文档库 最新最全的文档下载
当前位置:文档库 › 土木工程桥梁毕业设计-外文文献翻译

土木工程桥梁毕业设计-外文文献翻译

土木工程桥梁毕业设计-外文文献翻译
土木工程桥梁毕业设计-外文文献翻译

外文文献翻译

7.2 Equilibrium Equations

7.2.1 Equilibrium Equation and Virtual Work Equation

For any volume V of a material body having A as surface area, as shown in Figure 7.2, it has the following conditions of equilibrium:

FIGURE 7.2 Derivation of equations of equilibrium.

At surface points

At internal points

Where n i represents the components of unit normal vector n of the surface;Ti is the stress vector at the point associated with n;ζ

ji,j

with respect to xj;and Fi is the represents the first derivative of ζ

ij

body force intensity.Any set of stresses ζij,body forces Fi,and external surface forces Ti that satisfies Eqs.(7.1a-c) is a statically admissible set.

Equations(7.1b and c)may be written in(x,y,z) notation as

and

Whereζ

x ,ζ

y

,andζ

z

are the normal stress in(x,y,z) direction respectively;

τxy,τyz,and so on,are the corresponding shear stresses in(x,y,z) notation;and Fx,Fy,and Fz ard the body forces in(x,y,z,)direction,respe- ctively.

The principle of virtual work has proved a very powerful technique of solving problems and providing proofs for general theorems in solid mechanics. The equation of virtual work uses two independent sets of

equilibrium and compatible(see Figure 7.3,where A

u and A

T

represent

displacement and stress boundary),as follows:

compatible set

equilibrium set

or

which states that the external virtual work(δW

ext

) equals the internal

virtual work(δW

int

).

Here the integration is over the whole area A,or volune V,of the body.

The stress field δ

ij ,body forces Fi,and external surface forces T

i

are

a statically admissible set that satisfies Eqs.(7.1a–c).Similarly, the

strain field ε

ij ﹡and the displacement u

i

﹡are a compatible kinematics

set that satisfies displacement boundary conditions and Eq.(7.16)(see Section 7.3.1).This means the principle of virtual work applies only to small strain or small deformation.

The important point to keep in mind is that, neither the admissible

equilibrium set δ

ij ,F

i

,and T

i

(Figure 7.3a)nor the compatible setε

ij

﹡and

u

i

﹡( Figure 7.3b)need be the actual state,nor need the equilibrium and compatible sets be related to each other in any way.In the other words, these two sets are completely independent of each other.

7.2.2 Equilibrium Equation for Elements

For an infinitesimal material element,equilibrium equations have

been summarized in Section 7.2.1,which will transfer into specific expressions in different methods.As in ordinary FEM or the displacement method, it will result in the following element equilibrium equations:

FIGURE 7.4 Plane truss member–end forces and displacements.(Source: Meyers, V.J.,Matrix Analysis of Structures,New York: Harper & Row,1983. With permission.) Where {}e and {}e are the element nodal force vector and displacement

vector,respectively,while{}e is element stiffness matrix;the overbar here means in local coordinate system.

In the force method of structural analysis, which also adopts the idea of discretization,it is proved possible to identify a basic set of independent forces associated with each member, in that not only are these forces independent of one another, but also all other forces in that member are directly dependent on this set.Thus,this set of forces constitutes the minimum set that is capable of completely defining the stressed state of the member.The relationship between basic and local forces may be

obtained by enforcing overall equilibrium on one member, which gives

Where [L]= the element force transformation matrix and {P}e =the element primary forces vector.It is important to emphasize that the physical basis of Eq.(7.5)is member overall equilibrium.

Take a conventional plane truss member for exemplification(see Figure 7.4),one has

FIGURE 7.5 Coordinate transformation.

and

where EA/l=axial stiffness of the truss member and P=axial force of the truss member.

7.2.3 Coordinate Transformation

The values of the components of vector V,designated by v1,v2,and v3 or simply,are associated with the chosen set coordinate axes.Often it is

necessary to reorient the reference axes and evaluate new values for the components of V in the new coordinate system.Assuming that V has components vi and vi′in two sets of right-handed Cartesian coordinate systems xi (old)and xi′(new)having the same origin (see Figure 7.5), and are the unit vectors of xi and xi′,respectively. Then

Where ,that is,the cosines of the angles between xi′

and xj axes for i and j ranging from 1 to 3;and [α]=(l

ij )

3×3

is called

coordinate transformation matrix from the old system to the new system.

It should be noted that the elements of l

ij

or matrix [α] are not

symmetrical,l

ij ≠l

ji

.For example,l

12

is the cosine of angle from x1′to x2

and l

21

is that from x2′to x1(see Figure 7.5).The angle is assumed to be measured from the primed system to the unprimed system.

For a plane truss member(see Figure 7.4),the transformation matrix from local coordina tesystem to global coordinate system may be expressed as

where α is the inclined angle of the truss member which is assumed to be measured from the global to the local coordinate system.

7.2.4 Equilibrium Equation for Structures

For discretized structure,the equilibrium of the whole structure is essentially the equilibrium of each joint. After assemblage,

For ordinary FEM or displacement method

For force method

where {F}=nodal loading vector;[K]=total stiffness matrix;{D}=nodal displacement vector;[A]=total forces transformation matrix;{P}=total primary internal forces vector.

