文档库 最新最全的文档下载
当前位置:文档库 › 综放回采巷道护巷煤柱合理留设分析

综放回采巷道护巷煤柱合理留设分析

综放回采巷道护巷煤柱合理留设分析
综放回采巷道护巷煤柱合理留设分析

沿空掘巷小煤柱留设宽度合理确定

沿空掘巷小煤柱留设宽度合理确定 发表时间:2018-10-23T11:44:10.843Z 来源:《基层建设》2018年第27期作者:李刚 [导读] 摘要:为了提高煤炭回采率和提高矿井安全高效生产,以某矿10#煤组1012首采工作面为研究对象,采用UDEC对不同煤柱宽度下的顶板移进量和底板的变形量进行分析,并结合现场实测的数据对巷道掘进时期和回采时期的顶板下沉量、底板位移量、实体煤帮移进量进行了分析,通过数据对比得出10#煤组1012首采工作面沿空掘巷小煤柱留设的合理宽度。 淮北矿业股份有限公司童亭煤矿生产技术管理部安徽淮北 235137 摘要:为了提高煤炭回采率和提高矿井安全高效生产,以某矿10#煤组1012首采工作面为研究对象,采用UDEC对不同煤柱宽度下的顶板移进量和底板的变形量进行分析,并结合现场实测的数据对巷道掘进时期和回采时期的顶板下沉量、底板位移量、实体煤帮移进量进行了分析,通过数据对比得出10#煤组1012首采工作面沿空掘巷小煤柱留设的合理宽度。研究表明:工作面小煤柱合理宽度为5m。该研究结果对类似煤层开采条件下的区段煤柱宽度合理留设具有重要参考意义。 关键词:沿空掘巷;小煤柱;数值计算;巷道围岩 0前言 沿空掘巷是我国煤矿回采巷道布置和维护的一种技术,其目的是为了将巷道与采空区隔离[1-3]。把巷道布置在位于靠煤柱一侧的低应力场,便于巷道维护,减少变形量[4]。其中关键是严格控制煤柱宽度。煤柱宽度对巷道的维护状况起决定作用,若煤柱过小,由于靠采空侧的煤柱受支承力的影响已呈塑形,容易失稳,片帮严重,若煤柱过大,则回采巷道布置在压力增高区内,将使巷道压力大,支护困难[5-7]。 王卫军等[8]得出基本顶给定变形下综放沿空掘巷合理窄煤柱宽度的计算公式;王德超等[9]通过采空区侧向支承压力影响范围确定区段煤柱合理留设宽度;张科学等[10]通过分析垂直应力场呈现三角形的形状确定出沿空掘巷窄煤柱留设宽度。本文通过对10#煤组1012工作面回风沿空掘巷的数值模拟分析了不同煤柱宽度下的顶板位移和底鼓变形,并结合实测数据分析掘进和回采时期的顶板位移、底鼓变形和实体煤帮的变化,得出了本矿井地质条件下的沿空掘巷小煤柱留设宽度的合理性。 1工程概况 1012工作面井下标高-400m,其地面标高+27.13m,巷道标高-373.4--425.3m。西邻皮带大巷,东面古河床冲刷无煤带。工作面走向长1530m-1620m,平均1575m;倾斜宽164m-166m,平均165m。煤厚1.0-4.7m,平均在3.6m左右。该面煤层倾角为4°-10°,平均6°左右,该面内煤层结构简单,但局部含一层夹矸,顶板岩性多为灰色粉砂岩,局部含一层灰黑色泥岩伪顶,底板多为粉砂岩和泥岩。该面整体东西低,中间高,呈背斜构造,断层走向多与机、风巷斜交,受背斜及构造影响,煤层倾角起伏可能较大,对正常回采将造成一定的影响。 工作面布置图 2煤柱宽度确定原则 煤柱是围岩结构的一个重要组成部分,其稳定性决定巷道的稳定性和煤矿开采中安全问题。煤柱宽度应满足以下几个原则:①巷道处于应力降低区。采空区侧向支承压力分为应力降低区、应力升高区和原岩应力区,当巷道位于应力降低区时,煤柱及巷道的稳定性均较好,所以应将巷道布置在应力降低区[11]。 ②煤柱内部有稳定的区域。由于受上区段工作面侧向支承压力作用和巷道掘进影响,煤柱两侧出现破碎区不可避免,如果煤柱均为破碎区,其承载能力和稳定性较小,那么就应该只当增加煤柱的宽度,并做好支护工作[12]。 ③有利于巷道围岩稳定。煤柱过窄,不但煤柱破碎、实体煤帮也破碎,巷道围岩整体性差、承载能力小[13]。测量数据表明,煤柱较小时,随煤柱宽度增大,巷道围岩变形量减小,煤柱宽度达到一定值后,随煤柱宽度增大,巷道变形量增加;因此,并不是煤柱越小围岩越稳定,煤柱宽度有一个合理的值。 ④采出率高。煤柱越小,采出率越大,在满足巷道围岩稳定的前提下,尽可能减小煤柱宽度。 3数值模拟 3.1数值模型建立 为了探索出既利于安全生产又能尽量减少煤炭的损失的煤柱宽度。以10#煤组1012首采工作面建立数值模型,根据现场观测数据和相关地质资料建立UDEC顶板和底板数值模拟模型。 根据研究内容计算得出所需建立模型的大小,模型的高度为100m,长度为150m。此模型模拟采深400m。为了便于研究,我们将上部的载荷看做均布载荷,上部的边界条件为应力边界条件。下部边界条件简化为位移边界条件。边界条件:地下巷道简化为平面应变问题,边界上作用有铅直原岩应力P0和水平原岩应力λP0;模型下边界位移全约束,岩体取二维平面应变元;对模型内部各岩层计算时考虑重力,屈服准则选用摩尔库仑准则。 3.2煤柱宽度对顶板的影响 从煤柱的位移场分布特征来看,煤柱宽度影响巷道围岩位移场分布,煤柱对巷道围岩变形的作用随煤柱宽度的变化而变化。

