peer Referee for the Qualifications and Curriculum Authority, the Health and Safety Executive, the EPSRC,

6

the U.K. Ministry of Defence, the Major Contractors Group, the Major Hire Companies Group, and the National Research Foundation (South Africa).

Since 2000, he has secured more than £1000 000 of research funding. In 2005, he launched the Hand-arm Vibration Test Centre (HA VTEC) to mitigate the health risk associated with the operation of power tools. HA VTEC currently has over 12 000 registered users. He is the author or coauthor of more than 100 peer-reviewed research papers, 14 textbooks, 2 textbook chapters, and 3 digital versatile disks (DVDs). His current research interests include plant and equipment management, project management, construction procurement, and health and safety.

Zahir Irani is the Head of the Business School, Brunel University, Uxbridge, U.K. He leads a multidisciplinary group of international Ph.D. Students that research information systems evaluation and application integration.

He has been the Hooker Distinguished Professor at McMaster University, Canada. He has also been a Visiting Professor at several Universities. He is the Editor-in-Chief of the established Journal of Enterprise Information Management and the European Editor of the Business Process Management Journal. He has coauthored/edited several books and has authored/coauthored over 300 internationally refereed research papers, which have appeared in leading international journals such as, the Journal of Management Information Systems, the European Journal of Operational Research, the Information and Management, the Information and Organisation, the European Journal of Information Systems, the IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT, the International Journal of Production Economics, and the International Journal of Production Research. His current research interests include information systems evaluation, e-government, and operations and project management.

Derek H. T. Walker received the Master of Science degree from the University of Aston, Birmingham, U.K., in 1978, and the Ph.D. degree from RMIT University, Melbourne, Australia, in 1995. He is currently the Professor of Project Management and Program Director of the Doctor of Project Management (DPM) at the School of Property, Construction, and Project Management, RMIT University, Melbourne. He has worked in various project management roles in the U.K., Canada, and Australia for 16 years before commencing his academic career in 1986. He is the Editor of the Emerald Insight

7

International Journal of Managing Projects in Business. He has written over 150 peer-reviewed papers and book chapters. His current research interests include innovation diffusion of information and communication technologies, knowledge management, project management, and project procurement systems.

中文译文:

项目病原体:建设与资源工程项目疏忽错误的剖析摘要:建筑和工程项目是典型的性质复杂,很容易出现成本和进度超支。

有助于这些超支中一个显著的因素是返工。尤其是遗漏错误,占返工成本的38%。迄今为止,有关在施工造成遗漏错误的潜在因素方面的研究很少。使用由各项目参与者进行的59项研究的数据,呈现了促成疏忽错误的关键因素。所开发的因果模型可以提高对原型性质和基本动力的理解疏忽错误。错误管理策略值得考虑,因为有关项目的实施也在被讨论。

关键词:错误,错误管理,疏忽,病原体,返工。

1.引言

在澳大利亚的建设和资源工程界,特别是在西澳大利亚,广泛的项目已经展开,以满足不断增加的对新的基础设施和资源的需求,例如石油和天然气,铝矾土,铜,铁矿石和镍。这类项目通常复杂且常易发生的成本和进度超支[11]。导致这些超支一个显著的因素往往是返工[66]。虽然返工的几个定义在文献中,(例如,[6],[23],[25],[69]),其中涉及到“重做的不必要的努力第一次错误实施的一个过程或活动“[51]。”设计变更,错误和遗漏占总返工的79%[13],其中遗漏错误就占了38%[77]。遗漏误差可以被定义为没能遵循适当程序承担任务(S)。这些是最常见的人为错误的形式[65页。 41]。具体来说,项目似乎进展顺利,直到接近尾声,这样的错误更早得被发现,因此需要昂贵的返工[25],[30]如返工加班,额外的招聘资源(包括劳动力和植物)中,日程安排收到稿件2007年9月;经修订的2008年4月。当前版本公布2009年7月17日,这项工作由澳大利亚研究支持根据批DP-0453258理事会。回顾这个稿子被安排由部编辑J. K.平托。PED施工管理,科廷部技术,珀斯,西澳6845,澳大利亚大学。DJ爱德华兹与土木与建筑工程系,拉夫堡大学,拉夫堡,莱斯特郡,LE11 3TU英国Z.伊拉尼与商学院,布鲁内尔大学,

