文档库 最新最全的文档下载
当前位置:文档库 › 西安邮电概率论练习册第一章答案

西安邮电概率论练习册第一章答案

西安邮电概率论练习册第一章答案
西安邮电概率论练习册第一章答案

第一次习题课

作业1

二、设,,A B C 是三个随机事件,试用,,A B C 的运算关系表示下列各事件: 1.A 发生,B 与C 不发生; (A BC ?,AB C ) 2.A 与B 发生, C 不发生; (AB C ?,AB C )

3.A ,B ,C 中至少有一个发生; (A B C ∪∪,A B C ++,S A B C ?) 4.A ,B ,C 都发生; (ABC ) 5.A ,B ,C 都不发生; (A B C )

6.A ,B ,C 中不多于一个发生; (A B B C AC ∪∪)

7.A ,B ,C 中不多于两个发生; (S ABC ?,ABC ) 8.A ,B ,C 中至少有两个发生; (AB BC AC ∪∪)

9. A ,B ,C 中恰有一个发生. ( ABC ABC ABC ∪∪) (参考概率论与数理统计辅导,陕西教育出版社,2009.6,P2,例2) 三、写出下列随机试验的样本空间.

3.记录一个班级一次考试的平均分数(以百分制记分);

{|0,1,2,,100},m

S m n n

== 其中m 表示班级所得总分,

n 表示班级总人数; 六、试用事件运算公式证明下列各式: 1.A AB A B B AB ?=?=∪; 证明 由于

()A B B A B B AB BB AB ?===∪∪∪ ()AB A S B AS AB A AB =?=?=?

所以

A A

B A B B AB ?=?=∪

2.()()A B AB A B B A AB AB ?=??=∪∪∪ 证明 由于

()()A B B A AB BA ??=∪∪

()()()()[()][()]A B AB A B AB A B A B A A B B A B ?===∪∪∩∪∩∪∩∪∪∩∪ AB BA =∪ 所以

()()A B AB A B B A AB AB ?=??=∪∪∪ 作业2

五、从5双不同的鞋子中任取4只,这4只鞋子中至少有两只鞋子配成一双的概率是多少?恰有两只配成一双的概率?(参考概率论与数理统计辅导,陕西教育出版社,2009.6,P8,例15)

七、朋友聚会,其中有a 位男士,b 位女士,大家随机的围绕圆桌就坐,求甲、乙两个人坐在一起(即座位相邻)的概率.(参考概率论与数理统计辅导,陕西教育出版社,2009.6,P6,例9)

九、设,A B 为两件事且()0.6P A =,()0.7P B =,问1. 在什么条件下()P AB 取到最大值,最大值是多少?2. 在什么条件下()P AB 取到最小值,最小值是多少?(参考概率论与数理统计辅导,陕西教育出版社,2009.6,P3,例3)

十一、两艘船都停泊在同一个码头,这个码头不能同时停泊两艘船,它们可能在一个昼夜的任何时刻到达.设两艘船停靠的时间分别是1小时和2小时,求有一艘船要靠位必须等待一段时间的概率.

解 设第一艘船停靠的时间是1小时,且到达的时刻为x ,第二艘船停靠的时间是2小时,且到达的时刻为y .那么

{(,)|024,024}S x y x y =≤<≤<

{(,)|024,024,01}A x y x y x y =≤<≤<

{(,)|024,024,02}x y x y y x ≤<≤<

那么所求概率

2211

222(241)(242)1391241152

A P S ?+?==?=的面积的面积 十二、在(0,1)中随机地取两个数,求它们乘积不大于1

4

的概率.

解 设,x y 在(0,1)中随机地取两个数,那么{(,)|01,01}S x y x y =<<<<,

1

{(,)|01,01,}4

A x y x y xy =<<<<≤.

从而所求概率

A P S =

的面积的面积1141111

ln 40.597444dx x =+=+≈∫ 十四、某人一次写了n 封信,又分别在n 个信封上写了n (2n ≥)个收信人的地址(不重复). 如果他随机地将这n 封信装入n 个信封中. 试求 1. 这n 封信中没有一封信装对的概率;2. 恰好m 封信装对的概率. (参考概率论与数理统计辅导,陕西教育出版社,2009.6,P13,例23)

作业3

十一、将两信息分别编码为A 和B 传递出去,接收站收到时,A 被误收作B 的概率为0.02, B 被误收作A 的概率为0.01,信息A 与信息B 传送的频繁程度为,1:2若接收站收到的信息为A ,问原发信息是A 的概率是多少?

解 设1B 为发出信息A ,2B 为发出信息B ,A 为收到信息A ,则

1212,B B S B B +==?,且1(|)10.020.98P A B =?=,2(|)0.01P A B =,12

()3

P B =,

21

()3

P B =.

由贝叶斯公式得所求概率

11111222

0.98()()196

3

()21()()()()197

0.980.0133

P A B P B P B A P A B P B P A B P B ×

?=

==

?+?×+× 十二、已知男人中有5%是色盲患者,女人中有0.25%是色盲患者,今从男女人数相等的人群中随机地挑选一人,恰好是色盲患者,问此人是男性的概率是多少?

解 设1B 为男性,2B 为女性,A 为色盲患者。因1212,,B B S B B +==?且

1(|)0.05P A B =,2(|)0.0025P A B =,11()2P B =,21

()2

P B =.

由贝叶斯公式得所求概率

1111122()()

0.050.520

()()()()()

0.050.50.00250.521

P A B P B P B A P A B P B P A B P B ?×=

=

=?+?×+×

十三、有两箱同种类的零件,第一箱装50只,其中10只一等品;第二箱装30只,其中18只一等品. 今从两箱中任挑出一箱,然后从该箱中取零件两次,每次任取一只,作不放回抽样. 试求 1.第一次取到一等品的概率;2. 第一次取到一等品的条件下,第二次取到也是一等品的概率. (参考概率论与数理统计辅导,陕西教育出版社,2009.6,P19,例36)

作业4

七、常言道:“不怕一万,就怕万一”,“久以走黑路,就要碰见鬼”,“若要人不知,除非己莫为”,请用概率论的知识解释这一现象.

解 设小概率事件为A ,()P A ε=,事件i A 表示事件A 在第i 试验发生,而且i A 相互独立,()i P A ε=,1,2,,i n = . 那么在那n 次试验中,事件为A 至少发生一次的概率

1212()1()1(1)n n n P A A A P A A A ε=?=??∪∪ ∪ 所以

12lim ()lim[1(1)]1n n n n P A A A ε→∞

→∞

=??=∪∪ ∪

这表明小概率事件不论在一次试验中发生的概率如何小,但不断重复进行这一试验,这个小概率事件迟早会发生.

