文档库 最新最全的文档下载
当前位置:文档库 › 数字图像边缘检测的研究与实现[1]

数字图像边缘检测的研究与实现[1]

数字图像边缘检测的研究与实现[1]
数字图像边缘检测的研究与实现[1]

任务书

摘要

主要分析几种应用于数字图像处理中的边缘检测算子,根据它们在实践中的应用结果进行研究,主要包括:Robert 边缘算子、Prewitt 边缘算子、Sobel 边缘算子、Kirsch 边缘算子以及Laplacian 算子等对图像及噪声图像的边缘检测,根据实验处理结果讨论了几种检测方法的优劣.

关键词:数字图像处理;边缘检测;算子

引言

图像的边缘是图像的重要特征之一, 数字图像的边缘检测是图像分割、目标区域识别、区域形状提取等图像分析领域十分重要的基础, 其目的是精确定位边缘, 同时较好地抑制噪声, 因此边缘检测是机器视觉系统中必不可少的重要环节。然而, 由于实际图像中的边缘是多种边缘类型的组合, 再加上外界环境噪声的干扰, 边缘检测又是数字图像处理中的一个难题。

目录

第一章边缘的概念 (3)

第二章边缘检测 (4)

第三章边缘检测算子的应用 (8)

第四章边缘检测方法性能比较 (12)

参考文献料 (15)

第1章:边缘检测

1.1 边缘的介绍

图像边缘是图像最基本的特征,边缘在图像分析中起着重要的作用。所谓边缘是指图像局部特性的不连续性。灰度或结构等信息的突变处称为边缘,例如:灰度级的突变,颜色的突变,纹理结构的突变等。边缘是一个区域的结束,也是另一个区域的开始,利用该特征可以分割图像。

边缘(edge)是指图像局部强度变化最显著的部分.边缘主要存在于目标与目标、目标与背景、区域与区域(包括不同色彩)之间,是图像分割、纹理特征和形状特征等图像分析的重要基础.图像分析和理解的第一步常常是边缘检测(edge detection).由于边缘检测十分重要,因此成为机器视觉研究领域最活跃的课题之一.本章主要讨论边缘检测和定位的基本概念,并使用几种常用的边缘检测器来说明边缘检测的基本问题.在讨论边缘算子之前,首先给出一些术语的定义:

边缘点:图像中具有坐标]

i且处在强度显著变化的位置上的点.

,[j

边缘段:对应于边缘点坐标]

i及其方位 ,边缘的方位可能是梯度角.

,[j

边缘检测器:从图像中抽取边缘(边缘点和边缘段)集合的算法.

轮廓:边缘列表,或是一条表示边缘列表的拟合曲线.

边缘连接:从无序边缘表形成有序边缘表的过程.习惯上边缘的表示采用顺时针方向序.边缘跟踪:一个用来确定轮廊的图像(指滤波后的图像)搜索过程.

边缘点的坐标可以是边缘位置像素点的行、列整数标号,也可以在子像素分辨率水平上表示.边缘坐标可以在原始图像坐标系上表示,但大多数情况下是在边缘检测滤波器的输出图像的坐标系上表示,因为滤波过程可能导致图像坐标平移或缩放.边缘段可以用像素点尺寸大小的小线段定义,或用具有方位属性的一个点定义.请注意,在实际中,边缘点和边缘段都被称为边缘.

边缘连接和边缘跟踪之间的区别在于:边缘连接是把边缘检测器产生的无序边缘集作为输入,输出一个有序边缘集;边缘跟踪则是将一幅图像作为输入,输出一个有序边缘集.另外,边缘检测使用局部信息来决定边缘,而边缘跟踪使用整个图像信息来决定一个像素点是不是边缘.

1.2 边缘检测算子

边缘检测是图像特征提取的重要技术之一, 边缘常常意味着一个区域的终结和另一个区域的开始. 图像的边缘包含了物体形状的重要信息,它不仅在分析图像时大幅度地

减少了要处理的信息量,而且还保护了目标的边界结构. 因此,边缘检测可以看做是处理许多复杂问题的关键.

边缘检测的实质是采用某种算法来提取出图像中对对象与背景间的交界线。图像灰度的变化情况可以用图像灰度分布的梯度来反映,因此可以用局部图像微分技术来获取边缘检测算子。经典的边缘检测方法是对原始图像中的像素的某个邻域来构造边缘检测算子。以下是对几种经典的边缘检测算子进行理论分析,并对各自的性能特点做出比较

和评价。

边缘检测的原理是:由于微分算子具有突出灰度变化的作用,对图像进行微分运算,在图像边缘处其灰度变化较大,故该处微分计算值教高,可将这些微分值作为相应点的边缘强度,通过阈值判别来提取边缘点,即如果微分值大于阈值,则为边缘点。

Roberts,Sobel,Prewwit是基于一阶导数的边缘检测算子,图像的边缘检测是通过

2*2或者3*3模板作为核与该图像中的每个像素点做卷积和运算,然后选取合适的阈值以提取边缘。

Laplace边缘检测算子是基于二阶导数的边缘检测算子,该算子对噪声敏感。Laplace 算子的改进方式是先对图像进行平滑处理,然后再应用二阶导数的边缘检测算子,其代表是拉普拉斯高斯(LOG)算子。前边介绍的边缘检测算法是基于微分方法的,其依据是图像的边缘对应一阶导数的极大值点和二阶导数过零点。Canny算子是另外一类边缘检测算子,它不是通过微分算子检测边缘,而是在满足一定约束条件下推导出的边缘检测最优化算子。

1.3 边缘检测算法

对于边缘的检测常常借助于空域微分算子进行,通过将其模板与图像卷积完成. 两个具有不同灰度值的相邻区域之间总存在灰度边缘. 灰度边缘是灰度值不连续(或突变) 的结果,这种不连续常可利用求一阶和二阶导数方便地检测到. 已有的局部技术边缘检

测方法,主要有一次微分(Sobel 算子、Robert s 算子等) 、二次微分(拉普拉斯算子等). 这些边缘检测器对边缘灰度值过渡比较尖锐且噪声较小等不太复杂的图像,大多数提取

算法均可以取得较好的效果 . 但对于边缘复杂、采光不均匀的图像来说,则效果不太理想. 主要表现为边缘模糊、边缘非单像素宽、弱边缘丢失和整体边缘的不连续等方面.

用算子检测图像边缘的方法是用小区域模板对图像进行处理,即采用卷积核作为掩模模板在图像中依次移动,完成图像中每个像素点同模板的卷积运算,最终输出的边缘幅度结果可以检测出图像的边缘. 卷积运算是一种邻域运算. 图像处理认为:某一点像素

的结果不但和本像素灰度有关,而且和其邻域点值有关. 运用模板在图像上依此对每一

个像素进行卷积, 即模板上每一个点的值与其在图像上当前位置对应的像素点值相乘后再相加,得出的值就是该点处理后的新值.

边缘检测算法有如下四个步骤:

滤波:边缘检测算法主要是基于图像强度的一阶和二阶导数,但导数的计算对噪声很敏感,因此必须使用滤波器来改善与噪声有关的边缘检测器的性能.需要指出,大多数滤波器在降低噪声的同时也导致了边缘强度的损失,因此,增强边缘和降低噪声之间需要折衷.

增强:增强边缘的基础是确定图像各点邻域强度的变化值.增强算法可以将邻域(或局部)强度值有显著变化的点突显出来.边缘增强一般是通过计算梯度幅值来完成的.检测:在图像中有许多点的梯度幅值比较大,而这些点在特定的应用领域中并不都是边缘,所以应该用某种方法来确定哪些点是边缘点.最简单的边缘检测判据是梯度幅值阈值判据.