8

阿克斯布里奇UB8 3PH,英国双氢睾酮是沃克与学校物业,建筑和工程管理,墨尔本皇家理工大学,墨尔本,维多利亚州3000,澳大利亚。数字对象标识符10.1109/TEM.2008.927774滑移,并减少项目范围或质量[25]。不利这些困难后果包括减少利润,市场份额和声誉损失,营业额增加管理和劳动力,生产率较低,成本较高,而且,太频繁,参与者之间高昂的诉讼费用超过对于超支和延误的责任[1],[24],[30]。

遗漏错误是一个系统内的病原体所致在公司内部,并转化为发人深省的错误和项目(例如,时间压力,工作人员不足,乏力,经验不足)。这些病原体导致行不通关系和程序,以及设计和施工不足之处[64]。已经有相当数量的的研究,审查了人为错误,其类型的性质,并引起一系列诸如航空区域(例如,[10],[38]),药(例如,[62]),工程设计(例如,[15]),和建设(例如,[7],[8]),但研究,探索的基础条件和促成的发生因素遗漏错误是有限的。利用59得出的数据深入访谈与不同的参与者进行在建筑和工程资源部门经营的,一遗漏错误的通用因果模型。从调查结果提出了降低错误管理策略遗漏错误的发生率,然后进行讨论。

二项目致病菌

病原体潜伏在一个休眠系统中,直到错误出现。在错误显现前,项目参与者往往仍然不了解在项目执行特定的决策,做法,或程序可具有的影响。高层管理人员或关键决策者的采取的战略决策可能会导致病原体出现。这样的决定可能是错误的,但他们不一定是。潜在条件可以在系统内沉寂相当长的时间,进而成为不可分割的一部分日常的工作实践。与主动失败(类似于戴明的常见原因)相比,遗漏错误可能会出现并导致后果。主动失误基本上都是由与系统直接接触的人员造成的。这些行为包括失误,错误,违反程序。主动失败往往难以预见,因此无法通过简单的措施来避免该情况的发生。但是潜条件可以事先被识别和纠正,进而阻止不良事件发生。病原体已被定义成若干情况:

1)他们在错误发生之前会稳定得潜伏相当长的时间。

2)在出现错误前,他们不会被视为序列故障。

3)它们与错误有密切联系,一旦出现错误便被视为是错误的主要原因。

导致错误发生的相关病原体可以进行如下分类。

9

1)实践—由人的故意行为引起。

2)任务—因正在执行的任务的性质。

3)环境—因该项目运作的情况或者环境。

4)组织—因组织结构或操作。

5)系统产生的组织体系。

6)从行业的结构特性所产生的。

7)工具—刀具因刀具的技术特征。

巴斯比和Hughes研究发现,在工程公司的错误是基于(故意行为病原体),尝试为了解决一个特殊的问题的实践。例如,回收的设计细节,规格,和其他合同文件,以减少时间和成本,没有给予应有的有关建设项目注意事项。

个人可能反复出现行为,如走捷径以及不按照适当的程序。这种做法是用在将来的项目,即使它是不适合的该项目。例如,设计者决定避开审计,检查,验证和评价之前,释放的定价或施工文档。尽管这种活动很重要,由于资金和时间压力通过客户被施加在设计公司,这种做法已经成为一种范数。特利和McFallen [74]曾建议较早完成的项目的要求与设计师产生错误的合同的可能性之间存在正相关。在设计过程中由于缺乏重视质量管理已造成返工的概念盘踞在工作实践中,因此,利润越来越少。承包商和分包商也容易遗漏错误,例如,质量,安全和环境管理体系的约束可能不被严格遵守,并作为结果,任务或进程程可需要进行修复。

三故障原因

由于人类局限性而出现的错误。个人因为所有的错误而受指责,犯错是人性的先天特性[61]。人因各种原因发生错误,因此,需要采取不同的行动以防止或避免不同类型的有关建设和资源的工程项目的错误。无论技术水平,经验,或个人参加的培训,错误和遗漏可以在任何进行时间。

事实证明没有一次错误分类可用于所有的情况下,因为不同的错误分类服务于不同的需求。尽管理性断言,一些分类方案,已经被提出来识别错误的一般原因,而被视为用于评估项目的潜在风险是非常有用的。例如,罗格等人开发了一个工具来提供可能返工施工前的预警,基于可能导致其发生的基础条件。这些条件包括设计协调的程度所进行的设计进度压缩的程度,和工程验证的规律性。同样,Manavazhi