It should be noted that the coordinate transformation for each element

from local coordinates to the global coordinate system must be done before assembly.

In the force method, Eq.(7.11)will be adopted to solve for internal forces of a statically determinate structure.The number of basic unknown forces is equal to the number of equilibrium equations available to solve for them and the equations are linearly independent.For statically unstable structures, analysis must consider their dynamic behavior. When the number of basic unknown forces exceeds the number of equilibrium equations,the structure is said to be statically indeterminate.In this case,some of the basic unknown forces are not required to maintain structural equilibrium.These are“extra”or“redundant”forces.To obtain a solution for the full set of basic unknown forces,it is necessary to augment the set of independent equilibrium equations with elastic behavior of the structure,namely,the force–displacement relations of the structure.Having solved for the full set of basic forces,we can determine the displacements by back substitution.

7.2.5 Influence Lines and Surfaces

In the design and analysis of bridge structures,it is necessary to study the effects intrigued by loads placed in various positions.This can be done conveniently by means of diagrams showing the effect of moving a unit load across the structures.Such diagrams are commonly called influence lines(for framed structures) or influence surfaces (for plates). Observe that whereas a moment or shear diagram shows the variation in moment or shear along the structure due to some particular position of load,an influence line or surface for moment or shear shows the variation of moment or shear at a particular section due to a unit load placed anywhere along the structure.

Exact influence lines for statically determinate structures can be obtained analytically by statics alone.From Eq.(7.11),the total primary internal forces vector {P} can be expressed as

by which given a unit load at one node,the excited internal forces of all members will be obtained,and thus Eq.(7.12) gives the analytical expression of influence lines of all member internal forces for discretized structures subjected to moving nodal loads.

For statically indeterminate structures,influence values can be determined directly from a consideration of the geometry of the deflected load line resulting from imposing a unit deformation corresponding to the function under study,based on the principle of virtual work.This may better be demonstrated by a two-span continuous beam shown in Figure 7.6, where the influence line of internal bending moment at section M B is required.

FIGURE 7.6 Influence line of a two-span continuous beam.

FIGURE 7.7 Deformation of a line element for Lagrangian and Eluerian variables.

Cutting section B to M

expose and give it a unit relative rotation

B

δ=1(see Figure 7.6)and employing the principle of virtual work gives

Therefore,

which means the influence value of M B equals to the deflection v(x)of the beam subjected to a unit rotation at joint B(represented by dashed line in Figure7.6b).Solving for v(x)can be carried out easily referring to material mechanics.

7.2 平衡方程

7.2.1平衡方程和虚功方程

对于任何有一定体积的材料都有一个表面积,如图7.2所示,它具有以下平衡条件:

在表面的点:

图7.2 平衡方程的推导

在内部的点

其中,n

i 表示n表面的单位法向量;Ti表示与n相关的向量点应力;ζ

ji,j

表示

ζij关于xj的一阶导数;而Fi表示体积力。任何一系列满足方程(7.1a)-(7.1c)的应力ζ

ij

、体积力Fi、表面力Ti都是一个静态的容许集。

方程(7.1b和7.1c)可以写成如下所示(x,y,z)的形式,

其中,ζ

x ,ζ

y

,和ζ

z

分别是(x,y,z)方向的正应力,τxy和τy等表示(x,y,z)

中的剪应力;Fx,Fy和Fz分别表示(x,y,z)方向的体积力

虚功原理被证明是一个解决问题的非常有效的方法,它在固体力学领域为一般性定理提供了证明。虚功方程采用两套独立的平衡集和兼容集(见图7.3,其

中A

u 和A

T

分别表示位移边界和应力边界),如下所示:

图7.3 虚功方程的两独立集

相容集

平衡集

或是

它表明外力虚功(δW

ext )等于内力虚功(δW

int

)。

这个集成包括了物体的整个面积或体积。应力场δ

ij

,体积力Fi和外部表面

力Ti是一个满足方程(7.1a-7.1c)的静态容许集。相似的,应变场ε

ij

﹡和位移

u

i

﹡是一个满足位移边界条件和方程(7.16)(见7.3.1节)的兼容的运动学集。这意味着虚功原理仅适用于小应变或变形小的情况。

需要注意的重要一点是,无论容许均衡集δ

ij ,F

i

,和T

i

(图7.3a),还是兼

容集ε

ij ﹡和u

i

﹡都不需要明确的状态,也不需要平衡集和兼容集以任何方式彼

此相关。换句话说,这两个集合是完全相互独立的。

7.2.2单元的平衡方程

对于一个无穷小单元,平衡方程已经在7.2.1节中总结,这可以转化成不同方法中的具体表达式。正如在普通有限元法、位移法中,它可以导出以下单元平

衡方程:

图7.4 平面桁架端承力和位移(来源:Meyers,V.J.,《结构矩阵分析》,1983年纽约Harper &Row出版授权社出版)