煤矿安全煤柱留设报告

山西介休鑫峪沟煤业有限公司安全煤柱留设参数及留设量的报告 二〇一三年十月二十八日

关于山西介休鑫峪沟煤业有限公司安全煤 柱留设参数及留设量的报告 根据山西介休鑫峪沟煤业有限公司矿井兼并重组项目90万吨t/a 初步方案设计(变更)相关设计规定,我公司各类安全煤柱留设参数及留设量如下: 1.巷道煤柱 5号煤层(503、504采区巷道): 1M H (2.50.6) S f += 式中: S 1—5号煤层巷道保护煤柱的水平宽度,m ; H —巷道的最大垂深,(井田西部503、504采区684m); M —煤层厚度,m ; f —煤的强度系数。 1H M (2.50.6) 684(2.50.6 2.13) 35.9m f 2 S +?+?= = = 503、504采区巷道煤柱取40m 。 5号煤层(501、502采区巷道): 1M H (2.50.6) S f += 式中: S 1—5号煤层巷道保护煤柱的水平宽度,m ; H —巷道的最大垂深,(井田东部501、502采区423m); M —煤层厚度,m ; f —煤的强度系数。

1H M (2.50.6) 423(2.50.6 2.13) 28.2m f 2 S +?+?= = = 东部501、502采区巷道煤柱取30m 。 11号煤层: 1M H (2.50.6) S f += 式中: S 1—11号煤层巷道保护煤柱的水平宽度,m ; H —巷道的最大垂深,(井田西部属突水性危险区,暂不考虑开采,东部为483m); M —煤层厚度,m ; f —煤的强度系数。 1H M (2.50.6) 499(2.50.6 2.49) 31.5m f 2 S +?+?= = = 取35m 。 由于9号煤层与11号煤层相距较近,因此保安煤柱参照11号煤层留设。 2.断层煤柱: 含水或导水断层防隔水煤柱的留设可参照下列经验公式计算: ≥20 m 式中 L --煤柱留设的宽度,m ; K --安全系数,一般取2-5,本设计取5; M --煤层厚度或采高, 5号煤层在F2、F3断层附近的煤层最大厚度分别为2.91m 和2.66m,由于9、11号煤层不在F2、F3断层附近开采,因此采取11号煤层在F5、F10断层附近的最大 P 30.5p L KM K =

煤柱留设说明

xxx采面保安煤柱留设说明 一、xxx采面位置 xxx综采工作面位于一采区西翼,北部为5919采面未开拓区域;南部为5915采空区,东部为采区边界保护煤柱。xxx采面走向长度(运巷):675m;倾向长度185m;煤层平均厚度2.8m。 二、xxx采面回采现状 xxx综采工作面相对应地面位置为四面山,地面均为荒山土坡,无大型建筑及水体,但有部分矿区公路、杨家沟部分河沟及少数居民将会受xxx采面回采的影响。现xxx运巷剩余可采长度77m,xxx风巷剩余可采长度118m,累计剩余可采煤量7.9万吨。 三、xxx采面保护煤柱留设依据 根据《煤矿安全规程》、《建筑物、水体、铁路及主要井巷煤柱留设与压煤开采规程》,结合xxx采面的实际生产情况,采面地表矿区公路、河沟及居民房屋呈条带状分布,现根据《采矿工程设计手册上册》第七章保护煤柱留设设计第二节保护煤柱的留设方法来对xxx采面的保护煤柱进行留设,针对xxx采面本矿采用垂直剖面法留设保护煤柱,被保护对象的等级及围护带宽度的选择取定见下表:

不易确定者,可组织专门论证,并报省、直辖市、自治区煤炭主管部门审定。 垂直剖面法计算示意图:

如图可知: L--为需要留设保护建筑的总长度 L1--为建筑物的围护带宽度 L2--为表土层需要留设的宽度 L3--为基岩层需要留设的宽度 a--为表土层的移动角 a1--为基岩层的移动角 H--为表土层至基岩层的垂高 H1--为基岩层至煤层的垂高 则有:L=L1+L2+L3 =L1+H*cota+H1*cota1 结合xxx采面的实际回采情况及煤层赋存条件,xxx采面煤层沿煤层走向布置,煤层倾角变化不大,属于近水平煤层。相对地面建筑物为砖木、砖混结构平房或变形缝区段小于20m的两层楼房,属于矿区建筑物保护等级Ⅲ类,围护带取10m。 根据贵州煤安工程技术咨询服务有限公司提供的《龙凤煤矿扩建初步设计(变更)》说明书第四章第三节内容可知,表土段移动角取45°,走向移动角取70°。 由采掘工程平面图及井上下对照图可算出,xxx运巷河沟处距井下C9煤层的垂深为119m,其表土层取3m,基岩层有116米,xxx风巷河沟处距C9煤层的垂深为93m,其表土层取3m,基岩层有90m。 根据上述公式可得: xxx运巷需留设的保护煤柱为:L=L1+H*cota+H1*cota1 =10m+3m*cot45°+119m*cot70° =10m+3m+44m =57m

7.3防水煤柱留设

7.3防水煤柱留设 7.3.1断层防水煤柱留设 因本矿井3号煤层开采时断层、陷落柱是奥陶灰突水的重要通道。 因此,必须对导水断层留设防水煤柱,防水煤柱的留设方法可依据《煤矿防治水规定》附录三的公式计算,本矿区含水或导水断层防隔水煤柱的留设方案如下: 由于本井内没有发现较大的断层,因此,本报告只考虑小断层的煤柱留设情况。当断层落差小于隔水层厚度(取3号煤层的99.09m )时,含水或导水断层防隔水煤柱的留设参照经验公式计算: L=0.5KM P 3K P ≥20m (7-1) H a =S T P +10,L= αsin a H ≥20m (7-2) 式中:L —防隔水层煤柱宽度,m ; K —安全系数,一般取2~5; M —煤层厚度或采高,m ; P —煤层厚度或采高,m ; Kp —煤的抗拉强度,Mpa ; H a —导水裂隙带至含水层防水岩柱的厚度,m ; α—断层倾角,(°) 经以上公式(7-1)和(7-2)计算,所得结果取较大值为留设 的防水煤柱宽度。 今后如在地质勘探和采掘活动后,发现有新的断层,矿方应按

