文档库 最新最全的文档下载
当前位置:文档库 › 勾股定理练习题及答案

勾股定理练习题及答案

勾股定理练习题及答案
勾股定理练习题及答案

勾股定理练习题

一,选择题

1、在Rt △ABC 中,∠C=90°,三边长分别为a 、b 、c ,则下列结论中恒成立的是 ( )

A 、2ab

B 、2ab ≥c 2

C 、2ab>c 2

D 、2ab ≤c

2 2、已知x 、y 为正数,且│x 2-4│+(y 2-3)2=0,如果以x 、y 的长为直角边作一个直角三角

形,那么以这个直角三角形的斜边为边长的正方形的面积为( ) A 、5

B 、25

C 、7

D 、15

3、直角三角形的一直角边长为12,另外两边之长为自然数,则满足要求的直角三角形共有( ) A 、4个 B 、5个 C 、6个 D 、8个

4、下列命题①如果a 、b 、c 为一组勾股数,那么4a 、4b 、4c 仍是勾股数;②如果直角三角形的两边是3、4,那么斜边必是5;③如果一个三角形的三边是12、2

5、21,那么此三角

形必是直角三角形;④一个等腰直角三角形的三边是a 、b 、c ,(a>b=c ),那么a 2∶b 2∶c 2=2∶

1∶1。其中正确的是( )

A 、①②

B 、①③

C 、①④

D 、②④

5、若△ABC 的三边a 、b 、c 满足a 2+b 2+c 2+338=10a+24b+26c ,则此△为( )

A 、锐角三角形

B 、钝角三角形

C 、直角三角形

D 、不能确定

6、已知等腰三角形的腰长为10,一腰上的高为6,则以底边为边长的正方形的面积为( )

A 、40

B 、80

C 、40或360

D 、80或360

7、如图,在Rt △ABC 中,∠C=90°,D 为AC 上一点,且DA=DB=5,又△DAB 的面积为10,那么DC 的长是( )

A 、4

B 、3

C 、5

D 、4.5

8、如图,一块直角三角形的纸片,两直角边AC=6㎝,BC=8㎝。现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 等于( )

A 、2㎝

B 、3㎝

C 、4㎝

D 、5㎝

9.一只蚂蚁从长、宽都是3,高是8的长方体纸箱的A 点沿纸箱爬到B 点,那么它所行的最短路线的长是_____________。

10.在平静的湖面上,有一支红莲,高出水面1米,阵风吹来,红莲被吹到一边,花朵齐及水面,已知红莲移动的水平距离为2米,问这里水深是________m 。

二.解答题

1.如图,某沿海开放城市A 接到台风警报,在该市正南方向260km 的B 处有一台风中心,沿BC 方向以15km/h 的速度向D 移动,已知城市A 到BC 的距离AD=100km ,那么台风中心经过多长时间从B 点移到D 点?如果在距台风中心30km 的圆形区域内都将有受到台风的破坏的危险,正在D 点休闲的游人在接到台风警报后的几小时内撤离才可脱离危险?

A B D C 第7题图 A C B E 第8题图 A B C D 第1题图

A D

B

C B ′ A ′ C ′

D ′ 第9题图

2、数组

3、

4、5;

5、12、13;7、24、25;9、40、41;……都是勾股数,若奇数n 为直角三角形的一直角边,用含n 的代数式表示斜边和另一直角边。并写出接下来的两组勾股数。

3、一架方梯长25米,如图,斜靠在一面墙上,梯子底端离墙7米,(1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑了4米,那么梯子的底端在水平方向滑动了几米?

(3)当梯子的顶端下滑的距离与梯子的底端水平滑动的距离相等时,这时梯子的顶端距地面有多高?

4.如图,A 、B 两个小集镇在河流CD 的同侧,分别到河的距离为AC=10千米,BD=30千米,且CD=30千米,现在要在河边建一自来水厂,向A 、B 两镇供水,铺设水管的费用为每千米3万,请你在河流CD 上选择水厂的位置M ,使铺设水管的费用最节省,并求出总费用是多少?

答案:

1-5 DCACC 6-8 CBB

9、10 10、1.5 A

A ′

A ′ O A B

C D

L 第4题图

初二数学勾股定理测试题及答案

勾股定理测试题 体验勾股定理的探索过程,会运用勾股定理解决简单问题;会用勾股定理的逆定理判定直角三角形。 一、选择题 | 1.下列各数组中,不能作为直角三角形三边长的是( ) A. 9,12,15 B. 7,24,25 C. 6,8,10 D. 3,5,7 2.将直角三角形的各边都缩小或扩大同样的倍数后,得到的三角形( ) A. 可能是锐角三角形 B. 不可能是直角三角形 C. 仍然是直角三角形 D. 可能是钝角三角形 ! 3.在测量旗杆的方案中,若旗杆高为21m,目测点到杆的距离为15m,则目测点到杆顶的距离为(设目高为1m) ( ) 4.一等腰三角形底边长为10cm,腰长为13cm,则腰上的高为( ) A. 12cm B. C. D. ~ 二、填空题 5.如图,64、400分别为所在正方形的面积,则图中字母A所代表的正方形面积是_________ . 6.直角三角形两条直角边的长分别为5、12,则斜边上的高为. < 7.已知甲往东走了4km,乙往南走了3km,这时甲、乙两人相距. 8.一个长方形的长为12cm,对角线长为13cm,则该长方形的周长为. 9.以直角三角形的三边为边向形外作正方形P、Q、K,若SP=4,SQ=9,则Sk= . 三、解答题 @ 10.假期中,小明和同学们到某海岛上去探宝旅游,按照探宝图,他们登陆后先往东走8千米,又往北走2千米,遇到障碍后又往西走了3千米,再折向北走了6千米处往东一拐,仅走了1千米就找到宝藏,问登陆点A到宝藏埋藏点B的距离是多少千米