九、甲、乙、丙三部机床独立工作,而由一名工人照管,某段时间内它们不需要工人照管的概率分别为0.9,0.8及0.85. 求1. 在这段时间内有机床需要工人照管的概率;2. 机床因无人照管而停工的概率;3.恰有一部机床需要工人照管的概率?(参考概率论与数理统计辅导,陕西教育出版社,2009.6,P23,例44)

十、设一个系统由5个元件组成(如示图). 元件1,2,3,4,5正常工作的概率为p ,且每个元件都各自独立工作,求系统能正常工作的概率.

解 设A、B、C、D、E 分别表示元件1,2,3,4,5正常工作. F 表示系统正常工作.

方法一

F AB CD ADE BCE =∪∪∪

()()P F P AB CD ADE BCE =∪∪∪

()()()()()()()P AB P CD P ADE P BCE P ABCD P ABDE P ABCE =+++???

()()()()()P ACDE P BCDE P ABCDE ABCDE P ABCDE ???++ ()()()P ABCDE P ABCDE P ABCDE ++? 23452252p p p p =+?+ 方法二

()[()()]F AB CD E A C B D E =+∪∪∪

(){()[()()]}P F P AB CD E A C B D E =+∪∪∪

[()]{[()()]}P AB CD E P A C B D E =+∪∪∪ ()()[()()]()P AB CD P E P A C B D P E =+∪∪∪

[()()()]()()()()P AB P CD P ABCD P E P A C P B D P E =+?+∪∪ 23452252p p p p =+?+

十二、将A 、B 、C 三个字母之一输入信道,输出为原字母的概率为0.8,而输出为其它一字母的概率都是0.1. 今将字母串AAAA 、BBBB 、CCCC 之一输入信道,输入AAAA 、BBBB 、CCCC 的概率分别为0.5、0.3、0.2,已知输出为ABCA,问输入的是AAAA 的概率是多少?(参考概率论与数理统计辅导,陕西教育出版社,2009.6,P26,例51)

十三、有两个裁判组,第一组由3个人组成,其中两个人独立以概率p 做出正确的裁定,而第三个人以掷硬币决定,最后结果根据多少人的意见决定. 第二组由一人组成,他以概率p 做出正确的裁定. 试问这两个组哪一组做出正确的概率大?(参考概率论与数理统计辅导,陕西教育出版社,2009.6,P29,例56)

单元练习

三、计算题(6×5=30分)

4.向区间[0,1]内随机投入两点,将区间分成三段,求三段可以构成三角形的概率. (参考概率论与数理统计辅导,陕西教育出版社,2009.6,P 14,例24)

四、综合题(8×5=40分)

2.甲、乙、丙3人各自加工1个产品,检查的结果是在3个产品中发现1个次品.设甲、乙、丙加工产品的次品率分别是0.1,0.2,0.3,求这个次品是甲加工的概率.

解 设A 表示检查3个产品中发现1个次品,123,,B B B 分别表示甲、乙、丙3人自加工的产品是次品。 由已知条件

1()0.01P B =,2()0.02P B =,3()0.03P B =

12312311111()()()()

()(|)()()()

P B B B P B P B P B P AB P A B P B P B P B =

==

23()()0.70.80.56P B P B ==×=

类似可求得

213(|)()()0.90.70.63P A B P B P B ==×= 312(|)()()0.90.80.72P A B P B P B ==×=

那么贝叶斯公式克的所求概率

111112222()(|)28

(|)()(|)()(|)()(|)199

P B P A B P B A P B P A B P B P A B P B P A B =

=++

3. 在1-2000的整数中随机地取一个数,问取到的整数既不能被6整除,又不能被8整除的概率是多少? (参考概率论与数理统计辅导,陕西教育出版社,2009.6,P 11,例20)

4.排球竞赛规则规定:发球方赢球时得分,输球时则被对方夺得发球权.甲、乙2个排球队进行比赛,已知当甲队发球时,甲队赢球和输球的概率分别是0.4和0.6;当乙队发球时,甲队赢球和输球的概率都是0.

5.无论哪个队先发球,比赛进行到任一队得分时为止,求当甲队发球时各队得分的概率.

解 方法一

n A 表示第n 次甲队发球时甲队赢球,n B 表示第n 次乙队发球时乙队赢球,A

表示当甲队发球时甲队得分.那么

1112112231122334A A A B A A B A B A A B A B A B A =++++ 于是

1112112231122334()()P A P A A B A A B A B A A B A B A B A =++++

1112112231122334()()()()P A P A B A P A B A B A P A B A B A B A =++++ 111211223()()()()()()()()()P A P A P B P A P A P B P A P B P A =++

1122334()()()()()()()P A P B P A P B P A P B P A ++

22330.40.60.50.4(0.6)(0.5)0.4(0.6)(0.5)0.4=+××+××+××+

14

0.410.37

=×=?

43

()1()177

P A P A =?=?=

方法二

设两次发球为一轮,1A 表示比赛中甲队发球甲队赢球,2A 表示比赛中甲队发球甲队输球,且乙队发球甲队赢球.A 表示甲队得分.即

11111()()

(|)1()()

P AA P A P A A P A P A ===,2(|)()P A A P A =,

1()0.4P A =,2()0.60.5P A =×, 所以

1122()()(|)()(|)P A P A P A A P A P A A =+0.410.3()P A =×+ 因此

4()7

P A =

5. 设考生的报名表来自于三个地区,各有10份、15份、25份,其中女生的分别为3份、7份、5份. 随机地从一地区先后任取两份报名表. 求 (1) 先取到一份报名表是女生的概率;(2) 已知后取到的一份报名表是男生的而先取到的一份报名表是女生的概率. (参考概率论与数理统计辅导,陕西教育出版社,2009.6,P 19,例37)

作业5

五、一只袋中装有5只球,编号为.5,4,3,2,1在袋中同时取3只,以X 表示取出的3只球中的最大号码,写出随机变量X 的分布律. (参考概率论与数理统计辅导,陕西教育出版社,2009.6,P 35,例1)

八、从含有10个黑球及3个白球的袋中一个一个随机摸球,在下列三种情形下,分别求出直到摸得黑球为止所需次数X 的分布律:

1. 每次取出的球,待观察颜色后,立即放回袋中再取下一个;

2. 每次取出的球都不放回袋中;