照以上计算方法自行计算断层防水煤柱的宽度;对落差小于5m的断层应在探明去其导水性后,再确定是否留设防水煤柱或采取注浆加固措施。 7.3.2陷落柱保护煤柱留设 目前本矿井内尚未发现陷落柱,但不排除存在隐伏陷落柱的可能。陷落柱是奥灰突水的主要通道,为防止陷落柱突水事故,确保矿井安全生产,对导水陷落柱必须留设防水煤柱。现分述如下: ①导水陷落柱 对于一些导水陷落柱,如果所处的位置对回采影响不大,可以只留设保护煤柱而不封堵。这类落陷柱突水隐患很大,留设防水煤柱时一定要考虑其特征,做到万无一失。 首先,必须查明有无与陷落柱连通的导水断层。如果存在断层,即使断层距很小,也会作为突水通道将陷落柱内的水导入矿井,从而导致断层突水事态扩大。即使没有人为干扰的情况,突水通道也会在高压水作用下发生冲刷或扩容,随时有增大涌水、发生灾害的可能。因此,必须圈定陷落柱的突水边界。陷落柱的边界不等于突水边界,因为陷落柱在坍塌过程中或坍塌后的重力作用下,在柱体周围的脆性煤、岩层中形成大量的张裂隙,这些裂隙将成为良好的突水通道。一些陷落柱甚至内部完全充水不导水,而断层小裂隙发育的陷落柱周边环带反而成为导水的主要通道。 因此,确定陷落柱的出水边界,必须考虑周边裂隙的发育带,将其划在突水边界内。突水边界确定以后,可将突水边界视为一个断层

保护煤柱留设与防水安全煤岩柱计算规范标准

天健矿业集团股份 保护煤柱留设及防水安全煤岩柱计算规 天健矿业集团股份 二0一二年七月十五日

目录 一、保护煤柱的留设 (3) (一)基本概念和参数 (3) 1、岩层移动角 (3) 2、下沉系数(η) (4) 3、围护带宽度 (5) (二)保护煤柱的留设方法 (5) 二、防水安全煤岩柱的计算 (7) 1、目的和意义 (7) 2、计算公式 (7)

一、保护煤柱的留设 (一)基本概念和参数 1、岩层移动角 指在充分采动情况下,采空区上方地表最外侧的裂缝位置和采空区边界的连线与水平线之间在煤壁一侧的夹角。符号为:下山移动角β;上山移动角γ;走向移动角δ;急倾斜煤层底板移动角λ;表土移动角ψ。详见附图一。 附图一

岩层移动角参数表附表1 序号名称符号取值围备注 1 下山移动角ββ=δ-(0.6-0.7) α β与煤层倾角成反比。α为煤层 倾角 2 上山移动角γ55-60° 3 走向移动角δ55-60° 4 底板移动角λ55-60°用于急倾斜煤层 5 表土移动角ψ45-50°干燥土层取大值,含水土层取小 值 说明:因本公司下属煤矿暂无实测岩移数据,表中数据仅供参考。 2、下沉系数(η) 指在充分采动情况下,开采水平煤层时的地表最大下沉量与采高(多煤层开采时取累计采高)之比。在开采倾斜煤层时,由于上覆岩层大致沿岩层法线方向弯曲,最大下沉区的移动基本上是法向移动,最大下沉量应为法向移动量的垂直分量,因此,下沉系数等于最大下沉量除以煤层倾角余弦值与采高的乘积。下沉系数的大小与上覆岩层的坚固性系数成反比,与采煤方法、顶板管理方式和开采面积有关,与采深关系不大。 下沉系数表附表2

复杂条件下小煤柱沿空掘巷吸能让压控制支护技术研究

复杂条件下小煤柱沿空掘巷吸能让压控制支护技术研究 发表时间:2018-11-06T18:36:54.970Z 来源:《防护工程》2018年第19期作者:谢方鹏 [导读] 摸清工作面倾向方向上的矿压分布规律,为理论分析及数值模拟研究小煤柱的尺寸提供可靠的基础数据 陕西长武亭南煤业有限责任公司生产技术部 713600 摘要:摸清工作面倾向方向上的矿压分布规律,为理论分析及数值模拟研究小煤柱的尺寸提供可靠的基础数据;研究无冲击灾害小煤柱的设计准则和控制方法;分析冲击地压条件下的支护设计、支护产品以及支护工艺存在的问题,研究和设计吸能让压支护系统;研发冲击地压条件下的锚杆材料和支护产品;设计监测方案,对 306 工作面回风顺槽的支护效果和煤柱安全稳定性进行评价 关键词:小煤柱;灾害;支护 1.巷道基本情况 306回风顺槽布置于306工作面北侧,设计总长度966m。煤层厚度变化较大,从开门口到切眼处煤层厚度由14m逐步变薄为6m,,埋深550m。巷道北与304运输顺槽平行,之间间隔10m煤柱。巷道东与306工作面运料道相连,通过304工作面施工道回风。掘进工作面除北侧与304工作面采空区间隔10m煤柱外,其余均为实炭区。巷道掘进留1.5m底煤。煤普氏硬度系数f=1.95~2.7。 煤层顶底板情况 2.巷道面临的支护难题 306工作面回风顺槽沿空掘巷除面临常规的沿空掘巷的难题外,还面临如下的支护难题: (1)动力现象。根据以往亭南煤矿生产经验,4煤层及顶底板均具有动力现象。对支护有较大影响。 (2)矿井地应力。由于矿井采深达到500m以上,且煤层厚度变化比较大,煤层地应力较高。 (3)煤柱宽度问题。根据亭南附近正通煤矿小煤柱试验情况及以往类似工程经验,306回风顺槽10m煤柱易造成煤柱不完全屈服而积聚大量能量,增加冲击的危险程度。如果煤柱留设过小会造成煤层自燃发火、防止瓦斯、防治水等采空区管理困难。合理煤柱宽度的确定有待进一步研究与优化。 (4)卸压孔。由于卸压孔的存在,破坏小煤柱的完整性,给顺槽支护带来了一定困难。 (5)顺槽支护。306工作面回风顺槽采用全螺纹钢锚杆进行支护,锚杆的主动支护效果差,同时顺槽的表面支护强度低。煤柱受到侧向支承压力的影响时,煤柱易出现“炸帮”现象。 (6)矿井水对支护体腐蚀性而降低支护体强度,尤其是对钢绞线与锚具咬合部位的腐蚀而降低锚索实际支护阻力。

