文档库 最新最全的文档下载
当前位置:文档库 › 压气机知识

压气机知识

压气机知识
压气机知识

压气机的特性认识

通过这学期的课堂学习和近段时间课下查资料学习,使我对压气机的知识有了一定的了解和认识。压气机是燃气涡轮发动机的重要部件之一,它的作用是给燃烧室提供经过压缩的高压、高温气体。根据压气机的结构和气流流动特点,可以把它分为两种主要型式:轴流式压气机和离心式压气机。

首先,我们了解下轴流压气机的结构和工作特性。轴流式压气机由两大部分组成,与压气机旋转轴相联接的轮盘和叶片构成压气机的转子,外部不转动的机匣和与机匣相联接的叶片构成压气机的静子。转子上的叶片称为动叶,静子上的叶片称为静叶。每一排动叶和紧随其后的一排静叶构成轴流式压气机的一级。

压气机的效率高,说明压缩过程中的流阻损失小,实际过程接近理想过程。或者说,压气机效率愈高,达到相同增压比时,所需要外界输入的机械功愈少。目前,单级轴流压气机的绝热效率可以达到90%以上,高增压比的多级轴流压气机的绝热效率也可以达到85%以上。

高增压比的轴流压气机通常由多级组成,其中每一级在一般情况下都是由一排动叶和一排静叶构成,且每级的工作原理大致相同,因此我们可以通过研究压气机的一级来了解其工作原理。轴流压气机的基元级由一排转子叶片和一排静子叶片组成,它保留了轴流压气机的基本特征。为研究方便,可将圆柱面上的环形基元级展开成为平面上的基元级(如图1-1),在二维平面上研究压气机基元级的工作原理。

图1-1展开成平面的基元级

速度三角形在研究压气机工作特性中有着重要的作用。将动叶进口和动叶出口的速度三角形叠加画到一起,就可以得到基元级的速度三角形,如图1-2(a)所示。在一般亚声速流动的情况下,气流经过基元级的动叶和静叶后,绝对速度的周向分量Cu和相对速度的周向分量Wu变化比较大,而绝对速度的轴向分量Ca和相对速度的轴向分量w a变化不大,可近似地认为Ca1=Ca2=Ca3。这样,基元级的速度三角形可进一步化简为图1-2(b)所示形式。通过速度三角形我们就可以对压气机中气体流动情况进行分析。

(a)w1w2c1c2β1β2

α1α

2?w u

?c u

u1

u2

c1a

c1u

(b)

图1-2基元级速度三角形

基元级中动叶的作用:无论是超声速基元级还是亚声速基元级,动叶对气体的加功都是通过改变气流绝对速度的周向分量并使△C u>0实现的,而气流流过动叶后静压升高则都是通过减小气流的相对速度实现的,只是超声速基元级和亚声速基元级在加功和增压的方式上有一些差别。因此基元级中动叶的作用可概括为加功和增压。

基元级中静叶的作用:气流经过压气机基元级的动叶后,只要动叶对气流作了功,则一定有气流的△C u>0,即动叶出口处的绝对气流方向(比进口)更加偏离压气机的轴向。这样,在动叶的后面就需要有一排叶片,将气流的方向重新偏转到接近轴向方向,为下一级的动叶提供合适的进气方向。如果静叶进口气流的速度比较高(>0.85),那么,在静叶通道的进口区域也可能出现局部超声速流动和激波,激波后的气流以亚声速流动,在扩张的流道中进一步减速和增压。因此基元级中静叶的作用可概括为导向和增压。

无论动叶或静叶,静压升高意味着叶片通道中的逆压梯度增大,而过大的逆压梯度将引起该叶片排中的流动产生分离,严重的分离会导致该叶片排失效,动叶失效将使得动叶的加功和增压能力下降,静叶失效将使得静叶的导向和增压能力下降,动叶或静叶中的流动分离都会引起流阻功增加、气体的机械能减少和基元级的效率下降。

为了说明基元级中的静压升高在动叶和静叶之间的分配情况而引入了反力度。反力度反映了动叶中的静压升高占整个基元级静压升高的百分比的大小,即反映了基元级中的静压升高在动叶和静叶之间的分配情况。在动叶加功量较大的情况下,如果反动度过低(<0.3),则气体通过动叶后静压升高不多,动叶加给气体的机械能主要是动能,这样动叶出口的速度就会很大,而且方向也偏离轴向很大,这样会加大静叶的设计难度,在进口速度很高的情况下静叶中的流动损失也将增加。因此,需要尽量避免反动度过低的现象发生。

叶栅中的流动损失由以下各项组成:

1.附面层内气体的摩擦损失。

2.逆压梯度作用下的附面层分离损失,特别是激波——附面层干涉会加重分离。

3.导致分离损失急剧增加。

4.激波造成的总压损失。

5.尾迹损失(叶片两侧附面层在尾缘处脱体时产生的旋涡流动损失和尾迹区与主流区的掺混损失)。

以上损失也称为叶型损失。

轴流压气机中的流动主要有:端区附面层流动、径向间隙流动、通道涡流动和叶片表面附面层潜移流动。在压气机一级中的倒流、潜流、间隙流和通道涡等流动现象中,气体的流动方向与主流区的流动方向不一致,通常将这些与主流区流动方向不一致的流动统称为二次流动,由二次流动造成的损失被简称为二次流损失。

压气机一级出口的总压损失系数ω沿叶高分布是叶根、叶尖两端高、叶中低。这样,

在设计压气机一级时,如果要想获得级出口的总压沿叶高分布比较均匀的话,那么沿叶高动叶加功量的分配就不能为常数,可以在动叶的叶根和叶尖多安排一些加功量,以抵消端区总压损失系数 大的影响,使得压气机级出口的总压沿叶高接近一致。

了解完轴流压气机后,我们再来认识下离心压气机。离心式压气机主要由进口、工作叶轮、扩压器、蜗壳四部分组成。其气体流动方向是沿着径向流动的。

压气机的进口段总是设计成圆柱形或者圆锥收缩段,其作用是引导气流更好地进入工作叶轮,以减少进口处的流动损失和扰流强度。

工作叶轮由轮盘及其上的叶片组成。用螺母将其紧固在涡轮轴上,气流沿着轮盘、外壳和叶片组成的通道流动。并在这一过程中,将从旋转叶轮吸收的机械功转变为压力(势能)及速度(动能)。工作叶轮是压气机最主要的零件,它的好坏对级的特性起了决定性的影响。对它的要求主要是,效率要高,强度要好,因为只有叶轮强度好,压气机才能达到较高的压缩压力。

扩压器,空气从工作轮出来后,具有很高的气流速度,即具有很大的动能。这部分动能约占叶轮加功量的25%-50%。因此,为有效地利用这一部分的能量,必须把这部分的动能转变为压力能,以达到提高空气压力的目的。为此,在叶轮后装有扩压器,把气流的动能转变成压力能。扩压器一般可分为无叶扩压器和叶片扩压器两种,对车用涡轮增压器来说,一般使用无叶扩压器。无叶扩压器由两片光滑的圆盘壁构成,盘壁之间可以互相平行,也可成一定锥角。