为正方形ABCD内一点,将△ABP绕B顺时针旋转90°到△CBE的位置,若BP=a.求:以PE 为边长的正方形的面积. / 12.已知:如图13,△ABC中,AB=10,BC=9,AC=17. 求BC边上的高. 13.拼图填空:剪裁出若干个大小、形状完全相同的直角三角形,三边长分别记为a、b、c,· 如图①.(1)拼图一:分别用4张直角三角形纸片,拼成如图②③的形状,观察图②③可发现,图②中两个小正方形的面积之和__________ (填“大于”、“小于”或“等于”)图③中小正方形 《 的面积,用关系式表示为________ .(2)拼图二:用4张直角三角形纸片拼成如图④的形状,观察图形可以发现,图中共有__________个正方形,它们的面积之间的关系是________ ,用 关系式表示为_____ .(3)拼图三:用8个直角三角形纸片拼成如图⑤的形状,图中3个正方>

勾股定理练习题及答案

一、 选择题 1、在Rt △ABC 中,∠C=90°,三边长分别为a 、b 、c ,则下列结论中恒成立的是 ( ) A 、2abc 2 D 、2ab ≤c 2 2、已知x 、y 为正数,且│x 2-4│+(y 2-3)2=0,如果以x 、y 的长为直角边作一个直角三角形,那么以这个直角三角形的斜边为边长的正方形的面积为( ) A 、5 B 、25 C 、7 D 、15 3、直角三角形的一直角边长为12,另外两边之长为自然数,则满足要求的直角三角形共有( ) A 、4个 B 、5个 C 、6个 D 、8个 4、下列命题①如果a 、b 、c 为一组勾股数,那么4a 、4b 、4c 仍是勾股数;②如果直角三角形的两边是3、4,那么斜边必是5;③如果一个三角形的三边是12、2 5、21,那么此三角形必是直角三角形;④一个等腰直角三角形的三边是a 、b 、c ,(a>b=c ),那么a 2∶b 2∶c 2=2∶1∶1。其中正确的是( ) A 、①② B 、①③ C 、①④ D 、②④ 5、若△ABC 的三边a 、b 、c 满足a 2+b 2+c 2+338=10a+24b+26c ,则此△为( ) A 、锐角三角形 B 、钝角三角形 C 、直角三角形 D 、不能确定 6、已知等腰三角形的腰长为10,一腰上的高为6,则以底边为边长的正方形的面积为( ) A 、40 B 、80 C 、40或360 D 、80或360 7、如图,在Rt △ABC 中,∠C=90°,D 为AC 上一点,且DA=DB=5,又△DAB 的面积为10,那么DC 的长是( ) A 、4 B 、3 C 、5 D 、 4.5 8、如图,一块直角三角形的纸片,两直角边AC=6㎝,BC=8㎝。现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 等于( ) A 、2㎝ B 、3㎝ C 、4㎝ D 、5㎝ 9.一只蚂蚁从长、宽都是3,高是8的长方体纸箱的A 点沿纸箱爬到B 点,那么它所行的最短路线的长是_____________。 10.在平静的湖面上,有一支红莲,高出水面1米,阵风吹来,红莲被吹到一边,花朵齐及水面,已知红莲移动的水平距离为2米,问这里水深是________m 。 二.解答题 1.如图,某沿海开放城市A 接到台风警报,在该市正南方向260km 的B 处有一台风中心,沿BC 方向以15km/h 的速度向D 移动,已知城市A 到BC 的距离AD=100km ,那么台风中心经过多长时间从B 点移到D 点?如果在距台风中心30km 的圆形区域内都将有受到台风的破坏的危险,正在D 点休闲的游人在接到台风警报后的几小时内撤离才可脱离危险? A B D C 第7题图 A C D B E 第8题图 A B C D 第1题图 A D B C B ′ A ′ C ′ D ′ 第9题图

人教版八年级下册第17章《勾股定理》培优提高试题(附答案)

人教版八年级下册第17章《勾股定理》培优提高试题 一.选择题(共8小题) 1.下列条件中,不能判断△ABC为直角三角形的是() A.a=1.5 b=2 c=2.5B.a:b:c=5:12:13 C.∠A+∠B=∠C D.∠A:∠B:∠C=3:4:5 2.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若最大正方形G的边长是6cm,则正方形A,B,C,D,E,F,G的面积之和是() A.18cm2 B.36cm2C.72cm2D.108cm2 3.现有两根木棒的长度分别为40厘米和50厘米,若要钉成一个直角三角形框架,那么所需木棒的长一定为() A.30厘米B.40厘米C.50厘米D.以上都不对4.在△ABC中,∠A=30°,AB=4,BC=,则∠B为() A.30°B.90°C.30°或60°D.30°或90°5.如图,一架25米的梯子AB靠在一座建筑物AO上,梯子的底部B距离建筑物AO的底部O有7米(即BO=7米),如果梯子顶部A下滑4米至A1,则梯子底部B滑开的距离BB1是() A.4米B.大于4米C.小于4米D.无法计算 6.为比较与的大小,小亮进行了如下分析后作一个直角三角形,使其两直

角边的长分别为与,则由勾股定理可求得其斜边长为 .根据“三角形三边关系”,可得.小亮的这一做法体现的数学思想是() A.分类讨论思想B.方程思想 C.类此思想D.数形结合思想 7.“赵爽弦图”是四个全等的直角三角形与中间一个正方形拼成的大正方形.如图,每一个直角三角形的两条直角边的长分别是3和6,则中间小正方形与大正方形的面积差是() A.9B.36C.27D.34 8.如图是由“赵爽弦图”变化得到的,它由八个全等的直角三角形拼接而成,记图中正方形ABCD、正方形EFGH、正方形MNPQ的面积分别为S1、S2、S3.若S1+S2+S3=60,则S2的值是() A.12B.15C.20D.30 二.填空题(共6小题) 9.直角三角形的斜边长是5,一直角边长是3,则此直角三角形另一直角边是.10.设a>b,如果a+b,a﹣b是三角形较小的两条边,当第三边等于时,这个三角形为直角三角形. 11.有一棵9米高的大树,树下有一个1米高的小孩,如果大树在距地面4米处折断(未完全折断),则小孩至少离开大树米之外才是安全的. 12.如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,将△ABC扩充为等腰三角形ABD,使扩充的部分是以AC为直角边的直角三角形,则CD的长为.