保护煤柱留设标准

井田边界煤柱:30m;? 阶段煤柱:斜长为60m,若在两阶段留设,则上下阶段各留 30m;? 井田浅部防水煤柱:斜长为50m;?断层煤柱:每侧各为20m;? 工业广场煤柱:根据工业广场占地面积,按几何作图法确定;?斜井井筒保护煤柱:两井中间为30m,两侧各为30m;?煤层大巷护巷煤柱:对近水平煤层,运输大巷与回风大巷布 置在开采水平时,两巷水平间距为20m,垂距为10m,回风大巷上?方留斜长为20m的煤柱? 采区边界煤柱:20m;? 采区煤层上山:两巷中间为20m,两侧各为20m;?区段煤柱:斜长10m; 矿井煤柱留设? 煤矿开采中,确定合理的煤柱尺寸,其影响因素是煤层所受压力以及煤体强度。通常,煤层埋藏深度和厚度较大、围岩较软时,煤柱承受的压力就较大。煤柱强度主要取决于煤层的物理力学性质,并与煤柱的形状尺寸、巷道的服务年限及巷道支护情况有关。? 目前,尚无计算煤柱尺寸的可靠方法,主要依靠现场实际经验确定。 井田边界煤柱:30m;? 阶段煤柱:斜长为60m,若在两阶段留设,则上下阶段各留30m;?井田浅部防水煤柱:斜长为50m;? 断层煤柱:断层煤柱的尺寸取决于断层的断距、性质、含水情况,落差很大的断层,断层一侧的煤柱宽度不小于30m;落差较大的断层,断层一的煤柱宽度一般为10~15m;落差较小的断层通常可以不留设断层煤柱。? 工业广场煤柱:根据工业广场占地面积,按几何作图法确定;?斜井井筒保护煤柱:两井中间为30m,两侧各为30m;? 煤层大巷护巷煤柱:对近水平煤层,运输大巷与回风大巷布置在开采水平时,两巷水平间距为20m,垂距为10m,回风大巷上方留斜长为20m的煤柱? 采区边界煤柱:采区边界煤柱的作用是:将两个相邻采区隔开,防止万一发生火灾、水害和瓦斯涌出时相互蔓延;避免从采空区大量漏风,影响正在生产的采区风量。一般取10m;? 采区煤层上山:两巷中间为20m,两侧各为20m;? 区段煤柱:斜长10m;? 1、采区上(下)山间的煤柱宽度(沿走向):对薄及中厚煤层为20m;对厚煤层为20~30m。工作面停采线至上(下)山的煤柱宽度:对薄及中厚煤层约为20m;对于厚煤层约为30~40m。? 2、上下山区段平巷之间的煤柱宽度:对薄及中厚煤层约为8~15m。对于厚煤层约为30m。?

沿空送巷小煤柱的留设及应用

沿空送巷小煤柱的留设及应用赵明强,华心祝,周华龙 (安徽理工大学资源开发与管理工程系,安徽淮南232001) 摘要:通过对沿空送巷小煤柱留设意义的分析认识,从煤巷两帮煤体应力和极限平衡理论、极限平衡非圆形巷道的圆形标准化理论方面对祁东煤矿现场进行方案设计,对现场有较强的指导意义,具有一定的推广应用价值。 关键词:小煤柱;极限平衡;沿空送巷 中图分类号:TD823 文献标识码:A 文章编号:1008-8725(2008)01-0044-03 Retaining and Application of Small Coal-Pillar ZHAOMing-qiang, HUA Xin-zhu, ZHOUHua-long (Department of Resources Exploration and Management Engineering, Anhui University of Science and Technology, Huainan 232001, China)Abstract:By analyzing and understanding the significance of small coal-pillar retaining , the programs aredesigned atQidong CoalMine according to coal stress of coal roadway ribs and limited equilibriumtheory, andthe circular standardized theoryof limited equilibriumnon-circular roadway. There are more direction signif-icances for field engineering. It has some value of generalization and application.Key words:small coal-pillar; limited equilibrium; sending roadways along goaf 0 前言 煤炭作为不可再生资源,随着不断的开采,煤炭资源也越来越显得宝贵。合理的小煤柱尺寸不仅对提高煤炭采出率具有重要意义,而且关系到采区巷道能否稳定这一重要问题。大量的现场实践证明,合理的小煤柱尺寸在很大程度上决定着该类巷道的稳定性。目前许多煤柱尺寸的确定都采用经验类比法,甚至还有很多还采用宽煤柱护巷,大大地浪费了煤炭资源。如何根据巷道围岩的具体条件,合理确定深井沿空巷道煤柱的尺寸,对于巷道安全和工作面正常生产具有重要的意义。 1 工作面地质条件 祁东煤矿3246工作面标高为-540~-618 m,工作面走向长909 m,倾向宽186 m。地面平均标高2018 m; 32煤层厚116~216 m,平均煤厚2123 m,煤层厚度较稳定,靠近断层处煤层有变薄现象,煤层结构较复杂,含一层夹矸,夹矸为灰黑色泥岩,厚度0106~015 m。伪顶局部存在泥岩伪顶,厚度为0~0137 m;直接顶局部深灰穑泥岩、粉砂岩,含铝质,致密块状,裂隙发育,含植物化石碎片,厚度2146~5187 m,平均厚度316 m;基本顶浅灰)灰白色细砂岩,致密坚硬,矿物成分以石英为主,次为长石和暗色矿物,硅质胶结,不显层理,裂隙发育,平均厚度为10127 m。底板浅灰)灰色泥岩,致密碎块状及块状,厚度3128~7137 m,平均厚度为3179 m。煤层有粉砂岩或泥岩伪顶,局部无直接顶。 2 祁东煤矿小煤柱留设 211 合理小煤柱尺寸确定方法 由于巷道围岩应力的复杂性和围岩力学参数难以准确测定,采用纯力学计算困难。因此,文中将从工程实践和数值计算两个方面综合分析,从而准确确定合理的煤柱尺寸。 极限平衡理论设计的理论基础有两个:一是弹塑性理论;二是悬吊理论。井下巷道的开挖工作,破坏了底层原岩应力的平衡状态,导致巷道周边岩体内应力的重新分布和集中。如果巷道周边围岩的集中应力小于煤岩体强度,此时围岩的物理状态保持不变,煤岩体处于弹性状态;如果围岩局部区域的应力超过煤岩体强度,则这部分煤岩体的物理性质就要发生变化,巷道周围就会产生一定的极限平衡区,同时引起应力向围岩深部转移[1]。 212 合理煤柱宽度的确定[2]~[5] 为了避免固定支承压力或残余支承压力对巷道的影响,减小巷道围岩移近率以使巷道保持稳定,降低区段煤柱损失,区段平巷的护巷煤柱宽度应尽可能小一些。在采用锚杆支护的区段平