其中,{}e和 {}e分别表示单元节点力向量和位移向量,而{}e表示单元刚度矩阵;这里的上划线表示局部坐标系。

在力法的结构分析中采用了离散化的方法,这被证明可以用来确定一套与各构件相关联的基本独立的力,在其中不仅这些力彼此之间相互独立,而且构件中的所有其他的力直接依赖于本集。因此,这些力构成的最小集能够完全定义构件的受力状态。基本力与局部力的关系可以通过乘以整体平衡的一个构件来获得,如下所示:

其中,[L]表示单元力的变换矩阵,{P}e表示单元基本的向量力。需要强调的是,物理基本方程(7.5)是所有平衡的组成部分。

以一个传统的平面桁架构件为例(见图7.4),有

图7.5 坐标变换

其中,EA/l表示桁架构件的轴向刚度,P表示桁架构件的轴向力。

7.2.3 坐标变换

向量V的分量的数值,是与所选择的坐标系有关,常常被定义为v1,v2,v3或者是些更简单地定义。通常在新的坐标系中必须调整参考轴并且为V的分量评估新值。假设向量V在两个右手笛卡尔坐标系xi(旧)和xi′(新)中有两个具有相同起点的分量vi和 vi′(见图7.5),而分别是坐标系xi和 xi′的单位向量。于是有

其中,即在轴xi′和xj之间角的余弦中的i和j的变化范

围是从1到3;[α]=(l

ij )

3×3

被称为从旧坐标系向新坐标系的坐标变换矩阵。

应该注意的是,l

ij 中的元素或是矩阵[α]是非对称的,即l

ij

≠l

ji

。例如,

l

12是从x1′到x2的角的余弦,而l

21

是从x2′到x1的角的余弦(见图7.5)。

假定角度是从原坐标系到坐标系中测量的。

对于一个平面桁架构件(见图7.4),从局部坐标系到整体坐标系的变换矩阵可以表示为:

其中α是假定从整体坐标系到局部坐标系中测量的桁架构件的倾斜角。

7.2.4结构的平衡方程

对于离散结构,整体结构的平衡实质上是每个结点的平衡。装配后,

对于普通有限元法或位移法:

对于力法:

其中,{F}表示节点荷载向量;[K]表示总刚度矩阵;{D}表示位移向量;[A]表示总的力变换矩阵;{P}表示总的内力基本向量。

应该注意的是,每个元素从局部坐标系到整体坐标系的坐标变换必须在装配前完成。

在力法中,方程(7.11)可以用来解决静定结构的内力问题。基本未知力的数量等于用来解决问题的有效的平衡方程的数量,并且这些方程是线性无关的。对于静不定结构,必须分析考虑他们的动态行为。当基本未知力的数量大于平衡方程的数量时,这种结构就被称为超静定。在这种情况下,一些基本未知力不需要来保持结构平衡。这是些“额外”或“多余”的力。为了获得解决全部基本未知力的方法,有必要增加一套与结构的弹性行为有关的独立平衡方程,即结构的力与位移关系方程。解决了全部的基本未知力后,我们可以通过回代来确定位移。

7.2.5影响线和影响面

在桥梁结构设计与分析中,研究荷载放置在不同位置时的影响是很有必要的。这样能够通过图表方便地显示单位移动荷载对结构的影响。这种图表通常被称为影响线(对于框架结构)或是影响面(对于板结构)。应注意到无论是力矩图显示的变化的力矩,还是剪力图显示的沿结构发生的剪切,都取决于某些特定位置的荷载,对于力矩或剪切的影响线、影响面显示的它们在某一特定部分的变化都取决于单位荷载沿结构所放置的位置。

精确的静定结构影响线可以仅靠静力学分析获得。通过公式(7.11),总的内力基本向量{P}可以表示为:

通过在一个节点给定一个单位荷载,所有结构单元的内力都能够获得,因此公式(7.12)给出了离散结构在移动节点荷载作用下的所有单元内力的影响线的解析表达式。

对于非静定结构,基于虚功原理,通过对施加单元相应变形所产生的几何偏载线的研究,影响值可以直接被确定。这可以通过图7.6中的一个双跨连续梁得到更好的证明,其中在节点位置的内力弯矩M

时必要的。

B

图7.6双跨连续梁的影响线

图7.7拉格朗日和欧拉变量的线单元变形

切开节点B添加弯矩M

,并给它一个单位相对转动δ=1(见图7.6),

B

利用虚功原理得出:

因此可得,

这意味着M

的影响值等于梁在节点B受到的一个单位转动所产生的挠度值v(x)

B

(由图7.6b中的虚线表示)。因此对于涉及材料力学挠度v(x)的求解可以更简便的进行。

英文文献(节选自"Bridge Engineering Handbook" edited by Wai-Fah Chen)