涡壳的主要作用是收集从扩压器出来的空气,并将空气送到燃烧室或其它设备中去。

由进口段、工作叶轮、扩压器、及集气器这几部分可完成一个压缩空气的完整过程,它们构成了一级压气机。如果多级串联起来工作,则称为多级压气机。

空气在叶轮内流动时,首先对于进口处,以叶轮旋转轴为中心轴,作圆柱面切割叶轮,然后展开,以得到如下图1—3所示的叶轮进口处的速度三角形。轴向进气时,可认为轴向速度ca1沿半径方向不变,叶轮进口处在不同半径上的圆周速度u1是不相等的,因而流入叶轮的相对速度w1的方向和大小随半径而改变。

图1—3叶轮进口处的速度三角形

通过以上分析,我们可以得到:随着半径的增加,速度u1增加,因而相对速度w1也增加,但气流的进口角β1却减少。所以,根据这样的变化规律,导风轮的进口安装角,应设计成外径处角度较小,而内径处角度较大。如果导风轮进口处的外径过大,就会引起该处的相对速度w1过大,使得相对马赫数Mw1接近或大于1,这将在气流中产生冲击波,而使波阻损失增加。因为马赫数Mw1对叶轮的效率和流量范围有较大的影响,故应限制相对速度w1值,一般应使其小于0.8-0.9。

工作叶轮是压气机的主要工作元件。它将外界输入的机械功传递给空气而成为气体的状态能和动能,使流过叶轮空气的温度、压力与速度均有显著的提高。按造型的不同,工作叶轮可区分为开式、半开式及闭式三种。他们的特点分别为:

开式工作叶轮:摩擦损失和流动阻力很大,叶轮效率最低。易产生振动,不宜在高转速下工作。

半开式工作叶轮:摩擦损失和流动阻力较开式的小,效率较高。有一定的刚度和强度,允许在较高的圆周速度下工作。

闭式工作叶轮:其摩擦损失及流动阻力均最小,效率最高。由于结构复杂、笨重,以及轮盖在旋转时会对叶片产生巨大的应力,其强度较差,不宜于在高速旋转工况下使用。但是俄罗斯坦克燃气轮机采用的是径流闭式叶轮。

在出口处,其速度三角形如图1—4所示。绝对速度c2是相对速度w2与牵连速度u2矢量之和,牵连速度就是叶轮外圆周的切线速度。如果叶轮的叶片数为无限多,并且叶片无限薄,则w2在叶轮出口处就沿径向流出。由于叶片数目是有限的,在气体的质量惯性作用下,就使得w2产生逆旋转方向的偏转。

图1—4叶轮出口处速度三角形

空气在叶轮中流动时,其损失包括以下几项:

1.空气进入叶轮时的撞击损失。

2.空气在通道内的转弯损失。

3.空气在通道内的摩擦损失(包括涡流损失在内)。

4.空气在叶轮与壳体间的漏气损失。

5.空气与叶轮背面之间的摩擦损失。

另外离心压气机与轴流压气机各有自己的特点。对于离心式压气机,它的结构简单,工作可靠,单级增压比高,噪声小,性能比较稳定,但是其效率较低,迎风面积大,受结构限制,不适合做成多级的。而对于轴流压气机,容易实现多级压缩,且效率高,质量流量大,但它的效率良好的运转范围狭窄,制造费用高,重量大。作为压气机而言,在一定转速下,当压气机的增压比增大到某一数值时,两者就会进入不稳定的工作状态,很容易发生喘振,使整个系统产生低频大振幅的气流轴向脉动,甚至会发生瞬间气流倒流的现象。压气机喘振可能导致叶片断裂、结构损坏、燃烧室超温和发动机熄火停车。为避免发生喘振可以采取下列措施:

①按转速调节某几级整流叶片的安装角,使流入的气流具有合适的迎角,避免气流分离而造成喘振。

②将多级压气机分成2个不同转速的转子,分别由高、低压涡轮驱动。有些发动机采用3转子结构。

③多级轴流式压气机从中间级放气,以增加前面各级的空气流量,避免气流的迎角过大,产生分离,出现喘振。

④多级轴流式压气机在第一级压气机的机匣上开槽,使第一级工作轮叶片尖端部分的气流通过机匣上的槽道产生回流,减小气流的迎角,这种方法称为机匣处理。

通过以上的知识,我们可以知道,在进行气动设计时,基本要求是尺寸小、重量轻、性能好、安全可靠,在压气机气动设计过程中,上述各要求可归结为:在保证压气机安全可靠工作的前提下应有足够的失速裕度,使压气机具有高的级加功量,高的流通能力和高效率。然而,在实现上述要求的过程中是存在着矛盾的,例如,高的级加功量和高的流通能力会导致损失增加,因而效率下降;又如,级负荷高的压气机特性往往比较陡峭或失速裕度偏小。解决上述矛盾的办法只有两条:其一是研制出新的高性能压气机(高增压比、高效率、高失速裕度),争取在设计中有所突破。其二是必须根据具体设计任务、设计思想,正确分析和处理上述矛盾,找出设计中的主要矛盾,满足设计的主要要求,而对于一些较次要的要求,作出必要的、可以接受的牺牲。

对于压气机在其他领域的运用,我想在未来三栖车辆上压气机是不可缺少的部件。同时,作为科研人员的话,我们不应该把思维局限于已有的压气机结构,应该加大对对新式结构的压气机开发。