大采高小煤柱沿空巷道大变形机理与支护技术研究

doi:10.11799/ce201803010 收稿日期:2017-06-28 作者简介:代 进(1959 ),男,四川达州人,博士,教授,从事矿山压力与支护和矿山开采方面的研究,E -mail:cjxdj123@163.com三 引用格式:代 进,王春耀,李逢祥.大采高小煤柱沿空巷道大变形机理与支护技术研究[J].煤炭工程,2018,50(3):37-41.46.大采高小煤柱沿空巷道大变形机理与支护技术研究 代 进1,王春耀2,李逢祥3 (1.山东科技大学资源与土木工程系,山东泰安 271000;2.兖州煤业股份有限公司济宁三号煤矿,山东济宁 272000;3.山东科技大学矿业与安全工程学院,山东青岛 266590) 摘 要:基于采煤工作面上覆岩层运动规律和砌体梁平衡理论,分析了大采高工作面小煤柱沿空巷道上覆关键层顶板断块下沉运动特征,断块之间相互挤压形成的力学平衡结构及其对沿空巷道围岩产生的破坏作用,探讨了大采高条件下沿空巷道围岩的破坏特点和工程可支护性能三结果表明:沿空巷道上方关键层断块在相邻工作面回采期间已经形成了稳定的半拱形力学平衡结构,在巷道掘进期间和本工作面回采期间能对其下巷道围岩起到可靠的掩护作用,沿空巷道围岩的支护应围绕半拱形力学平衡结构来开展三提出了针对沿空巷道不同部位的围岩应采用不同的支护机理和支护参数,并在济三煤矿53下12工作面进行了试验,确保了巷道的安全使 用,同时也取得了较好的经济效益三 关键词:大采高;小煤柱;沿空巷道;大变形 中图分类号:TD353 文献标识码:A 文章编号:1671-0959(2018)03-0037-06 Deformationmechanismandsupportofnarrowcoalpillargobsideentrywithlargeminingheight DAI Jin 1,WANGChun -yao2,LI Feng-xiang3 (1.DepartmentofResourcesandCivil Engineering,ShandongUniversityofScienceandTechnology,Tai?an 271000,China; 2.JiningNo.3Coal Mine,YanzhouCoal MiningCompanyLimited,Jining272000,China;3.CollegeofMiningandSafetyEngineering,ShandongUniversityofScienceandTechnology,Qingdao266590,China)Abstract:Basedon thelawofoverlyingstratamovementin worLingfaceandmasonrybeambalancetheory,weanalyzetheoverlyingLeystrataroofblocL sinLingmotion characteristicsofgobsideentryunderworLingfacewithlargeminingheightandsupportofsmall coal pillar,andthemechanical equilibriumstructureformedbythemutual extrusion ofblocLsanddamagetosurroundingrocL ofgobsideentry.DiscussthefailurecharacteristicsofsurroundingrocL on gobsideentryandengineeringsupportingperformanceunderlargeminingheight.Theresultsshowthatastablesemiarchmechanical equilibriumstructureisformedin theLeyfaultblocLsabovegobsideentryduringtheminingofadjacentworLingfaces,thisstructureplaysareliableprotectingrolein thesurroundingrocL ofroadwaybelowit,duringroadwayexcavation andtheminingofthecurrentworLingface.So,thesupportforsurroundingrocL ofgobsideentryshouldbecarriedoutaroundthesemiarchmechanical equilibriumstructure.PutforwarddifferentpartsforthesurroundingrocL ofgobsideentryshouldadoptdifferentsupportmechanismandparameter,andexperimentshavebeen carriedoutin thecoal minetoensurethesafeuseoftheroadwayandachievebettereconomicresultsin 53lower12worLingfaceofJiningNo.3Coal Mine.Keywords:largeminingheight;narrowcoal pillar;gobsideentry;largedeformation 目前采高较大的煤层都愿意留设大区段煤柱去采用大采高综采进行回采,在大采高综采工作面的理论研究中, 研究较多的是工作面支架的稳定和承载能力二覆岩结构的 运动形式二大采高支架对采场顶板的适应能力二以及大采73第50卷第3期 煤 炭 工 程COALENGINEERING Vol.50,No.3万方数据