3. 每次取出一个球后总是放回一个黑球.(参考概率论与数理统计辅导,陕西教育出版社,2009.6,P 36,例4)

概率统计-习题及答案-(1)

概率统计-习题及答案-(1)

习题一 1.1写出下列随机试验的样本空间,并把指定的事件表示为样本点的集合: (1)随机试验:考察某个班级的某次数学考试的平均成绩(以百分制记分,只取整数); 设事件A表示:平均得分在80分以上。 (2)随机试验:同时掷三颗骰子,记录三颗骰子点数之和; 设事件A表示:第一颗掷得5点; 设事件B表示:三颗骰子点数之和不超过8点。(3)随机试验:一个口袋中有5只球,编号分别为1,2,3,4,5,从中取三个球; 设事件A表示:取出的三个球中最小的号码为1。 (4)随机试验:某篮球运动员投篮练习,直至投中十次,考虑累计投篮的次数; 设事件A表示:至多只要投50次。 (5)随机试验:将长度为1的线段任意分为三段,依次观察各段的长度。 1.2在分别标有号码1~8的八张卡片中任抽一

张。 (1)写出该随机试验的样本点和样本空间; (2)设事件A为“抽得一张标号不大于4的卡片”,事件B为“抽得一张标号为偶数的 卡片”,事件C为“抽得一张标号能被3整除的卡片”。 试将下列事件表示为样本点的集合,并说明分别表示什么事件? (a)AB;(b) B A+;(c) B;(d) B A-; (e) BC;(f) C B+。 1.3 设A、B、C是样本空间的事件,把下列事件用A、B、C表示出来: (1)A发生;(2)A不发生,但B、C至少有一个发生; (3)三个事件恰有一个发生;(4)三个事件中至少有两个发生; (5)三个事件都不发生;(6)三个事件最多有一个发生; (7)三个事件不都发生。 1.4 设}10,,3,2,1{ Ω,}5,3,2{=A,}7,5,3{=B,}7,4,3,1{=C,求 =

李贤平 《概率论与数理统计 第一章》答案

第1章 事件与概率 2、若A ,B ,C 是随机事件,说明下列关系式的概率意义:(1)A ABC =;(2)A C B A =Y Y ; (3)C AB ?;(4)BC A ?. 3、试把n A A A Y ΛY Y 21表示成n 个两两互不相容事件的和. 6、若A ,B ,C ,D 是四个事件,试用这四个事件表示下列各事件:(1)这四个事件至少发生一个;(2)这四个事件恰好发生两个;(3)A ,B 都发生而C ,D 都不发生;(4)这四个事件都不发生;(5)这四个事件中至多发生一个。 8、证明下列等式:(1)1321232-=++++n n n n n n n nC C C C Λ; (2)0)1(321321=-+-+--n n n n n n nC C C C Λ; (3)∑-=-++=r a k r a b a k b r k a C C C 0. 9、袋中有白球5只,黑球6只,陆续取出三球,求顺序为黑白黑的概率。 10、一部五本头的文集,按任意次序放书架上去,试求下列概率:(1)第一卷出现在旁边; (2)第一卷及第五卷出现在旁边;(3)第一卷或第五卷出现在旁边;(4)第一卷及第五卷都不出现在旁边;(5)第三卷正好在正中。 11、把戏,2,3,4,5诸数各写在一小纸片上,任取其三而排成自左向右的次序,求所得数是偶数的概率。 12、在一个装有n 只白球,n 只黑球,n 只红球的袋中,任取m 只球,求其中白、黑、红球分别有)(,,321321m m m m m m m =++只的概率。 13、甲袋中有3只白球,7办红球,15只黑球,乙袋中有10只白球,6只红球,9只黑球。现从两袋中各取一球,求两球颜色相同的概率。 14、由盛有号码Λ,2,1,N 的球的箱子中有放回地摸了n 次球,依次记下其号码,试求这些号码按严格上升次序排列的概率。

概率论第一章习题解答

00第一章 随机事件与概率 I 教学基本要求 1、了解随机现象与随机试验,了解样本空间的概念,理解随机事件的概念,掌握事件之间的关系与运算; 2、了解概率的统计定义、古典定义、几何定义和公理化定义,会计算简单的古典概率和几何概率,理解概率的基本性质; 3、了解条件概率,理解概率的乘法公式、全概率公式、贝叶斯公式,会用它们解决较简单的问题; 4、理解事件的独立性概念. II 习题解答 A 组 1、写出下列随机试验的样本空间 (1) 抛掷两颗骰子,观察两次点数之和; (2) 连续抛掷一枚硬币,直至出现正面为止; (3) 某路口一天通过的机动车车辆数; (4) 某城市一天的用电量. 解:(1) {2,3, ,12}Ω=; (2) 记抛掷出现反面为“0”,出现正面为“1”,则{(1),(0,1),(0,0,1),}Ω=; (3) {0,1,2, }Ω=; (4) {|0}t t Ω=≥. 2、设A 、B 、C 为三个事件,试表示下列事件: (1) A 、B 、C 都发生或都不发生; (2) A 、B 、C 中至少有一个发生; (3) A 、B 、C 中不多于两个发生. 解:(1) ()()ABC ABC ; (2) A B C ; (3) ABC 或A B C . 3、在一次射击中,记事件A 为“命中2至4环”、B 为“命中3至5环”、C 为“命中5至7环”,写出下列事件:(1) AB ;(2) A B ;(3) ()A B C ;(4) ABC . 解:(1) AB 为“命中5环”; (2) A B 为“命中0至1环或3至10环”;

