文档库 最新最全的文档下载
当前位置:文档库 › 石墨烯/硫酸铅复合材料的制备及其在铅酸电池中的电化学性能

石墨烯/硫酸铅复合材料的制备及其在铅酸电池中的电化学性能

石墨烯/硫酸铅复合材料的制备及其在铅酸电池中的电化学性能
石墨烯/硫酸铅复合材料的制备及其在铅酸电池中的电化学性能

铅酸蓄电池结构详解

铅酸蓄电池结构详解 一、蓄电池的功用 蓄电池种类较多,根据电解液不同,有酸性和碱性之分。由于铅酸蓄电池内阻小,电压稳定,在短时间内能供给较大的起动电流,而且结构简单,价格较低,所以在汽车拖拉机上被广泛采用。 蓄电池为一可逆直流电源,在汽车拖拉机上及发电机并联,它的主要作用是: (1)发动机起动时,蓄电池向起动机和点火装置供电。起动发动机时,蓄电池必须在短时间内(5~10s)给起动机提供强大的起动电流(汽油机为200~600A。柴油机有的高达1000A)。 (2)在发电机不发电或电压较低发动机处于低速时,蓄电池向点火系及其它用电设备供电,同时向交流发电机供给他激励磁电流。(3)当用电设备同时接入较多,发电机超载时,蓄电池协助发电机共同向用电设备供电。 (4)当蓄电池存电不足,而发电机负载又较少时,可将发电机的电能转变为化学能储存起来,即充电。 (5)蓄电池还有稳定电网电压的作用。当发动机运转时,交流发电机向整个系统提供电流。蓄电池起稳定电器系统电压的作用。蓄电池相当于一个较大的电容器,可吸收发电机的瞬时过电压,保护电子元件不被损坏。延长其使用寿命。 二、蓄电池的构造

车用12V蓄电池均由6个单格电池串联而成,每个单格的标称电压为2V,串联成12V的电源,向汽车拖拉机用电设备供电。 蓄电池主要由极板、电解液、格板、电极、壳体等部分组成。 1.极板 极板分为正极板和负极板两种。蓄电池的充电过程是依靠极板上的活性物质和电解液中硫酸的化学反应来实现的。正极板上的活性物质是深棕色的二氧化铅(PbO2),负极板上的活性物质是海绵状、青灰色的纯铅(Pb)。 正、负极板的活性物质分别填充在铅锑合金铸成的栅架上,加入锑的目的是提高栅架的机械强度和浇铸性能。但锑有一定的副作用,锑易从正极板栅架中解析出来而引起蓄电池的自行放电和栅架的膨胀、溃烂,从而影响蓄电池的使用寿命。 负极板的厚度为1.8mm,正极板为2.2mm,为了提高蓄电池的容量,国外大多采用厚度为1.1~1.5mm的薄型极板。另外,为了提高蓄电池的容量,将多片正、负极板并联,组成正、负极板组。在每单格电池中,负极板的数量总比正极板多一片,正极板都处于负极板之间,使其两侧放电均匀,否则因正极板机械强度差,单面工作会使两侧活性物质体积变化不一致,造成极板弯曲。 2.隔板 为了减少蓄电池的内阻和体积,正、负极板应尽量靠近但彼此又不能接触而短路,所以在相邻正负极板间加有绝缘隔板。隔板应具有多孔性,以便电解液渗透,而且应具有良好的耐酸性和抗碱性。

蓄电池行业发展史介绍

蓄电池行业发展史介绍 编辑者:变宝网仁宝 蓄电池行业发展时间不算很长,但过程是艰辛的。许多科学家和发明家在蓄电池的发展中做出贡献,蓄电池是世界上广泛使用的一种化学“电源”,具有电压平稳、安全可靠、价格低廉、适用范围广、原材料丰富和回收再生利用率高等优点,是世界上各类电池中产量最大、用途最广的一种电池。下面了解下蓄电池行业的发展史。 大事记 1905,第一个蓄电池用于汽车(首先只为照明用); 1914,第一次将启动型蓄电池用于汽车; 1922,第一个BOSCH摩托车用蓄电池出现在摩托车上; 1926,第一台蓄电池充电器问世; 1927以后,Bosch公司开发出汽车用蓄电池。 发展史 许多科学家和发明家在蓄电池的发展中做出贡献,如LuigiGalvani(约在1789年)、JohnRitter(约在1800年)、AlessandroRitter(约在1800)、GastonPlante(约在1859年)和CamilleFaure,他们把开发被认为是错误的电池的蓄电池引上正确的道路。

19世纪末。已经产生蓄电池的栅架,它的原理仍是至今铅酸电池使用的部件。自那以后,铅酸蓄电池基本上没有什么变化,总是那些单个电池,总是那些极板,总是那样的硫酸液。但仔细观察人们可以看到: 蓄电池的能量密度已经增加了几倍; 广泛采用塑料(早期隔板和蓄电池外壳为木材); 绝对免维护蓄电池成为今天启动型蓄电池的标准蓄电池; 寿命,除个别例外,已接近?汽车的整体寿命。 蓄电池是世界上广泛使用的一种化学“电源”,具有电压平稳、安全可靠、价格低廉、适用范围广、原材料丰富和回收再生利用率高等优点,是世界上各类电池中产量最大、用途最广的一种电池。 科技的发展、人类生活质量的提高,石油资源面临危机、地球生态环境日益恶化,形成了新型二次电池及相关材料领域的科技和产业快速发展的双重社会背景。市场的迫切需