保护煤柱留设标准

井田边界煤柱:30m; 阶段煤柱:斜长为60m,若在两阶段留设,则上下阶段各留 30m; 井田浅部防水煤柱:斜长为50m;断层煤柱:每侧各为20m; 工业广场煤柱:根据工业广场占地面积,按几何作图法确定;斜井井筒保护煤柱:两井中间为30m,两侧各为30m;煤层大巷护巷煤柱:对近水平煤层,运输大巷与回风大巷布 置在开采水平时,两巷水平间距为20m,垂距为10m,回风大巷上方留斜长为20m 的煤柱 采区边界煤柱:20m; 采区煤层上山:两巷中间为20m,两侧各为20m;区段煤柱:斜长10m; 矿井煤柱留设 煤矿开采中,确定合理的煤柱尺寸,其影响因素是煤层所受压力以及煤体强度。通常,煤层埋藏深度和厚度较大、围岩较软时,煤柱承受的压力就较大。煤柱强度主要取决于煤层的物理力学性质,并与煤柱的形状尺寸、巷道的服务年限及巷道支护情况有关。 目前,尚无计算煤柱尺寸的可靠方法,主要依靠现场实际经验确定。 井田边界煤柱:30m; 阶段煤柱:斜长为60m,若在两阶段留设,则上下阶段各留30m;井田浅部防水煤柱:斜长为50m; 断层煤柱:断层煤柱的尺寸取决于断层的断距、性质、含水情况,落差很大的断层,断层一侧的煤柱宽度不小于30m ;落差较大的断层,断层一的煤柱宽度一般为10~15m ;落差较小的断层通常可以不留设断层煤柱。 工业广场煤柱:根据工业广场占地面积,按几何作图法确定;斜井井筒保护煤柱:两井中间为30m,两侧各为30m; 煤层大巷护巷煤柱:对近水平煤层,运输大巷与回风大巷布置在开采水平时,两巷水平间距为20m,垂距为10m,回风大巷上方留斜长为20m的煤柱采区边界煤柱:采区边界煤柱的作用是:将两个相邻采区隔开,防止万一发生火灾、水害和瓦斯涌出时相互蔓延;避免从采空区大量漏风,影响正在生产的采区风量。一般取10m;采区煤层上山:两巷中间为20m,两侧各为20m; 区段煤柱:斜长10m; 1、采区上(下)山间的煤柱宽度(沿走向):对薄及中厚煤层为20m; 对厚煤层为20?30m。工作面停采线至上(下)山的煤柱宽度:对薄及中厚煤层约为20m;对于厚煤层约为30?40m 2、上下山区段平巷之间的煤柱宽度:对薄及中厚煤层约为8?15m 对于厚煤层约为30m

深部矿井沿空掘巷煤柱留设宽度确定

深部矿井沿空掘巷煤柱留设宽度确定 煤柱合理宽度的确定是影响综放沿空掘巷围岩稳定性的重要因素。文章通过理论分析和数值模拟相结合的方法,确定了深部矿井沿空掘巷的煤柱合理宽度为6m,现场试验表明,留设6m煤柱时沿空帮移近量最大为184mm,实体帮移近量最大为95mm,顶板下沉量最大为78mm,底臌量最大为134mm。巷道围岩整体变形量不大,表明煤柱宽度留设6m是合理的。 标签:深部;沿空掘巷;煤柱宽度;数值模拟 引言 保留煤柱宽度与回采巷道支护、维护成本、安全生产以及煤炭资源回采率密切相关,煤柱宽度选择的正确与否,对保证巷道稳定至关重要[1]。我国目前部分煤矿仍存在依靠经验来确定煤柱宽度,缺乏科学性和针对性,往往不是造成煤炭资源的浪费,就是巷道在掘进和回采过程难以维护,甚至出现冒顶等事故,如何兼顾资源回收率和巷道稳定,合理确定煤柱宽度,一直是众多学者关注的焦点[2]。 目前,确定综放沿空掘巷小煤柱尺寸采用的经验类比法,存在很大的盲目性和局限性。因此,如何合理、科学地确定综放沿空巷道小煤柱的尺寸,对于综放开采安全生产具有重大意义[3]。文章以巨野矿区某深部矿井沿空掘巷为工程背景,采用理论分析、现场实测的研究手段,确定深井综放沿空掘巷合理煤柱留设宽度,期望对工程实践有一定的指导意义。 1 矿井概况 矿井平均开采深度1000m,回采煤层厚8.50~10m,平均9m,普氏系数f=1.59,密度1.36g/cm3,倾角2°~13°,平均倾角5°,具有弱冲击倾向性。煤层赋存稳定,结构复杂,中间夹0.10~0.35m厚的泥岩或炭质泥岩。煤层直接顶为粉砂岩,厚19.87m,裂隙发育,具水平层理;基本顶为细砂岩,厚4.2~4.5m,整体性强;伪底为泥岩,厚1.45m;直接底为粉砂岩,裂隙发育;基本底为细砂岩,厚3.35m,主要成分为石英长石及暗色矿物,硅质胶结;覆岩的最上层为数百米的表土层。 2 沿空掘巷煤柱留设原则 小煤柱是综放沿空掘巷围岩结构的一个重要组成部分,其稳定性决定综放沿空掘巷的稳定性,采用锚杆支护时小煤柱宽度应满足以下几个原则。 巷道处于应力降低区。当巷道位于应力降低区时,小煤柱及巷道的稳定性均较好,所以应将巷道布置在应力降低区。