勾股定理测试题(含答案)

18.2 勾股定理的逆定理 达标训练 一、基础·巩固 1.满足下列条件的三角形中,不是直角三角形的是( ) A.三内角之比为1∶2∶3 B.三边长的平方之比为1∶2∶3 C.三边长之比为3∶4∶5 D.三内角之比为3∶4∶5 2.如图18-2-4所示,有一个形状为直角梯形的零件ABCD ,AD ∥BC ,斜腰DC 的长为10 cm ,∠D=120°,则该零件另一腰AB 的长是________ cm (结果不取近似值). 图18-2-4 图18-2-5 图18-2-6 3.如图18-2-5,以Rt △ABC 的三边为边向外作正方形,其面积分别为S 1、S 2、S 3,且S 1=4,S 2=8,则AB 的长为_________. 4.如图18-2-6,已知正方形ABCD 的边长为4,E 为AB 中点,F 为AD 上的一点,且AF= 4 1AD ,试判断△EFC 的形状. 5.一个零件的形状如图18-2-7,按规定这个零件中∠A 与∠BDC 都应为直角,工人师傅量得零件各边尺寸:AD=4,AB=3,BD=5,DC=12 , BC=13,这个零件符合要求吗? 图18-2-7 6.已知△ABC 的三边分别为k 2-1,2k ,k 2+1(k >1),求证:△ABC 是直角三角形.

二、综合·应用 7.已知a、b、c是Rt△ABC的三边长,△A1B1C1的三边长分别是2a、2b、2c,那么△A1B1C1是直角三角形吗?为什么? 8.已知:如图18-2-8,在△ABC中,CD是AB边上的高,且CD2=AD·BD. 求证:△ABC是直角三角形. 图18-2-8 9.如图18-2-9所示,在平面直角坐标系中,点A、B的坐标分别为A(3,1),B(2,4),△OAB是直角三角形吗?借助于网格,证明你的结论. 图18-2-9 10.阅读下列解题过程:已知a、b、c为△ABC的三边,且满足a2c2-b2c2=a4-b4,试判断△ABC 的形状. 解:∵a2c2-b2c2=a4-b4,(A)∴c2(a2-b2)=(a2+b2)(a2-b2),(B)∴c2=a2+b2,(C)∴△ABC 是直角三角形. 问:①上述解题过程是从哪一步开始出现错误的?请写出该步的代号_______; ②错误的原因是______________ ; ③本题的正确结论是_________ _.

勾股定理单元测试试卷(一)附答案

第18章勾股定理自主学习达标检测 A卷 (时间90分钟满分100分) 班级 __________ 学号 __________ 姓名得分______ 一、填空题(共14小题,每题2分,共28分) 1.△ABC,∠C=90°,a=9,b=12,则c=__________. 2.△ABC,AC=6,BC=8,当AB=__________时,∠C=90°. 3.等边三角形的边长为6 cm,则它的高为__________. 4.△ABC中,∠C=90°,∠A=30°,则BC∶AC∶AB=__________. 5.直角三角形两直角边长分别为5 和12,则斜边上的高为__________. 6.等腰三角形的顶角为120°,底边上的高为3,则它的周长为__________. 7.若直角三角形两直角边之比为3∶4,斜边长为20,则它的面积为__________. 8.等腰三角形的两边长为2和4,则底边上的高为__________. 9.若等腰直角三角形斜边长为2,则它的直角边长为_______. 10.测得一个三角形花坛的三边长分别为5cm,12cm,?13cm,?则这个花坛的面积是_____.11.已知△ABC的三边a、b、c满足(a-5)2+(b-12)2+c2-26c+169=0,则△ABC是三角三角形. 12.如图在4个均由16个小正方形组成的网格正方形中,各有一个格点三角形,那么这4个正方形中,与众不同的是_________,不同之处:_____ . A B C D 13.如图,在高2米,坡角为30°的楼梯表面铺地毯,地毯的长至少需________米. 14.若一个三角形的三边长分别为3,4,x,则使此三角形是直角三角形的x的值是___ _.

勾股定理知识点、经典例题及练习题带答案

【趣味链接】我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”,后人称其为“赵爽弦图”(如图1).图2由弦图变化得到,它是用八个全等的直角三角形拼接而成,记图中正方形ABCD ,正方形EFGH ,正方形MNKT 的面积分别为S 1,S 2,S 3.若S 1,S 2,S 3=10,则S 2的值是多少呢? 【知识梳理】 1、勾股定理定义:如果直角三角形的两直角边长分别为a ,b ,斜边长为c ,那么a 2 +b 2=c 2. 即直角三角形两直角边的平方和等于斜边的平方 A B C a b c 弦股勾 勾:直角三角形较短的直角边 股:直角三角形较长的直角边 弦:斜边 勾股定理的逆定理:如果三角形的三边长a ,b ,c 有下面关系:a 2+b 2=c 2,那么这个三角形是直角三角形。 2、勾股数:满足a 2+b 2=c 2的三个正整数叫做勾股数(注意:若a ,b ,c 、为勾股数, 那么ka ,kb ,kc 同样也是勾股数组。) *附:常见勾股数:3,4,5; 6,8,10; 9,12,15; 5,12,13 3、判断直角三角形:如果三角形的三边长a 、b 、c 满足a 2+b 2=c 2 ,那么这个三角形是 直角三角形。

(经典直角三角形:勾三、股四、弦五) 其他方法:(1)有一个角为90°的三角形是直角三角形。 (2)有两个角互余的三角形是直角三角形。 用它判断三角形是否为直角三角形的一般步骤是: (1)确定最大边(不妨设为c); (2)若c2=a2+b2,则△ABC是以∠C为直角的三角形; 若a2+b2<c2,则此三角形为钝角三角形(其中c为最大边); 若a2+b2>c2,则此三角形为锐角三角形(其中c为最大边) 4、注意:(1)直角三角形斜边上的中线等于斜边的一半 (2)在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。 (3)在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角等于30°。 5、勾股定理的作用: (1)已知直角三角形的两边求第三边。 (2)已知直角三角形的一边,求另两边的关系。 (3)用于证明线段平方关系的问题。 (4)利用勾股定理,作出长为n的线段 【经典例题】【例1】(2016山东烟台)如图是油路管道的一部分,延伸外围的支路恰好构成一个直角三角