免维护铅酸蓄电池10大常见问题解答

免维护铅酸蓄电池10大常见问题解答: 1、什么是免维护铅酸蓄电池? 免维护铅酸蓄电池英文为Valve Regulated Lead Battery(简称VRLA电池),其基本特点是使用期间不用加酸加水维护,电池为密封结构,不会漏酸,不会排酸雾,电池盖子上设有单向排气阀(又叫安全阀),该阀的作用是当电池内部气体压力超过一定值,安全阀自动打开,排出气体,然后自动关闭,常规状态下安全阀是密闭的。 VRLA电池与传统铅酸蓄电池的最大区别是,传统蓄电池非密封,由于挥发、反应等过程,电池会失酸失水,需要定期加酸加水,最常见的传统蓄电池就是汽车蓄电池,生活中叫做电瓶来的。 2、免维护铅酸蓄电池的分类? 分AGM(普通型)与GEL(胶体)两类;AGM采用玻璃纤维棉(Absorbed Glass MAT)做隔膜,电解液吸附在极板与隔膜中,贫液式设计,电池内无流动电解液。GEL(胶体)采用二氧化硅做凝固剂,电解液吸附在极板和胶体内,使用环境适应性更强。 区别(从应用角度讲): AGM:一般寿命5-12年,温度适用-15度到40度之间,价格适中,大电流放电好,浮充使用好; GEL:一般寿命8-15年,温度适用-25度到60度之间,价格高于AGM,大电流一般,浮充使用最好; 3、免维护铅酸蓄电池的电压是多少?蓄电池容量单位是?电池容量是如何表征的? 目前最常见的单个电池电压有2V、4V、6V、12V、24V。电池的容量单位是AH。目前行业内一般以20AH作为分界点,20AH以下电池称为小密电池,20AH以上电池称为中大密电池;小密电池一般以20小时率来表征容量,大密电池一般以10小时率来表征容量,没有特殊表明,电池容量默认为10小时率或者20小时率。 5、免维护铅酸蓄电池放电终止电压是多少? 电池类型终止电压(C10)终止电压(C20)终止电压(1C)终止电压(3C)小密电池 1.75V/Cell 1.6V/Cell 中大密电池 1.8V/Cell 1.6V/Cell Cell表示电池的单格,每Cell电压近似2V;12V电池有6个单格,终止电压为单格终止电压的6倍;6V电池有3个单格,终止电压为单格终止电压的3倍;其他类推; 6、免维护铅酸蓄电池放电深度是指什么?如何计算? 放电深度是指电池实际放出容量与额定容量的比值; 放电深度=实际放出容量/额定容量; 如:12V75AH电池,额定容量为10小时率75AH,如按照5小时率放电使用,容量表征为65AH,则放电深度为86.7%。 7、普朗特蓄电池的放电深度一般为多少? 小密电池或富液20小时率为100%,10小时率为95%,5h约85%,3h为75%,1h约55~60%; 中大密电池10hr是100%,5hr是85%,3小时75%,1小时60%,1c约40%等,其他的介于其中;

铅蓄电池放电特性(精)

第八节铅蓄电池放电特性 一定放电电流,首先,物质的消耗,密度减少,电动势降低,引起输出端电压减少;另外,放电生成物增多,内电阻上升,引起内压降增多,也引致输出端电压进一步下降。 总之,放电过程中,除了内电阻是增大以外,其他的参数都将减少。 铅蓄电池的放电曲线不同放电电流时的放电曲线 图3-6铅蓄电池的放电曲线 (1)刚放电时, (消耗>补充) (电极上反应物之间接触面多,使反应过程充分进行,而且生成物不足阻碍反应进行,内阻压降基本不变。而进行反应的电极材料孔隙内、外的电解液密度差不多,硫酸分子扩散运动很慢,) 使之消耗量和扩散补充量不平衡,使进行反应的硫酸密度下降较快,故电动势和端电压都有较快的下降。 (2)随着反应深入到中期过程, (消耗=补充) 在反应的孔隙内、外的电解液密度的差值较大,促进补充硫酸的扩散运动速度加快,消耗的硫酸分子得以相应补充。密度减少变缓慢,电动势减少缓慢,内电阻变化也不明显,因此,端电压仍随电动势下降较慢。 (2)反应加深,进入放电后期时, (消耗>补充) 化学反应在孔隙内深处进行,硫酸扩散路径变长,生成物使硫酸扩散通道变窄,甚至被堵塞,处于硫酸消耗多于补充的不平衡状态,电动势下降较快,内阻及降不断增大,造成端电压下降加快,曲线变陡。 单体电池当放电电压达到D点时,就是放电的终止电压值。如果在低于终止放电电压值下继续放电的话,电池电压将迅速变为零。这种超量放电是不允许的,实践中,在终止放电电压值达到后的放电,蓄电池已经失去了保证向负载供电能力。一般D点电压值定为1.7伏,也就是额定负载下端电压下降到20伏,就应该给电池充电。 停止放电后,硫酸分子经一段时间扩散到电极孔隙内,会使该处电解液的密度回升,而且均匀分布,所以电动势值可回到1.99伏左右。 影响放电电压的放电条件: 第一,放电电流影响放电电压。 放电电流大小的改变,化学反应进行的程度不同。增大负载时,能量转换量大,化学反应要求更多、更快,硫酸消耗多,密度下降快,生成物多,内阻增大,影响扩散速度。因此,电动势和端电压下降就快了,达到终止放电的时间会缩短,所以放电电流越大,放电电压下降越快。可放电的时间越短。 (注意,放电电流较大状态下的放电终止电压值允许低一些。)

蓄电池的发展历史

1969年,美国登月计划实施,阀控式密封铅酸蓄电池和镉镍电池被列入月球车用动力电源,最后镉镍电池被采用,但密封铅酸蓄电池技术从此得到发展。1992 年,经过许多年努力并付出高昂代价的情况下,密封铅酸蓄电池得到了广大用户的认可。其基本特点是使用期间不用加酸加水维护,电池为密封结构,不会漏酸,也不会排酸雾,电池盖子上设有单向排气阀(也叫安全阀),该阀的作用是当电池内部气体量超过一定值(通常用气压值表示),即当电池内部气压升高到一定值时,排气阀自动打,排出气体,然后自动关阀,防止空气进入电池内部。 胶体电池属于铅酸蓄电池的一种发展分类,最简单的做法,是在硫酸中添加胶凝剂,使硫酸电液变为胶态。电液呈胶态的电池通常称之为胶体电池。 胶体电池与常规铅酸电池的区别,从最初理解的电解质胶凝,进一步发展至电解质基础结构的电化学特性研究,以及在板栅和活性物质中的应用推广。其最重要的特点为:用较小的工业代价,沿已有150年历史的铅酸电池工业路子制造出更优质的电池,其放电曲线平直,拐点高,比能量特别是比功率要比常规铅酸电池大20%以上,寿命一般也比常规铅酸电池长一倍左右,高温及低温特性要好得多。 胶体电池是目前世界上各项性能最优越的阀控式铅酸免维护蓄电池,它在使用时性能稳定,可靠性高,使用寿命长,具有以下的技术特点: 内部无游离的液体存在,无内部短路的可能。 采用无锑合金电池极板,电池自放电率极低.在20摄氏度下电池存放两年不需补充电. 长时间放电能力及循环放电能力强。 采用滑动密闭技术(德国阳光公司专利),即允许由电化学反应必然产生的电池使用后期的的极柱生长,又能保证其极高的密封性能。 电池厂家泰科源