定位:如果某一应用场合要求确定边缘位置,则边缘的位置可在子像素分辨率上来

估计,边缘的方位也可以被估计出来.

在边缘检测算法中,前三个步骤用得十分普遍。这是因为大多数场合下,仅仅需要边缘检测器指出边缘出现在图像某一像素点的附近,而没有必要指出边缘的精确位置或方向.边缘检测误差通常是指边缘误分类误差,即把假边缘判别成边缘而保留,而把真边缘判别成假边缘而去掉.边缘估计误差是用概率统计模型来描述边缘的位置和方向误差的.我们将边缘检测误差和边缘估计误差区分开,是因为它们的计算方法完全不同,其误差模型也完全不同.

这里讨论常用的几种边缘检测器.

二、 经典边缘检测算子的理论分析和比较

1 . Roberts 算子

Roberts 算子是一种斜向偏差分的梯度计算方法, 梯度的大小代表边缘的强度, 梯度的方向与边缘走向垂直。该算子定位精度高, 但容易丢失部分边缘。因为没进行平滑处理, 不具有抑制噪声的能力。用该算子处理边缘陡峭度高且噪声小的图像效果较佳。 Roberts 交叉算子为梯度幅值计算提供了一种简单的近似方法:

]1,[],1[]1,1[],[],[+-++++-=j i f j i f j i f j i f j i G (1.1)

用卷积模板,上式变成:

y x G G j i G +=],[ (1.2)

其中x G 和y G 由下面的模板计算:

G x =

-100

1

G y =

-011

.3)

同前面的22?梯度算子一样,差分值将在内插点[/,/]i j ++1212处计算.Roberts 算子是该点连续梯度的近似值,而不是所预期的点[,]i j 处的近似值.

2 .Sobel 算子和 Prewitt 算子

Sobel 算子和P rew it t 算子都是一阶的微分算子,都是先对图像进行平滑处理, 虽然两者都是加权平均滤波, 但是前者邻域的像素对当前像素产生的影响不是等价的, 距离不同的像素具有不同的权值, 对算子结果产生的影响也不同。这两种算子对噪声都有一定的抑制作用, 但不能完全排除检测结果中出现虚假边缘的情况。这两者对灰度渐变低噪声的图像有较好的检测效果, 但是对于混合多复杂噪声的图像处理效果就不理想了。

正如前面所讲,采用33?邻域可以避免在像素之间内插点上计算梯度.考虑一下上图中所示的点[,]i j 周围点的排列.Sobel 算子也是一种梯度幅值,

M s s x y =

+22

(1.4)

其中的偏导数用下式计算:

)

()()()(456210670432a ca a a ca a s a ca a a ca a s y x ++-++=++-++= (1.5)

其中常数2=c

和其他的梯度算子一样,s x 和s y 可用卷积模板来实现:

1

1

202101

---=x

s 1

2

1

000121

---=y

s

图1.1

请注意这一算子把重点放在接近于模板中心的像素点.Sobel 算子是边缘检测器中最常用的算子之一.

4

5

6

37210],[a a a a j i a a a a 图1.2

图1.2 用于说明Sobel 算子和Prewitt 算子的邻域像素点标记

Prewitt 算子与Sobel 算子的方程完全一样,只是常量c=1.所以

1

1

1011

01

---=

x s 1

1

1

000111---=y s (1.6)

请注意,与Sobel 算子不同,这一算子没有把重点放在接近模板中心的像素点. 3 .拉普拉斯算子

平滑过的阶跃边缘二阶导数是一个在边缘点处过零的函数.拉普拉斯算子是二阶导数的二维等效式.函数),(y x f 的拉普拉斯算子公式为

?=

+

2

2

2

2

2

f f x

f y

???? (1.7)

使用差分方程对x 和y 方向上的二阶偏导数近似如下:

]

,[])1,[2]2,[(],[]

1,[])

,[]1,[(2

2

j i f j i f j i f x

j i f x

j i f x

j i f j i f x

G x

f

x ++-+=-

+=

-+==?????????? (1.8)

这一近似式是以点]1,[+j i 为中心的.用1-j 替换j ,得到

=2

2

x

f

??

]1,[]),[2]1,[(-+-+j i f j i f j i f (1.9)

它是以点[,]i j 为中心的二阶偏导数的理想近似式,类似地,

=2

2

y

f

??

],1[]),[2],1[(j i f j i f j i f -+-+ (1.10)

把这两个式子合并为一个算子,就成为下面能用来近似拉普拉斯算子的模板:

????

?

?????-≈?

01

1410102

(1.11)

当拉普拉斯算子输出出现过零点时就表明有边缘存在,其中忽略无意义的过零点(均匀零区).原则上,过零点的位置精度可以通过线性内插方法精确到子像素分辨率,

不过由于噪声,结果可能不会很精确.

LoG 算法

正如上面所提到的,利用图像强度二阶导数的零交叉点来求边缘点的算法对噪声十分敏感,所以,希望在边缘增强前滤除噪声.为此,Marr 和Hildreth[146]将高斯滤波和拉普拉斯边缘检测结合在一起,形成LoG (Laplacian of Gaussian, LoG )算法,也称之为拉普拉斯高斯算法.LoG 边缘检测器的基本特征是:

1. 平滑滤波器是高斯滤波器.

2. 增强步骤采用二阶导数(二维拉普拉斯函数).

3. 边缘检测判据是二阶导数零交叉点并对应一阶导数的较大峰值. 4. 使用线性内插方法在子像素分辨率水平上估计边缘的位置.

LoG 算子的输出h x y (,)是通过卷积运算得到的:

h x y g x y f x y (,)[(,)(,)]=?*2 (1.12)

根据卷积求导法有

h x y g x y f x y (,)[(,)](,)=?*2 (1.13) 其中:

?=+-??

??

?-

+2

2

22

4

2222

2

g x y x y

e x y (,)σ

σ

σ

(1.14)

称之为墨西哥草帽算子. .

4 .Canny 边缘检测器

检测阶跃边缘的基本思想是在图像中找出具有局部最大梯度幅值的像素点.检测阶跃边缘的大部分工作集中在寻找

Canny 边缘检测器是高斯函数的一阶导数,是对信噪比与定位之乘积的最优化逼近算子[Canny 1986].我们将通过下面的符号对Canny 边缘检测器算法作一概括说明.用],[j i I 表示图像.使用可分离滤波方法求图像与高斯平滑滤波器卷积,得到的结果是一个已平滑数据阵列

],[];,[],[j i I j i G j i S *=σ,

其中σ是高斯函数的散布参数,它控制着平滑程度.

已平滑数据阵列S i j [,]的梯度可以使用22?一阶有限差分近似来计算x 与y 偏导数的两个阵列],[j i P 与],[j i Q :

2

/])1,1[]1,[],1[],[(],[2/]),1[]1,1[],[]1,[(],[++-+++-≈+-+++-+≈j i S j i S j i S j i S j i Q j i S j i S j i S j i S j i P (1.15)

在这个22?正方形内求有限差分的均值,以便在图像中的同一点计算x 和y 的偏导数梯度.幅值和方位角可用直角坐标到极坐标的坐标转化公式来计算:

[]2

2

]

,[],[,j i Q j i P j i M +=

(1.16)

)],[/],[(arctan ],[j i P j i Q j i =θ (1.39)

其中,反正切函数包含了两个参量,它表示一个角度,其取值范围是整个圆周范围内.为高效率地计算这些函数,尽量不用浮点运算.梯度的幅度和方向也可以通过查找表由偏导数计算..