勾股定理练习题

勾股定理 一、选择题: 1.如图,△ABC 中,∠C=90°,AC=3,∠B=30°,点P 是BC 边上的动点,则AP 长不可能是( ) (A )3.5 (B )4.2 (C )5.8 (D )7 2.将一个有45度角的三角板的直角顶点放在一张宽 为3cm 的纸带边沿上,另一个顶点在纸带的另一边沿上,测得三角板的一边与纸带的一边所在的直线成30度角,如图,则三角板的最大边的长为( ) A. 3cm B. 6cm C. 32cm D. 62cm 3. 已知小龙、阿虎两人均在同一地点,若小龙向北直走160公尺,再向东直走80公尺后,可到神仙百货,则阿虎向西直走多少公尺后,他与神仙百货的距离为340公尺( ) A . 100 B . 180 C . 220 . 260 4.如图是油路管道的一部分,延伸外围的支路恰好构 成一个直角三角形,两直角边分别为6m 和按照 输油中心O 到三条支路的距离相等来连接管道, 则O 到三条支路的管道总长(计算时视管道为线, 中心O 为点)是( ) A2m B.3m C.6m D.9m 5.点P 在直线04=-+y x 上,O 为原点,则|OP|的最小值为( ) A. -2 B. 22 C. 6 D. 10 6.如图,将边长为3的等边ABC ?沿着BA → 平移,则'BC 的长为( ) A .3; B . 23; C .33; D .43. 7.如图,将矩形沿AE 折叠,使D 落在BC 上的点F 处,已知AB=8,BC=10, 则EC 的长是( ) A .2 B .3 C .4 D .5 C' A' C B O D A E

8.如图,已知121=A A ,ο9021=∠A OA ,ο3021=∠OA A ,以斜边2OA 为直角边作直角三角形,使得ο3032=∠OA A ,依次以前一个直角三角形的斜边为直角边一直作含o 30角的直角三角形,则20112010OA A Rt ?的最小边长为 ( ) A .20092 B . 20102 C .2009)32( D .2010 ) 32( 二、填空题: 9.在Rt △ABC 中,∠C = 90°,BC = 12, AC = 9,则AB = . 10.将一副三角尺如图所示叠放在一起, 若AB =14cm ,则阴影部分的面积是________cm 2. 11.一个正方体物体沿斜坡向下滑动,其截面如图所示.正方形DEFH 的边长为2米,坡角∠A =30°,∠B =90°,BC =6米. 当正方形DEFH 运动到什么位置,即当AE = 米时,有DC 2=AE 2+BC 2. 12.我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”,后人称其为 “赵爽弦图”(如图1).图2由弦图变化得到,它是用八个全等的直角三角形拼接而成,记图中正方形ABCD ,正方形EFGH ,正方形MNKT 的面积分别为S 1,S 2,S 3.若S 1+S 2+S 3=10,则S 2的值是 . 1A 2A 3A 4A 5A 6A 7A 8A 9A 10A 11A 12A 第8题图 O A C E D B F 30° 45°

勾股定理练习题(含答案)

勾股定理练习题 一、基础达标: 1. 下列说法正确的是( ) A.若 a 、b 、c 是△ABC 的三边,则a 2+b 2=c 2; B.若 a 、b 、c 是Rt△ABC 的三边,则a 2+b 2=c 2; C.若 a 、b 、c 是Rt△ABC 的三边, 90=∠A ,则a 2+b 2=c 2; D.若 a 、b 、c 是Rt△ABC 的三边, 90=∠C ,则a 2+b 2=c 2. 2. Rt △ABC 的三条边长分别是a 、b 、c ,则下列各式成立的是( ) A .c b a =+ B. c b a >+ C. c b a <+ D. 222c b a =+ 3. 如果Rt △的两直角边长分别为k 2-1,2k (k >1),那么它的斜边长是( ) A 、2k B 、k+1 C 、k 2-1 D 、k 2+1 4. 已知a ,b ,c 为△ABC 三边,且满足(a 2-b 2)(a 2+b 2-c 2)=0,则它的形状为( ) A.直角三角形 B.等腰三角形 C.等腰直角三角形 D.等腰三角形或直角三角形 5. 直角三角形中一直角边的长为9,另两边为连续自然数,则直角三角形的周长为( ) A .121 B .120 C .90 D .不能确定 6. △ABC 中,AB =15,AC =13,高AD =12,则△ABC 的周长为( ) A .42 B .32 C .42 或 32 D .37 或 33 7.※直角三角形的面积为S ,斜边上的中线长为d ,则这个三角形周长为( ) (A 2d (B d (C )2d (D )d 8、在平面直角坐标系中,已知点P 的坐标是(3,4),则OP 的长为( )A :3 B :4 C :5 D :7 9.若△ABC 中,AB=25cm ,AC=26cm 高AD=24,则BC 的长为( ) A .17 B.3 C.17或3 D.以上都不对 10.已知a 、b 、c 是三角形的三边长,如果满足2(6)100a c --=则三角形的形状是( ) A :底与边不相等的等腰三角形 B :等边三角形 C :钝角三角形 D :直角三角形 11.斜边的边长为cm 17,一条直角边长为cm 8的直角三角形的面积是 . 12. 等腰三角形的腰长为13,底边长为10,则顶角的平分线为__. 13. 一个直角三角形的三边长的平方和为200,则斜边长为 14.一个三角形三边之比是6:8:10,则按角分类它是 三角形. 15. 一个三角形的三边之比为5∶12∶13,它的周长为60,则它的面积是___.