(3) ()A B C 为“命中0至2环或5至10环”; (4) ABC 为“命中2至4环”. 4、任取两正整数,求它们的和为偶数的概率? 解:记取出偶数为“0”,取出奇数为“1”,则其出现的可能性相同,于是任取两个整数的样本空间为{(0,0),(0,1),(1,0),(1,1)}Ω=.设A 为“取出的两个正整数之和为偶数”,则 {(0,0),(1,1)}A =,从而1 ()2 p A = . 5、从一副52张的扑克中任取4张,求下列事件的概率: (1) 全是黑桃;(2) 同花;(3) 没有两张同一花色;(4) 同色? 解:从52张扑克中任取4张,有4 52C 种等可能取法. (1) 设A 为“全是黑桃”,则A 有413 C 种取法,于是413 452 ()C p A C =; (2) 设B 为“同花”,则B 有413 4C 种取法,于是413 452 4()C p B C =; (3) 设C 为“没有两张同一花色”,则C 有4 13种取法,于是4 452 13()p C C =; (4) 设D 为“同色”,则D 有426 2C 种取法,于是426 452 2()C p D C =. 6、把12枚硬币任意投入三个盒中,求第一只盒子中没有硬币的概率? 解:把12枚硬币任意投入三个盒中,有12 3种等可能结果,记A 为“第一个盒中没有硬币”,则A 有12 2种结果,于是12 2()()3 p A =. 7、甲袋中有5个白球和3个黑球,乙袋中有4个白球和6个黑球,从两个袋中各任取一球,求取到的两个球同色的概率? 解:从两个袋中各任取一球,有11 810C C ?种等可能取法,记A 为“取到的两个球同色”,则A 有1 111 5 4 3 6C C C C ?+?种取法,于是 1111543611 81019 ()40 C C C C p A C C ?+?==?. 8、把10本书任意放在书架上,求其中指定的三本书放在一起的概率? 解:把10本书任意放在书架上,有10!种等可能放法,记A 为“指定的三本书放在一起”,则A 有3!8!?种放法,于是3!8!1 ()10!15 p A ?= =. 9、5个人在第一层进入十一层楼的电梯,假若每个人以相同的概率走出任一层(从第二层开始),求5个人在不同楼层走出的概率?

概率论第6章习题及答案

第六章 数理统计习题 一、填空题 1.若n ξξξ,,,21Λ是取自正态总体),(2 σμN 的样本,则∑==n i i n 1 1ξξ服从分布 )n ,(N 2 σμ 2. 设随机变量ξ与η相互独立, 且都服从正态分布(0,9)N , 而129(,,,) x x x L 和 129(,,,) y y y L 是分别来自总体ξ和η的简单随机样本, 则统计量 129 222129 ~U y y y =+++L (9)t . 3. 设~(0,16),~(0,9),,X N Y N X Y 相互独立, 129,,,X X X L 与1216 ,,,Y Y Y L 分别 为X 与Y 的一个简单随机样本, 则22 2 129222 1216X X X Y Y Y ++++++L L 服从的分布为 (9,16).F 二、选择题 1、设总体ξ服从正态分布,其中μ已知,σ未知,321,,ξξξ是取自总体ξ的 个样本,则非统计量是( D ). A 、)(3 1321ξξξ++ B 、μξξ221++ C 、),,m ax (321ξξξ D 、 )(1 2322212 ξξξσ++ 2、设)2,1(~2 N ξ,n ξξξK ,,21为ξ的样本,则( C ). 221N n ξ?? ???:, A 、 )1,0(~2 1N -ξ B 、)1.0(~41 N -ξ C 、)1,0(~/21N n -ξ D 、 )1,0(~/21 N n -ξ 3、设n ξξξΛ,,21是总体)1,0(~N ξ的样本,S ,ξ分别是样本的均值和样本标准差, 则有( C ) A 、)1,0(~N n ξ B 、)1,0(~N ξ C 、 ∑=n i i n x 1 22)(~ξ D 、)1(~/-n t S ξ 三、计算题 1、在总体)2,30(~2N X 中随机地抽取一个容量为16的样本,求样本均值X 在 29到31之间取值的概率.

概率论复习题答案

一、单项选择题 1 已知随机变量X 在(1,5)之间服从均匀分布,则其在此区间的概率密度为( C ) A. B. C. D 4 2 已知二维随机变量(X ,Y )在(X>0,Y>0,X+Y<1)之间服从均匀分布,则其在此区间的概率密度为( B ) A. 0 B. 2 C. D 1 3 已知二维随机变量(X ,Y )在(X>0,Y>0,X+Y<2)之间服从均匀分布,则其不在此区间的概率密度为( A ) A. 0 B. 2 C. 1 D 4 4 已知P(A)= ,则)(A A P ? 的值为( D ) (A) (B) (C) 0 (D) 1 5 已知P(A)= ,则)(A A P 的值为( C ) (A) 1 (B) (C) 0 (D) Φ 6.,,A B C 是任意事件,在下列各式中,成立的是( C ) A. A B =A ?B B. A ?B =AB C. A ?BC=(A ?B)(A ?C) D. (A ?B)(A ? B )=AB 7 设随机变量X~N(3,16), 则P{X+1>5}为( B ) A. Φ B. 1 - Φ C. Φ(4 ) D. Φ(-4) 8 设随机变量X~N(3,16), Y~N(2,1) ,且X 、Y 相互独立,则P{X+3Y<10}为( A ) A. Φ B. 1 - Φ C. Φ(0 ) D. Φ(1) 9. 已知随机变量X 在区间(0,2)的密度函数为, 则其在此区间的分布函数为( C ) A. 2x B. C. 2x D. x 10 已知随机变量X 在区间(1,3)的密度函数为, 则x>3区间的分布函数为( B ) A. 2x B. 1 C. 2x D. 0 11. 设离散型随机变量X 的分布律为 P{X=n}=! n e n λλ, n=0,1,2…… 则称随机变量X 服从( B ) A. 参数为λ的指数分布 B. 参数为λ的泊松分布 C. 参数为λ的二项式分布 D. 其它分布 12. 设f (x )为连续型随机变量X 的密度函数,则f (x )值的范围必须( B )。 (A) 0≤ f (x ) ≤1; (B) 0≤ f (x ); (C )f (x ) ≤1; (D) 没有限制

概率统计第一章答案

概率论与数理统计作业 班级 姓名 学号 任课教师 第一章 概率论的基本概念 教学要求: 一、了解样本空间的概念,理解随机事件的概念,掌握事件的关系及运算. 二、理解概率、条件概率的概念,掌握概率的基本性质,会计算古典概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式及贝叶斯公式. 三、理解事件的独立性的概念,掌握用事件独立性进行概率计算,理解独立重复试验的概念,掌握计算有关事件概率的方法. 重点:事件的表示与事件的独立性;概率的性质与计算. 难点:复杂事件的表示与分解;试验概型的选定与正确运用公式计算概率;条件概率的理 解与应用;独立性的应用. 练习一 随机试验、样本空间、随机事件 1.写出下列随机事件的样本空间 (1)同时掷两颗骰子,记录两颗骰子点数之和; (2)生产产品直到有5件正品为止,记录生产产品的总件数; (3)在单位圆内任意取一点,记录它的坐标. 解:(1){=Ω2;3;4;5;6;7;8;9;10;11;12 }; (2){=Ω5;6;7;…}; (3)(){} 1,22≤+=Ωy x y x 2.设C B A ,,三事件,用C B A ,,的运算关系表示下列事件: (1)A 发生,B 与C 不发生,记为 C B A ; (2)C B A ,,至少有一个发生,记为C B A Y Y ; (3) C B A ,,中只有一个发生,记为C B A C B A C B A Y Y ; (4)C B A ,,中不多于两个发生,记为ABC . 3.一盒中有3个黑球,2个白球,现从中依次取球,每次取一个,设i A ={第i 次取到黑