第一章 边缘检测算子的应用

一、Sobel 算子图像的处理实例

本设计用算子处理可以分为四步:首先设计高斯平滑滤波模板;其次读入图片并进行高斯滤波;第三用sobel 算子对图像进行处理;最后进行阈值分割细化图像。 第一种方法:设计程序如下

clc

close all

clear all

%%%生成高斯平滑滤波模板%%%

hg=zeros(3,3); %设定高斯平滑滤波模板的大小为3*3

delta=0.5;

for x=1:1:3

for y=1:1:3

u=x-2;

v=y-2;

hg(x,y)=exp(-(u^2+v^2)/(2*pi*delta^2));

end

end

h=hg/sum(hg(:));

%%%%%%%%%%读入图像%%%%%%%

g = imread('121.jpg'); % 读入图像文件

f=rgb2gray(im2double(g));

subplot(2,2,1),imshow(f)

title('原始图像');

[m,n]=size(f);

ftemp=zeros(m,n);

rowhigh=m-1;

colhigh=n-1;

%%%高斯滤波%%%

for x=2:1:rowhigh-1

for y=2:1:colhigh-1

mod=[f(x-1,y-1) f(x-1,y) f(x-1,y+1); f(x,y-1) f(x,y) f(x,y+1);f(x+1,y-1) f(x+1,y) f(x+1,y+1)];

A=h.*mod;

ftemp(x,y)=sum(A(:));

end

end

f=ftemp

subplot(2,2,2),,imshow(f)

title('高斯滤波器后的图像');

%%利用第一种算法进行边缘检测%%%

%%%%3*3的prewitt算子%%%%%%%%

sx=[-1 0 1;-1 0 1;-1 0 1];

sy=[-1 -1 -1;0 0 0;1 1 1];

for x=2:1:rowhigh-1

for y=2:1:colhigh-1

mod=[f(x-1,y-1) f(x-1,y) f(x-1,y+1); f(x,y-1) f(x,y) f(x,y+1);f(x+1,y-1) f(x+1,y) f(x+1,y+1)];

fsx=sx.*mod;

fsy=sy.*mod;

ftemp(x,y)=sqrt((sum(fsx(:)))^2+(sum(fsy(:)))^2);

end

end

fs=im2uint8(ftemp);

subplot(2,2,3),imshow(fs)

title('用prewitt检测的原始图像');

%%%域值分割%%%

TH2=200; %设定阈值

for x=2:1:rowhigh-1

for y=2:1:colhigh-1

if (fs(x,y)>=TH2)&((fs(x,y-1) <= fs(x,y)) & (fs(x,y) > fs(x,y+1)) )

fs(x,y)=200;

elseif(fs(x,y)>=TH2)&( (fs(x-1,y) <=fs(x,y)) & (fs(x,y) >fs(x+1,y)))

fs(x,y)=200;

else fs(x,y)=50;

end

end

end

subplot(2,2,4),imshow(fs)

title('用prewitt检测并细化后的图像');运行后的图像如下:

prewitt对滤波后的图像处理结果

二、其他近似方法:

第二种方法程序基本与第一种方法相同,只是在sobel算子处理图像核心处将“ftemp(x,y)=sqrt((sum(fsx(:)))^2+(sum(fsy(:)))^2);”换成

“ftemp(x,y)=max(abs(sum(fsx(:))),abs(sum(fsy(:))))”。

第三种类似的将ftemp(x,y)=sqrt((sum(fsx(:)))^2+(sum(fsy(:)))^2)换成“ftemp(x,y)=abs(sum(fsx(:)))+abs(sum(fsy(:)));”。

显示结果也是类似的在这里就不给出。

三、 prewitt算子对噪声图像的处理

prewitt算子根据像素点上下、左右邻点灰度加权差,在边缘处达到极值这一现象检测边缘。对噪声具有平滑作用,提供较为精确的边缘方向信息,边缘定位精度不够高。当对精度要求不是很高时,是一种较为常用的边缘检测方法。

Prewitt算子对噪声图像的处理

第四章边缘检测方法性能比较

一、边缘检测方法性能比较

梯度边缘检测方法利用梯度幅值在边缘处达到极值检测边缘。该法不受施加运算方向限制,同时能获得边缘方向信息,定位精度高,但对噪声较为敏感。

Roberts算子采用对角线方向相邻两像素之差近似梯度幅值检测边缘。检测水平和垂直边缘的效果好于斜向边缘,定位精度高,对噪声敏感。

Sobel算子根据像素点上下、左右邻点灰度加权差,在边缘处达到极值这一现象检测边缘。对噪声具有平滑作用,提供较为精确的边缘方向信息,边缘定位精度不够高。当对精度要求不是很高时,是一种较为常用的边缘检测方法。

Prewitt算子利用像素点上下、左右邻点灰度差,在边缘处达到极值检测边缘。对噪声具有平滑作用,定位精度不够高。

Laplace算子是二阶微分算子,利用边缘点处二阶导函数出现零交叉原理检测边缘。不具方向性,对灰度突变敏感,定位精度高,同时对噪声敏感,且不能获得

边缘方向等信息。

结语

通过分析几种应用于数字图像处理中的边缘检测算子,根据它们在实践中的应

用结果进行研究,主要包括:Robert 边缘算子、Prewitt 边缘算子、Sobel 边缘算子、Kirsch 边缘算子以及Laplacian 算子等对图像及噪声图像的边缘检测,根据实验处理结果讨论了几种检测方法的优劣.几种边缘提取算法在边缘明显、噪声很低的情况下会得到很好的边缘效果.

学习心得

通过这次数字图像课程设计,让我可以更娴熟的运用matlab这个软件。Matlab 在工业方面的应用很广泛,我希望能有机会更深刻的学习理解它。

在指导教师的指导下,我顺利的完成了这次数字图像的课程设计,虽然题目是简单的,但对我们的课程学习,和知识的运用有着很好的作用。总之,我认为这次课程设计是成功的,收获也是丰富的。

参考文献(资料)

1、贾永红.数字图像处理学.电子工业出版社,2003

2、冈萨雷斯.数字图像处理(Matlab版).电子工业出版社2006

3、张兆礼赵春晖梅晓丹.现代图像处理技术及Matlab实现.人民邮电出版社2001

4、王润生. 图像理解.长沙:国防科技大学出版社,1994

汽车标志识别设计-MATLAB程序设计

设计目的:车牌定位系统的目的在于正确获取整个图像中车标的区域,并识别出车标。 程序效果: 程序实现: STEP1:输入待处理的原始图像: 程序: 1 2 3 4 clear;clc;close all; %Step1 获取图像 装入待处理彩色图像并显示原始图像 Scolor = imread( '1.jpg');%imread 函数读取图像文件 subplot(3,4,1);imshow(Scolor),title('原始图像') 输出:

SETP2:图像的灰度化: 彩色图像包含着大量的颜色信息,不但在存储上开销很大,而且在处理上也会降低系统的执行速度,因此在对图像进行识别等处理中经常将彩色图像转变为灰度图像,以加快处理速度。由彩色转换为灰度的过程叫做灰度化处理。选择的标准是经过灰度变换后,像素的动态范围增加,图像的对比度扩展,使图像变得更加清晰、细腻、容易识别。 程序: 输出: 原始图像 1 2 3 %将彩色图像转换为黑白并显示 Sgray = rgb2gray(Scolor);%rgb2gray 转换成灰度图 subplot(3,4,2);imshow(Sgray),title('原始黑白图像');

