文档库 最新最全的文档下载
当前位置:文档库 › (完整版)计控 基于PID电加热炉温度控制系统毕业设计论文

(完整版)计控 基于PID电加热炉温度控制系统毕业设计论文

(完整版)计控 基于PID电加热炉温度控制系统毕业设计论文
(完整版)计控 基于PID电加热炉温度控制系统毕业设计论文

基于PID电加热炉温度控制系统

设计

摘要基于PID电加热炉温度控制系统以PID控制为核心,硬件方面包括电源部分、采样测量部分、驱动执行部分。PID控制不仅适用于数学模型已知的控制系统中,而且对于大多数数学模型难以确定的工业过程也可应用,在众多工业过程控制中取得了满意的应用效果。PID 控制又分为位置式PID 控制和增量式PID 控制,公式4 给出了控制量的全部大小,所以称之为全量式或者位置式控制;如果计算机只对相邻的两次作计算,只考虑在前一次基础上,计算机输出量的大小变化,而不是全部输出信息的计算,这种控制叫做增量式PID 控制算法。控制系统的软件主要包括:采样、标度变换、控制计算、控制输出、中断、显示、报警、调节参数修改、温度设定及修改。其中控制算法采用数字PID调节,应用增量型控制算法,并对积分项和微分项进行改进,以达到更好的控制效果。

关键字电机热炉;温度;PID

1概述

温度是工业对象中的很重要参数的之一。广泛应用在冶金、化工、机械各类加热炉热、处理炉和反应炉等工业中。

电加热炉随着科学技术的发展和工业生产水平的提高,已经在冶金、化工、机械等各类工业控制中得到了广泛应用,并且在国民经济中占有举足轻重的地位。对于这样一个具有非线性、大滞后、大惯性、时变性、升温单向性等特点的控制对象,很难用数学方法建立精确的数学模型,因此用传统的控制理论和方法很难达到好的控制效果。

PID(Proportional Integral Derivative)控制是控制工程中技术

成熟、应用广泛的一种控制策略,经过长期的工程实践,已形成了一套完整的控制方法和典型的结构。它不仅适用于数学模型已知的控制系统中,而且对于大多数数学模型难以确定的工业过程也可应用,在众多工业过程控制中取得了满意的应用效果。

在本控制对象电阻加热炉功率为800W ,由220V 交流电供电,采用双向可控硅进行控制。本设计针对一个温度区进行温度控制,要求控制温度范围50~350℃,保温阶段温度控制精度为正负1度。选择合适的传感器,计算机输出信号经转换后通过双向可控硅控制器控制加热电阻两端的电压。其对象问温控数学模型为:

1)(+=-s T e K s G d s

d τ 其中:时间常数Td=350秒

放大系数Kd=50

滞后时间=10秒

控制算法选用PID 控制

2系统硬件的设计

本系统的单片机炉温控制系统结构主要由单片机控制器、可控硅输出部分、热电偶传感器、温度变送器以及被控对象组成。

系统硬件结构框图如下:

图2.1 系统硬件结构框图

2.1电源部分

本系统所需电源有220V交流市电、直流5V电压和低压交流电,故需要变压器、整流装置和稳压芯片等组成电源电路。电源变压器是将交流电网220V的电压变为所需要的电压值,然后通过整流电路将交流电压变为脉动的直流电压。由于此脉动的直流电压还含有较大的纹波,必须通过滤波电路加以滤除,从而得到平滑的直流电压。但这样的电压还随电网电压波动(一般有10%左右的波动)、负载和温度的变化而变化。因而在整流、滤波电路之后,还需要接稳压电路。稳压电路的作用是当电网电压波动、负载和温度变化时,维持输出直流电压稳定。整流装置采用二极管桥式整流,稳压芯片采用78L05,配合电容将电压稳定在5V,供控制电路、测量电路和驱动执行电路中弱电部分使用。除此之外,220V交流市电还是加热电阻两端的电压,通过控制双向可控硅的导通与截止来控制加热电阻的功率。低压交流电即变压器二次侧的电压,通过过零检测电路检测交流电的过零点,送入单片机后,由控制程序决定双向可控硅的导通角,以达到控制加热电阻功率的目的。

2.2采样测量部分

在检测装置中,温度检测用WZP-231铂热电阻(Pt100),采用三线制接法,采样电路为桥式测量电路,其输入量程为50~350°C,经测量电路采样后输出2~5V电压,再经模数转换芯片ADC0809进行转换,变为数字量后送入单片机进行分析处理。

铂电阻温度传感器是利用其电阻和温度成一定函数关系而制成的温度传感器,由于其测量准确度高、测量范围大、复现性和稳定性好等,被广泛用于中温(-200℃~650℃)范围的温度测量中。

PT100是一种广泛应用的测温元件,在-50~600℃范围内具有其他任何

温度传感器无可比拟的优势,包括高精度、稳定性好、抗干扰能力强等。由于铂电阻的电阻值与温度成非线性关系,所以需要进行非线性校正。校正分为模拟电路校正和微处理器数字化校正,模拟校正有很多现成的电路,其精度不高且易受温漂等干扰因素影响,数字化校正则需要在微处理系统中使用,将Pt电阻的电阻值和温度对应起来后存入EEPROM中,根据电路中实测的AD值以查表方式计算相应温度值。

常用的Pt电阻接法有三线制和两线制,其中三线制接法的优点是将PT100的两侧相等的的导线长度分别加在两侧的桥臂上,使得导线电阻得以消除。常用的采样电路有两种:一为桥式测温电路,一为恒流源式测温电路。在本系统设计中,采用了第一种方法,即桥式测温。

测温原理:电路采用TL431和电位器VR1调节产生4.096V的参考电源;采用R1、R2、VR2、Pt100构成测量电桥(其中R1=R2,VR2为100Ω精密电阻),当Pt100的电阻值和VR2的电阻值不相等时,电桥输出一个mV 级的压差信号,这个压差信号经过运放LM324放大后输出期望大小的电压信号,该信号可直接连AD转换芯片。差动放大电路中R3=R4、R5=R6、放大倍数=R5R3,运放采用单一5V供电。