球},,2,1=i 叙述下列事件的内涵: (1)21A A ={}次都取得黑球次、第第21. (2)21A A Y ={}次取得黑球次或地第21. (3)21A A ={}次都取得白球次、第第21 . (4)21A A Y ={}次取得白球次或地第21. (5)21A A -={}次取得白球次取得黑球,且第第21. 4.若要击落飞机,必须同时击毁2个发动机或击毁驾驶舱,记1A ={击毁第1个发动机};2A ={击毁第2个发动机};3A ={击毁驾驶舱};试用1A 、2A 、3A 事件表示=B {飞机被击落}的事件. 解:321A A A B Y = 练习二 频率与概率、等可能概型(古典概率) 1.若41)()()(===C P B P A P ,0)()(==BC P AB P , 16 3)(=AC P , 求事件A 、B 、C 都不发生的概率. 解:由于 ,AB ABC ? 则 ()(),00=≤≤AB P ABC P 得(),0=ABC P 于是 ()()()()()()()()ABC P BC P AC P AB P C P B P A P C B A P +---++=Y Y 16 9163414141=-++= 所以 ()().16 716911=- =-=C B A P C B A P Y Y 2.设,)(,)(,)(r B A P q B P p A P ===Y 求B A P (). 解:因为 ()()(),AB A P B A P B A P -=-=且,A AB ?则() ()().AB P A P B A P -= 又 ()()()(),r q p B A P B P A P AB P -+=-+=Y

概率论与数理统计第二版_课后答案_科学出版社_参考答案_

习题2参考答案 X 2 3 4 5 6 7 8 9 10 11 12 P 1/36 1/18 1/12 1/9 5/36 1/6 5/36 1/9 1/12 1/18 1/36 解:根据 1)(0 ==∑∞ =k k X P ,得10 =∑∞ =-k k ae ,即111 1 =---e ae 。 故 1-=e a 解:用X 表示甲在两次投篮中所投中的次数,X~B(2, 用Y 表示乙在两次投篮中所投中的次数, Y~B(2, (1)两人投中的次数相同 P{X=Y}= P{X=0,Y=0}+ P{X=1,Y=1} +P{X=2,Y=2}= 1 1 2 2 020********* 2222220.70.30.40.60.70.30.40.60.70.30.40.60.3124C C C C C C ?+?+?=(2)甲比乙投中的次数多 P{X>Y}= P{X=1,Y=0}+ P{X=2,Y=0} +P{X=2,Y=1}= 1 2 2 1 110220022011222222 0.70.30.40.60.70.30.40.60.70.30.40.60.5628C C C C C C ?+?+?=解:(1)P{1≤X ≤3}= P{X=1}+ P{X=2}+ P{X=3}=12321515155 ++= (2)P{

解:(1)P{X=2,4,6,…}=246211112222k +++L =11[1()] 14 41314 k k lim →∞-=- (2)P{X ≥3}=1―P{X<3}=1―P{X=1}- P{X=2}=111 1244 --= 解:设i A 表示第i 次取出的是次品,X 的所有可能取值为0,1,2 12341213124123{0}{}()(|)(|)(|)P X P A A A A P A P A A P A A A P A A A A ====18171615122019181719 ???= 1123412342341234{1}{}{}{}{} 2181716182171618182161817162322019181720191817201918172019181795 P X P A A A A P A A A A P A A A A P A A A A ==+++=???+???+???+???= 12323 {2}1{0}{1}1199595 P X P X P X ==-=-==- -= 解:(1)设X 表示4次独立试验中A 发生的次数,则X~B(4, 34 314044(3)(3)(4)0.40.60.40.60.1792P X P X P X C C ≥==+==+= (2)设Y 表示5次独立试验中A 发生的次数,则Y~B(5, 3 4 5 324150555(3)(3)(4)(5)0.40.60.40.60.40.60.31744P X P X P X P X C C C ≥==+=+==++= (1)X ~P(λ)=P ×3)= P 0 1.51.5{0}0! P X e -=== 1.5 e - (2)X ~P(λ)=P ×4)= P(2) 0122 222{2}1{0}{1}1130!1! P X P X P X e e e ---≥=-=-==--=-

概率论与数理统计第一章课后习题及参考答案

概率论与数理统计第一章课后习题及参考答案 1.写出下列随机试验的样本空间. (1)记录一个小班一次数学考试的平均分数(以百分制记分); (2)一个口袋中有5个外形相同的球,编号分别为1,2,3,4,5,从中同时取 出3个球; (3)某人射击一个目标,若击中目标,射击就停止,记录射击的次数; (4)在单位圆内任意取一点,记录它的坐标. 解:(1)}100,,2,1{ =Ω; (2)}345,235,234,145,135,134,125,124,123{=Ω; (3)},2,1{ =Ω; (4)}|),{(22y x y x +=Ω. 2.在}10,,2,1{ =Ω,}432{,,=A ,}5,4,3{=B ,}7,6,5{=C ,具体写出下列各式:(1)B A ;(2)B A ;(3)B A ;(4)BC A ;(5)C B A . 解:(1),9,10}{1,5,6,7,8=A , }5{=B A ;(2)}10,9,8,7,6,5,4,3,1{=B A ; (3)法1:}10,9,8,7,6,2,1{=B , }10,9,8,7,6,1{=B A , }5,4,3,2{=B A ; 法2:}5,4,3,2{===B A B A B A ; (4)}5{=BC , }10,9,8,7,6,4,3,2,1{=BC , }4,3,2{=BC A , }10,9,8,7,6,5,1{=BC A ;

(5)}7,6,5,4,3,2{=C B A , {1,8,9,10}=C B A . 3.设}20|{≤≤=Ωx x ,}121| {≤<=x x A ,}2 341|{≤≤=x x B ,具体写出下列各式:(1)B A ;(2)B A ;(3)AB ;(4)B A . 解:(1)B B A = , }22 3,410|{≤<<≤==x x x B B A ;(2)=B A ?; (3)A AB =, }21,10|{≤<≤ ≤==x x x A AB ;(4)}231,2141|{<<<≤=x x x B A .4.化简下列各式:(1)))((B A B A ;(2)))((C B B A ;(3)))((B A B A B A .解:(1)A B B A B A B A ==)())(( ; (2)AC B C A B C B B A ==)())((;(3))())()((B A B B A B A B A B A =AB AB A A B A A === )(.5.A ,B ,C 表示3个事件,用文字解释下列事件的概率意义:(1)C B A C A C B A ;(2)BC AC AB ;(3)(C B A ;(4)BC AC AB . 解:(1)A ,B ,C 恰有一个发生; (2)A ,B ,C 中至少有一个发生; (3)A 发生且B 与C 至少有一个不发生; (4)A ,B ,C 中不多于一个发生. 6.对于任意事件A ,B ,证明:Ω=-A B A AB )(.