铅酸蓄电池维护和保养

铅酸蓄电池安装、使用、维护保养知识 一、蓄电池使用环境 推荐环境温度范围,AGM电池:充电10~+30℃,放电10~+40℃,储存-10~+35℃; 胶体电池:充电5~+30℃,放电5~+40℃,储存-10~35℃; 附近无明火、火花、热源等; 避开热源和阳光直射的场所; 避开潮湿、可能浸水场所,地下或水下使用需采购我司特殊结构电池; 避开完全密闭场所。 二、蓄电池的安装及使用 1、开箱及检查 搬运: 禁止在端子部位受力,防止端子损伤和密封部位裂开; 避免蓄电池倒置、遭受摔掷或冲击; 绝对避免使用钢绳等金属线类,防止蓄电池短路。 检查:包装箱、蓄电池外观——无损伤; 2、安装前注意事项 电池成组使用时建议先给电池配组,量取开路电压相同或相近的电池为一组,建议电压相差0.01V/单体为一个等级; 串联超过450V的安装时电池底部需垫上绝缘胶垫; 检查电池无异常后,将其安装在指定地点(例如电池房); 如将电池安放在电池房,应尽可能将其放在电池房最低处; 避免将电池安装在靠近热源(如变压器)的地方; 因为电池贮存时可能产生易燃气体,安装时应避免靠近产生火花的装置(如保险丝); 连接前,擦亮电池端子,使其呈现金属光亮; 小心导电材料短接蓄电池正负端子。 多个电池一起使用时,首先保证电池间连接正确,再将电池与充电器或负载连接。在这种情况下,电池正极应与充电器或负载的正极连接,负极与负极连接。如果电池与充电器连接不正确,充电器会被损坏,一定要注意不要连接错误。切记连接正确。 3、安装及接线 将金属安装工具(如扳手)用绝缘胶带包裹,进行绝缘处理; 先进行蓄电池之间的连接,然后再将蓄电池组与充电器或负载连接; 多组电池并联时,遵循先串联后并联的接线方式; 为保证较好的散热条件,各列蓄电池间距需保持20mm以上; 连接后,在蓄电池极柱表面敷涂适量防锈剂(如凡士林); 蓄电池安装完毕,测量电池组总电压无误后,方可加载上电。 4、蓄电池的使用 4.1补充电 在运输和贮存过程中,由于自放电电池会损失部分容量,使用前请补充电; 如果使用过程中暂时停放不用,请定期进行补充电。

(整理)铅酸蓄电池的性能检测

铅酸蓄电池的性能检测 一、容量 电池容量是指在规定条件下测得的并由制造商宣称的电池容量值。实际上是在规定 温度下,以一定电流放电一定时间,当达到规定的终止电压时,所能给出的电量,用C 表示,以安时(Ah)为单位。 ⑴起动电池的容量 a. 额定储备容量,用Cr.n表示,其值应符合GB/T 5008.2-2008标准的规定。 b. 实际储备容量,用Cr.e表示,其值应在第3次或之前的储备容量试验时,达到额定储备容量用Cr.n。 c. 20h率额定容量,用C20表示,其值应符合GB/T 5008.2-2008标准的规定。 d. 实际容量,用Ce表示,其值应在第3次或之前的容量试验时,应不低于额定容量C20的95%。 ⑵牵引电池的容量 a. 额定容量,用C5表示,在30℃温度下放电5h,放电电流是C5/5(A),放电至单体电压1.70V,所给出的电量(Ah),其值应符合GB/T 7403.1-2008标准的规定。 b. 实际容量,用Ce表示,在规定条件下,电池所能放出的电量(Ah),其值应在第1次容量试验时应不低于额定容量C5的85%。实际容量在前10次容量试验内至少有1次 达到额定容量。 ⑶内燃机车用排气式电池的容量 电池的额定容量以C5表示,其值应在第6次循环内达到电池标称容量值,应符合GB/T 7404.1-2008标准的规定。 ⑷内燃机车用阀控密封式电池的容量 电池的额定容量以C5表示,其值应在第6次循环内达到电池标称容量值,应符合GB/T 7404.2-2008标准的规定。

⑸铁路客车用电池的容量 a. 额定容量,用C10、C5、C1表示,其容量值在进行容量试验时要达到额定值,在3次试验中有1次合格为合格,应符合GB/T 13281-2008标准的规定。 b. 实际容量,用Ce表示,即在规定条件下测得的电池实际放电容量。 c. 低温容量,用Cd表示,电池在零下40℃环境中静置8h,以I10(A)电流放电至单体电压1.60V,计算其容量,低温容量Cd与常温容量C10、C5、C1的比值不少于0.4(>40%)。 ⑹固定型防酸式电池的容量 C10容量在第1次循环不低于0.90C10,第5次循环应达到C10;C1和1.0C容量分别在第7次、第9次循环达到额定值,应符合GB/T 13337.1-2008标准的规定。 ⑺固定型阀控密封式电池的容量 C10容量在第1次循环不低于0.95C10,第3次循环应达到C10、C3、C1,应符合GB/T 19638.1-2008的规定。 ⑻小型阀控密封式电池的容量 C20容量应符合GB/T 19639.2-2008的规定。实际容量Ce在第5次充/放循环内应不低于C20。 ⑼电动道路车辆用电池的容量 a. 额定容量,用C3表示,第1次放电容量应不低于0.85C3,第10次放电容量或之前放电容量应达到C3,应符合GB/T 18332.1-2008的规定。 b. 低温容量,用Cd表示,电池在零下18℃环境中静置24h,以I3(A)电流放电至单体电压1.40V,其容量应不低于0.5C3。 ⑽电动助力车用密封式电池的容量 a. 额定容量,用C2表示,应在第3次循环内达到。 b. 实际容量,用Ca表示,应符合GB/T 22199-2008的规定。