(完整版)《勾股定理》典型练习题

《勾股定理》典型例题分析 一、知识要点: 1、勾股定理 勾股定理:直角三角形两直角边的平方和等于斜边的平方。也就是说:如果直角三角形的两直角边为a、b,斜边为c ,那么 a2 + b2= c2。公式的变形:a2 = c2- b2, b2= c2-a2 。 2、勾股定理的逆定理 如果三角形ABC的三边长分别是a,b,c,且满足a2 + b2= c2,那么三角形ABC 是直角三角形。这个定理叫做勾股定理的逆定理. 该定理在应用时,同学们要注意处理好如下几个要点: ①已知的条件:某三角形的三条边的长度. ②满足的条件:最大边的平方=最小边的平方+中间边的平方. ③得到的结论:这个三角形是直角三角形,并且最大边的对角是直角. ④如果不满足条件,就说明这个三角形不是直角三角形。 3、勾股数 满足a2 + b2= c2的三个正整数,称为勾股数。注意:①勾股数必须是正整数,不能是分数或小数。②一组勾股数扩大相同的正整数倍后,仍是勾股数。常见勾股数有: (3,4,5)(5,12,13) (6,8,10)(7,24,25)(8,15,17)(9,12,15) 4、最短距离问题:主要 5、运用的依据是两点之间线段最短。 二、考点剖析 考点一:利用勾股定理求面积 1、求阴影部分面积:(1)阴影部分是正方形;(2)阴影部分是长方形;(3)阴影部分是半圆.

2. 如图,以Rt △ABC 的三边为直径分别向外作三个半圆,试探索三个半圆的面积之间的关系. 3、如图所示,分别以直角三角形的三边向外作三个正三角形,其面积分别是S 1、S 2、S 3,则它们之间的关系是( ) A. S 1- S 2= S 3 B. S 1+ S 2= S 3 C. S 2+S 3< S 1 D. S 2- S 3=S 1 4、四边形ABCD 中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD 的面积。 5、(难)在直线上依次摆放着七个正方形(如图4所示)。已知斜放置的三个正方形的面积分别是 1、2、3,正放置的四个正方形的面积依次是 、 =_____________。 考点二:在直角三角形中,已知两边求第三边 1.在直角三角形中,若两直角边的长分别为1cm ,2cm ,则斜边长为 . S 3 S 2 S 1

(完整版)勾股定理单元测试题及答案

勾股定理单元测试题及答案 、选择题 1、下列各组数中,能构成直角三角形的是() A: 4, 5, 6 B : 1, 1 , V2 C : 6, 8, 11 D : 5, 12, 23 2、在Rt△ ABC中,/ C= 90° , a = 12, b = 16,贝U c 的长为() A 26 B : 18 C : 20 D : 21 3、在平面直角坐标系中,已知点P的坐标是(3,4),则OP的长为()A: 3 B : 4 C : 5 D :行 4、在Rt △ ABC中,/ C= 90° , / B= 45° ,c = 10,则a 的长为() A: 5 B 而 C : 5盘 D :医 5、等边三角形的边长为2,则该三角形的面积为() A 4 焰 B 、焰 C 、2 焰 D 、3 6、若等腰三角形的腰长为10,底边长为12,则底边上的高为() A 6 B 、7 C 、8 D 、9 7、已知,如图长方形ABCg, AB=3cm AD=9cm将此长方形折叠,使点B与点D重合, 折痕为EF,则^ ABE的面积为() A、3cm B、4cm G 6cm D、12cm 8、若^ ABC中,AB13cm, AC 15cm,高AD=12,则BC的长为( A、14 B 、4 C、14或4 1.下列说法正确的是() A. 若a、b、c 是/\ ABC 的三边,贝U a2 + b2= c2; B. 若a、b、c 是Rt △ ABC 的三边,贝U a2 + b2= c2; C. 若a、b、c 是Rt △ ABC 的三边,A 90,贝U a2 + b2= c2; D. 若a、b、c 是Rt △ ABC 的三边,C 90,贝U a2 + b2= c2. 2. Rt △ ABC勺三条边长分别是a、b、c,则下列各式成立的是( ) A. a b c B. a b c C. a b c D. a2b2c2 3. 如果Rt△的两直角边长分别为k2—1, 2k (k>1 ),那么它的斜边长是()

(人教版)八年级数学下册《勾股定理》基础测试卷及答案

勾股定理 一、选择题(每小题4分,共12分) 1.(2013·黔西南州中考)一直角三角形的两边长分别为3和4.则第三边的长为 ( ) A.5 B. C. D.5或 2.如图,有一块直角三角形纸板ABC,两直角边 AC=6cm,BC=8cm.现将直角边AC沿直线AD折叠,使它落在斜 边AB上,且点C落到点E处,则CD等于( ) A.2cm B.3cm C.4cm D.5cm 3.(2013·资阳中考)如图,点E在正方形ABCD内,满足 ∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( ) A.48 B.60 C.76 D.80 二、填空题(每小题4分,共12分) 4.(2013·莆田中考)如图是一株美丽的勾股树,其中所有 的四边形都是正方形,所有的三角形都是直角三角形,若 正方形A,B,C,D的面积分别为2,5,1,2.则最大的正方形 E的面积是. 5.如图,等腰△ABC中,AB=AC,AD是底边上的高,若AB=5cm,BC=6cm,则AD= cm.

6.(2013·桂林中考)如图,在△ABC中,CA=CB,AD⊥BC,BE⊥AC,AB=5,AD=4,则AE= . 三、解答题(共26分)[来源:学§科§网Z§X§X§K] 7.(8分)已知,如图,在△ABC中,∠C=90°,∠1=∠2,CD=15,BD=25,求AC的长. 8.(8分)在△ABC中,AB=15,AC=20,BC边上的高AD=12,试求BC边的长. 【拓展延伸】 9.(10分)有一块直角三角形的绿地,量得两直角边长分别为6m,8m.现在要将绿地扩充成等腰三角形,且扩充部分是以8m为直角边的直角三角形,求扩充后等腰三角形绿地的周长.(图2,图3备用)