土木工程类专业英文文献及翻译

PA VEMENT PROBLEMS CAUSED BY COLLAPSIBLE SUBGRADES By Sandra L. Houston,1 Associate Member, ASCE (Reviewed by the Highway Division) ABSTRACT: Problem subgrade materials consisting of collapsible soils are com- mon in arid environments, which have climatic conditions and depositional and weathering processes favorable to their formation. Included herein is a discussion of predictive techniques that use commonly available laboratory equipment and testing methods for obtaining reliable estimates of the volume change for these problem soils. A method for predicting relevant stresses and corresponding collapse strains for typical pavement subgrades is presented. Relatively simple methods of evaluating potential volume change, based on results of familiar laboratory tests, are used. INTRODUCTION When a soil is given free access to water, it may decrease in volume, increase in volume, or do nothing. A soil that increases in volume is called a swelling or expansive soil, and a soil that decreases in volume is called a collapsible soil. The amount of volume change that occurs depends on the soil type and structure, the initial soil density, the imposed stress state, and the degree and extent of wetting. Subgrade materials comprised of soils that change volume upon wetting have caused distress to highways since the be- ginning of the professional practice and have cost many millions of dollars in roadway repairs. The prediction of the volume changes that may occur in the field is the first step in making an economic decision for dealing with these problem subgrade materials. Each project will have different design considerations, economic con- straints, and risk factors that will have to be taken into account. However, with a reliable method for making volume change predictions, the best design relative to the subgrade soils becomes a matter of economic comparison, and a much more rational design approach may be made. For example, typical techniques for dealing with expansive clays include: (1) In situ treatments with substances such as lime, cement, or fly-ash; (2) seepage barriers and/ or drainage systems; or (3) a computing of the serviceability loss and a mod- ification of the design to "accept" the anticipated expansion. In order to make the most economical decision, the amount of volume change (especially non- uniform volume change) must be accurately estimated, and the degree of road roughness evaluated from these data. Similarly, alternative design techniques are available for any roadway problem. The emphasis here will be placed on presenting economical and simple methods for: (1) Determining whether the subgrade materials are collapsible; and (2) estimating the amount of volume change that is likely to occur in the 'Asst. Prof., Ctr. for Advanced Res. in Transp., Arizona State Univ., Tempe, AZ 85287. Note. Discussion open until April 1, 1989. To extend the closing date one month,

桥梁工程毕业设计外文翻译箱梁

桥梁工程毕业设计外文翻译箱梁

西南交通大学本科毕业设计(论文) 外文资料翻译 年级: 学号: 姓名: 专业: 指导老师:

6 月

外文资料原文: 13 Box girders 13.1 General The box girder is the most ?exible bridge deck form. It can cover a range of spans from25 m up to the largest non-suspended concrete decks built, of the order of 300 m. Single box girders may also carry decks up to 30 m wide. For the longer span beams, beyond about 50 m, they are practically the only feasible deck section. For the shorter spans they are in competition with most of the other deck types discussed in this book. The advantages of the box form are principally its high structural ef?ciency (5.4), which minimises the prestress force required to resist a given bending moment, and its great torsional strength with the capacity this gives to re-centre eccentric live loads, minimising the prestress required to carry them.

土木工程外文文献及翻译

本科毕业设计 外文文献及译文 文献、资料题目:Designing Against Fire Of Building 文献、资料来源:国道数据库 文献、资料发表(出版)日期:2008.3.25 院(部):土木工程学院 专业:土木工程 班级:土木辅修091 姓名:武建伟 学号:2008121008 指导教师:周学军、李相云 翻译日期: 20012.6.1

外文文献: Designing Against Fire Of Buliding John Lynch ABSTRACT: This paper considers the design of buildings for fire safety. It is found that fire and the associ- ated effects on buildings is significantly different to other forms of loading such as gravity live loads, wind and earthquakes and their respective effects on the building structure. Fire events are derived from the human activities within buildings or from the malfunction of mechanical and electrical equipment provided within buildings to achieve a serviceable environment. It is therefore possible to directly influence the rate of fire starts within buildings by changing human behaviour, improved maintenance and improved design of mechanical and electrical systems. Furthermore, should a fire develops, it is possible to directly influence the resulting fire severity by the incorporation of fire safety systems such as sprinklers and to provide measures within the building to enable safer egress from the building. The ability to influence the rate of fire starts and the resulting fire severity is unique to the consideration of fire within buildings since other loads such as wind and earthquakes are directly a function of nature. The possible approaches for designing a building for fire safety are presented using an example of a multi-storey building constructed over a railway line. The design of both the transfer structure supporting the building over the railway and the levels above the transfer structure are considered in the context of current regulatory requirements. The principles and assumptions associ- ated with various approaches are discussed. 1 INTRODUCTION Other papers presented in this series consider the design of buildings for gravity loads, wind and earthquakes.The design of buildings against such load effects is to a large extent covered by engineering based standards referenced by the building regulations. This is not the case, to nearly the same extent, in the