STEP3:对原始图像进行开操作得到图像背景图像:程序: 1 2 3 4 %对原始图像进行开操作得到图像背景图像: s=strel('disk',13);%strei函数 Bgray=imopen(Sgray,s);%打开sgray s图像 subplot(3,4,3);imshow(Bgray);title('背景图像');%输出背景图像 输出: 原始黑白图像

Matlab做图像边缘检测的多种方法

Matlab做图像边缘检测的多种方法 1、用Prewitt算子检测图像的边缘 I = imread('bacteria.BMP'); BW1 = edge(I,'prewitt',0.04); % 0.04为梯度阈值 figure(1); imshow(I); figure(2); imshow(BW1); 2、用不同σ值的LoG算子检测图像的边缘 I = imread('bacteria.BMP'); BW1 = edge(I,'log',0.003); % σ=2 imshow(BW1);title('σ=2') BW1 = edge(I,'log',0.003,3); % σ=3 figure, imshow(BW1);title('σ=3') 3、用Canny算子检测图像的边缘 I = imread('bacteria.BMP'); imshow(I); BW1 = edge(I,'canny',0.2); figure,imshow(BW1); 4、图像的阈值分割 I=imread('blood1.tif'); imhist(I); % 观察灰度直方图,灰度140处有谷,确定阈值T=140 I1=im2bw(I,140/255); % im2bw函数需要将灰度值转换到[0,1]范围内 figure,imshow(I1); 5、用水线阈值法分割图像 afm = imread('afmsurf.tif');figure, imshow(afm); se = strel('disk', 15); Itop = imtophat(afm, se); % 高帽变换 Ibot = imbothat(afm, se); % 低帽变换 figure, imshow(Itop, []); % 高帽变换,体现原始图像的灰度峰值 figure, imshow(Ibot, []); % 低帽变换,体现原始图像的灰度谷值 Ienhance = imsubtract(imadd(Itop, afm), Ibot);% 高帽图像与低帽图像相减,增强图像figure, imshow(Ienhance); Iec = imcomplement(Ienhance); % 进一步增强图像

图像处理文献综述

文献综述 1.1理论背景 数字图像中的边缘检测是图像分割、目标区域的识别、区域形状提取等图像分析领域的重要基础,图像处理和分析的第一步往往就是边缘检测。 物体的边缘是以图像的局部特征不连续的形式出现的,也就是指图像局部亮度变化最显著的部分,例如灰度值的突变、颜色的突变、纹理结构的突变等,同时物体的边缘也是不同区域的分界处。图像边缘有方向和幅度两个特性,通常沿边缘的走向灰度变化平缓,垂直于边缘走向的像素灰度变化剧烈。根据灰度变化的特点,图像边缘可分为阶跃型、房顶型和凸缘型。 1.2、图像边缘检测技术研究的目的和意义 数字图像边缘检测是伴随着计算机发展起来的一门新兴学科,随着计算机硬件、软件的高度发展,数字图像边缘检测也在生活中的各个领域得到了广泛的应用。边缘检测技术是图像边缘检测和计算机视觉等领域最基本的技术,如何快速、精确的提取图像边缘信息一直是国内外研究的热点,然而边缘检测也是图像处理中的一个难题。 首先要研究图像边缘检测,就要先研究图像去噪和图像锐化。前者是为了得到飞更真实的图像,排除外界的干扰,后者则是为我们的边缘检测提供图像特征更加明显的图片,即加大图像特征。两者虽然在图像边缘检测中都有重要地位,但本次研究主要是针对图像边缘检测的研究,我们最终所要达到的目的是为了处理速度更快,图像特征识别更准确。早期的经典算法有边缘算子法、曲面拟合法、模版匹配法、门限化法等。 早在1959年Julez就曾提及边缘检测技术,Roberts则于1965年开始了最早期的系统研究,从此有关边缘检测的理论方法不断涌现并推陈出新。边缘检测最开始都是使用一些经验性的方法,如利用梯度等微分算子或特征模板对图像进行卷积运算,然而由于这些方法普遍存在一些明显的缺陷,导致其检测结果并不

数字图像处理和边缘检测

中文译文 数字图像处理和边缘检测 1.数字图像处理 数字图像处理方法的研究源于两个主要应用领域:为便于人们分析而对图像信息进行改进;为使机 器自动理解而对图像数据进行存储、传输及显示。 一幅图像可定义为一个二维函数(,)f x y ,这里x 和y 是空间坐标,而在任何一对空间坐标(,)x y 上 的幅值f 称为该点图像的强度或灰度。当,x y 和幅值f 为有限的、离散的数值时,则图像为数字图像。数字图像处理是指借用数字计算机处理数字图像,值得提及的是数字图像是由有限的元素组成的,每一个元素都有一个特定的位置和幅值,这些元素称为图像元素、画面元素或像素。像素是广泛用于表示数字图像元素的词汇。 视觉是人类最高级的感知器官,所以,毫无疑问图像在人类感知中扮演着最重要的角色。然而,人 类感知只限于电磁波谱的视觉波段,成像机器则可覆盖几乎全部电磁波谱,从伽马射线到无线电波。它们可以对非人类习惯的那些图像源进行加工,这些图像源包括超声波、电子显微镜及计算机产生的图像。因此,数字图像处理涉及各种各样的应用领域。 图像处理涉及的范畴或其他相关领域(例如,图像分析和计算机视觉)的界定在初创人之间并没有 一致的看法。有时用处理的输入和输出内容都是图像这一特点来界定图像处理的范围。我们认为这一定义仅是人为界定和限制。例如,在这个定义下,甚至最普通的计算一幅图像灰度平均值的工作都不能算做是图像处理。另一方面,有些领域(如计算机视觉)研究的最高目标是用计算机去模拟人类视觉,包括理解和推理并根据视觉输入采取行动等。这一领域本身是人工智能的分支,其目的是模仿人类智能。人工智能领域处在其发展过程中的初期阶段,它的发展比预期的要慢的多,图像分析(也称为图像理解)领域则处在图像处理和计算机视觉两个学科之间。 从图像处理到计算机视觉这个连续的统一体内并没有明确的界线。然而,在这个连续的统一体中可 以考虑三种典型的计算处理(即低级、中级和高级处理)来区分其中的各个学科。 低级处理涉及初级操作,如降低噪声的图像预处理,对比度增强和图像尖锐化。低级处理是以输入、输出都是图像为特点的处理。中级处理涉及分割(把图像分为不同区域或目标物)以及缩减对目标物的描述,以使其更适合计算机处理及对不同目标的分类(识别)。中级图像处理是以输入为图像,但输出是从这些图像中提取的特征(如边缘、轮廓及不同物体的标识等)为特点的。最后,高级处理涉及在图像分析中被识别物体的总体理解,以及执行与视觉相关的识别函数(处在连续统一体边缘)等。 根据上述讨论,我们看到,图像处理和图像分析两个领域合乎逻辑的重叠区域是图像中特定区域或 物体的识别这一领域。这样,在研究中,我们界定数字图像处理包括输入和输出均是图像的处理,同时也包括从图像中提取特征及识别特定物体的处理。举一个简单的文本自动分析方面的例子来具体说明这一概念。在自动分析文本时首先获取一幅包含文本的图像,对该图像进行预处理,提取(分割)字符,然后以适合计算机处理的形式描述这些字符,最后识别这些字符,而所有这些操作都在本文界定的数字图像处理的范围内。理解一页的内容可能要根据理解的复杂度从图像分析或计算机视觉领域考虑问题。