四边形、勾股定理综合练习 题

期中复习综合练习题 1、已知直角三角形的两边长分别为3和4,则第三边长是() A. 5 B. 25 C. D. 5或 2、在RtΔABC中,∠C=90°,若a+b=14,c=10,则RtΔABC的面积是() A. 24 B. 36 C.48 D. 60 3、下列说法错误的是() A. ΔABC中,若∠B=∠C-∠A,则ΔABC是直角三角形 B. ΔABC中,若a2=(b+c)(b-c),则ΔABC是直角三角形 C. ΔABC中,若∠A:∠B:∠C=3:4:5,则ΔABC是直角三角形 D. ΔABC中,若a:b:c=5:4:3,则ΔABC是直角三角形 4、如图是一块农家菜地的平面图,其中AD=4 m,CD=3 m,AB=13m,BC=12m,∠ADC=90°,则这块地的面积为() A. 24 m2 B. 30 m2 C. 36 m2 D. 42 m2 第4题图第6题图第7题图第8题图第9题图 5、已知四边形ABCD,有一下四个条件:①AB∥CD ②AB=CD ③BC∥AD ④BC=AD.从这四个条件中任选两个,能使四边形ABCD成为平行四边形的选法共有() A.6种 B. 5种 C. 4种 D. 3种 6、如图,在,AC交BD于点O,E、F是AC上两点,且BE∥DF,图中全等三角形的对数是() A.5 B. 6 C. 7 D. 8

7、如图,点P是矩形ABCD的边AD的一个动点,矩形的两条边AB、BC 的长分别为3和4,那么点P到矩形的两条对角线AC和BD的距离之和是() A. B. C. D.不确定 8、如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC 于点F,E为垂足,连接DF,则∠CDF等于() A. 80° B. 70° C. 65° D. 60° 9、在等腰梯形ABCD中,BC∥AD,对角线AC⊥BD于点O,AE⊥BC,DF⊥BC,AD=4,BC=8,则AE+EF等于() A.9 B. 10 C. 11 D. 20 10、在ΔABC中,AB=17,AC=10,BC边上的高AD=8,则BC的长为. 第11题图第13题图第14题图 11、折叠矩形ABCD一边,点D落在边BC的点F处,若AB=8,BC=10, 则EC的长为 . 12、平行四边形ABCD的周长为30cm,它的对角线AC和BD相交于O,且 △AOB的周长比△BOC的周长大5cm,AB= 、BC= . 13、如图,正方形ABCD和正方形OEFG的边长均为4,O是正方形ABCD 的旋转对称中心,则图中阴影部分的面积是__。 14、如图,在梯形ABCD中,AD∥BC,∠B=30°,∠C=60°,AD=4,AB=,则下底BC的长为 . 15、在梯形ABCD中,,°,°,若AB=7,DC=4, ________. 16、在中,点E、F是对角线AC上两点,且AE=CF. 求证:∠EBF=∠FDE.

勾股定理全章练习题含答案

勾股定理 课堂学习检测 一、填空题 1.如果直角三角形的两直角边长分别为a、b,斜边长为c,那么______=c2;这一定理在我国被称为______. 2.△ABC中,∠C=90°,a、b、c分别是∠A、∠B、∠C的对边. (1)若a=5,b=12,则c=______; (2)若c=41,a=40,则b=______; (3)若∠A=30°,a=1,则c=______,b=______; (4)若∠A=45°,a=1,则b=______,c=______. 3.如图是由边长为1m的正方形地砖铺设的地面示意图,小明沿图中所示的折线从A→B→C所走的路程为______. 4.等腰直角三角形的斜边为10,则腰长为______,斜边上的高为______. 5.在直角三角形中,一条直角边为11cm,另两边是两个连续自然数,则此直角三角形的周长为______. 二、选择题 6.Rt△ABC中,斜边BC=2,则AB2+AC2+BC2的值为( ). (A)8 (B)4 (C)6 (D)无法计算 7.如图,△ABC中,AB=AC=10,BD是AC边上的高线,DC=2,则BD等于( ). 2 (A)4 (B)6 (C)8 (D)10 8.如图,Rt△ABC中,∠C=90°,若AB=15cm,则正方形ADEC和正方形BCFG的面积和为( ). (A)150cm2 (B)200cm2

(C)225cm2(D)无法计算 三、解答题 9.在Rt△ABC中,∠C=90°,∠A、∠B、∠C的对边分别为a、b、c. (1)若a∶b=3∶4,c=75cm,求a、b; (2)若a∶c=15∶17,b=24,求△ABC的面积; (3)若c-a=4,b=16,求a、c; (4)若∠A=30°,c=24,求c边上的高h c; (5)若a、b、c为连续整数,求a+b+c. 综合、运用、诊断 一、选择题 10.若直角三角形的三边长分别为2,4,x,则x的值可能有( ). (A)1个(B)2个 (C)3个(D)4个 二、填空题 11.如图,直线l经过正方形ABCD的顶点B,点A、C到直线l的距离分别是1、2,则正方形的边长是______. 12.在直线上依次摆着7个正方形(如图),已知倾斜放置的3个正方形的面积分别为1,2,3,水平放置的4个正方形的面积是S1,S2,S3,S4,则S1+S2+S3+S4=______. 三、解答题 13.如图,Rt△ABC中,∠C=90°,∠A=30°,BD是∠ABC的平分线,AD=20,求BC 的长.

勾股定理单元测试题(含答案)

勾股定理单元测试题 一、选择题 1、下列各组数中,能构成直角三角形的是( ) A :4,5,6 B :1,1 :6,8,11 D :5,12,23 2、在Rt △ABC 中,∠C =90°,a =12,b =16,则c 的长为( ) A :26 B :18 C :20 D :21 3、在平面直角坐标系中,已知点P 的坐标是(3,4),则OP 的长为( ) A :3 B :4 C :5 D :7 4、在Rt △ABC 中,∠C =90°,∠B =45°,c =10,则a 的长为( ) A :5 B :10 C :25 D :5 5、等边三角形的边长为2,则该三角形的面积为( ) A 、 、、3 6、若等腰三角形的腰长为10,底边长为12,则底边上的高为( ) A 、6 B 、7 C 、8 D 、9 7、已知,如图长方形ABCD 中,AB=3cm , AD=9cm ,将此长方形折叠,使点B 与点D 重合, 折痕为EF ,则△ABE 的面积为( ) A 、3cm 2 B 、4cm 2 C 、6cm 2 D 、12cm 2 8、若△ABC 中,13,15AB cm AC cm ==,高AD=12,则BC 的长为( ) A 、14 B 、4 C 、14或4 D 、以上都不对 二、填空题 1、若一个三角形的三边满足2 2 2 c a b -=,则这个三角形是 。 2、木工师傅要做一个长方形桌面,做好后量得长为80cm ,宽为60cm ,对角线为100cm ,则这个桌面 。(填“合格”或“不合格” ) 3、直角三角形两直角边长分别为3和4,则它斜边上的高为__________。