设计及调试注意点:

1. 同幅度调整R1和R2的电阻值可以改变电桥输出的压差大小;

2. 改变R5R3的比值即可改变电压信号的放大倍数,以便满足设计者对温度范围的要求

3. 放大电路必须接成负反馈方式,否则放大电路不能正常工作。

4. VR2也可为电位器,调节电位器阻值大小可以改变温度的零点设定,例如Pt100的零点温度为0℃,即0℃时电阻为100Ω,当电位器阻值调至109.885Ω时,温度的零点就被设定在了25℃。测量电位器的阻值时须在没

有接入电路时调节,这是因为接入电路后测量的电阻值发生了改变。

5. 理论上,运放输出的电压为输入压差信号×放大倍数,但实际在电路工作时测量输出电压与输入压差信号并非这样的关系,压差信号比理论值小很多,实际输出信号为

4.096*(R

Pt100(R1+R

Pt100

)- R

VR2

(R1+R

VR2

)) (1)

式中电阻值以电路工作时量取的为准。

6. 电桥的正电源必须接稳定的参考基准,因为如果直接VCC的话,当网压波动造成VCC发生波动时,运放输出的信号也会发生改变,此时再到以VCC未发生波动时建立的温度-电阻表中查表求值时就不准确。

2.3驱动执行部分

硬件输出通道主要包括加热电阻的控制环节,而此控制环节的核心是双向可控硅,但电路的关键是设计双向可控硅的驱动电路。双向可控硅的通断直接决定加热电阻的工作与不工作,本部分用带过零触发的光耦MOC3061来驱动。

1光耦驱动电路

在驱动电路中,由于是弱电控制强电,而弱电又很容易受到强电的干扰,影响系统的工作效率和实时性,甚至烧毁整个系统,导致不可挽回的后果,因此必须要加入抗干扰措施,将强弱电隔离。光耦合器是靠光传送信号,切断了各部件之间地线的联系,从根本上对强弱电进行隔离,从而可以有效地抑制掉干扰信号。此外,光耦合器提供了较好的带宽,较低的输入失调漂移和增益温度系数。因此,能够较好地满足信号传输速度的要求,且光耦合器非常容易得到触发脉冲,具有可靠、体积小、等特点。所以在本系统设计中采用了带过零检测的光电隔离器MOC3061,用来驱动双向可控硅并隔离控制回路和主回路。MOC3061是一片把过零检测和光

耦双向可控硅集成在一起的芯片。其输出端的额定电压是400V,最大重复浪涌电流为1.2A,最大电压上升率dvdt为1000vus,输入输出隔离电压为7500V,输入控制电流为15mA。

在驱动执行电路中,当单片机的P2.0、P2.1、P2.2发出逻辑数字量为高电平时,经过三极管放大后驱动光耦合器的放光二极管,MOC3061的输入端导通,有大约15mA的电流输入。当MOC306的输出端6脚和4脚尖电压稍稍过零时,光耦内部双向可控硅即可导通,提供一个触发信号给外部晶闸管使其导通;当P2.0、P2.1、P2.2为低电平时,MOC3061截止,双向可控硅始终处于截止状态。

2驱动电路有关元件的选择

R25,C10组成吸收电路,并接在双向可控硅的两极之间。吸收回路组成缓冲器。有了吸收回路,可控硅通断过程中电源电压的变化率受到R25,C10的限制。R25可以抑制双向可控硅通断时产生的浪涌电流。R25和C10根据经验公式选,一般C10取0.01~1.0uF,R25取几欧到几十欧,本电路中R25取39欧,C10取0.01 uF。

R27为限流电阻,用来限制MOC3061的输出驱动电流,其数值为电源电压峰值除以双向可控硅的允许重复电流。在本电路中R27取300欧。

R26:由于MOC3061在输出关断状态下也有小于或等于500mA的输出电流,所以加入R26分流消除这个电流对双向可控硅的影响,以防止双向可控硅误触发,提高了系统的可靠性。

在此电路中可以看出单片机的输出通道采用了MOC3061进行驱动有以下优点:

(1)控制简单。可用SETB或CLR指令直接控制P2.0、P2.1、P2.2以控制加热电阻的工作与否。

(2)MOC3061由于采用了过零触发电路大大简化了双向可控硅的触发电路,把SCR一向控制变为实用的数字脉冲控制。

(3)MOC3061与双向可控硅实际组成了一个固态继电器,实现了无触电控制。

(4)输出通道实现了光电隔离,防止了射电干扰。

(5)输出通道用P2.0、P2.1、P2.2口直接控制双向可控硅,省去了的DA转换电路,简化了接口电路。

3双向可控硅电路

(1)双向可控硅

这种可控硅具有双向导通功能,在交流电的正负半周都可以导通。其英文名TRIAC即三级交流开关的意思,并把它的两极称为MT1和MT2,其电路符合如图所示。

双向可控硅的通断情况由控制极栅极(G)决定,当栅极无信号时MT1和MT2成高阻态,管截止;而当MT1与MT2之间加一个阈值电压(一般大于1.5V)的电压时,就可以利用控制极栅极电压来使可控硅导通。但需要注意的是,当双向可控硅接感性负载时,电流和电压之间有一定的相位差。在电流为零时,反向电压可能不为零,且超过转换电压,使管子反向导通,故要管子能承受这种反向电压,并在回路中加入RC网络加以吸收。

(2)触发方式

控制双向可控硅从高阻态(阻断区)转换到低阻态(导通区)可以用不同的方式实现。相应的分为四种方式:

(1)MT1相对于MT2为正,控制脉冲电压Ug相对于MT1为正

(2)MT1相对于MT2为负,控制脉冲电压Ug相对于MT1为负

(3)MT1相对于MT2为正,控制脉冲电压Ug相对于MT1为负

(4)MT1相对于MT2为负,控制脉冲电压Ug相对于MT1为正

双向可控硅通常工作在控制方式(1)和控制方式(2)。在这两种控制方式下,控制灵敏度特别高。另外两种控制方式下,要求高一倍的触发电流。在本设计中,选择了控制方式(1)和(2)。