轴流压气机叶片优化设计_伊卫林

收稿日期:2005-06-09;修订日期:2005-12-22 作者简介:伊卫林(1978-),男,满族,黑龙江宁安人,哈尔滨工业大学博士生.文章编号:1001-2060(2006)02-0140-05 轴流压气机叶片优化设计 伊卫林,黄鸿雁,韩万金 (哈尔滨工业大学能源科学与工程学院,黑龙江哈尔滨150001) 摘要:开发了基于梯度法的数值优化程序,并与三维粘性流场求解程序相结合对跨音压气机动叶片进行了以绝热效率最大为目标的三维气动优化设计。先对其进行了沿弦长方向掠设计,绝热效率可提高约0.65%。再对所得掠叶片进行叶型中弧线优化设计得到最终叶片,与初始叶片相比绝热效率提高达1.05%。优化结果表明,动叶片的单纯掠型叶片改进气动性能有限,而弦向掠与中弧线的联合优化设计可以显著改善叶片排内流动状况,并具有良好的变工况性能。 关键词:压气机;掠动叶;中弧线;N-S方程;优化设计中图分类号:TK474.8文献标识码:A 1引言 叶轮机械内部流动包含有边界层分离、二次流、旋涡以及激波与边界层相互干扰等复杂现象。跨音压气机中的三维激波结构是流动损失的主要根源,因此如何控制激波的位置与强度是提高压气机性能的主要因素之一。Wadia和Denton等人都曾对掠叶片进行过深入研究[1~2],并证明采用掠叶片可以改变跨音压气机动叶中的三维激波结构。叶型中弧线对压气机叶片气动性能也有显著影响,与叶片流道内激波产生的强度与分布以及附面层的分离状态都密切相关。可以推测,积叠线形状的空间变化只能在一定程度上改善内部流动状况,再配以合适的叶型必定能进一步提高压气机工作性能。 随着计算速度的提高及CFD三维流场求解精度的完善,基于N-S方程的全三维流场数值模拟用于叶轮机械气动设计成为可能。近年来,梯度法、遗传算法、模拟退火算法和响应面法等数值优化算法广泛应用于叶轮机械优化[3~6]。但是由于遗传算法和模拟退火算法的耗时性,使其无法应用于工程实际,响应面方法虽然简单、省时,但需要较多的人工操作,尤其是前期的样本如果选取不好,将在很大程度上破坏其寻优能力。因此,在叶轮机械优化设计中梯度法的应用仍最为广泛。 为了研究掠及相应叶型变化对压气机气动性能的影响,本文采用常规H型网格生成程序、基于雷诺平均N-S方程的全三维流场模拟程序和基于梯度法的数值优化程序,对某跨音压气机动叶进行优化设计。 2控制方程及数值方法 采用有限体积法求解圆柱坐标系下的雷诺平均N-S方程。空间求解采用二阶精度的中心差分格式加二阶、四阶人工粘性项,时间方向求解采用四步Ronger-Kutta格式。湍流模型为壁面函数修正的B -L模型,采用隐式残差光顺、局部时间步及多重网格等加速收敛技术,计算中采用两重网格,使程序具有较快的收敛速度,尤其适用于数值优化设计。网格采用常规H型网格,网格数为41@145@41。此种网格生成方法简单,在数值优化过程中,由于其参数为随机选择过程,如果网格生成质量不高,极易出现畸形网格,从而导致优化过程无法继续。本文采用的网格生成程序则没有出现这一情况。 3叶型参数化表达 在叶型的气动优化设计中,需要对其进行参数化表达,以便采用尽可能少的设计变量来控制叶片形状。另外还必须保证叶片型线曲率的光滑分布。控制点类曲线可以很好地解决这些问题。本文采用5个控制点的3次B样条曲线分别对25%、50%、75%叶高的叶型中弧线进行参数化表达,图1为25%叶高示意图。对于每个叶型以中弧线的首末端点为两控制点,并保证其在设计过程中不变,其余3个控制点为设计变量沿叶型型线垂直方向变化,这样既可以有 第21卷第2期2006年3月 热能动力工程 JOURNAL OF ENGINEERING FOR THERMAL ENERGY AND POWER Vol.21,No.2 Mar.,2006

轴流式压气机工作原理(伯努利方程)

进口、收缩器、导向叶片(导叶)、动叶片、转子、扩压器、出口 增压原理:伯努利方程,气体从进口流入压气机,经收缩器时流速得到初步提高,进口导向叶片使气流改为轴向,同时还起扩压管的作用,使压力有所提高。转子在外力作用下作高速转动,固装在转子上的动叶片推动气流,使气流获得很高的流速。高速气流进入导叶(静叶),气流动能降低而压力升高,相邻导叶叶片间的通道相当于一个扩压管。气体流经每一级连续进行类似的过程,使气体压力逐渐升高 伯努利方程:理想正压流体在有势体积力作用下作定常运动时,运动方程(即欧拉方程)沿流线积分而得到的表达运动流体机械能守恒的方程。因著名的瑞士科学家 D.伯努利于1738年提出而得名。对于重力场中的不可压缩均质流体,方程为: 式中p、ρ、v分别为流体的压强、密度和线性速度;h为铅垂高度;g为重力加速度;c为常量。 上式各项分别表示单位体积流体的压力能p、重力势能ρgh和动能(1/2)*ρv ^2,在沿流线运动过程中,总和保持不变,即总能量守恒。但各流线之间总能量(即上式中的常量值)可能不同。对于气体,可忽略重力,方程简化为p+(1/2)*ρv ^2=常量(p0),各项分别称为静压、动压和总压。显然,流动中速度增大,压强就减小;速度减小,压强就增大;速度降为零,压强就达到最大(理论上应等于总压)。飞机机翼产生举力,就在于下翼面速度低而压强大,上翼面速度高而压强小,因而合力向上。据此方程,测量流体的总压、静压即可求得速度,成为皮托管测速的原理。在无旋流动中,也可利用无旋条件积分欧拉方程而得到相同的结果但涵义不同,此时公式中的常量在全流场不变,表示各流线上流体有相同的总能量,方程适用于全流场任意两点之间。在粘性流动中,粘性摩擦力消耗机械能而产生热,机械能不守恒,推广使用伯努利方程时,应加进机械能损失项[1]。

压气机性能实验报告

天津市高等教育自学考试 模具设计与制造专业 热工基础与应用 综合实验报告 (一)压气机性能实验 主考院校: 专业名称: 专业代码: 学生姓名: 准考证号:

一、活塞式压气机概述 1.活塞式压气机结构及工作原理 (1)活塞式压气机结构 压气机在现代工业以及现代人的生活中被越来越多的广泛应用,不论是汽车上的涡轮增压系统还是航空航天发动机中的涡喷应用,随着技术的不断革新,其结构、性能也在不断的优化、提高。本实验旨在通过对简单形式的压气机,进行结构、工作原理以及性能的实验,以达到验证并深刻理解、掌握热工学课程中所学得的知识并应用于实际生产实践中。 本次实验所用压气机为“活塞式压气机”,现就其结构及特点作简要说明。 活塞式压气机是通用的机械设备之一,是一种将机械能转化为气体势能的机械。 图1.1 活塞式压气机机构简图 图1-2 三维仿真示意图