图像边缘检测系统设计

学号 数字图像处理 课程设计说明书 图像边缘检测系统设计 起止日期:2016年12月5日至2016年12月9日 学生某 班级13电信科1班

成绩 指导教师(签字) 计算机与信息工程学院电子信息工程系 2016年12月9日 课程设计任务书 2016—2017学年第一学期 计算机与信息工程学院电子信息与科学技术专业1班级 课程设计名称:数字图像处理课程设计 设计题目:图像边缘检测系统设计 完成期限:自2016年12月5日至2016年12月9日共1周 一、课程设计依据 在掌握数字图像处理基本算法的基础上,利用MATLAB、VC++、Java等编程语言设计具有指定功能的图形用户界面。 二、课程设计内容 1、设计一个实现图像边缘检测功能的界面 2、界面可以采用MATLAB、VC++、Java等编程语言设计 3、要求界面能够读入并显示图片,通过各种控件选择并进行图像的边缘检测操作,操作结果在对比窗口中显示 4、图像边缘检测功能至少包括单方向一阶微分检测(水平/垂直方向)、无方向微分检测

(Roberts算子、Sobel算子、Prewitt算子、Laplacian算子、LOG算子)等,每项功能可采用一个或多个算法实现 三.课程设计要求 1、要求每个同学独立完成设计任务。 2、课程设计说明书封面格式要求见《课程设计说明书格式要求》。 3、课程设计的说明书要求简洁、通顺,图像表达内容完整、清楚、规X。 4、课程设计说明书要求: 1)说明题目的设计原理和思路、采用方法及设计流程。 2)可采用图表或文字对图形用户界面各子模块的功能以及各子模块之间的关系做 较详细的描述。 3)详细说明代码的编写流程。 4)采用图像及文字详细说明各功能的演示结果。 指导教师(签字): 系主任(签字): 批准日期:2016年12月1日

图像边缘检测方法比较研究

图像边缘检测方法比较研究 作者:关琳琳孙媛 来源:《现代电子技术》2008年第22期 摘要:边缘检测在数字图像处理中有着重要的作用。系统分析目前具有代表性的边缘检测方法,并用IDL6.3软件实现各种算法。实验结果表明,各种方法均有各自的优缺点和适用条件,在做图像边缘检测之前,应对图像进行分析,针对图像的特点和应用需求选用合适的方法。 关键词:边缘检测;检测算子;高通滤波;小波变换 中图分类号:TP391文献标识码:A 文章编号:1004-373X(2008)22-096-03 Comparison of Image Edge Detection Methods GUAN Linlin1,SUN Yuan2 (1.Department of Resource Science and Technology,Beijing Normal University,Beijing,100875,China; 2.96656 Unit of Second Artillery F orces,Chinese People′s Liberation Army,Beijing,100820,China) Abstract:Edge detection plays an important role in digital image processing.This paper comprehensively analyze the representative methods of edge detection at present,and realizes each algorithm with the IDL6.3 software.Results indicate that each method has some advantages and limitations.It should be carefully selected according to the characteristics of the image as well as application needs before conducting edge detection. Keywords:edge detection;detective operators;high-pass filtering;wavelet transform 1 引言 边缘检测技术是图像特征提取中的重要技术之一,也是图像分割、目标区域识别、区域形状提取等图像分析方法的基础。近年来,边缘检测技术被广泛地应用在各个领域,例如工程技术中零件检查[1]、医学中器官病变状况观察[2]、遥感图像处理中道路等典型地物的提取[3]以及估算遥感平台的稳定精度[4]等。这使得如何快速、准确地获得边缘信息成为国内外研究的热点。边缘检测方法在空间域和频域中均可以实现,而且不断涌现出新技术新方法。这些方法

红外热像无损检测图像处理研究现状与进展

红外热像无损检测图像处理研究现状与进展 来源:《红外技术》 引言 红外热像(infrared thermography)是目前运用非常广泛的一种快速高效的无损检测技术,通过外部施加的热或冷激励使被测物体内的异性结构以表面温度场变化的差异形式表现出来,从而达到缺陷部位的定性和定量分析。其成像原理是利用红外探测仪将接受到的被测物体的红外辐射映射成灰度值,再转化为可视温度分布图(红外热像图)。最早在二战末期应用于军事侦察领域,因其本身具有快速高效、无需停运、无需取样、可进行无污染、非接触、大面积检测、以及其直观成像等优点,而被作为复合材料的无损检测技术应用于工业领域,如航空航天、机械、油气、建筑等领域。 1 、红外热像技术的发展现状 自20世纪以来,红外热像技术得到快速发展。20世纪90年代,美国无损检测协会和材料试验协会针对红外热成像技术指定了相应标准,并在无损检测手册红外与热检测分册中描述了基于红外热像的无损检测技术在各个领域的运用。目前美国、俄罗斯、法国、德国、加拿大、澳大利亚等国已将红外热像技术广泛运用于航空航天复合材料构件内部缺陷及胶接质量的检测、蒙皮铆接质量检测等。近年来,红外热像技术与智能手机、无人机等设备充分结合,并在各个领域广泛使用,如美国的Fluke和FLIR、德国Testo、国内武汉高德、浙江大立等企业。 国内的红外热像检测技术比欧美、俄罗斯等发达国家起步较晚,但经过十几年的发展,目前也取得较为显著的成果。中国特种设备研究院和武汉工程大学将红外热像技术运用于压力设备缺陷检验,取得了一系列显著的成果。西南交通大学、昆明物理研究所、北京航空材料研究院、北京理工大学、西北工业大学等将红外热像技术运用于航空航天夹层结构件的缺陷检测,取得了有效进展。在石油化工领域,各位学者将红外热像技术用于高温高压容器和管道的缺陷、保温层破损、以及内部液体流动情况的检测,也取得了许多成果。 2 、红外图像预处理 红外技术应用的核心工作在于图像的处理及利用,不仅在无损检测领域,在军事监测、人脸识别等领域的应用更加重要。红外图像的处理主要分为图像预处理和图像识别,预处理是开展后续工作的基础,其主要分为图像的非均匀性校正和图像增强两个方面。 2.1 图像的非均匀性校正

数字图像处理中的边缘检测技术

课程设计报告 设计题目:数字图像处理中的边缘检测技术学院: 专业: 班级:学号: 学生姓名: 电子邮件: 时间:年月 成绩: 指导教师:

数字图像处理中的边缘检测技术课程设计报告I 目录 1 前言:查阅相关文献资料,了解和掌握基本原理、方法和研究现状,以及实际应用的背景意义 (1) 1.1理论背景 (1) 1.2图像边缘检测技术研究的目的和意义 (1) 1.3国内外研究现状分析 (2) 1.4常用边缘检测方法的基本原理 (3) 2 小波变换和小波包的边缘检测、基于数学形态学的边缘检测法算法原理 (7) 2.1 小波边缘检测的原理 (7) 2.2 数学形态学的边缘检测方法的原理 (7) 3 算法实现部分:程序设计的流程图及其描述 (9) 3.1 小波变换的多尺度边缘检测程序设计算法流程图 (9) 3.2 数学形态学的边缘检测方法程序设计算法描述 (10) 4实验部分:对所给的原始图像进行对比实验,给出相应的实验数据和处理结果 (11) 5分析及结论:对实验结果进行分析比较,最后得出相应的结论 (15) 参考文献 (17) 附录:代码 (18)