概率论答案第三章测试题

第三章测试题 1箱子里装有12件产品,其中两件是次品.每次从箱子里任取1件产品,共取两次(取后不放回).定义随机变量X Y ,如下: 0X=1???,若第一次取出正品,若第一次取出次品 0Y=1??? ,若第二次取出正品,若第二次取出次品 (1)求出二维随机变量X Y (,)的联合分布律及边缘分布律; (2)求在Y=1的条件下,X 的条件分布律。 解 (2) 2 设二维随机变量 X Y (,)的概率密度Cy(2-x),0x 1,0y x, f(x,y)=0,.≤≤≤≤??? 其他 (1)试确定常数C ;(2)求边缘概率密度。 解 (1)1)(=??+∞∞-+∞∞-dy dx x f 即1)2(100=??-x dxdy x Cy x ,5 12 = ∴C 3设X Y (,)的联合分布律为: 求(1)Z X Y =+的分布律;(2)V min(X ,Y )=的分布律 (2)

4设X 和Y 是两个相互独立的随机变量,X 服从(0,1)上的均匀分布,Y 的概率密度为: y 212Y e ,y 0 f (y )0,y 0 -??>=? ≤?? (1)求X 和Y 的联合概率密度; (2)设含有a 的二次方程为2 a 2Xa Y 0++=,试求a 有实根的概率。 解 (1)X 1,0x 1 f (x )0,other <<<==∴-other y x e y f x f y x f y Y X , 00,10,21)()(),(2 (2)2 a 2Xa Y 0++=有实根,则0442≥-=?Y X ,即求02 ≥-Y X 的概率 ?-=??=??=≥---≥-1 01 00 20 2 2 22 121),(}0{dx e dy e dx dxdy y x f Y X P x x y y x 3413.0)0()1(211 2 2=Φ-Φ=?- dx e x π ,π23413.010 22=?∴-dx e x

概率论与数理统计浙大四版习题答案第六章1

第六章 样本及抽样分布 1.[一] 在总体N (52,6.32)中随机抽一容量为36的样本,求样本均值X 落在50.8到53.8之间的概率。 解: 8293 .0)7 8( )7 12( } 6 3.68.16 3.6526 3.62.1{}8.538.50{),36 3.6, 52(~2 =-Φ-Φ=< -< - =<15}. (3)求概率P {min (X 1,X 2,X 3,X 4,X 5)>10}. 解:(1)??? ???? ?? ?????>-=?????????? ?? ?? > -=>-255412 25415412 }112 {|X P X P X P =2628.0)]2 5(1[2=Φ- (2)P {max (X 1,X 2,X 3,X 4,X 5)>15}=1-P {max (X 1,X 2,X 3,X 4,X 5)≤15} =.2923.0)]2 1215( [1}15{15 5 1 =-Φ-=≤-∏=i i X P (3)P {min (X 1,X 2,X 3,X 4,X 5)<10}=1- P {min (X 1,X 2,X 3,X 4,X 5)≥10} =.5785.0)]1([1)]2 1210( 1[1}10{15 55 1 =Φ-=-Φ--=≥-∏=i i X P 4.[四] 设X 1,X 2…,X 10为N (0,0.32 )的一个样本,求}.44.1{10 1 2>∑=i i X P

概率论练习册答案第三章

习题3-1 1. 而且12{0}1P X X ==. 求X 1和X 2的联合分布律. 解 由12{0}1P X X ==知12{0}0P X X ≠=. 因此X 1和X 2的联合分布 于是根据边缘概率密度和联合概率分布的关系有X 1和X 2的联合分布律

(2) 注意到12{0,0}0P X X ===, 而121{0}{0}04 P X P X =?== ≠, 所以X 1 和X 2不独立. 2. 一盒子中有3只黑球、2只红球和2只白球, 在其中任取4只球. 以X 表示取到黑球的只数, 以Y 表示取到红球的只数. 求X 和Y 的联合分布律. 解 从7只球中取4球只有354 7=C 种取法. 在4只球中, 黑球有i 只, 红 球有j 只(余下为白球4i j --只)的取法为 4322i j i j C C C --,0,1,2,3,0,1,2,i j i j ==+≤4. 于是有 022 322 1 {0,2}35 35P X Y C C C === = ,111 322 6 {1,1}3535 P X Y C C C === = , 1213226{1,2}3535P X Y C C C ====,2023223 {2,0}3535P X Y C C C ====, 21132212{2,1}3535P X Y C C C ====,220 3223 {2,2}3535P X Y C C C ====, 3013222{3,0}3535P X Y C C C ====, 3103222 {3,1}3535 P X Y C C C ====, {0,0}{0,1}{1,0}{3,2}0P X Y P X Y P X Y P X Y ============. 3. (,)(6),02,24, 0,.f x y k x y x y =--<<<

概率论第一章答案

.1. 解:(正, 正), (正, 反), (反, 正), (反, 反) A (正 ,正) , (正, 反) .B (正,正),(反,反) C (正 ,正) , (正, 反) ,(反,正) 2.解:(1,1),(1,2), ,(1,6),(2,1),(2,2), ,(2,6), ,(6,1),(6,2), ,(6,6);AB (1,1),(1,3),(2,2),(3,1); A B (1,1),(1,3),(1,5), ,(6,2),(6,4),(6,6),(1,2),(2,1); AC - BC (1,1),(2,2). A B C D (1,5), (2,4), (2,6), (4,2), (4,6), (5,1), (6,2), (6,4) 3. 解:(1) ABC ;(2) ABC ;(3) ABC ABC ABC ; (4) ABC ABC ABC ;( 5) A B C ; (6) ABC ;(7) ABC ABC ABC ABC 或AB AC BC (8) ABC ;(9) ABC 4. 解:甲未击中;乙和丙至少一人击中;甲和乙至多有一人击中或甲和乙至少有一人未击中; 甲和乙都未击中;甲和乙击中而丙未击中;甲、乙、丙三人至少有两人击中c 5. 解:如图: 第一章概率论的基本概念习题答案