如同晶闸管的控制极那样,双向可控硅的控制极在触发后便失去了作用。双向可控硅长期维持低阻态,直到低于维持电流I H,然后在转换到高阻态。在控制交流电压时,每次电源电压过零双向可控硅都会自动截止,所以双向可控硅每半个周期都需要重新触发。

在本设计中,考虑到电网电压的稳定和现在市场上销售的双向可控硅型号,选择了工作电压为400V,通态电流为4A的双向可控硅BT136。利用单片机控制双向可控硅的导通角。在不同时刻利用单片机给双向可控硅的控制端发出触发信号,使其导通或关断,实现负载电压有效值的不同,以达到调压控制的目的。具体如下:

(1)由硬件完成过零触发环节,即在工频电压下,每10ms进行一次过零触发信号,由此信号来达到与单片机的同步。

(2)过零检测信号接至单片机的P2.3口,由单片机对此口进行循环检测,然后进行延时触发。

3控制电路及程序流程图

3.1 微处理器89C51

89C51是一种带4K字节Flash可编程可擦除的高性能CMOS8

位微处理器,俗称单片机。单片机的可擦除只读存储器可以反复擦除100次。该器件采用ATMEL高密度非易失存储器制造技术制造,与工业标准的MCS-51指令集和输出管脚相兼容。由于将多功能8位

CPU和闪烁存储器组合在单个芯片中,ATMEL的89C51是一种高效微控制器。

单片机的抗干扰性设计。单片机干扰最常见的现象就是程序出现不可逆状态,设计系统时一般要添加一个看门狗监控模块,在系统出现不可逆状态的干扰时,监控模块将重启系统。MAX1232微处理器监控电路给微处理器提供辅助功能以及电源供电监控功能,当电源过电压、欠电压时,MAX1232将提供至少250ms宽度的复位脉冲,其中的容许极限能用数字式的方法来选择5%或10%的容限。

3.2模数转换模块

图3.1 AD转换结束中断服务程序流程图

ADC0809是一个典型的逐次逼近型8位AD转换器。它由8路模拟开关、8位AD转换器、三态输出锁存器及地址锁存译码器等组成。它允许8路模拟量分时输入,转换后的数字量输出是三态的(总线型输出),可以直接与单片机数据总线连接。ADC0809采用+5V电源供电,外接工作时钟。当典型工作时钟为500KHz时,转换时间约为128us.

(1)时钟信号:由于ADC0809无片选端,因此电路增加了或非门74LS02,以便对ADC0809进行读写控制。单片机采用6MHzs的晶振,ALE输出66MHzs时钟信号,经74LS74触发器2分频,得到500KHz的时钟信号,与ADC0809的时钟端CLK相连。

(2)通道选择:三位通道选择端ADDA、ADDB、ADDC与数据线P1口的低三位P1.0、P1.1、P1.2相连,用数据线进行通道选择,由P1.0、P1.1、P1.2三位决定选择那一通道。

(3)ADC0809启动:ADC0809的启动端START、地址所存端ALE均为高电平有效。将START和ALE连在一起,与74LS02的输出端相连。或非门74LS02的两个输入端WR和P3.5均为低电平时,其输出为高电平,执行外部IO口的写操作。

(4)转换数据的读取:当转换结束时,EOC端输出高电平。可用查询和中断的方法进行数据读取处理。输出允许OE端为高电平,8位转换数据D0~D7输出到数据线上。只有P3.5和RD同时为低电平时,OE端才为高电平。执行外部IO口读操作RD为低电平。

(5)转换结束标志EOC:转换结束标志EOC端经反向器与单片机的INT1相连,即转换一旦结束,外部中断1则申请中断。

3.3 LED显示模块

8段LED显示屏是最常用的显示器件,分为共阳极和共阴极两种形式。共阳极LED将所有发光二极管的阳极接在一起作为公共端,当公共端接高电平,某一段的发光二极管阴极接低电平时,相应的字段就被点亮。共阴极LED将所有发光二极管的阴极接在一起作为公共端,当公共端接低电平,某一段的发光二极管阳极接高电平时,相应的字段就被点亮。

LED数码管的显示方法

(1)动态显示:动态扫描,分时循环

动态显示,就是微型机定时地对显示器件扫描,在这种方法中,显示器件分时工作,每次只能一个器件显示。但由于人视觉的暂留现象,所以,仍感觉所有的器件都在显示。

(2) 静态显示:一次输出,结果保持

静态显示,是由微型机一次输出显示后,就能保持该显示结果,直到下次送新的显示模型为止。这种显示占用机时少,显示可靠。

通过比较及对程序的分析,本设计当中两组数码管均采用共阴极静态显示。

图3.2显示子程序

3.4报警模块

图3.3报警子程序

根据设计要求,在保温阶段,温度控制精度为正负1度,故当温度下降或上升2度时为故障状态,需要报警提醒。所以在电路设计上应用了蜂鸣器和发光二极管,系统正常运行时绿色发光二极管点亮,当出现故障时红色发光二极管点亮并且蜂鸣器鸣叫,提醒操作人员注意。报警状态可通过按键复位和系统恢复正常后自动复位。

3.5键盘模块

在本次设计当中,输入设备采用4*4矩阵键盘。当“设定”键按下时触发键盘中断服务程序,由程序程控扫描法确定那个键按下并执行相应的动作。程控扫描的任务是:

(1)首先判断是否有键按下。

方法:使所有的行输出均为低电平,然后从端口A读入列值。如果没有键按下,则读人值为FFH.如果有链按下.则不为FFH。

(2)去除键抖动。

方法:延时10—20 ms,再一次判断有无键按下,如果此时仍有键按下,则认为键盘上确实有键处于稳定闭合期。

(3)若有键闭合,则求出闭合键的键值。

方法:对键盘逐行扫描。

程序中需等闭合键释放后才对其进行处理。

3.6通信模块

在此部分主要是实现下位机与上位机之间的通信,将实时数据传送到上位机,进行同一协调和集中管理。

RS232的电气接口是单端的、双极性电源电路。由于RS-232采用的数据传输线路是非平衡,且是误无差分的接收方式,当信号穿过电气干扰环境时,发送的信号将会受到影响。故数据传输速率局限于20KBs;传输距离局限于15m,但RS-232也是目前最广泛使用的串行通信接口标准。