10

开发了可用于预测一个项目遇到设计修改的概率模型。设计修改是不可避免的和不可或缺的功能设计过程;因此,重要的是,企业能够在错误发生时建立机制来规划和管理他们。由于出现错误需要返工设计修改,不完整的误传,和改变(例如,那些是客户端发起和不可预见的),对生产力,士气,设计师态度和整体效果有影响。

多种原因可导致误差出现。

1)差错—由于对正确的任务或执行它的正确方法的无知而导致错误发生。基于规则的错误,从业者可能会误用在以前的情侣中用过的规则,因为他们没有注意到的矛盾。另外,一个坏的规则可能会被应用到现在遭遇的状况。当医生遇到一个在他们可控范围外的错误便会出现知识性错误。当面对这样的状况,从业者往往被迫减缓。这是因为医生在给定时间顾不上和操作一个或两个离散项目。另外,从业者有遵从本能的一种倾向,并选择世界上功能支持它,而忽略了在之前出现过得矛盾、。

2)不服从—因为一个人决定不执行任务或不顺从指示或预期来执行任务而导致错误发生,。他们是故意的行为,并可能由于激励问题而出现(例如,发生低士气,监管不力,被认为缺乏关注,等等)。发生在一个稳定的社会环境这下的错误,预防这些都必须通过激励来预防,解决和组织补救措施,在组织内改善质量以及传递信息和项目。

3)简并的发生—由于健忘,习惯,或类似的心理问题而出现的错误。在这里的错误通常在执行水平,以及熟悉的日常任务的环境下发生。,无论是从眼前的形式环境或某事的当务之急分心,错误都与注意相关。

由于紧张或者分心的精神过程,遗漏错误出现。动作至少涉及四个阶段,规划,意图存储,执行,和监测,以及在这些的任意项所述的问题过程可能导致遗漏发生(表一)。

确定所涉及的认知过程,省略了至关重要的任务,是一个艰苦的过程,即使是错误制造者也难以识别失败的原因。一些作者确定了在特定任务过程中错误出现的概率。如所描绘由以下的实施例。

1)一个特定的任务的信息加载更大,在一个步骤件更可能被省略当在短期内存容量的需求是较高[59]。

11

2)它们在功能上分离的程序步骤,那些未明显受前一行动影响的那些更有可能留出[65]。

3)递归或重复的程序步骤出现遗漏。在两个类似的步骤的情况下以实现特定目标所需的,这是第二这两个步骤是最有可能被忽略的[39]。

4)其中隐蔽的步骤是失误得原因[65]。

5)靠近一个任务序列的末尾的步骤有可能被省略。这样过早退出,在某种程度上,对演员的专注于下一个任务,尤其是当前活动涉及主要日常任务[。

6)涉及计划好的任务程序或因习惯性动作,其中目前拟操作是用一个较常用的常规取代在这方面,并且因此被省略了。

大量预见到的失误也可能同时发生。当发生这种情况,影响是附加的,其结果是一个经常性的错误陷阱。

A.错误周期

错误往往不能立即被识别,只有在系统中存在一段时间。之后检测到这些错误,返工增加了工作人员的工作。返工的程度依赖于错误未被发现的时间是多少。例如,尺寸误差或空间冲突设计文档中,直到该项目在物理构造的现场发现错误。寻址该错误可以生成用于个人更多的工作,并有可能被生成的多个错误。进步率不佳发生时,工作人员要么参与文件的过程要么离开设计单位(人员流失),或(由于疾病或休假)更换员工来完成文件的过程。设计人员的不连续性对设计过程有显著的影响。这是因为项目的知识和每个工作人员的学识不能简单传递给下一个人,即使一移交“瞬态”期间(和/或述职)发生。工作人员从同一个办公室聘请不能立即熟识该项目知识。实际上,文档活动被不同程度得执行(取决于技能和经验各个设计者的),因此这也可能影响文档质量。当一个项目被延迟或存在潜在延迟,不约而同地把管理重点放在资源和生产力。库珀表明,质量和错误发现率是最应该考虑的重要因素。简单地给予项目更多的资源,而没有解决根本问题,一个更有效的方法应该是减少错误检测时间或至少发生次数。设计审核,验证和审查的承诺,使发生做法错误的几率最小化(特别是立体性的)。因为相互作用的一系列复杂的错误发生时,试图以分离单数因果变量被视为不合时宜的战略[52]。一旦的原型性质和基本动力的理解