回釆巷道留窄小煤柱煤锚支护技术的实践与研究

回釆巷道留窄小煤柱煤锚支护技术的实践与研究 【摘要】当前我国煤矿开采技术发展迅速,回采产量呈现持续上升态势。然而,随着开采强度及开采规模的逐年壮大,煤炭资源在不断减少。基于此,提升煤炭回收率,回收煤柱,尽量延长矿井服务寿命等成为当务之急。本文现选取唐洞矿井回采巷道工程实例,探讨煤矿回采巷道留窄小煤柱煤锚支护技术,主要从沿空留巷变形规律、布置周边眼的技术参数、支护技术、支护效果观测以及相关体会等方面来予以研究,以供借鉴和参考。 【关键词】煤矿;留窄小煤柱;回釆巷道;锚支护技术 对于多数矿井而言,为保证风巷具有良好稳定性与安全性,会在上区段与本区段这两个工作面中间留设大煤柱,多为20m至25m。这样不仅极大程度地浪费了煤炭资源,使得矿井老化速度加快,而且也无法从根本上保证煤矿生产的安全性,对矿井资源采出率也有不利影响。探索回采巷道支护方式,提升支护强度,确保回采巷道的的安全性和稳定性,减少资源浪费,提高资源回收率是矿井面临的一大课题。回采巷道留窄小煤柱煤锚支护可以在一定程度上解决以上问题。 1 沿空巷道变形规律 沿空巷道即留窄小煤柱与煤体之间的巷道,主要应用于无煤柱护巷。矿井一旦开采右边工作面,基本顶会逐渐下沉,并且左边的煤柱边缘会出现断裂,煤体顶板产生弯曲,导致侧向支承压力逐渐转移至煤体内部。在此过程中,处于边缘位置的煤体会被逐渐破坏,形成具有一定厚度的破碎区;同时,在边缘约4m的范围内会出现一个应力降低区,便于沿空掘巷。在煤柱左侧掘出巷道后,围岩内会出现一个破碎区,这样一来煤柱两侧均有破碎区,此时煤柱承压能力下降。在开采左边工作面时出现超前支承压力,在多次多向应力作用下煤柱破坏更加严重,顶板亦会再次断裂,巷道承压力骤然上升,变形则愈发严重。传统的定型棚刚性支护在多次动压作用下变形重、整改难度大,而锚杆、锚网支护方式能更好地适应此地质条件,便于更好地进行煤矿开采工作。 2 工程概况 本文选取湖南华润煤业唐洞煤矿下24采区2448回风顺槽为例,该回风顺槽沿4#煤顶板按中线施工,与已采的2446工作面进风顺槽间隔5m。巷道长度设计为950m,宽度设计为4.5m,断面设计为12.4㎡,下帮高度设计为2.3m。4#煤层状况如下:煤层赋存稳定,厚度在1.55m左右,倾角为14°~17°;直接顶为泥质粉砂岩,厚度平均值约为 4.3m,夹菱铁矿薄层,稳定性较差、强度较低,在风化状态下容易破碎;老顶为粉砂岩,厚度平均值为 5.5m;直接底为深灰色泥质粉砂岩,厚度平均值为1.5m;老底为细砂岩,厚度平均值为7.2m。 3 确定上帮眼距巷道轮廓线煤柱参数

《建筑物、水体、铁路及主要井巷煤柱留设与压煤开采规范》解读

解读 1.为什么要修订《建筑物、水体、铁路及主要井巷煤柱留设与压煤开采规范》(原《建筑物、水体、铁路及主要井巷煤柱留设与压煤开采规程》),修订的背景是什么? 《建筑物、水体、铁路及主要井巷煤柱留设与压煤开采规程》自2000年颁布以来,经济社会取得了长足发展,特别是大量新基础设施的建设,如高速铁路、特高压输变电线路、高压输油气水管线和高速公路等的出现,对“三下”煤柱留设设计与压煤开采设计提出了新的要求。如何对这些涉及国计民生的构筑物进行保护?是否可对其压煤进行 开采? 与此同时,我国煤炭开采技术发展迅速,“三下”煤柱留设与压煤开采相关的采动理论和工程实践等也都得到了许多创新成果和大量实 测数据。 此外,新施行的《煤矿安全规程》对“三下”相关内容也进行了调整,这些问题的出现迫切要求对《建筑物、水体、铁路及主要井巷煤柱留设与压煤开采规程》进行修订以适应经济社会发展、技术发展和新《煤矿安全规程》的要求。

相比,新发布的《建筑物、水体、铁路及主要井巷煤柱留设与压煤开采规范》有哪些重要调整?做出这些重要调整的原因? 《建筑物、水体、铁路及主要井巷煤柱留设与压煤开采规程》共有9章135条和12个附录,修订后的《建筑物、水体、铁路及主要井巷煤柱留设与压煤开采规范》共有10章135条和5个附录。 (1)新《规范》在章节上新增加第三章“构筑物下压煤留设与开采”与第八章第三节“煤矿开采沉陷区建设场地稳定性评价”内容。 从技术角度,构筑物与建筑物具有明显的差异。过去,鉴于构筑物类型不多,其重要性也不凸显,所以在原《规程》将构筑物与建筑物合并叙述了。随着社会发展,重要构筑物越来越多,它们的煤柱留设与压煤开采问题也越来越突出,因此,新《规范》强调了构筑物特点,对高速公路、高压输电线路、水工构筑物和长输管线的煤柱留设和压煤开采作了明确的规定,以适应社会发展的要求。 同时,目前煤矿开采沉陷区治理力度在加强,煤矿开采沉陷区具有广泛作为建设场地趋势,如,淮北矿区利用采煤沉陷区建设超高层建筑工程等,故新增了“沉陷区建设场地稳定性评价”内容,用于指导和规范煤矿开采沉陷区稳定性评价和建设。 (2)新《规范》对条款部分内容进行调整。

无煤柱护巷

无煤柱护巷开采简介 无煤柱开采工艺分为两种,一种是在上一区段回采完毕,采空区冒落严实,围岩活动相对稳定后,再沿采空区和煤体边缘掘进巷道,称为沿空掘巷。沿空掘巷工艺可以不留煤柱,完全沿采空区掘进,也可以保留3~5m宽的小煤柱;另一种是将已采工作面后方的运输顺槽或回风顺槽用一定方法沿采空区保留下来,作为下一工作面的顺槽,称为沿空留巷。 1.沿空留巷的巷旁支护技术 目前,国内外在应用沿空留巷时,绝大多数都要设置巷旁支护。巷旁支护的作用是利用巷旁支护的高阻力去支撑冒落带边缘的顶板载荷,从而分担和减轻巷内支架的受载;当直接顶比较坚硬或顶板有周期性来压时,利用巷旁支护切断该处顶板,从而避免顶板沿巷道煤壁出断裂,同时利用它承受直接顶板冒落或周期冒落时所产生的动载荷;利用可缩量较小的巷旁支护去限制巷道与采空区交界处的顶板下沉量,避免巷内支架产生严重变形;利用巷旁支护去隔离或密闭采空区。当然,希望巷旁支护能同时起到上述四个方面的作用,但实际上由于所采用的巷旁支护材料和支护形式的不同,并不是所有的巷旁支护都能起到上述各方面的作用。而且根据矿山地质条件的不同,也并不要求巷旁支护在所有情况下都具有上述各方面的作用。巷旁支护的种类很多,按其力学特征可分为刚性的,有限可缩量的和大可缩量的。国内外应用较广的巷旁支护有木垛、密集支柱、矸石带、料石砌垛、人造砌块、硬石膏充填和水材料充填等。 1.1木垛巷旁支护 我国过去巷旁支护应用较广,其形式一般是单排木垛。现在为降低坑木消耗,使用越来越少。木垛作为巷旁支护的优点是:支撑面积大,稳定性好,用以挡矸比较有效;架设比较灵活、方便,劳动量少;后期支撑能力大。其缺点是:木材消耗量大,随煤层厚度加大此缺点更为突出;从力学性质来看,木垛属于晚支撑支架,承载过程中载荷增长速度很慢,且早期支撑能力太低,因而不能起到早期减少顶板下沉的作用;木垛的可缩量大,通常可以压缩到只有原始高度的40%一