铅酸蓄电池内部短路原因以及处理办法

铅酸蓄电池内部短路原因以及处理办法电池内部短路是常见的故障之一,本文将详细分析短路原因及处理方法,铅酸蓄电池短路现象主要以下几个方面: 1、开路电压低,闭路电压(放电)很快达到终止电压。 2、大电流放电时,端电压迅速下降到零。 3、开路时,电解液密度很低,在低温环境中电解液会出现结冰现象。 4、充电时,电压上升很慢,始终保持低值(有时降为零)。 5、充电时,电解液温度上升很高很快。 6、充电时,电解液密度上升很慢或几乎无变化。 7、充电时不冒气泡或冒气出现很晚。 造成铅酸蓄电池内部短路的原因有: 1、隔板质量不好或缺损,使极板活性物质穿过,致使正、负极板虚接触或直接接触。 2、隔板窜位致使正负极板相连。 3、极板上活性物质膨胀脱落,因脱落的活性物质沉积过多,致使正、负极板下部边缘或侧面边缘与沉积物相互接触而造成正负极板相连。 4、导电物体落入电池内造成正、负极板相连。 5、焊接极群时形成的"铅流"未除尽,或装配时有"铅豆"在正负极板间存在,在充放电过程中损坏隔板造成正负极板相连。

铅酸蓄电池短路的处理方法 下面主要就充电电流过大,单只电池充电电压超过了2.4V,内部有短路或局部放电、温升超标、阀控失灵现象造成的铅酸蓄电池短路进行分析,总结出如下铅酸蓄电池短路的处理方法。 1、减小充电电流,降低充电电压,检查安全阀体是否堵死。定期充电放电。UPS电源系统中的铅酸蓄电池浮充电压和放电电压,很多在出厂时均已调试到额定值,而放电电流的大小是随着负载的增大而增加的,使用中应合理调节负载,比如控制计算机等电子设备的使用台数。 一般情况下,负载不宜超过UPS额定负载的60%.在这个范围内,蓄电池就不会出现过度放电。铅酸蓄电池存放会因自放电而失去部分容量,因此,铅酸蓄电池在安装后投入使用前,应根据电池的开路电压判断电池的剩余容量,然后采用不同的方法对蓄电池进行补充充电。对备用搁置的蓄电池,每3个月应进行一次补充充电。可以通过测量松下蓄电池开路电压来判断电池的好坏。 2、以12V电池为例,若开路电压高于12.5V,则表示电池储能还有80%以上,若开路电压低于12.5V,则应该立刻进行补充充电。若开路电压低于12V,则表示电池存储电能不到20%,电池不堪使用。蓄电池在短路状态时,其短路电流可达数百安培。短路接触越牢,短路电流越大,因此所有连接部分都会产生大量热量,在薄弱环节发热量更大,会将连接处熔断,产生短路现象。 蓄电池局部可能产生可爆气体(或充电时集存的可爆气体),在连接处熔断时产生火花,会引起蓄电池爆炸;若蓄电池短路时间较短或电流不是特别大时,可能不会引起连接处熔断现象,但短路仍会有过热现象,会损坏连接条周围的粘结剂,使其留下漏液等隐患。 在安装铅酸蓄电池时,应使用的工具应采取绝缘措施,连线时应先将电池以外的电器连好,经检查无短路,最后连上蓄电池,布线规范应良好绝缘,防止重叠受压产生破裂。通过这些细致的工作,才能更好的预防铅酸蓄电池短路,使铅

铅酸电池、锂电池等各种电动车电池优缺点分析

目前市场上电动自行车使用的电池品种很多。除了使用量最大的阀控密封式铅酸蓄电池以外,还有镍氢电池、镍镉电池、锂离子电池、锌空电池等等。这些蓄电池都具有各自独特的优点,以下我们就来分别认识一下各电池的特性与功用。 铅酸电池 其中,以铅酸蓄电池为数量最多。铅酸蓄电池的价格最低,也最常用,中国是全世界铅酸蓄电池最大的生产国。其含污染的成分比较少,可回收性好。缺点是比容小。也就是说,在同样的容量下,电池重量和体积都大。目前的铅酸蓄电池基本上是由浮充类型的电池发展而来的。浮充电池不适应快速充电和大电流放电,虽然技术人员的花费了大量的心血进行了卓有成效的改进,可以进入实用了,但是其寿命还是非常不理想的。胶体电池 胶体电池属于铅酸蓄电池的一种发展分类,最简单的做法,是在硫酸中添加胶凝剂,使硫酸电液变为胶态。电液呈胶态的电池通常称之为胶体电池。广义而言,胶体电池与常规铅酸电池的区别不仅仅在于电液改为胶凝状。例如非凝固态的水性胶体,从电化学分类结构和特性看同属胶体电池。又如在板栅中结附高分子材料,俗称陶瓷板栅,亦可视作胶体电池的应用特色。近期已有实验室在极板配方中添加一种靶向偶联剂,大大提高了极板活性物质的反应利用率,据非公开资料表明可达到70wh/kg的重量比能量水平,这些都是现阶段工业实践及有待工业化的胶体电池的应用范例。 胶体电池与常规铅酸电池的区别,从最初理解的电解质胶凝,进一步发展至电解质基础结构的电化学特性研究,以及在板栅和活性物质中的应用推广。其最重要的特点为:用较小的工业代价,沿已有150年历史的铅酸电池工业路子制造出更优质的电池,其放电曲线平直,拐点高,比能量特别是比功率要比常规铅酸电池大20%以上,寿命一般也比常规铅酸电池长一倍左右,高温及低温特性要好得多。 镍氢电池 镍氢电池的比容比铅酸蓄电池好很多,单体电池的寿命也比较好,其大电流充放电特性也比铅酸蓄电池好。问题是镍氢电池串连电池组的管理问题比较多,一旦发生过充电以后,就会形成单体电池隔板熔化的问题,导致整组电池迅速失效。所以,国产的镍氢电池的关键技术问题还是充电器和电池管理系统的问题,而这个问题还没有引起各个电池制造商和车厂足够的重视。所以,镍氢电池的发展收到很大的制约。镍镉电池镍镉电池的大电流特性比镍氢电池好,其抗过充电特性也比镍氢电池好,中国又是世界上镍镉电池的生产大国。一些人提出镉污染的问题,中国现在还在大量的向欧洲出口镍镉电池及其应用产品,欧洲到2006年才开始限制。据中央电视台播放的消息,神州五号还是采用镍镉电池的。这是其相对比较高的可靠性的优点使该品种电池还在应用与宇航设备上。这样看,电动自行车方面过早的使镍镉电池退出应用是否有一些过激?而镍镉电池的成本和充电器的成本都明显低于镍氢电池,只要回收处理好了,还是应该保留这个电池品种的。