12

错误,设计减少错误(措施以限制错误的发生)和错误围堵(措施旨在提高错误检测和恢复,以及尽量减少其不利后果)的策略可以在项目[53]来实现。

四研究思路

要确定造成不作为的潜在条件错误,一个探索性的研究方法被采用。这是因为有关的因果归属有限的研究遗漏错误已经建设领域内开展与资源工程项目。因果建模,系统动力学的固有特征,用于构造遗漏错误的系统性因果模型。类似的方法已被用于检查的权利要求,在返修过程,客户端的延迟和中断的原因[1],冲击对项目执行情况[68]的行为,范围上的影响项目绩效[26],设计成本和时间性能并建立项目[27],以及设计引起的原因返工[53]。因果模型可以用来为管理者提供与有关的相互依赖关系和行为的必要见解能够有助于遗漏如此关键变量之间学习和流程改进,可向未来项目。

A.五十九名深入访谈各种人员,如操作经理,项目经理,工程经理和架构师从施工和资源工程界(表II)。访谈被用作机制来确定遗漏错误的因果性质。访谈被选为主数据收集机制,因为它们是有效的工具,学习不能观察到的事项。根据泰勒和波格丹,没有其他的方法可以提供详细的了解,来自于直接观察人,听他们在现场怎么说。

从墨尔本建筑及资源工程公司,珀斯和悉尼分别选择性地采样,并邀请参与本研究,以便降低同一项目重复的经验得可能性。访谈录音,以及录音逐字抄录,细微差别表现在文本中。受访者的详细信息允许匿名,有可能从文本的内容识别它们。访谈的形式保持尽可能一致,从所识别的相关联的主题文学。用短语开始访谈,如“谈谈它“或”可以给我一个例子吗?“。在每个长访谈从不同45分钟至2小时不等。采访是开放的,激励谈话,打破采访者和受访者之间的障碍。

B.数据分析

使用QSRN5(这是一个版本NUD * IST的和结合的效率与强大的非数字非结构化数据管理索引和理论化)来分析采访资料,进一步促使主题被激发。这样的一个优点软件是使数据源和期刊注意到被纳入分析。发展与重估题材作为分析的进展符合为了避免限制数据到预定集合的呼吁。Kvale表明,使研究人员获得“各种常识

13

性的方法。使用的相互作用来采访的文字如指出的图案,看到真实性的技术,进行比较,等等。“(第204页)

使用NUD * IST使研究人员能够开发一个有机的编码方法,因为它启用的触发器或类别在文本的编码和保持新兴的轨道和发展思路非常有用[50]。这些编码都可以修改,集成或迁移作为分析的进展和代的报告,使用布尔搜索,方便识别的冲突和矛盾。这个过程使发展这是增强了分类法的因果模型由巴斯比和休斯发展[18],用来确定病原体是否出现。分类“故障类型”(即,错误,违规,失效,滑)来确定原因对于遗漏的错误(表一)的发生。

五,解剖学遗漏差错

访谈揭示了参与者和他们的见解在项目的遗漏错误有关的经验。表二展现了行业部门的被采访者。从采访中,一共有85遗漏错误情况均来自受访者的意见。识别遗漏错误,病原体类[和失败型进行了鉴定。

A.错误分类

表三列出的病原体,例子一个分类遗漏错误和相应的故障类型。可以看出该错误53(62%)是由于实践,11(13%)的任务,(6%)的情况下,11(13%)约定,以及5(6%)的工具。表四提供了一个基于实践的病原体的例子使用同行审查设计文件被进行用于内部用途(以便减少风险和不研究如何在机械工程设计与结婚该项目的结构元素)。这种做法不仅审查过程中是无效的,还可能会导致设计师为安全和可能的异常,以一种虚假的安全感自检[18]。在图1,以实践为基础的病原体的因果路径描绘。这里,可以看出,常规的阵列贡献一个遗漏错误的发生。设计实践根据初步的信息化工作,从建立出发的程序,低估了时间,为工程设计与该设计公司都面临共同的条件。采用这种做法的效果可能会导致更高的要求被放置在项目人员(例如,压力和焦虑),冲突,自然,增加了工程时间和成本。在任务方面,遗漏的原因与设计师而被划归增加项目人员压力到一个指定的时间范围内完成他们的任务。不切实际的要求和限制被视为已强加给项目人员,这往往导致任务是“不知不觉地”忽视或从预定省略序列。例如,在表四,项目人员被混淆关于其作用是订购材料。这种情况由于出现工程经理没有确诊采购人员对于一些需要规范被要求海洋工程装备。如果没有确认,没有订单可以放置。然而,采购人员只是忘了跟进的工