1前言 查阅相关文献资料,了解和掌握基本原理、方法和研究现状,以及实际应用的背景意义 1.1 理论背景 图像处理就是对图像信息加工以满足人的视觉心理或应用需求的方法。图像处理方法有光学方法和电子学方法。从20世纪60年代起随着电子计算机和计算技术的不断提高和普及,数字图像处理进入了高速发展时期,而数字图像处理就是利用数字计算机或其它的硬件设备对图像信息转换而得到的电信号进行某些数学处理以提高图像的实用性。 图像处理在遥感技术,医学领域,安全领域,工业生产中有着广泛的应用,其中在医学应用中的超声、核磁共振和CT等技术,安全领域的模式识别技术,工业中的无损检测技术尤其引人注目。 计算机进行图像处理一般有两个目的:(1)产生更适合人观察和识别的图像。 (2)希望能由计算机自动识别和理解图像。数字图像的边缘检测是图像分割、目标区域的识别、区域形状提取等图像分析领域的重要基础,图像处理和分析的第一步往往就是边缘检测。 物体的边缘是以图像的局部特征不连续的形式出现的,也就是指图像局部亮度变化最显著的部分,例如灰度值的突变、颜色的突变、纹理结构的突变等,同时物体的边缘也是不同区域的分界处。图像边缘有方向和幅度两个特性,通常沿边缘的走向灰度变化平缓,垂直于边缘走向的像素灰度变化剧烈。根据灰度变化的特点,图像边缘可分为阶跃型、房顶型和凸缘型。 1.2 图像边缘检测技术研究的目的和意义 数字图像处理是伴随着计算机发展起来的一门新兴学科,随着计算机硬件、软件的高度发展,数字图像处理也在生活中的各个领域得到了广泛的应用。边缘检测技术是图像处理和计算机视觉等领域最基本的技术,如何快速、精确的提取图像边缘信息一直是国内外研究的热点,然而边缘检测也是图像处理中的一个难题。 首先要研究图像边缘检测,就要先研究图像去噪和图像锐化。前者是为了得到飞更真实的图像,排除外界的干扰,后者则是为我们的边缘检测提供图像特征更加明显的图片,即加大图像特征。两者虽然在图像处理中都有重要地位,但本次研究主要是针对图像边缘检测的研究,我们最终所要达到的目的是为了处理速

图像边缘检测算法体验步骤

图像边缘检测算法体验步骤 图像边缘检测算法体验步骤(Photoshop,Matlab)1. 确定你的电脑上已经安装了Photoshop和Matlab2. 使用手机或其他任何方式,获得一张彩色图像(任何格式),建议图像颜色丰富,分辨率比较高,具有比较明显的图像边界(卡通图像,风景图像,桌面图像)3. 将图像保存到一个能够找到的目录中,例如img文件夹(路径上没有汉字)4. 启动Photoshop,打开img文件夹中的图像5. 在工具箱中选择“矩形选择”工具,到图面上选择一个区域(如果分辨率比较高,建议不要太大,否则计算过程比较长)6. 点击下拉菜单【文件】-【新建】,新建一个与矩形选择框同样尺寸的Photoshop图像,不要求保存该图像7. 将该彩色图像转换为亮度图像,即点击下拉菜单【图像】-【模式】-【灰度】,如提示是否合并,选择“Yes”8. 将该单色的亮度图像另存为Windows的BMP文件,点击下拉菜单【文件】-【存储为】,在“存储为”窗口中,为该文件起一个名字,例如test1(保存为test1.bmp)9. 启动Matlab,将当期路径(Current Directory)定位到图像文件夹,例如这里的img文件夹10. 使用imread命令读入该图像,在命令行输入:>> f = imread(test1.bmp);11. 在Matlab中显示该图像,在命令行输入:>> figure, imshow(f)12. 然后,分别使用Matlab图像工具箱中的Edge函数,分别使用Sobel算法,高斯-拉普拉斯(Log)算法和Canny算法得到的边缘图像:在命令行输入:>> g_sobel = edge(f, sobel, 0.05); >> g_log = edge(f, log, 0.003, 2.25); >> g_canny = edge(f, canny, [0.04 0.10], 1.5);13 得到边缘图像计算结果后,显示这些边缘图像: >> figure, imshow(g_sobel) >> figure, imshow(g_log) >> figure, imshow(g_canny)14 可以用不同的图像做对比,后续课程解释算法后,可以变换不同的阈值,得到不同的边缘图像

图像边缘检测方法的研究与实现刘法200832800066

图像边缘检测方法的研究与实现刘法200832800066

青岛大学专业课程设计 院系: 自动化学院 专业: 电子信息工程 班级: 08级电子信息工程3班学生姓名: 刘法 指导教师: 王汉萍庄晓东 日期: 2011年12月23日

题目:图像边缘检测方法的研究与实现 一、边缘检测以及相关概念 1.1边缘,边缘检测的介绍 边缘(edge)是指图像局部强度变化最显著的部分.边缘主要存在于目标与目标、目标与背景、区域与区域(包括不同色彩)之间,是图像分割、纹理特征和形状特征等图像分析的重要基础.图像分析和理解的第一步常常是边缘检测(edge detection). 边缘检测是指使用数学方法提取图像像元中具有亮度值(灰度)空间方向梯度大的边、线特征的过程。 在讨论边缘算子之前,首先给出一些术语的定义: 边缘点:图像中具有坐标] ,[j i且处在强度显著变化的位置上的点.边缘段:对应于边缘点坐标] i及其方位 ,边缘的方位可能是梯度角. ,[j 边缘检测器:从图像中抽取边缘(边缘点和边缘段)集合的算法. 轮廓:边缘列表,或是一条表示边缘列表的拟合曲线. 边缘连接:从无序边缘表形成有序边缘表的过程.习惯上边缘的表示采用顺时针方向序. 边缘跟踪:一个用来确定轮廊的图像(指滤波后的图像)搜索过程. 边缘点的坐标可以是边缘位置像素点的行、列整数标号,也可以在子像素分辨率水平上表示.边缘坐标可以在原始图像坐标系上表示,但大多数情况下是在边缘检测滤波器的输出图像的坐标系上表示,因为滤波过程可能导致图像坐标平移或缩放.边缘段可以用像素点尺寸大小的小线段定义,或用具有方位属性的一个点定义.请注意,在实际中,边缘点和边缘段都被称为边缘.边缘连接和边缘跟踪之间的区别在于:边缘连接是把边缘检测器产生的无序边缘集作为输入,输出一个有序边缘集;边缘跟踪则是将一幅图像作为输入,输出一个有序边缘集.另外,边缘检测使用局部信息来决定边缘,而边缘跟踪使用整个图像信息来决定一个像素点是不是边缘. 1.2 边缘检测算子 边缘检测是图像特征提取的重要技术之一, 边缘常常意味着一个区域的终结和另一个区域的开始. 图像的边缘包含了物体形状的重要信息,它不仅在分析图像时大幅度地减少了要处理的信息量,而且还保护了目标的边界结构. 因此,边缘检测可以看做是处理许多复杂问题的关键. 边缘检测的实质是采用某种算法来提取出图像中对对象与背景间的交界线。图像灰度的变化情况可以用图像灰度分布的梯度来反映,因此可以用局部图像微分技术来获取边缘检测算子。经典的边缘检测方法是对原始图像中的像素的某个邻域来构造边缘检测算子。以下是对几种经典的边缘检测算子进行理论分析,并对各自的性能特点做出比较和评价。 边缘检测的原理是:由于微分算子具有突出灰度变化的作用,对图像进行微分运算,在图像边缘处其灰度变化较大,故该处微分计算值教高,可将这些微分值作为相应点的边缘强度,通过阈值判别来提取边缘点,即如果微分值大于阈值,则为边缘点。

数字图像处理技术的现状及其发展方向(笔记)