土木工程外文翻译

转型衰退时期的土木工程研究 Sergios Lambropoulosa[1], John-Paris Pantouvakisb, Marina Marinellic 摘要 最近的全球经济和金融危机导致许多国家的经济陷入衰退,特别是在欧盟的周边。这些国家目前面临的民用建筑基础设施的公共投资和私人投资显著收缩,导致在民事特别是在民用建筑方向的失业。因此,在所有国家在经济衰退的专业发展对于土木工程应届毕业生来说是努力和资历的不相称的研究,因为他们很少有机会在实践中积累经验和知识,这些逐渐成为过时的经验和知识。在这种情况下,对于技术性大学在国家经济衰退的计划和实施的土木工程研究大纲的一个实质性的改革势在必行。目的是使毕业生拓宽他们的专业活动的范围,提高他们的就业能力。 在本文中,提出了土木工程研究课程的不断扩大,特别是在发展的光毕业生的潜在的项目,计划和投资组合管理。在这个方向上,一个全面的文献回顾,包括ASCE体为第二十一世纪,IPMA的能力的基础知识,建议在其他:显著增加所提供的模块和项目管理在战略管理中添加新的模块,领导行为,配送管理,组织和环境等;提供足够的专业训练五年的大学的研究;并由专业机构促进应届大学生认证。建议通过改革教学大纲为土木工程研究目前由国家技术提供了例证雅典大学。 1引言 土木工程研究(CES)蓬勃发展,是在第二次世界大战后。土木工程师的出现最初是由重建被摧毁的巨大需求所致,目的是更多和更好的社会追求。但是很快,这种演变一个长期的趋势,因为政府为了努力实现经济发展,采取了全世界的凯恩斯主义的理论,即公共基础设施投资作为动力。首先积极的结果导致公民为了更好的生活条件(住房,旅游等)和增加私人投资基础设施而创造机会。这些现象再国家的发展中尤为为明显。虽然前景并不明朗(例如,世界石油危机在70年代),在80年代领先的国家采用新自由主义经济的方法(如里根经济政策),这是最近的金融危机及金融危机造成的后果(即收缩的基础设施投资,在技术部门的高失业率),消除发展前途无限的误区。 技术教育的大学所认可的大量研究土木工程部。旧学校拓展专业并且新的学校建成,并招收许多学生。由于高的职业声望,薪酬,吸引高质量的学校的学生。在工程量的增加和科学技术的发展,导致到极强的专业性,无论是在研究还是工作当中。结构工程师,液压工程师,交通工程师等,都属于土木工程。试图在不同的国家采用专业性的权利,不同的解决方案,,从一个统一的大学学历和广泛的专业化的一般职业许可证。这个问题在许多其他行业成为关键。国际专业协会的专家和机构所确定的国家性检查机构,经过考试后,他们证明不仅是行业的新来者,而且专家通过时间来确定进展情况。尽管在很多情况下,这些证书虽然没有国家接受,他们赞赏和公认的世界。 在试图改革大学研究(不仅在土木工程)更接近市场需求的过程中,欧盟确定了1999博洛尼亚宣言,它引入了一个二能级系统。第一级度(例如,一个三年的学士)是进入

土木工程岩土类毕业设计外文翻译

姓名: 学号: 10447425 X X 大学 毕业设计(论文)外文翻译 (2014届) 外文题目Developments in excavation bracing systems 译文题目开挖工程支撑体系的发展 外文出处Tunnelling and Underground Space Technology 31 (2012) 107–116 学生XXX 学院XXXX 专业班级XXXXX 校内指导教师XXX 专业技术职务XXXXX 校外指导老师专业技术职务 二○一三年十二月

开挖工程支撑体系的发展 1.引言 几乎所有土木工程建设项目(如建筑物,道路,隧道,桥梁,污水处理厂,管道,下水道)都涉及泥土挖掘的一些工程量。往往由于由相邻的结构,特性线,或使用权空间的限制,必须要一个土地固定系统,以允许土壤被挖掘到所需的深度。历史上,许多挖掘支撑系统已经开发出来。其中,现在比较常见的几种方法是:板桩,钻孔桩墙,泥浆墙。 土地固定系统的选择是由技术性能要求和施工可行性(例如手段,方法)决定的,包括执行的可靠性,而成本考虑了这些之后,其他问题也得到解决。通常环境后果(用于处理废泥浆和钻井液如监管要求)也非常被关注(邱阳、1998)。 土地固定系统通常是建设项目的较大的一个组成部分。如果不能按时完成项目,将极大地影响总成本。通常首先建造支撑,在许多情况下,临时支撑系统是用于支持在挖掘以允许进行不断施工,直到永久系统被构造。临时系统可以被去除或留在原处。 打桩时,因撞击或振动它们可能会被赶入到位。在一般情况下,振动是最昂贵的方法,但只适合于松散颗粒材料,土壤中具有较高电阻(例如,通过鹅卵石)的不能使用。采用打入桩系统通常是中间的成本和适合于软沉积物(包括粘性和非粘性),只要该矿床是免费的鹅卵石或更大的岩石。 通常,垂直元素(例如桩)的前安装挖掘工程和水平元件(如内部支撑或绑回)被安装为挖掘工程的进行下去,从而限制了跨距长度,以便减少在垂直开发弯矩元素。在填充情况下,桩可先设置,从在斜坡的底部其嵌入悬挑起来,安装作为填充进步水平元素(如搭背或土钉)。如果滞后是用来保持垂直元素之间的土壤中,它被安装为挖掘工程的进行下去,或之前以填补位置。 吉尔- 马丁等人(2010)提供了一个数值计算程序,以获取圆形桩承受轴向载荷和统一标志(如悬臂桩)的单轴弯矩的最佳纵筋。他们开发的两种优化流程:用一个或两个直径为纵向钢筋。优化增强模式允许大量减少的设计要求钢筋的用量,这些减少纵向钢筋可达到50%相对传统的,均匀分布的加固方案。 加固桩集中纵向钢筋最佳的位置在受拉区。除了节约钢筋,所述非对称加强钢筋图案提高抗弯刚度,通过增加转动惯量的转化部分的时刻。这种增加的刚性可能会在一段时间内增加的变形与蠕变相关的费用。评估相对于传统的非对称加强桩的优点,对称,钢筋桩被服务的条件下全面测试来完成的,这种试验是为了验证结构的可行性和取得的变形的原位测量。 基于现场试验中,用于优化的加强图案的优点浇铸钻出孔(CIDH)在巴塞罗那的