(2)活塞式压气机工作原理: 电机通过皮带带动曲柄转动,由连杆推动活塞作往复移动,压缩汽缸内的空气达到需要的压力。曲柄旋转一周,活塞往复移动一次,压气机的工作过程分为吸气、压缩、排气三步。 具体为:在气缸内作往复运动的活塞向右移动时,气缸内活塞左腔的压力低于大气压力pa ,吸气阀开启,外界空气吸入缸内,这个过程称为压缩过程。当缸内压力高于输出空气管道内压力p后,排气阀打开。压缩空气送至输气管内,这个过程称为排气过程。 这种结构的压缩机在排气过程结束时总有剩余容积存在。在下一次吸气时,剩余容积内的压缩空气会膨胀,从而减少了吸人的空气量,降低了效率,增加了压缩功。且由于剩余容积的存在,当压缩比增大时,温度急剧升高。特别的是,单级活塞式空压机,常用于需要 0 . 3 — 0 . 7MPa 压力范围的系统。压力超过 0 . 6MPa ,各项性能指标将急剧下降。故当输出压力较高时,应采取分级压缩。分级压缩可降低排气温度,节省压缩功,提高容积效率,增加压缩气体排气量。 活塞式空压机有多种结构形式。按气缸的配置方式分有立式、卧式、角度式、对称平衡式和对置式几种。按压缩级数可分为单级式、双级式和多级式三种。按设置方式可分为移动式和固定式两种。按控制方式可分为卸荷式和压力开关式两种。其中,卸荷式控制方式是指当贮气罐内的压力达到调定值时,空压机不停止运转而通过打开安全阀进行不压缩运转。这种空转状态称为卸荷运转。而压力开关式控制方式是指当贮气罐内的压力达到调定值时,空压机自动停止运转。 二、实验内容 1.实验目的 (1)压气机的压缩指数和容积效率等都是衡量其性能先进与否的重要参数。本实验是利用微机对压气机的有关性能参数进行实时动态采集,经计算处理、得到展开的和封闭的示功图。从而获得压气机的平均压缩指数、容积效率、指示功、指示功率等性能参数。 (2)掌握指示功、压缩指数和容积效率的基本测试方法。 (3)对使用电脑采集、处理数据的全过程和方法有所了解。 2.实验装置及测量系统 本实验仪器装置主要由:压气机、电动机及测试系统所组成。 测试系统包括:压力传感器、动态应变仪、放大器、计算机及打印机, 压气机型号:Z—0.03/7 汽缸直径:D=50mm 活塞行程: L=20mm 连杆长度:H=70mm,转速:n=1400转/分

实验二 压气机的性能

实验二压气机的性能 压气机在工程上应用广泛,种类繁多但其工作原理都是消耗机械能(或电能)而获得压缩气体,压气机的压缩指数和容积效率等是衡量其性能优劣的重要参数,本实验是利用微机对压气机的有关参数进行实时动态采集,经计算处理,得到展开的和封闭的示功图,从而获得其平均压缩指数n、容积效率η ,指示功W c、指示功率P等性能参数。 v 一、实验目的 1.掌握用微机检测指示功,指示功率,压缩指数和容积效率等基本操作测试方法; 2.掌握用面积仪测量不同示功图的面积,并计算指示功,指示功率,压缩指数和容积效率。 3.对微机采集数据和数据处理的全过程和方法有所了解。 二、实验装置及测量系统 本实验装置主要由压气机和与其配套的电动机以及测试系统所组成,测试系统包括压力传感器,动态应变仪,放大器,A/D板,微机,绘图仪及打印机,详见图2-1所示。 1

压气机的型号:Z——0.03/7 气缸直径:D=50mm,活塞行程:L=20mm 连杆长度:H=70mm,转速:n=1400转/分 为获得反映压气机性能的示功图,在压气机气缸上安装了一个应变式压力传感器,供实验时输出气缸内的瞬态压力信号,该信号经桥式整流以后送至动态应变仪放大;对应着活塞上止点的位置,在飞轮外侧粘贴着一块磁条,从电磁传感器上取得活塞上止点的脉冲信号,作为控制采集压力的起止信号,以达到压力和曲柄转角信号的同步,这二路信号经放大器分别放大后送入A/D板转换为数值量,然后送到计算机,经计算机处理便得到了压气机工作过程中的有关数据及展开示功图和封闭的示功图,详见图2-2和图2-3。 三、实验原理 1.指示功和指示功率 指示功——压气机进行一个工作过程、压气机所消耗的功W c,显然其值就是P—V图上工作过程线cdijc所包围的面积,即 W W=W?W1?W2×10?5(kgf—m) 式中S——测面仪测定的P—V图上工作过程线所围的面积(mm2) K1——单位长度代表的容积(mm3/mm);即 W1=WWW2 4WW 1

轴流压气机设计流程

轴流压气机设计 压气机是航空发动机的核心部件,压气机内部流场存在很大的逆压梯度,有着高度的三维性、粘性及非线性和非定常性,而多级压气机还存在复杂的级间匹配,这些都使得压气机的设计难度很大,一直是发动机研制中的瓶颈技术。 一、压气机设计方法的发展 一个世纪以来,伴随着气动热力学和计算流体力学的发展!轴流压气机的设计系统在不断进步,带动着压气机设计水平的提高。 20世纪初采用螺桨理论设计叶片;20-30年代采用孤立叶型理论设计压气机;30年代中期开始,由于叶栅空气动力学的发展和大量平面叶栅试验的支持,研制了一系列性能较高的轴流压气机;50年代开始采用二维设计技术,用简单径向平衡方程计算子午流面参数,叶片由标准叶型进行设计;70年代建立了准三维设计体系,流线曲率通流计算和叶片流动分析是这一体系的基础,可控扩散叶型等先进叶型技术开始得到应用;90年代初以来,以三维粘性流场分析为基础的设计体系促进了压气机设计技术的快速发展。 风扇/轴流压气机的设计体系以流动的物理模型发展为线索,以计算能力的高速发展为推动力,大致经历了一维经验设计体系、二维半经验设计体系、准三维设计体系、三维设计体系四个阶段。并正在朝着压气机时均(准四维)和压气机非定常(四维)气动设计体系发展。 目前的压气机的设计体系大致可以分为四个阶段:初始设计、通流设计、二维叶型设计、三维叶型设计。 二、压气机设计体系 1.初始设计 这是一个建立压气机的基本轮廓的阶段,根据给定的流量、压比、效率、稳定裕度等参数,来确定压气机级数、级压比、效率、子午面流道、各排叶片数等,并可以进一步可估算重量。而且整体设计的决策还要统筹风险、技术水平、时间和花费等。 初始设计主要依据一维平均流线计算程序进行计算,在给定设计点流量、压比、转速及转子进口叶尖几何尺寸的条件下,可确定压气机级数、轴向长度、并且优化载荷轴向分布,得到设计点在平均半径处的速度三角形和各级平均气动参数。初始设计阶段包括压气机主要参数的确定以及同其它部件的协调,并且为S2流面计算提供初始流道几何尺寸。而这个程序主要依赖于经验以及以往积累的数据库。 初始设计它是方案设计中的基础阶段,不管计算流体动力学如何发展,该设计过程仍是压气机设计中不可缺少的一部分。正是这个部分是整个设计过程中最重要的部分,因为如果在这里发生了基本的错误,之后就无法通过优化或者其他改变来纠正这一情况,压气机基本结构设计出现错误会带来严重的后果。 2.通流设计 通流设计根据叶片扭向设计规律,采用S2流面流场计算方法,分析并确定各排叶片进出口速度三角形及各排叶片匹配关系。 S2流面气动计算一般采用流线曲率法,求解S2平均流面上的完全径向平衡方程。最初的压气机通流设计计算采用忽略流线坡度和流线曲率的“简化径向平衡方程”获取叶片设计需要的速度三角形,这种方法在低压比的压气机设计中起着基本的作用。后来发展了考虑流线坡度和流线曲率影响的“完全径向平衡方程”和S2流面理论,使压气机的设计计算结果更加准确,特别是针对跨音速流也促进了压气机性能的提高。不过,直到上世纪80年代,由于理论和数值计算方法的原因,通流设计求解方法都是在忽略了气流粘性的影响的简化方程下完成。随着压气机设计的实践的深入和计算方法的发展,上世纪80年代开始在压气机