电池的发展史

电池的发展史 电池发展历史 1800年 Alessandro Volta 发明世界上第一个电池、 1802年 Dr、 William Cruikshank 设计了第一个便于生产制造的电池、 1836年 John Daniell 为提供稳定的放电电流,对电池做了改进 1859年 Gaston Planté发明可充电的铅酸电池、 1868年 George Leclanché开发出使用电解液的电池 1881年 J、 A、 Thiebaut 取得干电池专利、 1888年 Dr、 Gassner 开发出第一个干电池、 1890年 Thomas Edison 发明可充电的铁镍电池 1896年 在美国批量生产干电池 1896年 发明D型电池、 1899年 Waldmar Jungner 发明镍镉电池、 1910年 可充电的铁镍电池商业化生产 1911年 我国建厂生产干电池与铅酸蓄电池(上海交通部电池厂) 1914年 Thomas Edison 发明碱性电池、 1934年 Schlecht and Akermann 发明镍镉电池烧结极板、 1947年 Neumann 开发出密封镍镉电池、 1949年 Lew Urry (Energizer) 开发出小型碱性电池、 1954年 Gerald Pearson, Calvin Fuller and Daryl Chapin 开发出太阳能电池、1956年 Energizer、制造第一个9伏电池 1956年 我国建设第一个镍镉电池工厂(风云器材厂(755厂)) 1960前后

Union Carbide、商业化生产碱性电池,我国开始研究碱性电池(西安庆华厂等三家合作研发) 1970前后 出现免维护铅酸电池、 1970前后 一次锂电池实用化、 1976年 Philips Research的科学家发明镍氢电池、 1980前后 开发出稳定的用于镍氢电池的合金、 1983年 我国开始研究镍氢电池(南开大学) 1987年 我国改进镍镉电池工艺,采用发泡镍,电池容量提升40% 1987前 我国商业化生产一次锂电池 1989年 我国镍氢电池研究列入国家计划 1990前 出现角型(口香糖型)电池, 1990前后 镍氢电池商业化生产、 1991年 Sony、可充电锂离子电池商业化生产 1992年 Karl Kordesch, Josef Gsellmann and Klaus Tomantschger 取得碱性充电电池专利 1992年 Battery Technologies, Inc、生产碱性充电电池 1995年 我国镍氢电池商业化生产初具规模 1999年 可充电锂聚合物电池商业化生产 2000年 我国锂离子电池商业化生产 2000后 燃料电池,太阳能电池成为全世界瞩目的新能源发展问题的焦点 电池的发展史由1836年丹尼尔电池的诞生到1859年铅酸电池的发明,至1883年发明了氧化银电池,1888年实现了电池的商品化,1899年发明了镍-镉电池,1901年发明了镍-铁电池,进入20世纪后,电池理论与技术处于一度停滞时期。但在第二次世界大战之后,电池技术又进入快速发展时期。首先就是为了适应重负荷用途的需要,发展了碱性锌锰电池,1951年实现了镍-镉电池的密封化。1958年Harris提出了采用有机电解液作为锂一次电池的电解质,20世纪70年代初期便实现了军用与民用。随后基于环保考虑,研究重点转向蓄电池。镍-镉电池在20世纪初实现商品化以后,在20世纪80年代得到迅速发展。 随着人们环保意识的日益增加,铅、镉等有毒金属的使用日益受到限制,因此需要寻找新的可代替传统铅酸电池与镍-镉电池的可充电电池。锂离子电池自然成为有力的候选者之一。

蓄电池充电曲线的研究

引言 铅酸蓄电池由于其制造成本低,容量大,价格低廉而得到了广泛的使用。但是,若使用不当,其寿命将大大缩短。影响铅酸蓄电池寿命的因素很多,而采用正确的充电方式,能有效延长蓄电池的使用寿命。 研究发现:电池充电过程对电池寿命影响最大,放电过程的影响较少。也就是说,绝大多数的蓄电池不是用坏的,而是“充坏”的。由此可见,一个好的充电器对蓄电池的使用寿命具有举足轻重的作用。 1蓄电池充电理论基础 上世纪60年代中期,美国科学家马斯对开口蓄电池的充电过程作了大量的试验研究,并提出了以最低出气率为前提的,蓄电池可接受的充电曲线,如图1所示。实验表明,如果充电电流按这条曲线变化,就可以大大缩短充电时间,并且对电池的容量和寿命也没有影响。原则上把这条曲线称为最佳充电曲线,从而奠定了快速充电方法的研究方向[1,2]。 图1最佳充电曲线 由图1可以看出:初始充电电流很大,但是衰减很快。主要原因是充电过程中产生了极化现象。在密封式蓄电池充电过程中,内部产生氧气和氢气,当氧气不能被及时吸收时,便堆积在正极板(正极板产生氧气),使电池内部压力加大,电池温度上升,同时缩小了正极板的面积,表现为内阻上升,出现所谓的极化现象。 蓄电池是可逆的。其放电及充电的化学反应式如下:

很显然,充电过程和放电过程互为逆反应。可逆过程就是热力学的平衡过程,为保障电池能够始终维持在平衡状态之下充电,必须尽量使通过电池的电流小一些。理想条件是外加电压等于电池本身的电动势。但是,实践表明,蓄电池充电时,外加电压必须增大到一定数值才行,而这个数值又因为电极材料,溶液浓度等各种因素的差别而在不同程度上超过了蓄电池的平衡电动势值。在化学反应中,这种电动势超过热力学平衡值的现象,就是极化现象。 一般来说,产生极化现象有3个方面的原因。 1)欧姆极化充电过程中,正负离子向两极迁移。在离子迁移过程中不可避免地受到一定的阻力,称为欧姆内阻。为了克服这个内阻,外加电压就必须额外施加一定的电压,以克服阻力推动离子迁移。该电压以热的方式转化给环境,出现所谓的欧姆极化。随着充电电流急剧加大,欧姆极化将造成蓄电池在充电过程中的高温。 2)浓度极化电流流过蓄电池时,为维持正常的反应,最理想的情况是电极表面的反应物能及时得到补充,生成物能及时离去。实际上,生成物和反应物的扩散速度远远比不上化学反应速度,从而造成极板附近电解质溶液浓度发生变化。也就是说,从电极表面到中部溶液,电解液浓度分布不均匀。这种现象称为浓度极化。 3)电化学极化这种极化是由于电极上进行的电化学反应的速度,落后于电极上电子运动的速度造成的。例如:电池的负极放电前,电极表面带有负电荷,其附近溶液带有正电荷,两者处于平衡状态。放电时,立即有电子释放给外电路。电极表面负电荷减少,而金属溶解的氧化反应进行缓慢Me-e→Me+,不能及时补充电极表面电子的减少,电极表面带电状态发生变化。这种表面负电荷减少的状态促进金属中电子离开电极,金属离子Me+转入溶液,加速Me-e→Me+反应进行。总有一个时刻,达到新的动态平衡。但与放电前相比,电极表面所带负电荷数目减少了,与此对应的电极电势变正。也就是电化学极化电压变高,从而严重阻碍了正常的充电电流。同理,电池正极放电时,电极表面所带正电荷数目减少,电极电势变负。 这3种极化现象都是随着充电电流的增大而严重。 2充电方法的研究 常规充电法

蓄电池名词解释和特性说明

铅酸蓄电池特性说明&&名词解释(本文内容为普通蓄能类铅蓄电池)一.STANDBY USE/CYCLING USE 浮充使用/循环使用 I nitial current :less than 1.75A:初始电流不超过1.75A。 一般充电时,电池在未接入回路时内阻可能很小,为保护电池充电电流不能太大。Standby use :浮充使用:表示长时间持续充电,只有需要时才放电。如UPS。Cycling use :循环使用:表示快速的充放电使用。如电动车,需要经常性充电。 以上仅为某一品牌电池铭字简解,不同品牌略有差异。二.放电电流/终止电压 放电是蓄电池的最基本功能。但过放电却能导致蓄电池性能急剧下降甚至永久性损坏。在寿命功效最大化的情况下,蓄电池放电应在0.05C—3C之间。汽车蓄电池等某些特殊用途的蓄电池,瞬间放电10倍C(C为25℃下标称容量)甚至以上,也只是瞬间而已。一般铅蓄电池的放电电流和终止电压具有“类负相关”关系。不同品牌的铅蓄电池,放电电流/终止电压略有不同,其极板材质、化学成分和制作工艺导致差异的存在。 超过某一放电电流下终止电压的下限额度就会发生过放电。若难免而发生了反复过放电情况,应及时充电甚至维护。 以下为某一品牌铅蓄电池放电电流/终止电压数据: 正常工作温度25℃下,

三.放电容量 不同放电率下蓄电池容量不同。 以下为某一品牌铅蓄电池不同放电电流下的放电容量。

结论得出:放电电流Ix越大,电池所能放出的容量Cx越小。 铅蓄电池标称容量一般是:20—25℃左右的时候,10小时的放电量,就是标称容量。进而可以得出,0.1C的放电量,可以放电10个小时。 四.其他注意事项 ①.温度. 铅蓄电池正常温度范围为15℃—50℃。温度过高过低,都会影响性能。建议长期使用温度20℃—40℃。对于60V以下蓄电池,温度补偿不明显,可以不予考虑。 ②.充电电流/功率. 铅蓄电池正常充电电流应小于0.25C。充电电压应小于14.5(快速循环充放电时,充电电压要小于15V)。充电电流=充电功率÷充电电压,欧姆定律成立。 ③.用电/存储/充电. 铅蓄电池不宜长期放置。不可避免的长期存放之前,应充电至满电荷。 置于25℃—35℃环境中朝上静放。 ④.浮管式水力发电机/风力发电/太阳能发电 浮管式水力发电机是重庆同利实业有限公司研发的绿色环保水力发电系统。 它直接通过流水发电,无需筑坝,无需巨大落差,无需强力冲击,流水即可发电,水流速度要求0.6m/s—3.5m/s。它适用于小溪流、水沟渠、江河、洋流和人工循环水系统等各种流水环境。它可用来建设水力发电站;也可以单台分布式发电。它用于景观、广告、应急、救援等可循环绿色用电;也可以给一个国家,一个地区,一个省份,一个城市,一个乡镇,一个村或单家独户提供用电。有关浮管式水力发电机请参阅重庆同利实业有限公司官方网站。 与风力发电和太阳能发电一样,浮管式水力发电机(系统)也可以配备蓄电池。这三种发电系统建议使用普通蓄能类蓄电池。