机械毕业设计英文外文翻译399驱动桥

附录A 英文文献 Drive Axle All vehicles have some type of drive axle/differential assembly incorporated into the driveline. Whether it is front, rear or four wheel drive, differentials are necessary for the smooth application of engine power to the road. Powerflow The drive axle must transmit power through a 90°angle. The flow of power in conventional front engine/rear wheel drive vehicles moves from the engine to the drive axle in approximately a straight line. However, at the drive axle, the power must be turned at right angles (from the line of the driveshaft) and directed to the drive wheels. This is accomplished by a pinion drive gear, which turns a circular ring gear. The ring gear is attached to a differential housing, containing a set of smaller gears that are splined to the inner end of each axle shaft. As the housing is rotated, the internal differential gears turn the axle shafts, which are also attached to the drive wheels. Rear-wheel drive Rear-wheel-drive vehicles are mostly trucks, very large sedans and many sports car and coupe models. The typical rear wheel drive vehicle uses a front mounted engine and transmission assemblies with a driveshaft coupling the transmission to the rear drive axle. Drive in through the layout of the bridge, the bridge drive shaft arranged vertically in the same vertical plane, and not the drive axle shaft, respectively, in their own sub-actuator with a direct connection, but the actuator is located at the front or the back of the adjacent shaft

土木工程外文文献翻译

专业资料 学院: 专业:土木工程 姓名: 学号: 外文出处:Structural Systems to resist (用外文写) Lateral loads 附件:1.外文资料翻译译文;2.外文原文。

附件1:外文资料翻译译文 抗侧向荷载的结构体系 常用的结构体系 若已测出荷载量达数千万磅重,那么在高层建筑设计中就没有多少可以进行极其复杂的构思余地了。确实,较好的高层建筑普遍具有构思简单、表现明晰的特点。 这并不是说没有进行宏观构思的余地。实际上,正是因为有了这种宏观的构思,新奇的高层建筑体系才得以发展,可能更重要的是:几年以前才出现的一些新概念在今天的技术中已经变得平常了。 如果忽略一些与建筑材料密切相关的概念不谈,高层建筑里最为常用的结构体系便可分为如下几类: 1.抗弯矩框架。 2.支撑框架,包括偏心支撑框架。 3.剪力墙,包括钢板剪力墙。 4.筒中框架。 5.筒中筒结构。 6.核心交互结构。 7. 框格体系或束筒体系。 特别是由于最近趋向于更复杂的建筑形式,同时也需要增加刚度以抵抗几力和地震力,大多数高层建筑都具有由框架、支撑构架、剪力墙和相关体系相结合而构成的体系。而且,就较高的建筑物而言,大多数都是由交互式构件组成三维陈列。 将这些构件结合起来的方法正是高层建筑设计方法的本质。其结合方式需要在考虑环境、功能和费用后再发展,以便提供促使建筑发展达到新高度的有效结构。这并

不是说富于想象力的结构设计就能够创造出伟大建筑。正相反,有许多例优美的建筑仅得到结构工程师适当的支持就被创造出来了,然而,如果没有天赋甚厚的建筑师的创造力的指导,那么,得以发展的就只能是好的结构,并非是伟大的建筑。无论如何,要想创造出高层建筑真正非凡的设计,两者都需要最好的。 虽然在文献中通常可以见到有关这七种体系的全面性讨论,但是在这里还值得进一步讨论。设计方法的本质贯穿于整个讨论。设计方法的本质贯穿于整个讨论中。 抗弯矩框架 抗弯矩框架也许是低,中高度的建筑中常用的体系,它具有线性水平构件和垂直构件在接头处基本刚接之特点。这种框架用作独立的体系,或者和其他体系结合起来使用,以便提供所需要水平荷载抵抗力。对于较高的高层建筑,可能会发现该本系不宜作为独立体系,这是因为在侧向力的作用下难以调动足够的刚度。 我们可以利用STRESS,STRUDL 或者其他大量合适的计算机程序进行结构分析。所谓的门架法分析或悬臂法分析在当今的技术中无一席之地,由于柱梁节点固有柔性,并且由于初步设计应该力求突出体系的弱点,所以在初析中使用框架的中心距尺寸设计是司空惯的。当然,在设计的后期阶段,实际地评价结点的变形很有必要。 支撑框架 支撑框架实际上刚度比抗弯矩框架强,在高层建筑中也得到更广泛的应用。这种体系以其结点处铰接或则接的线性水平构件、垂直构件和斜撑构件而具特色,它通常与其他体系共同用于较高的建筑,并且作为一种独立的体系用在低、中高度的建筑中。