燃机压气机效率计算

理想循环过程中压气机效率计算 受环境的影响,压气机运行过程中,叶片不会结垢,甚至腐蚀,影响的压气机的性能。为恢复压气机的性能,必须对压气机进行水洗。GE公司推荐,如果压气机效率下降10%,建议进行离线水洗。分析压气机的效率,可为燃机离线水洗周期的提供理论参考。 燃机轮机以空气为介质,基于Brayton循环为理论基础,如下图: 压气机入口空气状态为1,经过压缩后,压气机排气点空气状态为2,如为理想循环,即空气经过等熵压缩过程,则排气口空气的状态2s。 为简化计算,计算理想循环状态下的压气机效率,根据Brayton循环,理想循环下压气机效率计算公式为: Nc = (h2s-h1)/(h2-h1) = (T2s-T1)/(T2-T1) 其中: Nc—压气机效率 h2s—经等熵压缩后压气机排气口空气的焓值 h2—压气机排气口空气实际焓值 h1—压气机进气口空气焓值 T2s—经等熵压缩后压气机排气口热力学温度 T2—压气机排气口空气实际热力学温度,即CTD T1—压气机进气口空气热力学温度 注:公式所有温度为热力学温度,在华氏温标下,需在实际测得的温度基础上加460℉. 上述公式中,T1,T2为可直接从现场测点,只需计算T2s即可,根据Brayton循环公式 T2s =(P2/P1)^[k/(k-1)]*T1 其中: P2—压气机排气口空气压力,即CPD P1—压气机进气口空气压力,对于燃机而言,等于大气压力 k—比热比,即定压比热Cp与定容比热Cv之比,k=Cp/Cv,在空气动力学中,空气的k值常取为1.40。 所以通过测量T1,P1,P2的数值,便可计算T2s,从而计算压气机效率。

离心式压气机的工作原理

航空发动机原理

压气机的工作原理 根据气流在压气机的流动方向,可将压气分为两大类,气流沿离开叶轮中心方向流动的叶做离心式压气机;气流沿与叶轮轴平行方向流动的叫做轴流式压气机。此外还有轴流式与离心式压气机混合而成的混合式压气机。目前使用最广泛的是轴流式压气机,以下将作重点介绍。 轴流式压气机的基本组成,由静子和转子组成。静子由多排叶片组成,这些叶片叫做整流叶片,由一排流叶片组成的圆环叫做整流环,各整流环固定在机匣上。转子由多排叶轮组成,每一排叶轮上固定了许多工作叶片,压气机叶轮最终能过叶轮轴与涡轮的工作叶轮轴相连,并由涡轮带动高速旋转。 轴流式压气机的叶轮和整流环是交错排列的。一个叶轮和后面相邻的整流环构成了压气机的一级。单级压气机增压比不高。一般约为1.2-1.8。为了得到更高的增压比,目前用在民航机上的涡扇发动机的轴流式压气机级数常为10-20级,压气机增压比高达30-40。 有些轴流式压气机的进口安装了一排固定的导流叶片,它们所组成的圆环叫做导流环。空气在压气机中的流动 从进气道流入压气机的空气,首先流过导流环,然后依次流过各级的叶轮和整流环,最后从末级整流环流出进入燃烧室。由于空气在压气机中的流动较为复杂,同时气流在不同半径叶片通道内的流动大体相仿,为了便于分析,我们假想用一条通过各级叶轮平均地半径处的直线绕叶轮旋转,来切割叶轮和整流环叶片,得到压气机——“基本级”,每级压气机可看成是很多基元级相叠加而成。

所以空气在基元级中的流动可看成压气机工作的缩影。把所得到的基元级切片在平面上展开,就得到——平面叶栅图形。 目前大多数航空燃气轮机都采用轴流式压气机,只有小功率、小流量的涡轴和涡浆发动机上才采用离心式压气机。在20世纪40年代末和50年代初、涡喷发 动机也曾采用离心式压气机。 离心式压气机由导流器, 叶轮, 扩压器, 导气管等部分组成,叶轮和扩压器是其中两个主要部件。导流器:安装在叶轮的进口处,其通道是收敛形的使气流以一定方向均匀进入工作叶轮, 以减小流动损失,空气在流过它时速度增大,而压力和温度下降。叶轮:是高速旋转的部件,叶轮上叶片间的通道是扩张形的,空气在流过它时, 对空气作功, 加速空气的流速, 同时提高空气的压力。扩压器:位于叶轮的出口处,其通道是扩张形的,空气在流过它时将动能转变为压力位能,速度下降, 压力和温度都上升。导气管:使气流变为轴向, 将空气引入燃烧室。 离心式压气机属于叶片机械,其工作原理是以高速气流与工作叶轮和固定叶片的相互动力作用为基础,与容积式压气机相比离心式压气机的优点是:消耗同样的功率时,比容积式压气机的效率高,并能得到较高的增压压力,一般能达到0.147~0.196MPa以上;结构简单紧凑,重量轻,金属消耗量少。目前离心式压气机在内燃机增压方面获得广泛的应用。离心式压气机的缺点是随着转速的降低,增压压力便急剧下降。空气经滤清器进入气道,进气道的断面沿气流方向逐渐缩小,以便提高气流的稳定性。进气道一定要能保证在流动损失为最小的情况下,把空气均匀地导向工作轮。工作轮装装花链轴上,尺寸小的可安装在光轴上。工作轮可由曲轴通过机械驱动,也可直接由涡轮机驱动。 空气沿进气道进入工作轮随工作轮一起旋转,受到离心力的作用沿着工作轮上叶片所构成的通道流动,使空气受到压缩,这时压力从P1增加到P2,气流速度从c1增加到c2,驱动工作轮的机械功转化为空气在工作轮中获得的动能,和以压力形式表现的势能。工作轮出口处的功能一般为气流总能量的一半,因此,