保护煤柱留设标准

精品文档 井田边界煤柱:30m 阶段煤柱:斜长为60m若在两阶段留设,则上下阶段各留 30m 井田浅部防水煤柱:斜长为50m 断层煤柱:每侧各为20m 工业广场煤柱:根据工业广场占地面积,按几何作图法确定;斜井井筒保护煤柱:两井中间为30m,两侧各为30m煤层大巷护巷煤柱:对近水平煤层,运输大巷与回风大巷布 置在开采水平时,两巷水平间距为20m垂距为10m回风大巷上方留斜长为20m 的煤柱采区边界煤柱:20m 采区煤层上山:两巷中间为20m两侧各为20m;区段煤柱:斜长10m 矿井煤柱留设 煤矿开采中,确定合理的煤柱尺寸,其影响因素是煤层所受压力以及煤体强度。通常,煤层埋藏深度和厚度较大、围岩较软时,煤柱承受的压力就较大。煤柱强度主要取决于煤层的物理力学性质,并与煤柱的形状尺寸、巷道的服务年限及巷道支护情况有关。 目前,尚无计算煤柱尺寸的可靠方法,主要依靠现场实际经验确定。 井田边界煤柱:30m 阶段煤柱:斜长为60m若在两阶段留设,则上下阶段各留 30m井田浅部防水煤柱:斜长为50m 断层煤柱:断层煤柱的尺寸取决于断层的断距、性质、含水情况,落差很大的 断层,断层一侧的煤柱宽度不小于 30m落差较大的断层,断层一的煤柱宽度一般为i0~i5m落差较小的断层通常可以不留设断层煤柱。 工业广场煤柱:根据工业广场占地面积,按几何作图法确定;斜井井筒保护煤柱:两井中间为30m,两侧各为30m; 煤层大巷护巷煤柱:对近水平煤层,运输大巷与回风大巷布置在开采水平时,两巷水平间距为20m垂距为10m回风大巷上方留斜长为20m的煤柱采区边界煤柱:采区边界煤柱的作用是:将两个相邻采区隔开,防止万一发生火灾、水害和瓦斯涌出时相互蔓延;避免从采空区大量漏风,影响正在生产的采区风量。一般取10m 采区煤层上山:两巷中间为 20m两侧各为20m; 区段煤柱:斜长10m 1、采区上(下)山间的煤柱宽度(沿走向):对薄及中厚煤层为20m 对厚煤层为20?30m工作面停采线至上(下)山的煤柱宽度:对薄 及中厚煤层约为20m对于厚煤层约为30?40m 2、上下山区段平巷之间的煤柱宽度:对薄及中厚煤层约为8?15m 精品文档

煤矿编制采区设计和采掘工作面布置及安全煤柱留设的规定

编制采区设计和采掘工作面布置及安全煤柱留设的规定 1.设计是采掘工程施工的依据和目标。没有设计的施工是盲目的施工,轻者造成无效进尺、资源的浪费和经济损失,严重时可导致发生各类事故。近些年来部分乡镇、个体煤矿开采前不按规定进行设计或设计不科学,不按规定程序审批,胡采乱掘造成事故者屡屡发生。因此,《规程》规定,采区开采前必须编制采区设计。 (1)采区设计方案必须符合《规程》和《煤炭工业技术政策》以及有关技术文件规定。 编制采区设计方案必须具备的文件:经矿总工程师审批的采区地质报告书;矿井设计文件;矿井的长远规划;采区接替图表;矿压观测资料。 (2)编制采区设计方案,应进行多方案论证和对比,以求达到安全可靠、技术可行、经济合理。 (3)采区设计方案由矿总工程师组织编制,对编制完毕后的设计进行签字,报集团公司总工程师审批。 2.一个采区内同一煤层布置3个(含3个)以上回采工作面和5个(含5个)以上掘进工作面同时作业,增加了开采强度,通风阻力增大,不利于通风管理,还可能造成应力叠加,给顶板控制带来一定困难。 在采煤工作面范围内再布置另一采煤工作面同时作业,可造成循环风,不利于瓦斯事故的防治,另外也不利于顶板管理。 3.矿井内的各种煤柱的设计是根据矿井的具体情况,经过计算后划定的,有充分的科学根据,是预防矿井灾害提高矿井应变能力的

需要。同时也是保持矿井稳产、高产、提高回采率,保证生产接替提高矿井服务年限的需要。 ⑴任意扩大设计规定的煤柱,打乱了设计布置,降低了矿井回采率、采区回采率、回采工作面回采率。“三量”达不到国家规定,采掘接替紧张,回采工作面搬家倒面的次数增加。另外,任意扩大设计规定的煤柱增加了煤炭自然发火条件,在采区内任意留煤柱,还会形成所谓的“孤岛”,孤岛煤柱能把上方的应力集中向下传递,使下部的煤层巷道,硐室受到不同程度的影响。 如果任意留设的煤柱下方有近距离煤层,其下方的煤层将处在高应力区内开采,尤其在有冲击危险的煤层中采掘,影响更大。 ⑵任意缩小设计规定的煤柱规格,使煤柱起不到保护作用,危害更大。 煤柱类型较多,有井田隔离煤柱、段间煤柱、区间煤柱、防火煤柱、防火煤柱以及“三下采煤”和保护工业广场煤柱。这些煤柱的留设是预防矿井各种灾害,保护地表建筑物和工业广场,防止地表移动和下沉。缩小或不留煤柱势必导致灾害的发生,如破坏地表建筑物和工业广场,使地表移动、下沉加剧。所以,《规程》规定,严禁任意缩小设计规定的煤柱,破坏各类安全煤柱。

相关文档
相关文档 最新文档