数字图像处理技术的现状及其发展方向 一、数字图像处理历史发展 数字图像处理(Digital Image Processing)将图像信号转换成数字信号并利用计算机对其进行处理。 1.起源于20世纪20年代。 2.数字图像处理作为一门学科形成于20世纪60年代初期,美国喷气推进实验室(JPL)推动了数字图像处理这门学科的诞生。 3.1972年英国EMI公司工程师Housfield发明了用于头颅诊断的X射线计算机断层摄影装置即CT(Computer Tomograph),1975年EMI公司又成功研制出全身用的CT装置,获得了人体各个部位鲜明清晰的断层图像。 4.从70年代中期开始,随着计算机技术和人工智能、思维科学研究的迅速发展,数字图像处理向更高、更深层次发展,人们已开始研究如何用计算机系统解释图像,实现类似人类视觉系统理解外部世界,其中代表性的成果是70年代末MIT的Marr提出的视觉计算理论。 二、数字图像处理的主要特点 1.目前数字图像处理的信息大多是二维信息,处理信息量很大,对计算机的计算速度、存储容量等要求较高。 2.数字图像处理占用的频带较宽,在成像、传输、存储、处理、显示等各个环节的实现上,技术难度较大,成本也高,这就对频带压缩技术提出了更高的要求。 3.数字图像中各个像素是不独立的,其相关性大。因此,图像处理中信息压缩的潜力很大。 4.由于图像是三维景物的二维投影,一幅图像本身不具备复现三维景物的全部几何信息的能力,要分析和理解三维景物必须作合适的假定或附加新的测量。在理解三维景物时需要知识导引,这也是人工智能中正在致力解决的知识工程问题。 5.一方面,数字图像处理后的图像一般是给人观察和评价的,因此受人的因素影响较大,作为图像质量的评价还有待进一步深入的研究;另一方面,计算机视觉是模仿人的视觉,人的感知机理必然影响着计算机视觉的研究,这些都是心理学和神经心理学正在着力研究的课题。 三、数字图像处理的优点 1.再现性好;图像的存储、传输或复制等一系列变换操作不会导致图像质量的退化。 2.处理精度高;可将一幅模拟图像数字化为任意大小的二维数组,现代扫描仪可以把每个像素的灰度等级量化为16位甚至更高。 3.适用面宽;图像可以来自多种信息源,图像只要被变换为数字编码形式后,均是用二维数组表示的灰度图像组合而成,因而均可用计算机来处理。 4.灵活性高;数字图像处理不仅能完成线性运算,而且能实现非线性处理,即凡是可以用数学公式或逻辑关系来表达的一切运算均可用数字图像处理实现。 四、数字图像处理过程及其主要进展 常见的数字图像处理有:图像的采集、数字化、编码、增强、恢复、变换、

实验三图像分割与边缘检测

数字图像处理实验报告 学生姓名王真颖 学生学号L0902150101 指导教师梁毅雄 专业班级计算机科学与技术1501 完成日期2017年11月06日

计算机科学与技术系信息科学与工程学院

目录 实验一.................................................................................................. 错误!未定义书签。 一、实验目的.................................................................................................... 错误!未定义书签。 二、实验基本原理 ........................................................................................... 错误!未定义书签。 三、实验内容与要求....................................................................................... 错误!未定义书签。 四、实验结果与分析....................................................................................... 错误!未定义书签。实验总结............................................................................................... 错误!未定义书签。参考资料.. (3) 实验一图像分割与边缘检测 一.实验目的 1. 理解图像分割的基本概念; 2. 理解图像边缘提取的基本概念; 3. 掌握进行边缘提取的基本方法;

基于MATLAB的图像处理的课程设计(车牌识别系统)

目录 一、课程设计目的 (3) 二、课程设计要求 (3) 三、课程设计的内容 (3) 四、题目分析 (3) 五、总体设计 (4) 六、具体设计 (5) 1、文件 (5) 1.1、打开 (5) 1.2、保存 (5) 1.3、退出 (5) 2、编辑 (5) 6.2.1、灰度 (5) 6.2.2、亮度 (6) 6.2.3、截图 (7) 6.2.4、缩放 (7) 3、旋转 (9) 6.3.1、上下翻转 (9) 6.3.2、左右翻转 (9) 6.3.3任意角度翻转 (9) 6.4、噪声 (10) 6.5、滤波 (10) 6.6、直方图统计 (11) 6.7、频谱分析 (12) 6.7.1、频谱图 (12) 6.7.2、通过高通滤波器........................... .. (12) 6.7.3、通过低通滤波器...................................... . (13) 6.8、灰度图像处理................................................ . . (14) 6.8.1、二值图像……………………………………………….. .14 6.8.2、创建索引图像............................................. (14) 6.9、颜色模型转换...................................... .. (14) 6.10、操作界面设计 (15) 七、程序调试及结果分析 (15) 八、心得体会 (16) 九、参考文献 (17) 十、附录 (18)

实验三 图像的边缘检测

实验三图像的边缘检测 一、实验目的与要求 1、了解图像边缘提取的基本概念; 2、了解进行边缘提取的基本方法; 3、编程实现对所给图像的边缘进行提取。 二、知识点 1、边缘检测的思想和原理 图像理解是图像处理的一个重要分支,研究为完成某一任务需要从图像中提取哪些有用的信息,以及如何利用这些信息解释图像。边缘检测技术对于处理数字图像非常重要,因为边缘是所要提取目标和背景的分界线,提取出边缘才能将目标和背景区分开来。在图像中,边界表明一个特征区域的终结和另一个特征区域的开始,边界所分开区域的内部特征或属性是一致的,而不同的区域内部的特征或属性是不同的,边缘检测正是利用物体和背景在某种图像特性上的差异来实现的,这些差异包括灰度,颜色或者纹理特征。边缘检测实际上就是检测图像特征发生变化的位置。 由于噪声和模糊的存在,检测到的边界可能会变宽或在某些点处发生间断,因此,边界检测包括两个基本内容:首先抽取出反映灰度变化的边缘点,然后剔除某些边界点或填补边界间断点,并将这些边缘连接成完整的线。边缘检测的方法大多数是基于方向导数掩模求卷积的方法。导数算子具有突出灰度变化的作用,对图像运用导数算子,灰度变化较大的点处算得的值比较高,因此可将这些导数值作为相应点的边界强度,通过设置门限的方法,提取边界点集。

一阶导数是最简单的导数算子,它们分别求出了灰度在x和y方向上的变化率,而方向上的灰度变化率可以用相应公式进行计算;对于数字图像,应该采用差分运算代替求导,差分公式参考相关教材。 2、常用的梯度算子 (1)Roberts Cross算子,它的2个2 X2模板如图3所示。 图3 Robert Cross算子模板 (2)Prewitt 算子,它的2个3×3模板如图4所示。 图4 Prewitt算子模板 (3)Sobel 算子,它的2个3×3模板如图5所示。 图3 Sobel算子模板 3、高斯拉普拉斯(LoG)算法 高斯拉普拉斯(LoG)算法是一种二阶边缘检测方法。它通过寻找图像灰度值中二阶微分中的过零点(Zero Crossing)来检测边缘点。其原理为,灰度