铅酸蓄电池充电方法及特性说明

铅酸蓄电池充电方法及特性说明 铅蓄电池的充电特征就是指蓄电池在恒定流充电状态下,电解液相对密度ρ(15℃)、蓄电池端电压UC随充电时间的变化规律。图5-12是将某型号铅蓄电池以5A进行恒流充电时测得的规律曲线。充电过程中,电解液相对密度基本以直线逐渐上升。这是因为采用等流充电,充电机每单位时间向蓄电池输入的电量相等,每单位时间内电解液中的水变为硫酸的量也基本相等。充电过程中,铅蓄电池端电压上升的规律由四个阶段组成:第一阶段:充电开始,端电压上升较快。这是由于极板活性物质孔隙内部的水迅速变为硫酸,孔隙外部的水还未来得及渗透入补充,极板内部电解液相对密度迅速上升所致。 第二阶段:端电压上升较平稳,至单格电压2.4V。该阶段,每单位时间内极板内部消耗的水与外部渗入的水基本相等,处于动态平衡状态。 第三阶段:端电压由2.4V迅速上升至2.7V,该阶段电解液中的水开始电解,正极板表面逸出氧气,负极板处逸出氢气电解液中冒出气泡,出现所谓的电解液“沸腾”现象。 第四阶段:该阶段过充电阶段,端电压不再上升。为了观察端电压和电解液相对密度不再上升的现象,保证蓄电池充分充电,一般需要过充电2h~3h。由于过充电时剧烈地放出气泡会导致活性物质脱落,造成蓄电池容量降低,使用寿命缩短,因此应尽量避免长的时间过充电。过充电时,蓄电池逸出的氢气与氧气混合,混合气体具有易烯、易爆特点,因此充电的蓄电池附近应免明火出现。 铅蓄电池充电终了的特征是: (1)端电压和电解液相对密度上升到最大值,且2h~3h内不再上升。 (2)电解液中产生大量气泡,呈现“沸腾”状态。 3.蓄电池的充放电控制技术 在实际光伏发电系统的蓄池中,为了实现设定的充电模式,须对充电过程进行控制,运用正确的充电控制方法,有利于提高蓄电池的充电效率和使用寿命。 (1)充电过程阶段的划分 在实际光伏发电系统的蓄池中,为了实现设定的充电模式,须对充电过程进行控制,运用正确的充电控制方法,有利于提高蓄电池的充电效率和使用寿命。充电过程一般分为主充、均充和浮充3个阶段。充电末期主要是以恒小电流长时间充电的涓流充电流为主(充电倍率小于0.1C时,称为涓流充电)。

电池的起源和发展史

电池的起源和发展史 电池的诞生,基于人们对于获取持续而稳定的电流的需要。不过,电池的发明,是来源于一次青蛙的解剖实验所产生的灵感,多少有些偶然。1780年的一天,意大利解剖学家伽伐尼(Luigi Galvani)在做青蛙解剖时,两手分别拿着不同的金属器械,无意中同时碰在青蛙的大腿上,青蛙腿部的肌肉立刻抽搐了一下,仿佛受到电流的刺激,而如果只用一种金属器械去触动青蛙,就无此种反应。伽伐尼认为,出现这种现像是因为动物躯体内部产生的一种电,他称之为“生物电”。伽伐尼的发现引起了物理学家们的极大兴趣,他们竞相重复伽伐尼实验,企图找到一种产生电流的方法。而意大利物理学家伏特(Alessandro Volta)在多次实验后则认为:青蛙的肌肉之所以能产生电流,大概是肌肉中某种液体在起作用。为了论证自己的观点,伏特把两种不同的金属片浸在各种溶液中进行试验。结果发现,这两种金属片中,只要有一种与溶液发生了化学反应,金属片之间就能够产生电流。1799年,伏特成功制成了世界上第一个电池“伏特电堆”。这个“伏特电堆”实际上就是串联的电池组。1836年,英国的丹尼尔对“伏特电堆”进行了改良,又陆续有效果更好的“本生电池”和“格罗夫电池”等问世。然而在当时,无论哪种电池都需在两个金属板之间灌装液体,搬运很不方便,特别是蓄电池所用液体是硫酸,在挪动时很危险。 干电池的诞生。干电池的鼻祖在19世纪中期诞生。1860年,法国的雷克兰士(George Leclanche)发明了碳锌电池,这种电池更容易制造,且最初潮湿水性的电解液,逐渐被黏浊状类似糨糊的方式取代,于是装在容器内时,“干”性电池出现了。1887年,英国人赫勒森(Wilhelm Hellesen)发明了最早的干电池。相对于液电池而言,干电池的电解液为糊状,不会溢漏,便于携带,因此获得了广泛应用。如今,干电池已经发展成为一个庞大的家族,种类达100多种。常见的有普通锌锰干电池、碱性锌-锰干电池、镁-锰干电池等。不过,最早发明的碳锌电池依然是现代干电池中产量最大的电池。在干电池技术的不断发展过程中,新的问题又出现了。人们发现,干电池尽管使用方便、价格低廉,但用完即废,无法重新利用。另外,由于以金属为原料容易造成原材料浪费,废弃电池还会造成环境污染。于是,能够经过多次充电放电循环,反复使用的蓄电池成为新的方向。事实上,蓄电池的最早发明同样可以追溯到1860年。当年,

蓄电池充放电状态

蓄电池特点 (1)使用寿命长 高强度紧装配工艺,提高电池装配紧度,防止活物质脱落,提高电池使用寿命。 低酸比重电液,提高电池充电接受能力,增强电池深放电循环能力。 增多酸量设计,确保电池不会因电解液枯竭缩短电池使用寿命。 因此GFM系列蓄电池的正常浮充设计寿命可达15年以上(25℃) (2)高倍率放电性能优良 高强度紧装配工艺,电池内阻极小,大电流放电特性优良,比一般电池提高20[%]以上。 (3)自放电低 高纯度原料和特殊造工艺,自放电很小,室温储存半年以上也可无需补电。 (4)维护简单 特殊氧气吸收循环设计,克服了电池在充电过程中电解失水的现象,在使用过程中电解液水份含量几乎没有变化,因此电池在使用过程中完全无需补水,维护简单。 (5)安全性高 电池内部装有特制安全阀,能有效隔离外部火花,不会引起电池内部发生爆炸。 (6)安装简捷 电池立式、侧卧、叠层安装均可,安装时占地面积小,灵活方便。 (7)洁净环保 电池使用时不会产生酸雾,对周围环境和配套设计无腐蚀,可直接将电池安装在办公室或配套设备房内,无需作防腐处理。 蓄电池的充放电特性 蓄电池具有自放电效应。从生产制造车间到用户使用,大约要延误数月的时间。以PA-NASONIC蓄电池为例,在30℃的环境温度下贮藏8个月,蓄