第一章勾股定理单元测试卷(最新整理)

第一章 勾股定理单元试卷 (时间100分钟 满分100分) 一、选择题:(每小题4分,共计20分) 1.如图1,在山坡上种树,沿山坡走了10米,高度上升了6米,如果要求树的株距(相邻两棵树之间的水平距离)是4米,那么,斜坡上相邻两棵树之间的坡面距离应是( ) A.10米 B.6米 C.5米 D.4米 . 图12.如果梯子的底端离建筑物5米,13米长的梯子可以达到建筑物的高度是( ) A.12米 B.13 米 C.14米 D.15米. 3.如图2,是一块长、宽、高分别是4cm ,2cm 和1cm 的长方体木块.一只蚂蚁要从长方体木块的一个顶点A 处,沿着长方体的表面到长方体上和A 相对的顶点B 处吃食物,那么它需要爬行的最短路径的长是( )A. 5cm B . 5.4cm C. 6.1cm D. 7cm . 4.一个木工师傅测量了一个等腰三角形木版的腰、底边和高的长,但他把这三个数据与其它的数据弄混了,请你帮助他找出来,是第( )组 A. 13,12,12 B. 12,12,8 C. 13,10,12 D. 5,8,4. 5.如图3, 一个高1.5米,宽3.6米的大门,需要在相对的顶 点间用一条木板加固,则这条木板的长度是( ) A. 3.8米 B. 3.9米 C. 4米 D. 4.4米 二、填空题(每小题4分,共计32分)6.小明要把一根长为70cm 的长的木棒放到一个长、宽、高分别为50cm 、40cm 、30cm 的木箱中,他能放进去吗?_______. 7.李明从家出发向正北方向走了1200米,接着向正东方向走 到离家2000米远的地方,这时,李明向正东方向走了图 2 图3

初中八年级数学勾股定理综合练习题

C 7月暑假作业 八年级数学 勾股定理综合练习题 一、选择题 1. 直角三角形一直角边长为12,另两条边长均为自然数,则其周长为( ). (A )30 (B )28 (C )56 (D )不能确定 2. 直角三角形的斜边比一直角边长2 cm ,另一直角边长为6 cm ,则它的斜边长 (A )4 cm (B )8 cm (C )10 cm (D )12 cm 3. 已知一个Rt △的两边长分别为3和4,则第三边长的平方是( ) (A )25 (B )14 (C )7 (D )7或25 4. 等腰三角形的腰长为10,底长为12,则其底边上的高为( ) (A )13 (B )8 (C )25 (D )64 5. 五根小木棒,其长度分别为7,15,20,24,25,现将他们摆成两个直角三角形,其中正确的是( ) 7 1524 25 20715 2024 25 7 25 20 24 257 202415 (A) (B) (C) (D) 6. 将直角三角形的三条边长同时扩大同一倍数, 得到的三角形是( ) (A ) 钝角三角形 (B ) 锐角三角形 (C ) 直角三角形 (D ) 等腰三角形. 7. 如图小方格都是边长为1的正方形,则四边形ABCD 的面积是 ( ) (A ) 25 (B ) 12.5 (C ) 9 (D ) 8.5 8. 三角形的三边长为ab c b a 2)(2 2 +=+,则这个三角形是( ) (A ) 等边三角形 (B ) 钝角三角形 (C ) 直角三角形 (D ) 锐角三角形. 9.△ABC 是某市在拆除违章建筑后的一块三角形空地.已知∠C=90°,AC=30米,AB=50米,如果要在这块空地上种植草皮,按每平方米草皮a 元计算,那么共需要资金( ). (A )50a 元 (B )600a 元 (C )1200a 元 (D )1500a 元

勾股定理练习题附答案(免费)

勾股定理同步练习题 1.已知直角三角形中30°角所对的直角边长是32cm ,则另一条直角边的长是( ) A . 4cm B . 34cm C . 6cm D . 36cm 2.△ABC 中,AB =15,AC =13,高AD =12,则△ABC 的周长为( ) A .42 B .32 C .42 或 32 D .37 或 33 3.一架25分米长的梯子,斜立在一竖直的墙上,这时梯足距离墙底端7分米.如果梯子的顶端沿墙下滑4分米,那么梯足将滑动( ) A . 9分米 B . 15分米 C . 5分米 D . 8分米 4. 如图,学校有一块长方形花铺,有极少数人为了避开拐角走“捷径”,在花铺内走出了一条 “路”.他们仅仅少走了 步路(假设2步为1米),却踩伤了花草. 5. 在△ABC 中,∠C =90°,(1)已知 a =2.4,b =3.2,则c = ;(2)已知c =17,b =15,则△ABC 面积等于 ;(3)已知∠A =45°,c =18,则a = . 6. 一个矩形的抽斗长为24cm ,宽为7cm ,在里面放一根铁条,那么铁条最长可以是 . 7. 在Rt △ABC 中,∠C =90°,BC =12cm ,S △ABC =30cm 2,则AB = . 8. 等腰△ABC 的腰长AB =10cm ,底BC 为16cm ,则底边上的高为 ,面积为 . 9. 一个直角三角形的三边为三个连续偶数,则它的三边长分别为 . 10.一天,小明买了一张底面是边长为260cm 的正方形,厚30cm 的床垫回家.到了家门口,才发现门口只有242cm 高,宽100cm .你认为小明能拿进屋吗? . 11.如图,你能计算出各直角三角形中未知边的长吗? 12.如图,某会展中心在会展期间准备将高5m ,长13m ,宽2m 的楼道上铺地毯,已知地毯每平方米18元,请你帮助计算一 下,铺完这个楼道至少需要多少元钱? 13.有一只小鸟在一棵高4m 的小树梢上捉虫子,它的伙伴在离该树12m ,高20m 的一棵大树的树梢上发出友好的叫声,它 立刻以4m/s 的速度飞向大树树梢,那么这只小鸟至少几秒才可能到达大树和伙伴在一起? 14.“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70km /h .如图,一辆小汽车在一条城 市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪正前方30m 处,过了2s 后,测得小汽车与车速检测仪间距离为50m ,这辆小汽车超速了吗? 15.将穿好彩旗的旗杆垂直插在操场上,旗杆从旗顶到地面的高度为320cm , 在无风的天气里,彩旗自然下垂,如右图. 求 5m 13m 第4题图 观测点