土木工程外文翻译.doc

项目成本控制 一、引言 项目是企业形象的窗口和效益的源泉。随着市场竞争日趋激烈,工程质量、文明施工要求不断提高,材料价格波动起伏,以及其他种种不确定因素的影响,使得项目运作处于较为严峻的环境之中。由此可见项目的成本控制是贯穿在工程建设自招投标阶段直到竣工验收的全过程,它是企业全面成本管理的重要环节,必须在组织和控制措施上给于高度的重视,以期达到提高企业经济效益的目的。 二、概述 工程施工项目成本控制,指在项目成本在成本发生和形成过程中,对生产经营所消耗的人力资源、物资资源和费用开支,进行指导、监督、调节和限制,及时预防、发现和纠正偏差从而把各项费用控制在计划成本的预定目标之内,以达到保证企业生产经营效益的目的。 三、施工企业成本控制原则 施工企业的成本控制是以施工项目成本控制为中心,施工项目成本控制原则是企业成本管理的基础和核心,施工企业项目经理部在对项目施工过程进行成本控制时,必须遵循以下基本原则。 3.1 成本最低化原则。施工项目成本控制的根本目的,在于通过成本管理的各种手段,促进不断降低施工项目成本,以达到可能实现最低的目标成本的要求。在实行成本最低化原则时,应注意降低成本的可能性和合理的成本最低化。一方面挖掘各种降低成本的能力,使可能性变为现实;另一方面要从实际出发,制定通过主观努力可能达到合理的最低成本水平。 3.2 全面成本控制原则。全面成本管理是全企业、全员和全过程的管理,亦称“三全”管理。项目成本的全员控制有一个系统的实质性内容,包括各部门、各单位的责任网络和班组经济核算等等,应防止成本控制人人有责,人人不管。项目成本的全过程控制要求成本控制工作要随着项目施工进展的各个阶段连续 进行,既不能疏漏,又不能时紧时松,应使施工项目成本自始至终置于有效的控制之下。 3.3 动态控制原则。施工项目是一次性的,成本控制应强调项目的中间控制,即动态控制。因为施工准备阶段的成本控制只是根据施工组织设计的具体内容确

土木工程专业外文文献及翻译

( 二 〇 一 二 年 六 月 外文文献及翻译 题 目: About Buiding on the Structure Design 学生姓名: 学 院:土木工程学院 系 别:建筑工程系 专 业:土木工程(建筑工程方向) 班 级:土木08-4班 指导教师:

英文原文: Building construction concrete crack of prevention and processing Abstract The crack problem of concrete is a widespread existence but again difficult in solve of engineering actual problem, this text carried on a study analysis to a little bit familiar crack problem in the concrete engineering, and aim at concrete the circumstance put forward some prevention, processing measure. Keyword:Concrete crack prevention processing Foreword Concrete's ising 1 kind is anticipate by the freestone bone, cement, water and other mixture but formation of the in addition material of quality brittleness not and all material.Because the concrete construction transform with oneself, control etc. a series problem, harden model of in the concrete existence numerous tiny hole, spirit cave and tiny crack, is exactly because these beginning start blemish of existence just make the concrete present one some not and all the characteristic of quality.The tiny crack is a kind of harmless crack and accept concrete heavy, defend Shen and a little bit other use function not a creation to endanger.But after the concrete be subjected to lotus carry, difference in temperature etc. function, tiny crack would continuously of expand with connect, end formation we can see without the

土木工程毕业设计外文翻译最终中英文

7 Rigid-Frame Structures A rigid-frame high-rise structure typically comprises parallel or orthogonally arranged bents consisting of columns and girders with moment resistant joints. Resistance to horizontal loading is provided by the bending resistance of the columns, girders, and joints. The continuity of the frame also contributes to resisting gravity loading, by reducing the moments in the girders. The advantages of a rigid frame are the simplicity and convenience of its rectangular form.Its unobstructed arrangement, clear of bracing members and structural walls, allows freedom internally for the layout and externally for the fenestration. Rig id frames are considered economical for buildings of up to' about 25 stories, above which their drift resistance is costly to control. If, however, a rigid frame is combined with shear walls or cores, the resulting structure is very much stiffer so that its height potential may extend up to 50 stories or more. A flat plate structure is very similar to a rigid frame, but with slabs replacing the girders As with a rigid frame, horizontal and vertical loadings are resisted in a flat plate structure by the flexural continuity between the vertical and horizontal components. As highly redundant structures, rigid frames are designed initially on the basis of approximate analyses, after which more rigorous analyses and checks can be made. The procedure may typically inc lude the following stages: 1. Estimation of gravity load forces in girders and columns by approximate method. 2. Preliminary estimate of member sizes based on gravity load forces with arbitrary increase in sizes to allow for horizontal loading. 3. Approximate allocation of horizontal loading to bents and preliminary analysis of member forces in bents. 4. Check on drift and adjustment of member sizes if necessary. 5. Check on strength of members for worst combination of gravity and horizontal loading, and adjustment of member sizes if necessary. 6. Computer analysis of total structure for more accurate check on member strengths and drift, with further adjustment of sizes where required. This stage may include the second-order P-Delta effects of gravity loading on the member forces and drift.. 7. Detailed design of members and connections.