14

程经理和不检查假定的订单已被放置。许多有助于遗漏的基本条件是互相依赖的,并且在许多情况下,分离的特定病原体很困难,特别是,在环境条件并约定(表四)。设计收费的问题是确定在建筑部门受访者的一个因素造成遗漏和设计相关的返工。下并列有“捉襟见肘”的设计和文档设计费日程表总是导致在诸如设计任务评价,检查和验证被省略。此外,为最大限度的费用和节省设计时间,现有的设计细节和规范被重用,whichmay令你有一个设计这是不恰当的预期目的。表三,标识遗漏错误的一个例子,以及如何它被归类为失败类型方面。 85遗漏病例发现,违规占51(60%)14滑(16%),失误13(15%),和错误7(8%)。许多的发现违规行为被简单地致力于与意向为提高运营效率。企业不能也不应该不容忍无视既定程序。后果下面的这样的行动当然可能是灾难性的,不仅增加项目成本和时间,但安全领域方面和设计的完整性。有几个令人信服的理由这个。其一是,当然,操作的标准化不能与特质遵守的程序来实现。遗漏的错误B.因果模型采访中数据的详细分析使研究人员确定典型的性质和基本错误的动态,从而制定一个系统性的因果模型(图2)。图。 2识别常见的病原体和情况能促进积极的故障出现。客户需求和设计师,顾问费和利润,和承建商是影响规划的问题和资源分配和个人的后续工作量。往往不是在项目中,个人和团队给予要求他们延长工作时间的工作量过重为了满足时间表。因此,个人受到职场压力水平,并进行信息的增加

超载会影响个体的短期记忆(表IV)。这可能导致一个任务发生偏差通过

时隔或滑。程序,如检查只是忽略或不当给定的压力,“得到所需要的适当关注完成任务“的作用。从受访者的意见表明,它常常想当然地认为,如果有“遗漏”,不能轻易检测到,那么他们将被拾起后在项目中。较长的错误未被发现的可能性

的显著返工增加发生可能影响成本和进度。有人建议由工程经理的“她马上就”一个狭隘的态度是普遍在许多项目中,从而有助于建立自满。这也被认为在一些情况下发生由项目经理现场施工和资源项目。另一位受访者指出,一些工程师现场经常不遵守公司的质量程序/标准并且不完成所需要的文件。只有当违规发放或审计承诺,他们开始做他们应该做的事情。然后,经过一段时间后,工程师现场往往会回到他们原来的工作方手法。有人建议,由项目经理,有些

15

为不断坚持,可发出的处罚形式noncomplaint做法或某种形式的教育计划

解释为什么程序合规是必要的应进行。当项目作出快速跟踪(重叠设计和施工活动),那么它被发现由建筑师和工程师重用的设计细节和规格是方法用来最大限度地减少他们的工作量,生产了初步设计。这可能导致不完整的关于信息来设计。具有的影响初步设计信息都进一步加剧时,组织使用不同的技术和软件应用这是部分不兼容(互操作性)。简单,实用考虑如检查设计不一致被忽视由于对一个“不健康”过度依赖软件应用程序的输出。暧昧的通信,如不提供明确的方向以及在什么时候,以及如何一个任务就是要信息完成后,可导致被删去任务。是在表IV中,当有一个呈现的示例的情况下误解有关采购订单的布局已晚。中断的工作正在开展,由于返工,设计变化,或任务的排序可能导致个体的遗忘他们应该怎么做,跳过特定步骤因为他们已经被推迟。