风扇压气机设计技术

风扇/压气机设计技术 ——气动设计技术;间隙控制;旋转失速;防喘技术 ——发动机;风扇;压气机; 定义与概念:压气机是燃气轮机的重要部件,它的作用是提高空气的总压。压气机包括"转子"和"静子"两部分,"转子"是沿轮缘安装许多叶片的几个轮盘组合而成的,每个轮盘及上面的叶片称为一个"工作轮",工作轮上的叶片称为工作叶片。"静子"是有几圈固定在机匣上的叶片组成的。每一圈叶片称为一个整流器。工作轮和整流器是交错排列的,每一个工作轮和后面的整流器为一个"级"。 风扇是涡轮风扇发动机的重要部件之一,它的作用与压气机的相同。风扇后面的空气分为两路,一路是外涵道,一路是内涵道。风扇一般为一级,使结构简单。 风扇/压气机设计技术主要包括气动设计技术、全三元计算技术、间隙控制技术、旋转失速和喘振控制技术、结构设计技术、材料与工艺技术等方面。 国外概况:目前,战斗机发动机的推重比在不断提高,因此要求风扇/压气机级压比不断提高但又保持效率在可接受范围内,这始终是风扇/压气机设计所追求的目标。美国80年代中期开始实施的"综合高性能涡轮发动机技术"计划(即IHPTET计划)的目标是在下世纪初验证推重比为20的战斗机发动机技术,风扇结构最终实现单级化,压气机也由9级减为3级。俄罗斯的风扇/压气机的研制计划与美国IHPTET计划相类似。也就是说,研制高压比风扇/压气机已经成为风扇/压气机的发展趋势。美国、俄罗斯等国家都已制订研究计划并已取得阶段性成果。 风扇单级压比在目前最先进战斗机发动机F119上已达1.7;在预研的试验件上,美国达2.2,叶尖速度475m/s;而俄罗斯试验件单级压比达2.4和3.2,叶尖速度则分别为577m/s和630m/s。转子叶片展弦比则减小到1.0左右。 对于核心压气机,也呈现大致相同的发展趋势。核心压气机平均级压比从50年代的1.16提高到90年代的1.454,而叶尖速度从291m/s提高到455.7m/s。目前,美国现役战斗机发动机和正处于工程和制造发展阶段的90年代先进战斗机(ATF),其核心压气机基本上是70年代研制成功的。GE公司下一代核心压气机正处于研究起步阶段,目标是比目前最高级压比再提高25%。由此可见,追求更高的级压比一直是各国研制风扇/压气机的发展方向。 风扇/压气机的级压比的提高主要有以下途径:一是进一步发展传统的跨音级风扇/压气机。传统的跨音级风扇/压气机是指转子相对来流叶尖超音、叶根亚音,静子绝对来流亚音。目前各国现役发动机风扇/压气机进口级均属此类型。进一步发展传统的跨音级风扇/压气机即进一步提高叶尖切线速度,如采用小展弦比前缘后掠式叶片,将叶片设计成掠式几何形状以合理控制通道激波的强度,在利用气流跨越激波产生压比突跃的同时控制激波的损失。二是研制超音通流风扇。80年代后期NASA 刘易斯研究中心开始实施一项超音通流风扇计划,研制出的此类风扇进出口轴向气流速度均超音。与传统跨音风扇相比,当叶尖切线速度相同时,超音通流风扇可实现更高的级增压比。

燃气轮机原理与结构解析

图说燃气涡轮发动机的原理与结构 曹连芃 摘要:文章介绍燃气涡轮发动机的工作原理;对燃气轮机的主要部件轴流式压气机、环管形燃烧室、轴流式涡轮分别进行了原理与结构介绍;对燃气涡轮发动机的整体结构也进行了介绍。 关键字:燃气涡轮发动机,燃气轮机,轴流式压气机,燃烧室,轴流式涡轮 1. 燃气涡轮发动机的工作原理 燃气涡轮机发动机(燃气轮机)的原理与中国的走马灯相同,据传走马灯在唐宋时期甚是流行。走马灯的上方有一个叶轮,就像风车一样,当灯点燃时,灯内空气被加热,热气流上升推动灯上面的叶轮旋转,带动下面的小马一同旋转。燃气轮机是靠燃烧室产生的高压高速气体推动燃气叶轮旋转,见图1。 图1-走马灯与燃气涡轮 燃气轮机属热机,空气是工作介质,空气中的氧气是助燃剂,燃料燃烧使空气膨胀做功,也就是燃料的化学能转变成机械能。图2是一台燃气轮机原理模型剖面,通过它来了解燃气轮机的工作原理。 从外观看燃气轮机模型:整个外壳是个大气缸,在前端是空气进入口;在中部有燃料入口,在后端是排气口(燃气出口)。 燃气轮机主要由压气机、燃烧室、涡轮三大部分组成,左边部分是压气机,有进气口,左边四排叶片构成压气机的四个叶轮,把进入的空气压缩为高压空气;中间部分是燃烧器段(燃烧室),内有燃烧器,把燃料与空气混合进行燃烧;右边是涡轮(透平),是空气膨胀做功的部件;右侧是燃气排出口。

图2-模型燃气轮机结构 在图3中表示了燃气轮机的简单工作过程:空气从空气入口进入燃气轮机,高速旋转的压气机把空气压缩为高压空气,其流向见浅蓝色箭头线;燃料在燃烧室燃烧,产生高温高压空气;高温高压空气膨胀推动涡轮旋转做功;做功后的气体从排气口排出,其流向见红色箭头线。 图3-燃气轮机工作过程 在燃气轮机中压气机是由涡轮带动旋转,压气机的叶轮与涡轮安装在同一根主轴上组成燃气轮机转子,如图4所示。

压气机的理论压缩功

第9章压气机 一、教案设计 教学目标:使学生熟悉压气机热力过程,活塞式压气机工作原理,耗功量计算;余隙容积对压气机性能的影响;多级压缩与级间冷却;叶轮式压气机的工作原理。知识点:活塞式压气机工作原理,耗功量计算;余隙容积对压气机性能的影响;多级压缩与级间冷却;叶轮式压气机的工作原理。 重点:压气机耗功量的计算方法,提高压气机效率的方法和途径。 难点:多级压缩过程中各级增压比的确定,提高压气机效率的方法和途径。教学方式:讲授+多媒体演示+课堂讨论 师生互动设计:提问+启发+讨论 问:余隙容积的存在使压气机产气量下降,对实际耗功有没有影响?。 问:活塞式压气机为什么应采用隔热措施? 问:为什么若实施定温压缩产生高压气体,可不必分级压缩、中间冷却? 问:为什么活塞式压气机适用于高压比、小流量;叶轮式压气机适用于小压比、大流量? 学时分配:2学时 二、基本知识 第一节气体的压缩及压气机的耗功 一、气体压缩 1压气机:用来压缩气体的设备 2.。压气机的分类 1)压气机按其产生压缩气体的压力范围,习惯上常分为: ①通风机(pg<0.01MPa); ②鼓风机(0.01MPa0.3Mpa)。 2)按压缩原理和结构分压气机分为: 活塞式、叶轮式(离心式和轴流式)及引射式。