在本设计当中,考虑到系统调试的方便,采用了RS232串行总线。MAX232芯片是美信公司专门为电脑的RS-232标准串口设计的接口电路,使用+5v单电源供电。内部结构基本可分三个部分:(1)第一部分是电荷泵电路。由1、2、3、4、5、6脚和4只电容构成。功能是产生+12v和-12v两个电源,提供给RS-232串口电平的需要。

(2)第二部分是数据转换通道。由7、8、9、10、11、12、13、14脚构成两个数据通道。其中13脚(R1IN)、12脚(R1OUT)、1 1脚(T1IN)、14脚(T1OUT)为第一数据通道。8脚(R2IN)、9脚(R2OUT)、10脚(T2IN)、7脚(T2OUT)为第二数据通道。

TTLCMOS数据从T1IN、T2IN输入转换成RS-232数据从T1O UT、T2OUT送到电脑DB9插头;DB9插头的RS-232数据从R1IN、R2IN输入转换成TTLCMOS数据后从R1OUT、R2OUT输出。

(3)第三部分是供电。15脚GND、16脚VCC(+5v)

4系统软件设计

4.1系统主程序及其功能

图4.1系统主程序流程图

本系统的应用程序主要由主程序、中断服务程序和子程序组成。主程序的任务是对系统进行初始化,实现参数输入,并控制电加热炉的正常运行。主程序主要由系统初始化、数据采集及处理、智能推理等部分组成。系统初始化包括设置栈底、工作寄存器组、控制量的初始值、采样周期、中断方式和状态、定时器的工作方式以及8255的初始化、MAX1232的初始化等。数据采集及处理主要包括实时采集电加热炉的炉温信号,计算出实际炉温与理想值的差值以及温差的变化率,并对炉温信号进行滤波和限幅处理。主程序流程图如图4.1所示。

4.2PID控制算法

1 PID 简介

PID(Proportional Integral Derivative)控制是控制工程中技术成熟、应用广泛的一种控制策略,经过长期的工程实践,已形成了一套完整的控制方法和典型的结构。它不仅适用于数学模型已知的控制系统中,而且对于大多数数学模型难以确定的工业过程也可应用,在众多工业过程控制中取得了满意的应用效果。

PID工作基理:由于来自外界的各种扰动不断产生,要想达到现场控制对象值保持恒定的目的,控制作用就必须不断的进行。若扰动出现使得现场控制对象值(以下简称被控参数)发生变化,现场检测元件就会将这种变化采集后经变送器送至PID控制器的输入端,并与其给定值(以下简称SP值)进行比较得到偏差值(以下简称e值),调节器按此偏差并以我

们预先设定的整定参数控制规律发出控制信号,去改变调节器的开度,使调节器的开度增加或减少,从而使现场控制对象值发生改变,并趋向于给定值(SP 值),以达到控制目的 ,如图 1 所示,其实PID 的实质就是对偏差(e 值)进行比例、积分、微分运算,根据运算结果控制执行部件的过程。

图1 模拟PID 控制系统原理图

PID 控制器的控制规律可以描述为:

u(0)])()(1(t)[u(t)0I P T K +++

=?dt t de dt t e e T D t (2)

比例(P )控制能迅速反应误差,从而减小稳态误差。但是,比例控制不能消除稳态误差。比例放大系数的加大,会引起系统的不稳定。积分(I )控制的作用是:只要系统有误差存在,积分控制器就不断地积累,输出控制量,以消除误差。因而,只要有足够的时间,积分控制将能完全消除误差,使系统误差为零,从而消除稳态误差。积分作用太强会使系统超调加大,甚至使系统出现振荡。微分(D )控制可以减小超调量,克服振荡,使系统的稳定性提高,同时加快系统的动态响应速度,减小调整时间,从而改善系统的动态性能。根据不同的被控对象的控制特性,又可以分为P 、PI 、PD 、PID 等不同的控制模型。

2数字PID 的实现

在连续-时间控制系统(模拟PID 控制系统)中,PID 控制器应用得非常广泛。其设计技术成熟,长期以来形成了典型的结构,参数整定方便,结构更改灵活,能满足一般的控制要求。随着计算机的快速发展,人们将计算机引入到PID 控制领域,也就出现了数字式PID 控制。

由于计算机基于采样控制理论,计算方法也不能沿袭传统的模拟PID 控制算法(如公式1 所示),所以必须将控制模型离散化,离散化的方法:以T 为采样周期,k 为采样序号,用求和的形式代替积分,用增量的形式(求差)代替微分,这样可以将连续的PID 计算公式离散:

(k=0,1,2......)

∑∑?===≈k j k j t j e T jT e T t e 000)()()(

T k e T T k e kT e dt t de 1-k e -])1-[(-)()(=≈ (3)

式1 就可以离散为:

01-k 0k )]e -([e u e T T e T T K u k D k J j I p k +++=∑=

或者

1-k 0k )e -(e u e K e K K u k D k J j I p k +++=∑= (4)

这样就可以让计算机或者单片机通过采样的方式实现PID 控制,具体的PID 控制又分为位置式PID 控制和增量式PID 控制,公式4 给出了控制量的全部大小,所以称之为全量式或者位置式控制;如果计算机只对相邻的两次作计算,只考虑在前一次基础上,计算机输出量的大小变化,而不是全部输出信息的计算,这种控制叫做增量式PID 控制算法,其实质就

是求Δμ的大小,而

所以将式4 做自减变换有:

2

-1-2-1-P 2-1-k 1-k k 1

-k )21(K -e )1)]2-(e e -[e u -k k k k D P k D k D P k k D k P k k k Ce e e e e e e e u u u +B +A =T

T K +T T +T T +T T +K =+T

T +T T +K ===?I I ( 控制系统的软件主要包括:采样、标度变换、控制计算、控制输出、中断、显示、报警、调节参数修改、温度设定及修改。其中控制算法采用数字PID 调节,应用增量型控制算法,并对积分项和微分项进行改进,以达到更好的控制效果。