六。错误管理

遗漏错误的根本原因的鉴定可以协助与差错管理策略的发展。传统的质量控制方法找出变化的克星在一个过程。变化本身该控件便永远达到预期的显著较低水平不合格通过组织和那些在项目必需的。误区是错误的医疗保健和工业的最常见原因环境[40]。过多的产品和工艺的复杂性被报告为基础的贡献者错误。在资源和建设工程项目通常复杂,与压力相关的满意客户和利益相关者必然对那些组织给出一个项目的交付责任。不变的是,与及时交付的项目(如有关的压力,加工厂,海上平台,道路,医院,学校,等)是中央关注的行业客户。关键驱动因素促进需要及时交付项目的增加资本的成本,增加了股东的期望对于投资回报,需要能迅速回应市场需求,环境的考虑,以及对物理的要求基础设施,以满足日益不断增长的需求人口。与“捉襟见肘”的设计和建造相关的压力时间表和澳大利亚目前的人才短缺往往导致设计相关的文档不被建设[11]开始前完成。增加了工作的需求和信息过载可导致误的发生,但证据清楚地呈现揭示了违反程序是主要贡献者遗漏错误,特别是与设计顾问。它会出现那个人故意不采取适当的

时间来检查错误。设计顾问(如建筑师和工程师)预期在实践使用合理和正常的照顾专业和他们的责任,部分由社会定义归属[33]。从法律角度看,这是众所周知的之间的职业,但客户并不总是知道或作出意识到了这一点[34]。建筑师和工程

16

师不能保证他们的服务的结果。他们的错误和遗漏承担责任,然而,可以“通过是否已执行确定他们的服务与照顾与其他专业相一致的标准设计师自己的社区内“[34]。一旦客户端了解自己的设计师的责任,他们往往很难理解什么是护理水平的意思[19]。通常情况下,这是留给法庭或专家小组一次违反护理的标准是确定的,但是这可能是一个漫长的并且,也不能保证一次成功,为客户繁琐的过程。结果(例如,[19])。即使当一个标准的护理同意在precontract,任何金融复苏可能取决于是否该错误是一个错误(由设计者犯的错误)或遗漏(从合同省略)。A.减少遗漏:违规,滑倒,失误,以及保单失效人为错误的问题可以从两个层面来看:在人的方法和系统的方法[64]。人方法侧重于个人的错误,指责他们对于健忘,注意力不集中,粗心大意,动机不良,疏忽。该系统的方法集中在条件据此,个人的工作,并试图建立防御,以避免错误或减轻其影响。此人的做法侧重于行为,如程序违法行为造成的错误。根据本主持方法,个人目标和指责为错误发生因为它被认为是更“比情感上的满足针对机构“[64]。从本质上讲,个人被视为作为有采用免费或erroneousbased误差之间的选择行为。如果发生错误,那么很显然,一个个人负责,所以精力都花在试图脱开一个人的行为,从组织责任。它连续出现在项目的错误类型往往在本质上相似,因此,“经常性的错误陷阱”实现。例如,已经证实失败在设计过程中进行程序上的任务[3],

[4],[16],并不断设计重用[14]是中心思想的那脱颖而出,成为实践贡献不作为的错误。工作通过组织实施的做法可以引起类似错误,不管人民的技能和经验参与一个项目。有可能挑起遗漏的病原菌为确定在表IV中。一个组织的立即关注应重点任务和相应的识别提醒/检查,这样的失误,滑倒,失误,甚至违反不发生,尤其是在合同的准备文档。任务分析包括分解活动或程序成离散的步骤一个有意义的数字。这是不是一个特别困难的过程,但可能是耗时对于组织,但那些有质量保证体系在地方会总是有一个循序渐进的过程协议记录和到位。它是因此,有必要选择性在选择程序遗漏管理。供选择的最明显的是基础的关键性任务;会遗漏一个特定任务的不利影响项目性能或设计的完整性?如若后果这种遗漏是严重的,那么这将保证使用合适的催承接手头的任务。可以使用省略为基础的策略包括[65]:笔记及后其,乳制品,列表,让其他人作为提醒,精神检查和心理排练。虽然这种策略可

17

有效解决单和失效,并可能即使犯错,他们是无效的,以防止个人从刻意走捷径,或错过了一个过程干脆。纯粹专注于责怪某个人或他们的攻击执行任务的能力可能产生不利后果学习和减少错误。错误发生后的因果归属认为有必要获得知识活动为开展后续行动的目的[46]。分配原因可导致行为[76]相当大的差异。它已经表明错误原因,如缺乏努力少希望不是“缺乏能力”,因为他们有建设性的,而不是破坏性的行为[31]。行为之后发生的错误由演示文稿的正误差的启发式,对于影响例如,“我做了一个错误;我可以学习一下!“[36]。

18

相关文档