图像边缘检测方法研究综述_段瑞玲

第31卷第3期2005年5月 光学技术 OP T ICA L T ECHN IQ U E V ol.31No.3 M ay 2005 文章编号:1002-1582(2005)03-0415-05 图像边缘检测方法研究综述 段瑞玲,李庆祥,李玉和 (清华大学精密仪器及机械学系,北京 100084) 摘 要:图像的边缘是图像最基本也是最重要的特征之一。边缘检测一直是计算机视觉和图像处理领域的经典研究课题之一。图像分析和理解的第一步常常是边缘检测。边缘检测的目的是去发现图像中关于形状和反射或透射比的信息,是图像处理、图像分析、模式识别、计算机视觉以及人类视觉的基本步骤之一。其结果的正确性和可靠性将直接影响到机器视觉系统对客观世界的理解。对一些传统的边缘检测方法和近年来广泛收到关注的边缘检测算法进行了简单介绍。综述中只涉及到检测方面,而没有讨论滤波、边缘定位、算法的复杂程度和边缘检测器性能的评价。 关键词:图像处理;边缘检测;梯度算法;差分边缘检测 中图分类号:T P751 文献标识码:A Summary of image edge detection DU AN Rui_ling,LI Qin g_xiang,LI Yu_he (Department of P recisio n I nstrument and M echanology,Tsing hua University,Beijing 100084,China) Abstract:Edg e is one of the most fundamental and sig nificant features.Edge detection is alw ay s one of the most classical studying projects o f computer vision and image processing field.T he fist step of image analy sis and understanding is edg e de tec-tion.T he g oal of edge detection is to recover information about shapes and reflectance o r transmittance in an image.I t is one of the fundamental steps in image processing,mage analy sis,image patter recognition,and computer vision,as well as in human vision.T he correctness and reliability of its results affect directly the comprehension machine system made fo r objective w orld. T he summary for basic edge de tection metho ds was made.It involv ed the detection methods only but no t filtering,edge loca-tion,analy sis of algorithm complexity and functional evaluation about a detecto r. Key words:image processing;imag e detection;gradient arithmetic; 1 引 言 早在本世纪初,人类为了用图片及时传输世界各地发生的新闻事件,便开始了对图像处理技术的研究。用计算机进行图像处理,改善图像质量的有效应用开始于1964年美国喷气推进实验室对太空传回的大批月球照片进行处理,并收到了明显的效果。然而,图像处理技术的真正发展还是在上世纪60年代末,其原因一方面是由于受到航天技术发展的刺激,另一方面是作为图像处理工具的数字计算机和各种不同类型的数字化仪器及显示器的突飞猛进发展。迄今为止,数字图像作为一门崭新的学科,日益受到人们的重视,并且在科学研究、工农业生产、军事技术和医疗卫生等领域发挥着越来越重要的作用。 机器视觉主要是利用计算机实现人类的视觉功能,对客观世界的三维场景的感知、识别和理解。边缘是图像的最基本特征,边缘检测通常是机器视觉系统处理图像的第一个阶段,是机器视觉领域内经典的研究课题之一,其结果的正确性和可靠性将直接影响到机器视觉系统对客观世界的理解。 2 图像边缘定义 图像的大部分信息都存在于图像的边缘中,主要表现为图像局部特征的不连续性,即图像中灰度变化比较剧烈的地方。因此,我们把边缘定义为图像中灰度发生急剧变化的区域边界。根据灰度变化的剧烈程度,通常将边缘划分为阶跃状和屋顶状两种类型[1]。阶跃边缘两边的灰度值变化明显,而屋顶边缘位于灰度值增加与减少的交界处。那么,对阶跃边缘和屋顶边缘分别求取一阶、二阶导数就可以表示边缘点的变化。因此,对于一个阶跃边缘点,其灰度变化曲线的一阶导数在该点达到极大值,二阶导数在该点与零交叉;对于一个屋顶边缘点,其灰 415 收稿日期:2004-06-01;收到修改稿日期:2004-10-20 E-mail:duanrl03@mails.ts https://www.wendangku.net/doc/9b11746097.html, 作者简介:段瑞玲(1979_),女,山西人,清华大学博士研究生,从事装配系统及微观图像处理研究。

图像处理文献综述

文献综述 理论背景 数字图像中的边缘检测是图像分割、目标区域的识别、区域形状提取等图像分析领域的重要基础,图像处理和分析的第一步往往就是边缘检测。 物体的边缘是以图像的局部特征不连续的形式出现的,也就是指图像局部亮度变化最显着的部分,例如灰度值的突变、颜色的突变、纹理结构的突变等,同时物体的边缘也是不同区域的分界处。图像边缘有方向和幅度两个特性,通常沿边缘的走向灰度变化平缓,垂直于边缘走向的像素灰度变化剧烈。根据灰度变化的特点,图像边缘可分为阶跃型、房顶型和凸缘型。 、图像边缘检测技术研究的目的和意义 数字图像边缘检测是伴随着计算机发展起来的一门新兴学科,随着计算机硬件、软件的高度发展,数字图像边缘检测也在生活中的各个领域得到了广泛的应用。边缘检测技术是图像边缘检测和计算机视觉等领域最基本的技术,如何快速、精确的提取图像边缘信息一直是国内外研究的热点,然而边缘检测也是图像处理中的一个难题。 首先要研究图像边缘检测,就要先研究图像去噪和图像锐化。前者是为了得到飞更真实的图像,排除外界的干扰,后者则是为我们的边缘检测提供图像特征更加明显的图片,即加大图像特征。两者虽然在图像边缘检测中都有重要地位,但本次研究主要是针对图像边缘检测的研究,我们最终所要达到的目的是为了处理速度更快,图像特征识别更准确。早期的经典算法有边缘算子法、曲面拟合法、模版匹配法、门限化法等。 早在1959年Julez就曾提及边缘检测技术,Roberts则于1965年开始了最早期的系统研究,从此有关边缘检测的理论方法不断涌现并推陈出新。边缘检测最开始都是使用一些经验性的方法,如利用梯度等微分算子或特征模板对图像进行卷积运算,然而由于这些方法普遍存在一些明显的缺陷,导致其检测结果并不尽如人意。20世纪80年代,Marr和Canny相继提出了一些更为系统的理论和方法,逐渐使人们认识到边缘检测的重要研究意义。随着研究的深入,人们开始注意到边缘具有多分辨性,即在不同的分辨率下需要提取的信息也是不同的。通常情况下,小尺度检测能得到更多的边缘细节,但对噪声更为敏感,而大尺度检测

数字图像边缘检测算法设计与实现

本科毕业论文(设计、创作) 题目:数字图像边缘检测算法设计与实现 学生姓名:学号:023******* 所在院系:信息与通信技术系专业:电子信息工程 入学时间:2010 年9 月导师姓名:职称/学位:讲师/博士 导师所在单位: 完成时间:2014 年 5 月 安徽三联学院教务处制

数字图像边缘检测算法设计与实现 摘要:图像有很多最基本的特征,边缘是其中之一,所以图像处理的主要内容中也有图像的边缘检测,图像的边缘检测也是图像测量技术中的热点。本篇论文是来研究图像边缘检测,图像处理技术已经有很广阔的应用域,图像的边缘检测最主要的意思是将图像的边缘提取出来。本文首先简要的介绍了什么是边缘检测,和边缘检测的一些基本知识和原理,然后回顾了一些经典的边缘检测算法。最后在已有的经典算法基础上进行编程仿真来提取图像的边缘。 关键词:图像处理;边缘检测;Hough变换;轮廓跟踪

Design and implementation the algorithm of digital image edge detection Abstract:Images have a lot of the most basic features, edge is one of them. So the image edge detection is one of the main content for image processing, the image edge detection has been the hot point in image measurement technology. This paper is to study the image edge detection. Image processing technology has very broad application field. The main mean of image edge detection is to detect image edge. In this article, first, briefly introduced what is edge detection, and some basic knowledge and principle of edge detection. Then reviews some of the classical edge detection algorithm. Finally, extracting image edge programming simulation on the basis of the existing classic algorithms. Key words: Image Processing, Edge Detection, Hough manipulation, contour tracing

相关文档
相关文档 最新文档