考虑到电加热炉是一个非线性、时变和分布参数系统,所以本文采用一种新型的智能控制算法。它充分吸取数学和自动控制理论成果,与定性知识相结合,做到取长补短,在实时控制中取得较好的成果。 5心得体会

通过近一周时间的课程设计,让我学习了很多,也了解了很多,真的可以说是受益匪浅。

此次课程设计中,我做的课题是《基于PID 的电加热炉温度控制系统》。整个系统分为四个部分:测量检测模块,控制调节模块,驱动执行和电源模块。基于PID 电加热炉温度控制系统是以PID 控制为核心的温度控制系统,查阅了很多资料并且对以前学习的专业知识系统并有针对性的复习设计出了自己满意作品,也只有这样才能起到此次课程设计的目的。

通过各方面的努力,最终设计出了自己较为满意的系统。虽然这一周过得很辛苦,但是自己付出的努力得到了回报,那种成就感是任何事物都无法代替的。还有在设计过程中,我们积累的经验,对我们以后的学习和工作会有莫大的帮助。

参考文献

[1] 康华光编著.电子技术基础(模拟部分).高等教育出版社,2000

[2] 于海生编著.计算机控制技术.机械工业出版社,2003

[3] 李晓莹编著.传感器与测设技术.高等教育出版社,2002

[4] 付家才编著.单片机实验与实践.高等教育出版社,2004

[5] 谭浩强编著.MCS-51单片机应用教程.清华大学出版社,2001

[6]潘新民王燕芳.微型计算机控制技术.电子工业出版社.2011.1

[7]郁有文常健程继红.传感器原理及工程应用.西安电子科技大学出版社.2008.7

[8]谢维成杨加国.单片机原理与应用及C51程序设计.清华大学出版社.2009.7

[9]林锦国张利李丽娟.过程控制.东南大学出版社.2009.8

单片机温度控制系统毕业论文

论文设计 设计(论文)题目:基于单片机的温度控制系统 院系:电子信息工程学院 专业班级:电子信息工程11-01 学生姓名:张战锋 指导教师:耿鑫

郑州轻工业学院 二〇一四年十月二十日

基于单片机的温度控制系统 摘要 温度是日常生活中无时不在的物理量,温度的控制在各个领域都有积极的意义。很多行业中都有大量的用电加热设备,如用于热处理的加热炉,用于融化金属的坩锅电阻炉及各种不同用途的温度箱等,采用单片机对它们进行控制不仅具有控制方便、简单、灵活性大等特点,而且还可以大幅度提高被控温度的技术指标,从而能够大大提高产品的质量。因此,智能化温度控制技术正被广泛地采用。 本温度设计采用现在流行的AT89S51单片机,配以DS18B20数字温度传感器,该温度传感器可自行设置温度上下限。单片机将检测到的温度信号与输入的温度上、下限进行比较,由此作出判断是否启动继电器以开启设备。 本设计还加入了常用的数码管显示及状态灯显示灯常用电路,使得整个设计更加完整,更加灵活。该设计已应用于花房,可对花房温度进行智能监控。 【关键词】温度箱,AT89S51,单片机,控制,模拟

目录 1 引言 (3) 1.1 温度控制系统设计的背景、发展历史及意义 (3) 1.2 温度控制系统的目的 (4) 1.3 温度控制系统完成的功能 (4) 2 总体设计方案 (4) 3 DS18B20温度传感器简介 (11) 3.1 温度传感器的历史及简介 (11) 3.2 DS18B20的工作原理 (11) 3.2.1 DS18B20工作时序 (11) 3.2.2 ROM操作命令 (14) 3.3 DS18B20的测温原理 (14) 3.3.1 DS18B20的测温原理: (14) 3.3.2 DS18B20的测温流程 (16) 4.1 设计原则 (16) 4.2 引脚连接 (17) 4.2.1 晶振电路 (17) 4.2.2 串口引脚 (17) 5 系统整体设计 (18)

毕业设计-电加热炉控制系统设计

密级: NANCHANGUNIVERSITY 学士学位论文THESIS OF BACHELOR (2006 —2010年) 题目锅炉控制系统的设计 学院:环境与化学工程系化工 专业班级:测控技术与仪器 学生姓名:魏彩昊学号:5801206025 指导教师:杨大勇职称:讲师 起讫日期:2010-3至2010-6

南昌大学 学士学位论文原创性申明 本人郑重申明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果。对本文的研究作出重要贡献的个人和集体,均已在文中以明确方式表明。本人完全意识到本申明的法律后果由本人承担。 作者签名:日期: 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权南昌大学可以将本论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 保密□,在年解密后适用本授权书。 本学位论文属于 不保密□。 (请在以上相应方框内打“√”) 作者签名:日期: 导师签名:日期:

锅炉控制系统设计 专业:测控技术与仪器学号:5801206025 学生姓名:魏彩昊指导教师:杨大勇 摘要 温度是流程工业中极为常见的热工参数,对它的控制也是过程控制的一个重点。由于加热过程、加热装置特殊结构等具体原因,使得过程对象经常具有大时滞、非线性、难以建立精确数学模型等特点,利用传统的PID控制策略对其进行控制,难以取得理想的控制效果,而应用数字PID控制算法能得到较好的控制效果。 本文主要阐述了一种改进型的加热炉对象及其工艺流程,采用了PLC控制装置设计了控制系统,使加热炉的恒温及点火实现了自动控制,从而使加热炉实现了全自动化的控制。此种加热炉可广泛应用于铝厂、钢厂等金属冶炼、金属加工行业以及化工行业。 此设计以工业中的电加热炉为原型,以实验室中的电加热炉为实际的被控对象,采用PID控制算法对其温度进行控制。提出了一种适合电加热炉对象特点的控制算法,并以PLC 为核心,组成电加热炉自适应控制系统,其控制精度,可靠性,稳定性指标均远高于常规仪表组成的系统。 关键词:温度;电加热炉;PLC;控制系统

单片机温度控制系统毕业设计论文.doc

题目基于单片机的温度控制系统 英文题目Temperature control system based on single chip 学生姓名: 学号: 专业: 指导老师: 职称 系别:机械与电子工程系 2012年5月1日