每次拿一件,取后放回,拿3次: ABC ABC; AB C ABC C; B A C ABC ABC ABC BA ABC BC ABC 6. 解:不 疋成立 。例如: A 3,4,5 B 那么 A C B C 但A B 0 7. 解:不 疋成立 。例如: A 3,4,5 B 那么 A (B C) 3 , 但是 (A B) C 3,6,7 ABC ABC A B 4,5,6 o 8.解: C ABC ABC ABC 3 C 4,5 6,7 P( BA) P(B AB) P(B) P(AB) (1) 2 ; (2) P( BA) P(B A) P(B) 1 P(A) 6 ; (3) P( BA) P(B AB) P(B) 1 P(AB)- 2 9. 解: P(ABC) P A B C 1 P(A B C)= 1 1 8 P (1 ) 2 982 1003 0.0576 ; 1旦 1003 0.0588 ; 1 P(A) 1 P(B) 1 P(C) 1 P(AB) 1 P(AC) 3 P(BC) P(ABC) 16 16 g 八牛 A)n .(.( (C p( B P (1) C ;8C ; C 100 0.0588 ; P (2) 3 100 1 98 0.0594 ; D P 3 2 2 P c ;c

概率论与数理统计(第三版)课后答案习题1

第一章 事件与概率 1.写出下列随机试验的样本空间。 (1)记录一个班级一次概率统计考试的平均分数(设以百分制记分)。 (2)同时掷三颗骰子,记录三颗骰子点数之和。 (3)生产产品直到有10件正品为止,记录生产产品的总件数。 (4)对某工厂出厂的产品进行检查,合格的记上“正品”,不合格的记上“次品”,如连续查出2个次品就停止检查,或检查4个产品就停止检查,记录检查的结果。 (5)在单位正方形内任意取一点,记录它的坐标。 (6)实测某种型号灯泡的寿命。 解 (1)}, 100,,1,0{n i n i ==Ω其中n 为班级 人数。 (2)}18,,4,3{ =Ω。 (3)},11,10{ =Ω。

(4)=Ω{00,100,0100,0101,0110,1100,1010,1011,0111,1101,0111,1111},其中0表示次品,1表示正品。 (5)=Ω{(x,y) 0

概率论第六章课后习题答案

习题六 1.设总体X 的概率密度为(1)01(;)0x x f x θ θθ?+<<=? ?其它 ,其中1θ>-, 12,,X X ,n X 为来自总体X 的样本,求参数θ的矩估计量。 解:总体的一阶原点矩为2 1 )1();()(1 11++= +===??++∞ ∞ -θθθθθdx x dx x xf X E v ,而样本的一阶原点矩为X X n A n i i ==∑=1 11,用样本的一阶原点矩估计总体的一阶 原点矩,即有 X =++21θθ,由此得θ的矩估计量为.112?X X --=θ 3.设总体~(0,)X U θ,现从该总体中抽取容量为10的样本,样本观测值为: 0.5,1.3,0.6,1.7,2.2,1.2,0.8,1.5,2.0,1.6 试求参数θ的矩估计值。 解:总体的一阶原点矩为2 )(1θ = =X E v ,而样本的一阶原点矩为 X X n A n i i ==∑=111,用样本的一阶原点矩估计总体的一阶原点矩,即有X =2θ, 由此得θ的矩估计量为X 2?=θ ,其矩估计值为 68.2)6.10.25.18.02.12.27.16.03.15.0(10 1 22?=+++++++++?==x θ 6.设12,,,n x x x 为来自总体X 的一组样本观测值, 求下列总体概率密度中θ的最大似然估计值。 (1)101(;)0 x x f x θθθ-?<<=??其它(0θ>); (2)10 (;)0x x e x f x α αθθαθ--?>?=? ?? 其它 (α已知); (3)?? ? ??≤>=-000);(2 2 22x x e x x f x θθθ

概率统计练习册答案

第一章参考答案: (一) 一、选择:1.D 2. A 3.B 4.D 二、填空:1. 出现点数恰好是5; 2. 0.3; 3. 0.6; 4. 1,0.75; 5. (1) ABC (2)ABC (3) AB AC BC ?? (4) A B C ?? (5) ABC ABC ABC ?? (6) A B C ?? 三、计算 (1),0.6A B ? (2),0.3A B ?=Ω (3)()=0.4P AB ,()=0.9P A B ?,()=0.3P B A -,()=0.1P AB (二) 一、填空:1.a a b + 2. 32,55 3. 11260 4. 815 5. 16 二、计算: 1. (1).4190 (2). 13 (3). 13 15 2. 11 ln 242+ 3. 391 81616 ;;(见教材第12页) 4. 111 1()k N N N --- 5. (1). 6121110987 112?????- (2). 2466 1112C ? (3). 61112- (4). 6 61112 (三) 一、填空:1. 0 2.0.9 3. 23 4. (1)(1)()(1) a a b b a b a b -+-++- 二、计算: 1. 1 4

2. (1). 0.85 (2). 0.941 3. 0.37(或 55149 ) 4. (1). 0.192 (或23120) (2). 0.391(或923 ) 5. (1). 2990 (2). 20 61 (四) 一、选择:1.D 2. B 3.C 4.B 二、计算: 1.(1) 2 3 (2) 11 2. 14 3. (1). 4 0.9 (2). 4 10.1- (3)4 3 0.90.40.9+? 三.证明。(略) 第二章参考答案: (一) 一. 填空 1. 31; 2. 0.95; 3. m n m m n p p C --)1(; 4. {}.,1,0,! == =-k k e k X P k λλ 二. 1.(1){};4,3,2,1,0,6 20 616 4===-k C C C k X P k k (2) {}.6,5,43,2,1,0,8.0)2.0(66,===-k C k X P k k k 2. {};,2,1,55.045.01 =?==-k k X P k {}.31 11 21 = =∑∞ =k k X P 3.