三、压气机的实际耗功(压气机的效率)21 '2'1 cs cs cs w h h w h h η-== -21 '2'1 cs cs cs w T T w T T η-= = -1.压气机的实际耗功 对于理想气体 1 2s p 1 p 2 s T 22.压气机的绝热效率 '2'1 cs w h h =-压气机的实际耗功 第二节 单机活塞式压气机 一、单机活塞式压气机工作过程

压气机的性能

压气机的性能 压气机在工程上应用广泛,种类繁多但其工作原理都是消耗机械能(或电能)而获得压缩气体,压气机的压缩指数和容积效率等是衡量其性能优劣的重要参数,本实验是利用微机对压气机的有关参数进行实时动态采集,经计算处理,得到展开的和封闭的示功图,从而获得其平均压缩指数n、容积效率,指示功、指示功率P等性能参数。 一、实验目的 1.掌握用微机检测指示功,指示功率,压缩指数和容积效率等基本操作测试方法; 2.掌握用面积仪测量不同示功图的面积,并计算指示功,指示功率,压缩指数和容积效率。 3.对微机采集数据和数据处理的全过程和方法有所了解。 二、实验装置及测量系统 本实验装置主要由压气机和与其配套的电动机以及测试系统所组成,测试系统包括压力传感器,动态应变仪,放大器,A/D板,微机,绘图仪及打印机,详见图2-1所示。 压气机的型号:Z——0.03/7 气缸直径:D=50mm,活塞行程:L=20mm 连杆长度:H=70mm,转速:n=1400转/分 为获得反映压气机性能的示功图,在压气机气缸上安装了一个应变式压力传感器,供实验时输出气缸内的瞬态压力信号,该信号经桥式整流以后送至动态应变仪放大;对应着活塞上止点的位置,在飞轮外侧粘贴着一块磁条,从电磁传感器上取得活塞上止点的脉冲信号,作为控制采集压力的起止信号,以达到压力和曲柄转角信号的同步,这二路信号经放大器分别放大后送入A/D板转换为数值量,然后送到计算机,经计算机处理便得到了压气机工作过程中的有关数据及展开示功图和封闭的示功图,详见图2-2和图2-3。

三、实验原理 1.指示功和指示功率 指示功——压气机进行一个工作过程、压气机所消耗的功,显然其值就是P—V图上工作过程线cdijc 所包围的面积,即 式中S——测面仪测定的P—V图上工作过程线所围的面积(mm2) K1——单位长度代表的容积(mm3/mm);即 L——活塞行程(mm); ——活塞行程的线段长度(mm); ——单位长度代表的压力(at/mm); ——压气机排气工作时的表压力(at); ——表压力在纵坐标上对应的高度(mm); P——指示功率,即:单位时间内压气机所消耗的功,可用下式表示: 式中N——转速(转/分)。 2.平均多变压缩指数 压气机的实际压缩过程介于定温压缩与定熵压缩之间,即多变指数n的范围为,因为多变过程的技术功是过程功的n倍,所以n等于P—V图上压缩过程线与坐标轴围成的面积同压缩过程线与横坐标轴围成的面积之比,即: 3.容积效率() 由容积效率的定义得:

离心压气机设计方法综述--

离心压气机设计方法综述 压缩机是把原动机的机械能转变为气体能量的一种机械,分为容积式和透平式两种。透平式压缩机是一种叶片式旋转机械,其中气体压力的提高是利用叶片和气体的相互作用来实现的,按照结构分为离心式压气机和轴流式压气机两种。离心式压气机中气体压力的提高,是由于气体流经叶轮时,由于叶轮旋转,使气体受到离心力的作用而产生压力,与此同时气体获得速度,而气体流过叶轮,扩压器等扩张通道时,气体的流动速度又逐渐减慢从而使气体压力得到提高。 设计一台离心压气机包括多方面的内容,主要有:结构设计;通流部分的选择和计算;强度与振动计算;工艺设计;自动控制和调节;以及驱动型式等问题。这里主要讨论前两项。 在离心压气机设计方法上,先后出现了几何设计方法,二维气动设计方法,准三维气动设计方法,全三维气动设计方法。以这些方法为理论基础,建立了离心压气机计算机辅助集成设计系统。这种设计系统的建立,为高性能离心压气机设计提供了有效工具。 最早用于离心压气机叶轮叶片的成形方法是几何成型方法,这是一种比较简单的成型方法。国内增压器研究领域在50年代从前苏联引进的径向叶片的“双回转中心法”是几何成型方法中的代表,并在国内涡轮增压器领域得到广泛的应用。该方法成型规律比较简单,使用该方法设计前倾后弯曲线不太可能。于是产生了离心压气机叶轮的“骨架成型法”,这种方法可以弥补“双补转中心法”的不足。但是,成型后弯叶片时,需要数控铣床。 早期设计离心压气机叶轮时,设计人员认为叶片型线是由二次曲线组成的,如使用圆弧线,抛物线等代表叶型、轮缘、轮毂型线形状。使用二次曲线表示的叶片型线形状的一般表达式为 f ez dr cz brz ar +++++=2222 2γθ 式中,r 为半径,z 为叶轮轴向坐标,a,b,c,d,e,f 为系数。系数决定叶轮进口角度和叶型型线。Eckerdt 即采用上式设计了Eckerdt 叶轮。Whitfield 等人认为叶轮型线可由下式表示:

三种压缩机性能特点、优缺点比较

1螺杆式压缩机 螺杆式压缩机又称螺杆压缩机。20世纪50年代,就有喷油螺杆式压缩机应用在制冷装置上,由于其结构简单,易损件少,能在大的压力差或压力比的工况下,排气温度低,对制冷剂中含有大量的润滑油(常称为湿行程)不敏感,有良好的输气量调节性,很快占据了大容量往复式压缩机的使用范围,而且不断地向中等容量范围延伸,广泛地应用在冷冻、冷藏、空调和化工工艺等制冷装置上。 以它为主机的螺杆式热泵从20世纪70年代初便开始用于采暖空调方面,有空气热源型、水热泵型、热回收型、冰蓄冷型等。在工业方面,为了节能,亦采用螺杆式热泵作热回收。 2离心式压缩机 离心式压缩机是一种叶片旋转式压缩机(即透平式压缩机)。在离心式压缩机中,高速旋转的叶轮给予气体的离心力作用,以及在扩压通道中给予气体的扩压作用,使气体压力得到提高。

早期,由于这种压缩机只适于低,中压力、大流量的场合,而不为人们所注意。由于化学工业的发展,各种大型化工厂,炼油厂的建立,离心式压缩机就成为压缩和输送化工生产中各种气体的关键机器,而占有极其重要的地位。随着气体动力学研究的成就使离心压缩机的效率不断提高,又由于高压密封,小流量窄叶轮的加工,多油楔轴承等技术关键的研制成功,解决了离心压缩机向高压力,宽流量范围发展的一系列问题,使离心式压缩机的应用范围大为扩展,以致在很多场合可取代往复压缩机,而大大地扩大了应用范围。 3往复活塞压缩机 是各类压缩机中发展最早的一种,公元前1500年中国发明的木风箱为往复活塞压缩机的雏型。18世纪末,英国制成第一台工业用往复活塞空气压缩机。20世纪30年代开始出现迷宫压缩机,随后又出现各种无油润滑压缩机和隔膜压缩机。50年代出现的对动型结构使大型往复活塞压缩机的尺寸大为减小,并且实现了单机多用。