摘要 温度是日常生活中无时不在的物理量,温度的控制在各个领域都有积极的意义。很多行业中都有大量的用电加热设备,如用于热处理的加热炉,用于融化金属的坩锅电阻炉及各种不同用途的温度箱等,采用单片机对它们进行控制不仅具有控制方便、简单、灵活性大等特点,而且还可以大幅度提高被控温度的技术指标,从而能够大大提高产品的质量。因此,智能化温度控制技术正被广泛地采用。 本温度设计采用现在流行的AT89S51单片机,配以DS18B20数字温度传感器,该温度传感器可自行设置温度上下限。单片机将检测到的温度信号与输入的温度上、下限进行比较,由此作出判断是否启动继电器以开启设备。 本设计还加入了常用的数码管显示及状态灯显示灯常用电路,使得整个设计更加完整,更加灵活。 关键字:单片机温度控制继电器

ABSTRACT The temperature is constantly in the daily life of physical and temperature controls in various fields have a positive meaning. A lot of businesses have a lot of power heating equipment, such as that used for the heat treatment furnace, for melting metal crucible resistance heaters and the various uses of temperature bins, SCM using their right to control not only easy to control, simple, such as the characteristics of flexibility, but can also significantly increase the temperature was charged with the technical indicators, which can greatly enhance the quality of the products. Therefore, intelligent temperature control technology is being widely adopted. The temperature was designed with the now popular AT89S51 SCM, and with DS18B20 digital temperature sensor, The temperature sensor can set up their own temperature collars. SCM will detect that the temperature of the input signal and temperature, the lower comparisons this judgment whether to activate the relay to open the equipment. The design also includes commonly used digital display and control state lights commonly used circuit, making the whole design more complete, more flexible. Key words:Single chip microcomputer Temperature control SSR

电加热炉温度控制系统设计

湖南理工学院南湖学院 课程设计 题目:电加热炉温度控制系统设计专业:机械电子工程 组名:第三组 班级:机电班 组成员:彭江林、谢超、薛文熙

目录 1 意义与要求 (2) 1.1 实际意义 (2) 1.2 技术要求 (2) 2 设计内容及步骤 (2) 2.1 方案设计 (2) 2.2 详细设计 (3) 2.2.1 主要硬件介绍 (3) 2.2.2 电路设计方法 (4) 2.2.3 绘制流程图 (7) 2.2.4 程序设计 (8) 2.3 调试和仿真 (8) 3 结果分析 (9) 4 课程设计心得体会 (10) 参考文献 (10) 附录............................................................ 10-27

1 意义与要求 1.1 实际意义 在现实生活当中,很多场合需要对温度进行智能控制,日常生活中最常见的要算空调和冰箱了,他们都能根据环境实时情况,结合人为的设定,对温度进行智能控制。工业生产中的电加热炉温度监控系统和培养基的温度监控系统都是计算机控制系统的典型应用。通过这次课程设计,我们将自己动手设计一个小型的计算机控制系统,目的在于将理论结合实践以加深我们对课本知识的理解。 1.2 技术要求 要求利用所学过的知识设计一个温度控制系统,并用软件仿真。功能要求如下: (1)能够利用温度传感器检测环境中的实时温度; (2)能对所要求的温度进行设定; (3)将传感器检测到得实时温度与设定值相比较,当环境中的温度高于或低于所设定的温度时,系统会自动做出相应的动作来改变这一状况,使系统温度始终保持在设定的温度值。 2 设计内容及步骤 2.1 方案设计 要想达到技术要求的内容,少不了以下几种器件:单片机、温度传感器、LCD显示屏、直流电动机等。其中单片机用作主控制器,控制其他器件的工作和处理数据;温度传感器用来检测环境中的实时温度,并将检测值送到单片机中进行数值对比;LCD显示屏用来显示温度、时间的数字值;直流电动机用来表示电加热炉的工作情况,转动表示电加热炉通电加热,停止转动表示电加热炉断

温控器论文

浅析温控器复位不同步对终端产品的影响 来源: 亮群电子发布时间: 2014-04-01 14:08 247 次浏览大小: 16px14px12px 双金属片温控器采用机械式的结构,具有分断灵敏、不易拉弧、不产生电磁干扰而得到广泛的应用。然而由于在制造中的误差而引发温控器复位不同步的现象越来越多,给温控器的终端产品带来了一些不利的影响。本文从双金属片温控器复位不同步的定义、动作过程来说明复位不同步对终端产品的影响,并以实际的案例做分析说明。 本文由我司工程师张海滨发表于《电器附件》2013年第二期,通过对双金属片温控器复位不同步的过程和原理分析来说明其对终端产品的影响。 1定义 在温控器制造行业,通常将双金属片受热后翻转的瞬间与触点开关状态改变瞬间的时间差定义为温控器的同步性。而复位不同步是指双金属片温控器在达到动作温度后,双金属片已经翻转,同时开关触点已经断开,其控制的发热体也开始降温,在随后的过程中,双金属片会再一次翻转,开关触点并再一次闭合时,两个状态点的时间差有明显的滞后性。这个状况则被称做为温控器复位不同步。 2温控器复位不同步原因分析 从温控器基本结构和原理分析,我们发现双金属片由于受热变形翻转后有一个最高的弧高点到下一次再翻转前有一个行程A,开关的触点从断开到闭合的过程也有一个行程B;示意图1和示意图2分别指示出这种变化所产生的行程A、B。如果A=B时,则理论上该温控器为完全同步的温控器。实际生产中,由于各温控器厂家使用零件的误差以及制造工艺的误差,会导致A≠B;多数情况下是A>B,从而就比较容易产生温控器复位不同步的现象。

3影响终端产品的过程分析 温控器一般用于终端产品中做温度的控制,我们将电路简化为图3的电路。 在该电路中,先通电之后,常闭型的温控器触点是闭合的,加热体发热后温度持续上升,温度达到温控器的动作温度后,温控器内部开关触点断开,加热体由于热惯性温度会上升,到一定程度后开始降温。如果此时温控器的两个行程A=B,则电路接通和感温的双金属翻转是同时进行的。