桥梁外文翻译

毕业设计/论文 外文文献翻译 院系城市建设学院 专业班级 姓名 原文出处 评分 指导教师 华中科技大学武昌分校 20 12 年3月1日

Study on nonlinear analysis of a redundant cable-stayed bridge 1.Abstract A comparison on nonlinear analysis of a highly redundant cable-stayed bridge is performed in the study. The initial shapes including geometry and prestress distribution of the bridge are determined by using a two-loop iteration method, it is an equilibrium iteration loop and a shape iteration loop. For the initial shape analysis a linear and a nonlinear computation procedure are set up. In the former all nonlinearities of cable-stayed bridges are disregarded, and the shape iteration is carried out without considering equilibrium. In the latter all nonlinearities of the bridges are taken into consideration and both the equilibrium and the shape iteration are carried out. Based on the convergent initial shapes determined by the different procedures, the natural frequencies and vibration modes are then examined in details. Numerical results show that a convergent initial shape can be found rapidly by the two-loop iteration method, a reasonable initial shape can be determined by using the linear computation procedure, and a lot of computation efforts can thus be saved. There are only small differences in geometry and prestress distribution between the results determined by linear and nonlinear computation procedures. However, for the analysis of natural frequency and vibration modes, significant differences in the fundamental frequencies and vibration modes will occur, and the nonlinearities of the cable-stayed bridge response appear only in the modes determined on basis of the initial shape found by the nonlinear computation. 2. Introduction Rapid progress in the analysis and construction of cable-stayed bridges has been made over the last three decades. The progress is mainly due to developments in the fields of computer technology, high strength steel cables, orthotropic steel decks and construction technology. Since the first modern cable-stayed bridge was built in Sweden in 1955, their popularity has rapidly been increasing all over the world. Because of its aesthetic appeal, economic grounds and ease of erection, the

土木工程外文翻译参考3篇

学校 毕业设计(论文)附件 外文文献翻译 学号: xxxxx 姓名: xxx 所在系别: xxxxx 专业班级: xxx 指导教师: xxxx 原文标题: Building construction concrete crack of prevention and processing 2012年月日 .

建筑施工混凝土裂缝的预防与处理1 摘要 混凝土的裂缝问题是一个普遍存在而又难于解决的工程实际问题,本文对混凝土工程中常见的一些裂缝问题进行了探讨分析,并针对具体情况提出了一些预防、处理措施。 关键词:混凝土裂缝预防处理 前言 混凝土是一种由砂石骨料、水泥、水及其他外加材料混合而形成的非均质脆性材料。由于混凝土施工和本身变形、约束等一系列问题,硬化成型的混凝土中存在着众多的微孔隙、气穴和微裂缝,正是由于这些初始缺陷的存在才使混凝土呈现出一些非均质的特性。微裂缝通常是一种无害裂缝,对混凝土的承重、防渗及其他一些使用功能不产生危害。但是在混凝土受到荷载、温差等作用之后,微裂缝就会不断的扩展和连通,最终形成我们肉眼可见的宏观裂缝,也就是混凝土工程中常说的裂缝。 混凝土建筑和构件通常都是带缝工作的,由于裂缝的存在和发展通常会使内部的钢筋等材料产生腐蚀,降低钢筋混凝土材料的承载能力、耐久性及抗渗能力,影响建筑物的外观、使用寿命,严重者将会威胁到人们的生命和财产安全。很多工程的失事都是由于裂缝的不稳定发展所致。近代科学研究和大量的混凝土工程实践证明,在混凝土工程中裂缝问题是不可避免的,在一定的范围内也是可以接受的,只是要采取有效的措施将其危害程度控制在一定的范围之内。钢筋混凝土规范也明确规定:有些结构在所处的不同条件下,允许存在一定宽度的裂缝。但在施工中应尽量采取有效措施控制裂缝产生,使结构尽可能不出现裂缝或尽量减少裂缝的数量和宽度,尤其要尽量避免有害裂缝的出现,从而确保工程质量。 混凝土裂缝产生的原因很多,有变形引起的裂缝:如温度变化、收缩、膨胀、不均匀沉陷等原因引起的裂缝;有外载作用引起的裂缝;有养护环境不当和化学作用引起的裂缝等等。在实际工程中要区别对待,根据实际情况解决问题。 混凝土工程中常见裂缝及预防: 1.干缩裂缝及预防 干缩裂缝多出现在混凝土养护结束后的一段时间或是混凝土浇筑完毕后的一周左右。水泥浆中水分的蒸发会产生干缩,且这种收缩是不可逆的。干缩裂缝的产生主要是由于混凝土内外水分蒸发程度不同而导致变形不同的结果:混凝土受外部条件的影响,表面水分损失过快,变形较大,内部湿度变化较小变形较小,较大的表面干缩变形受到混凝土内部约束,产生较大拉应力而产生裂缝。相对湿度越低,水泥浆体干缩越大,干缩裂缝越易产 1原文出处及作者:《加拿大土木工程学报》

相关文档
相关文档 最新文档