电池的残存容量仅为出厂时的一半,因此对于新购买的与配套的蓄电池,一般要进行一次较长时间的充电,这叫做初充电。蓄电池的初充电电流大小应按0.1C来充电,蓄电池在放电终了后可进行再充电,这叫正常充电。目前在UPS中普遍采用两种充电方式:浮充和脉充。所谓浮充电是指整流器的输出与蓄电池并联工作,并同时向负载供电,实际上此时整流器提供的电流分两路,一路送给负载,另一路送给蓄电池,以补充蓄电池自身内部损耗,浮充充电工作方式接线简单,对改善UPS输出瞬态响应特性有好处。脉冲充电的特点是充电电流随蓄电池容量而变化,用这种方式充电,可以缩短充电时间。 1.充电电压 由于UPS蓄电池属于备用工作方式,市电正常情况下处于充电状态,只有停电时才会放电。为延长蓄电池的使用寿命,UPS的充电器一般采用恒压限流的方式控制,蓄电池充满后即转为浮充状态。 对于端电压为12V的蓄电池,正常的浮充电压在13.5~13.8V之间。 浮充电压过低,蓄电池充不满,浮充电压过高,会造成过电压充电。当浮充电压超过14V时,即认为是过电压充电。严禁对蓄电池组过电压充电,因为过电压充电会造成蓄电池中的电解液所含的水被电解成氢和氧而逸出,使电解液浓度增大,导致蓄电池寿命缩短,甚至损坏。 2.充电电流 蓄电池充电电流一般以C来表示,C的实际值与蓄电池容量有关。举例来讲,如果是100Ah的蓄电池:C为100A。松下铅酸免维护蓄电池的最佳充电电流为0.1C左右,充电电流决不能大于0.3C。充电电流过大或过小都会影响蓄电池的使用寿命。 理想的充电电流应采用分阶段定流充电方式,即在充电初期采用较大的电流,充电一定时间后,改为较小的电流,至充电末期改用更小的电流。充电电流的设计一般为0.1C,当充电电流超过0.3C时可认为是过电流充电。避免用快速充电器充电,否则会使蓄电池处于“瞬时过电流充电”和“瞬时过电压充电”状态,造成蓄电池可供使用电量下降甚至损坏蓄电池。过电流充电会导致蓄电池极板弯曲,活性物质脱落,造成蓄电池供电容量下降,严重时会损坏蓄电池。 3.充电方式 铅酸蓄电池放电产物是硫酸铅,若不及时转化掉,会使蓄电池处于充电不足状态,从而降低蓄电池放电容量和缩短蓄电池使用寿命。因此,必须使蓄电池组处于充足电状态。对不同情况,可分浮充和均充。 (1)浮充充电。在线式蓄电池组是长期并联在充电器和负载线路上,作为 后备电源的工作方式。一般情况下,都采用浮充充电,单体蓄电池电压控

铅酸蓄电池的原理与性能

. 铅酸蓄电池的原理与性能 一、铅酸蓄电池的工作原理 蓄电池是一种化学电源,它的构造可以是各式各样的,可是从原理上讲所有的电池都是由正极、负极、电解质、隔离物和容器组成的,其中正负两极的活性物质和电解质起电化反应,对电池产生电流起着主要作用,如图4-1所示。 在电池内部,正极和负极通过电解质构成电池的内电路,在电池外部接通两极的导线和负荷构成电池的外电路。 在电极和电解液的接触面有电极电位产生,不同的两极活性物质产生不同的电极电位,有着较高电位的电极叫做正极,有着较低电位的电极叫做负极,这样在正负极之间产生了电位差,当外电路接通时,就有电流从正极经过外电路流向负极,再由负极经过内电路流向正极,电池向外电路输送电流的过程,叫做电池的放电。 在放电过程中,两极活性物质逐渐消耗,负极活性物质 1.电解质 2.负极 3.容量 4.正极 5.隔离物 6.导线 7.负荷 图4-1 电池构造示意图 放出电子而被氧化,正极活性物质吸收从外电路流回的电子而被还原,这样负极电位逐渐升高,正极电位逐渐降低,两极间的电位差也就逐渐降低,而且由于电化反应形成新的化合物增加了电池的内阻,使电池输出电流逐渐减少,直至不能满足使用要求时,或在外电路两电极之间端电压低于一定限度时,电池放电即告终。 电池放电以后,用外来直流电源以适当的反向电流通入,可以使已形成的新化合物还原成为原来的活性物质,而电池又能放电,这种用反向电流使活性物质还原的过程叫做充电。 蓄电池可以反复多次充电、放电,循环使用,使用寿命长,成本较低,能输出较大的能量,放电时电压下降很慢。 1.电动势的产生 铅蓄电池的正极是二氧化铅(PbO 2),负极是绒状铅(Pb),它们是两种不同的活性物质,故和稀硫酸(H 2SO 4)起化学作用的结果也不同。在未接通负载时,由于化学作用 使正极板上缺少电子,负极板上却多余电子,如图4-2所 图4-2 铅蓄电池电势产生过程 示,两极间就产生了一定的电位差。 2.放电过程的化学反应 当外电路接上负载(比如灯泡)后,铅蓄电池在正、负极板间电位差(电动势)的作用下,电流Ⅰ从正极流出,经负载流向负极,也就是说,负极上的电子经负载进入正极,如图4-3。同时在蓄电池内部产生化学反应:

相关文档
相关文档 最新文档