关于温度控制系统论文

前言 随着电子技术的发展、数字电路应用领域的扩展,现今社会,产品智能化、数字化已成为人们追求的一种趋势,设备的性能、价格、发展空间等备受人们的关注,尤其对电子设备的精密度和稳定度最为关注随着单片机技术的不断发展,控制设备也跟着不断变化,对产品试验环境的要求也越来越严格。鉴于此,环境温度是试验环境中的一项重点,环境温度的高低直接影响产品的电气和机械性能参数,环境温度的准确度对测试温度的方法要求越来越高,而对环境温度的控制更显的重要。温度检测的传统方法是使用诸如热电偶、热电阻、半导体PN结之类的模拟温度传感器。信号经取样、放大后通过模数转换,再交由单片机处理。被测温度信号从温敏元件到单片机,经过众多器件,易受干扰、不易控制且精度不高。为了准确的测试与控制环境温度,因此,本系统采用一种新型的可编程温度传感器DS18B20,它能代替模拟温度传感器和信号处理电路,直接与单片机沟通,完成温度采集和数据处理。DS18B20与AT89S52结合实现最简温度检测系统,该系统结构简单,抗干扰能力强,适合于恶劣环境下进行现场温度测量,有广泛的应用前景。

第一章绪论 随着信息时代的到来,智能化已是现代温度控制系统发展的主流方向。特别是近年来,温度控制系统已应用到人们生活的各个方面,但温度控制一直是一个未开发的领域,却又是与人们息息相关的一个实际问题。针对这种实际情况,设计一个温度控制系统,具有广泛的应用前景与实际意义。 温度是科学技术中最基本的物理量之一,物理、化学、生物等学科都离不开温度。在工业生产和实验研究中,像电力、化工、石油、冶金、航空航天、机械制造、粮食存储、酒类生产等领域内,温度常常是表征对象和过程状态的最重要的参数之一[1]。比如,发电厂锅炉的温度必须控制在一定的范围之内;许多化学反应的工艺过程必须在适当的温度下才能正常进行;炼油过程中,原油必须在不同的温度和压力条件下进行分馏才能得到汽油、柴油、煤油等产品。没有合适的温度环境,许多电子设备就不能正常工作,粮仓的储粮就会变质霉烂,酒类的品质就没有保障。因此,各行各业对温度控制的要求都越来越高。可见,温度的测量和控制是非常重要的。 单片机在电子产品中的应用已经越来越广泛,在很多的电子产品中也用到了温度检测和温度控制。 由于传感器能将各种物理量、化学量和生物量等信号转变为电信号,使得人们可以利用计算机实现自动测量、信息处理和自动控制,但是它们都不同程度地存在温漂和非线性等影响因素[2]。传感器主要用于测量和控制系统,它的性能好坏直接影响系统的性能。因此,不仅必须掌握各类传感器的结构、原理及其性能指标,还必须懂得传感器经过适当的接口电路调整才能满足信号的处理、显示和控制的要求,而且只有通过对传感器应用实例的原理和智能传感器实例的分析了解,才能将传感器和信息通信和信息处理结合起来,适应传感器的生产、研制、开发和应用[3]。另一方面,传感器的被测信号来自于各个应用领域,每个领域都为了改革生产力、提高工效和时效,各自都在开发研制适合应用的传感器,于是种类繁多的新型传感器及传感器系统不断涌现。温度传感器是其中重要的一类传感器。其发展速度之快,以及其应用之广,并且还有很大潜力。

温度自动控制系统的设计毕业设计论文

北方民族大学学士学位论文论文题目:温度自动控制系统的设计 北方民族大学教务处制

毕业设计(论文)原创性声明和使用授权说明 原创性声明 本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。 作者签名:日期: 指导教师签名:日期: 使用授权说明 本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。 作者签名:日期:

学位论文原创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。 作者签名:日期:年月日 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 涉密论文按学校规定处理。 作者签名:日期:年月日 导师签名:日期:年月日

智能温度控制系统毕业论文

目录 引言 (1) 1 系统的相关介绍 (2) 1.1 系统的目的及意义 (2) 1.2 设计要求 (2) 1.3 系统传感器DS18B20的介绍 (2) 1.3.1 DS18B20的主要特性 (2) 1.3.2 DS18B20的外形和部结构 (3) 2 系统分析设计 (4) 2.1 温度控制系统结构图及总述 (4) 2.2 系统显示界面方案 (4) 2.3 系统输入方案 (5) 2.4系统的功能 (5) 3 相关软件编译知识介绍 (5) 3.1 C语言简介 (5) 3.1.1 C语言的优点 (5) 3.1.2 C语言缺点 (6) 3.2 Keil简介 (6) 3.2.1 系统概述 (6) 3.2.2 Keil C51单片机软件开发系统的整体结构 (7) 4系统流程图设计 (7) 4.1主程序流程图 (7) 4.2 DS18B20控制程序流程图 (8) 4.2.1 DS18B20 复位程序流程图 (9) 4.2.2 DS18B20写数据程序流程图 (9) 4.2.3 DS18B20读数据程序流程图 (10) 4.3 温度读取及转换程序流程图 (12) 4.4 MAX7219驱动程序流程图 (13) 4.4.1 MAX7219写入一个字节数据程序流程图 (13) 4.4.2 MAX7219写入一个字数据程序流程图 (15) 4.5 数码管温度显示程序流程图 (16) 4.6 按键中断服务程序流程图 (17) 5 电路仿真 (19) 5.1 PROTEUS软件介绍 (19) 5.2 温度控制系统PROTEUS仿真 (19) 6总结 (20) 7参考文献 (21) 附录1 源程序代码 (22)