压气机特性曲线多项式回归拟合方法

2018/3 机电设备 58 cademic Research 技术交流 A 压气机特性曲线多项式回归拟合方法 代 星1,赵元松1,岳永威2,吴 垚3 (1. 91054部队,上海 200235;2. 中国航空综合技术研究所,北京 100028; 3. 92602部队,上海 201900) 摘 要:燃气轮机仿真对于压气机特性曲线的精度要求较高,曲线拟合的质量直接影响仿真的效果。根据压气机曲线形状相近、变化趋势固定的特点,运用二步多项式拟合同转速下压比、流量和转速的关系。分析结果表明:该方法原理简单、可行性强,能够满足燃气轮机的计算要求,具有一定的实用价值。 关键词:燃气轮机;压气机;特性曲线;曲线拟合;多项式回归 中图分类号:TK472 文献标志码:A DOI :10.16443/https://www.wendangku.net/doc/9a13776376.html,ki.31-1420.2018.03.015 Polynomial Regression Fitting Method for Characteristic Curve of Compressor DAI Xing 1, ZHAO Yuansong 1, YUE Yongwei 2, WU Yao 3 (1. The 91054 Unit of PLA, Shanghai 200235, China; 2. Aero-Polytechnology Establishment, Beijing 100028, China; 3. The 92602 Unit of PLA, Shanghai 201900,China) Abstract: High accuracy is required for the compressor characteristic curve while building the simulation model of gas turbine. The quality of curve fitting affects the simulation result directly. According to the characteristics of proximate curve shape and the change regularity of compressor characteristic curves, the two-step polynomial fitting is used to fit the relationship between the pressure ratio, flow rate and rotation speed under the same speed. The analysis results show that the method is simple, feasible, and can meet the calculation requirements of gas turbine. It has certain practical value. Key words: gas turbine; compressor ; characteristic curve; curve fitting ; polynomial regression 0 引言 舰用燃气轮机作为舰船动力系统的核心装置,其起动、调节、变速的特性在很大程度上影响着舰船的运行。压气机是燃气轮机的主要部件,其特性对于仿真结果有显著影响。在实际使用过程中,压气机不可能固定在额定工况下工作,舰船运行时复杂的变化(如负荷降低、温度或压力变化、叶片结垢或磨损导致的零部件性能变化等)都会造成压气机偏离原稳定工况,因此了解压气机关键参数的变化规律对于把握压气机的性能十分重要。但是,通过试验获取压气机特性的 方法不仅费用较高,而且难以全面反映所有转速特性;实际中仅能够获得部分工况的数据,且这些数据多以离散点或者曲线图的形式存在。如何由有限的数据和图表模拟及预测压气机未知运行状态成为了一个难点。 由于压气机特性表现出较强的非线性,采用常规的线性插值方法模拟往往导致模拟结果精度较差,因此,国内外学者提出了一些模拟压气机特性的方法,如神经网络算法[1-3]、 模糊辨识法[4]、滑动最小二乘法[5]和偏最小二乘法[6]等。这些算法能够较好地逼近压气机特性曲线,但仍存在一些不足。神经网络法能够在理 作者简介:代星(1983—),男,博士。研究方向:船舶动力装置,计算力学,船舶动力仿真。

压气机性能试验台操作规程

压气机性能试验台操作规程 一准备 1 安装好试机,检查压进、压出、涡进、涡出、油进、油出6个接口是否对准,拧紧,回油畅通。 2 打开电门,预热机油至60℃。 3检查压进、压出、涡进、涡出4接口的测温装置是否接通,测压管无折叠,无阻塞,无积水,各U形管液面是否在O线上。4小开风源进气阀门,检查各接合面是否密封,不得漏气。 5检查控制台面版各仪表是否正常。 二冷吹 1 关闭自循环阀。 2 开大压气机出气阀。 3 逐渐开大风源送风阀,直至增压器达到所测最低转速时为止。 4 根据该工况流量计压差等分8-10个点,分别测录各工况的压前、压后、涡前、涡后的温度与压力及相应流量计压差、温度。 5 输入上述参数,即得对应的压比、流量和绝热效率。 6.每个工况稳定3-5分钟后测录数据。 7 出现湍振时,立即放大压气机出气阀,稳定5min后再测。 8 同一方法测录高一档等转速线的相应参数。一般测录6-8条等转速线。 三热吹 1 适当关小风源送风阀。

2 接通点火电源,着火后油门由小逐惭开大,当达到所测增压器转速后,稳定5分钟开始测录上述参数。 四自循环 1 热吹时逐惭开大自循环闸阀,同时逐惭关闭压后出气阀及风源送风阀。 2 当全部关闭压后出气阀及风源送风阀时油门应该在最小开度上。 3 适当加大油门,自动提高增压器转速,直至所需转速值,稳定3-5min再测。 五注意事项: 1 进油压力小于0.15MPa时应停机,立即检查原因,排除故障后再试。 2 涡前温度不得超过650℃,1小时内不得超还750℃。特殊材质可根据耐高温程度适当提高涡前温度。 3 最高转速不得超过规定值。 4 机油温度不得超过设定值±1℃。 5 喘振时立即开大压后出气阀或关小风源送风阀。 6 试验时严防U形管汞及水柱外溢。一旦汞柱溢出,立即清除现场,以防污染环境。 六停机 1 关闭燃烧室油门。 2 冷风吹5分钟后关闭风源送风阀。

压气机

西安航空职业技术学院毕业设计论文涡扇发动机的压气机部件

目录 1概述 ................................................................................................................................................................ 2压气机的分类以及结构特点 ....................................................................................................................... 2.1 .................................................................................................................................................................. 2.2 .................................................................................................................................................................. 2.3 ................................................................................................................................................................. 2.3.1 ........................................................................................................................................................... 2.3.2 ........................................................................................................................................................... 2.3.3 ........................................................................................................................................................... 2.3.4 ........................................................................................................................................................... 2.3.5 .......................................................................................................................................................... 3压气机的工作原理 ........................................................................................................................................ 3.1离心式压气机的工作原理...................................................................................................................... 3.2轴流式压气机的工作原理...................................................................................................................... 4压气机的材料 ............................................................................................................................................... 5 6压气机常见故障的诊断以及维修 ................................................................................................................ ...................................................................................................................................................................... 谢辞 ............................................................................................................................................................... 参考文献 ........................................................................................................................................................... 附录 ................................................................................................................................................................

相关文档