概率论课后答案

习题1-2 1. 选择题 (1) 设随机事件A ,B 满足关系A B ?,则下列表述正确的是( ). (A) 若A 发生, 则B 必发生. (B) A , B 同时发生. (C) 若A 发生, 则B 必不发生. (D) 若A 不发生,则B 一定不发生. 解 根据事件的包含关系, 考虑对立事件, 本题应选(D). (2) 设A 表示“甲种商品畅销, 乙种商品滞销”, 其对立事件A 表示( ). (A) 甲种商品滞销, 乙种商品畅销. (B) 甲种商品畅销, 乙种商品畅销. (C) 甲种商品滞销, 乙种商品滞销.(D) 甲种商品滞销, 或者乙种商品畅销. 解 设B 表示“甲种商品畅销”,C 表示“乙种商品滞销”,根据公式B C B C = , 本题应选(D). 2. 写出下列各题中随机事件的样本空间: (1) 一袋中有5只球, 其中有3只白球和2只黑球, 从袋中任意取一球, 观察其颜色; (2) 从(1)的袋中不放回任意取两次球, 每次取出一个, 观察其颜色; (3) 从(1)的袋中不放回任意取3只球, 记录取到的黑球个数; (4) 生产产品直到有10件正品为止, 记录生产产品的总件数. 解 (1) {黑球,白球}; (2) {黑黑,黑白,白黑,白白}; (3) {0,1,2}; (4) 设在生产第10件正品前共生产了n 件不合格品,则样本空间为{10|0,1,2,n n += }. 3. 设A, B, C 是三个随机事件, 试以A, B, C 的运算关系来表示下列各事件: (1) 仅有A 发生; (2) A , B , C 中至少有一个发生; (3) A , B , C 中恰有一个发生; (4) A , B , C 中最多有一个发生; (5) A , B , C 都不发生; (6) A 不发生, B , C 中至少有一个发生. 解 (1) ABC ; (2) A B C ; (3) ABC ABC ABC ; (4) ABC ABC ABC ABC ; (5) ABC ; (6) ()A B C . 4. 事件A i 表示某射手第i 次(i =1, 2, 3)击中目标, 试用文字叙述下列事件: (1) A 1∪A 2; (2) A 1∪A 2∪A 3; (3)3A ; (4) A 2-A 3; (5)2 3A A ; (6)12A A . 解 (1) 射手第一次或第二次击中目标;(2) 射手三次射击中至少击中目标;(3) 射手第三次没有击中目标;(4) 射手第二次击中目标,但是第三次没有击中目标;(5) 射手第二次和第三次都没有击中目标;(6) 射手第一次或第二次没有击中目标. 习题1-3 1. 选择题 (1) 设A, B 为任二事件, 则下列关系正确的是( ). (A)()()()P A B P A P B -=-. (B)()()()P A B P A P B =+ . (C)()()()P AB P A P B = . (D)()()()P A P AB P AB =+. 解 由文氏图易知本题应选(D). (2) 若两个事件A 和B 同时出现的概率P (AB )=0, 则下列结论正确的是 ( ). (A) A 和B 互不相容. (B) AB 是不可能事件. (C) AB 未必是不可能事件. (D) P (A )=0或P (B )=0. 解 本题答案应选(C). 2. 设P (AB )=P (AB ), 且P (A )=p ,求P (B ). 解 因 ()1()1()()()()P AB P A B P A P B P AB P AB =-=--+= , 故()()1P A P B +=. 于是()1.P B p =- 3. 已知() 0.4P A =,()0.3P B =,()0.4P A B = , 求()P AB .

概率论习题答案

第一章 随机事件与概率 1.对立事件与互不相容事件有何联系与区别? 它们的联系与区别是: (1)两事件对立(互逆),必定互不相容(互斥),但互不相容未必对立。 (2)互不相容的概念适用于多个事件,但对立的概念仅适用于两个事件。 (3)两个事件互不相容只表示两个事件不能同时发生,即至多只能发生其中一个,但可以都不发生。而两个事件对立则表明它们有且仅有一个发生,即肯定了至少有一个发生。特别地,A A =、?=A A U 、φ=A A I 。 2.两事件相互独立与两事件互不相容有何联系与区别? 两事件相互独立与两事件互不相容没有必然的联系。我们所说的两个事件相互独立,其实质是事件是否发生不影响A B 、A 事件B 发生的概率。而说两个事件互不相容,则是指事件发生必然导致事件A B 、A B 不发生,或事件B 发生必然导致事件不发生,即A φ=AB ,这就是说事件是否发生对事件A B 发生的概率有影响。 3.随机事件与样本空间、样本点有何联系? 所谓样本空间是指:随机试验的所有基本事件组成的集合,常用来记。其中基本事件也称为样本点。而随机事件可看作是有样本空间中具有某种特性的样本点组成的集合。通常称这类事件为复合事件;只有一个样本点组成的集合称为基本事件。在每次试验中,一定发生的事件叫做必然事件,记作。而一定不发生的事件叫做不可能事件,记作??φ。为了以后讨论问题方便,通常将必然事件和不可能事件看成是特殊的随机事件。这是由于事件的性质

随着试验条件的变化而变化,即:无论是必然事件、随机事件还是不可能事件,都是相对“一定条件”而言的。条件发生变化,事件的性质也发生变化。例如:抛掷两颗骰子,“出现的点数之和为3点”及“出现的点数之和大于3点”,都是随机事件。若同时抛掷4颗骰子,“出现的点数之和为3点”,则是不可能事件了;而“出现的点数之和大于3点”则是必然事件了。而样本空间中的样本点是由试验目的所确定的。例如: (1)将一颗骰子连续抛掷三次,观察出现的点数之和,其样本空间为 ?={34}。 518,,,,L (2)将一颗骰子连续抛掷三次,观察六点出现的次数,其样本空间为 ?={012}。 3,,, 在(1)、(2)中同是将一颗骰子连续抛掷三次,由于试验目的不同,其样本空间也就不一样。 4.频率与概率有何联系与区别? 事件的概率是指事件在一次试验中发生的可能性大小,其严格的定义为: A A 概率的公理化定义:设E 为随机试验,?为它的样本空间,对E 中的每一个事件都赋予一个实数,记为,且满足 A P A () (1)非负性:01≤≤P A (); (2)规范性:P ()?=1; (3)可加性:若两两互不相容,有。 A A A n 12,,,,L L )P A P A i i i i ()(=∞=∞ =∑11U 则称为事件的概率。 P A ()A 而事件的频率是指事件在次重复试验中出现的次数与总的试验次数n 之比,即A A n n A ()n A n )(为次试验中出现的频率。因此当试验次数n 为有限数时,频率只能在一定程度上反映了事件n A A 发生的可能性大小,并且在一定条件下做重复试验,其结果可能是不一样的,所以不能用频率代替概率。

相关文档
相关文档 最新文档