数学勾股定理的专项培优易错试卷练习题含答案

数学勾股定理的专项培优易错试卷练习题含答案 一、选择题 1.图中不能证明勾股定理的是( ) A . B . C . D . 2.如图,在RtΔABC 中,∠ACB =90°,AC =9,BC =12,AD 是∠BAC 的平分线,若点P ,Q 分别是AD 和AC 上的动点,则PC +PQ 的最小值是( ) A . 245 B . 365 C .12 D .15 3.如图,已知ABC 中,10,86,AB AC BC AB ===,的垂直平分线分别交,AC AB 于 ,,D E 连接BD ,则CD 的长为( ) A .1 B . 54 C . 74 D . 254 4.如图是一块长、宽、高分别为6cm 、4cm 、3cm 的长方体木块,一只蚂蚁要从长方体木

块的一个顶点A 处,沿着长方体的表面到长方体上和A 相对的顶点B 处吃食物,那么它需要爬行的最短路径的长是( ) A .cm B . cm C . cm D .9cm 5.如图,在四边形ABCD 中,∠ABC =∠ACB =∠ADC =45?,若AD =4,CD =2,则BD 的长为 ( ) A .6 B .27 C .5 D .25 6.如图,在数轴上点A 所表示的数为a ,则a 的值为( ) A .15-- B .15- C .5- D .15-+ 7.A 、B 、C 分别表示三个村庄,AB 1700=米,800BC =米,AC 1500=米,某社区拟建一个文化活动中心,要求这三个村庄到活动中心的距离相等,则活动中心P 的位置应在( ) A .AB 的中点 B .BC 的中点 C .AC 的中点 D .C ∠的平分线与AB 的交点 8.如图,透明的圆柱形玻璃容器(容器厚度忽略不计)的高为16cm ,在容器内壁离容器底部4cm 的点B 处有一滴蜂蜜,此时一只蚂蚁正好在容器外壁,位于离容器上沿4cm 的点A 处,若蚂蚁吃到蜂蜜需爬行的最短路径为20cm ,则该圆柱底面周长为( ) A .12cm B .14cm C .20cm D .24cm 9.在△ABC 中,∠A ,∠B ,∠C 的对边分别记为a ,b ,c ,下列结论中不正确的是( ) A .如果∠A ﹣∠B =∠C ,那么△ABC 是直角三角形 B .如果∠A :∠B :∠C =1:2:3,那么△ABC 是直角三角形 C .如果 a 2:b 2:c 2=9:16:25,那么△ABC 是直角三角形 D .如果 a 2=b 2﹣c 2,那么△ABC 是直角三角形且∠A =90°

勾股定理常见练习题

勾股定理常见练习题Last revision on 21 December 2020

勾股定理应用题 题型一:已知两边求第三边 1、直角三角形中,以直角边为边长的两个正方形的面积为72cm ,82cm ,则以斜边为 边长的正方形的面积为_________2cm . 2、已知直角三角形的两边长为5、12,则另一条边长是________________. 3、作出长度为10的线段。 4、一种盛饮料的圆柱形杯,测得内部底面半径为㎝,高为12㎝,吸管放进杯里,杯口外面至少要露出㎝,问吸管要做多长 针对练习 1、以下列各组数为边长,能组成直角三角形的是( ) A .2,3,4 B .10,8,4 C .7,25,24 D .7,15,12 2、已知一个Rt △的两边长分别为3和4,则第三边长的平方是( ) A .25 B .14 C .7 D .7或25 3、以面积为9 cm 2 的正方形对角线为边作正方形,其面积为( ) A .9 cm 2 B .13 cm 2 C .18 cm 2 D .24 cm 2 题型二:利用勾股定理测量长度 例1: 如果梯子的底端离建筑物9米,那么15米长的梯子可以到达建筑物的高度是多少米 A B

例2:如图(8),水池中离岸边D点米的C处,直立长着一根芦苇,出水部分BC的长是米,把芦苇拉到岸边,它的顶端B恰好落到D点,并求水池的深度AC. 例3:如图所示,一棵大树在一次强烈台风中于离地面10m处折断倒下,树顶落在离树根24m处. 大树在折断之前高多少 题型三:转化思想 例:如图,有一圆柱,其高为12cm,它的底面半径为3cm,在圆柱下底面A处有一只蚂蚁, 它想得到上面B处的食物,则蚂蚁经过的最短距离为________ cm。(π取3) 题型四:利用勾股定理解决实际问题 例:如图,在一个高为3米,长为5米的楼梯表面铺地毯,则地毯长度为多少米 巩固练习 1、如图1,直角△ABC的周长为24,且AB:AC=5:3,则BC=() A.6 B.8 C.10 D.12 图1 图2 2、如图2,一架长25米,斜靠在一面 云梯 墙上,梯子底端离米,如果梯子的顶端下 墙7 滑4米, 那么梯子的底部在水平方向上滑动了() A.4米 B.6米 C.8米 D.10米 3、将一根长24 cm的筷子,置于底面直径为5cm、高为12cm的圆柱形水杯中,设筷子 露在杯子外面的长为hcm,则h的取值范围是() A.5≤h≤12 B.5≤h≤24 C.11≤h≤12 D.12≤h≤24 4、已知,如图,长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF,则△ABE的面积为() A.6cm2 B.8cm2 C.10cm2 D.12cm2

相关文档
相关文档 最新文档