管式加热炉温度控制系统设计

过程控制系统课程设计报告书管式加热炉温度控制系统设计 学院:自动化 班级:15级自动化4班 指导老师:陈刚 组员: 重庆大学自动化学院 2019年1月

任务分配 过程控制系统课程设计——管式加热炉温度控制系统的设计

目录 任务分配 (2) 过程控制系统课程设计——管式加热炉温度控制系统的设计 (2) 1摘要 (4) 2模型简介 (4) 2.1背景 (4) 2.2模型假设 (4) 2.3系统扰动因素 (5) 3控制方案 (5) 3.1传统PID控制方法 (5) 3.2串级控制系统 (6) 3.3 方案选择 (7) 4串级控制器的设计 (7) 4.1主副控制器设计 (7) 4.1.1主、副回路的设计原则 (7) 4.1.2主、副调节器的选型 (7) 4.1.3主、副调节器调节规律的选择作用 (8) 4.2串级控制器的参数整定 (8) 5系统的仿真和改进 (9) 5.1串级控制系统仿真 (9) 5.2基于Smith预估计补偿器的串级控制系统 (11) 六.总结 (14) 七.参考文献 (15)

1摘要 当今世界,随着市场竞争的日益激烈,产品的质量和功能也向更高的档次发展,制造产品的工艺过程变得越来越复杂,为满足优质、高产、低消耗,作为工业自动化重要分支的过程控制的任务也愈来愈重,无论是在大规模的工业生产过程中,还是在传统工业过程改造中,过程控制技术对于提高产品质量以及节省能源等均起十分重要的作用。为了能将课程所学理论知识初步尝试应用于实践。 本设计针对管式加热炉系统的控制问题展开了研究。通过将实际加热炉模型化,通过实验法建立锅炉的数学模型。针对物料温度控制问题,在对比了简单的单回路PID控制方法、串级控制两种方法的优劣性后,选择了串级控制的方法控制物料温度。综合应用过程控制理论以及MATLAB仿真技术,通过经验模型及参数整定,得到系统响应曲线。通过反复实验,调整参数,使控制效果比较理想。 关键词:管式加热炉系统、串级控制、MATLAB仿真 2模型简介 2.1背景 管式加热炉是石油工业中重要装置之一,加热炉控制的主要任务就是保证工艺介质最终温度达到并维持在工艺要求范围内,由于其具有强耦合、大滞后等特性,控制起来非常复杂。同时,近年来能源的节约、回收和合理利用日益受到关注。加热炉是冶金、炼油等生产部门的典型热工设备,能耗很大。因此,在设计加热炉控制系统时,在满足工艺要求的前提下,节能也是一个重要质量指标,要保证加热炉的热效率最高,经济效益最大。另外,为了更好地保护环境,在设计加热炉控制系统时,还要保证燃料充分燃烧,使燃烧产生的有害气体最少,达到减排的目的。 2.2模型假设 管式加热炉的主要任务是把原质油或重油加热到一定的温度,保证下一道工序正常进行。假设有一个加热炉系统,系统参数设定为: 1.物料以恒定速度进入管道,流速为10L/s,管道直径为10cm,不考虑物料浓度变化、压力变化等其他条件。 2.物料在加热炉内的长度为L=5m,假定物料受热均匀,并在t=10s后上升至指定温度。 3.假定燃气混合浓度不变,物料温度上升只受燃料流量影响。 4.不考虑环境温度、燃料值等影响,主要考虑燃料流量的扰动。

单片机温度控制器设计毕业论文

摘要 随着微机测量和控制技术的迅速发展与广泛应用,以单片机为核心的温度采集与控制系统的研发与应用在很大程度上提高了生产生活中对温度的控制水平。本设计论述了一种以STC89C52单片机为主控制单元。该控制系统可以实时存储相关的温度数据。系统设计了相关的硬件电路和相关应用程序。硬件电路主要包括STC89C51单片机最小系统,测温电路、实时时钟电路、LED显示以及通讯模块电路等。系统程序主要包括主程序,读出温度子程序,计算温度子程序、按键处理程序、LCD显示程序以及数据存储程序等。 关键词: STC89C52单片机;DS18B20;显示电路

Abstract Along with the computer measurement and control technology of the rapid development and wide application, based on singlechip temperature gathering and control system development and application greatly improve the production of temperature in life level of control. This design STC89C52 describes a kind of mainly by MCU control unit, for temperature sensor DS18B20 temperature control system. The control system can real-time storage temperature data and record related to the current time. System design related hardware circuit and related applications. STC89C52 microcontroller hardware circuit include temperature detection circuit smallest system, and real-time clock circuit, LCD display circuit, communication module circuit, etc. System programming mainly include main program, read temperature subroutine, the calculation of temperature subroutines, key processing procedures, LCD display procedures and data storage procedures, etc. Keywords :STC89C52 microcontroller;DS18B20;display circuit

温度控制系统毕业设计

摘要 在日常生活及工农业生产中,对温度的检测及控制时常显得极其重要。因此,对数字显示温度计的设计有着实际意义和广泛的应用。本文介绍一种利用单片机实现对温度只能控制及显示方案。本毕业设计主要研究的是对高精度的数字温度计的设计,继而实现对对象的测温。测温系数主要包括供电电源,数字温度传感器的数据采集电路,LED显示电路,蜂鸣报警电路,继电器控制,按键电路,单片机主板电路。高精度数字温度计的测温过程,由数字温度传感器采集所测对象的温度,并将温度传输到单片机,最终由液晶显示器显示温度值。该数字温度计测温范围在-55℃~+125℃,精度误差在±0.5℃以内,然后通过LED数码管直接显示出温度值。数字温度计完全可代替传统的水银温度计,可以在家庭以及工业中都可以应用,实用价值很高。 关键词:单片机:ds18b20:LED显示:数字温度. Abstract In our daily life and industrial and agricultural production, the detection and control of the temperature, the digital thermometer has practical significance and a wide range of applications .This article describes a programmer which use a microcontroller to achieve and display the right temperature by intelligent control .This programmer mainly consists by temperature control sensors, MCU, LED display modules circuit. The main aim of this thesis is to design high-precision digital thermometer and then realize the object temperature measurement. Temperature measurement system includes power supply, data acquisition circuit, buzzer alarm circuit, keypad circuit, board with a microcontroller circuit is the key to the whole system. The temperature process of high-precision digital thermometer, from collecting the temperature of the object by the digital temperature sensor and the temperature transmit ted to the microcontroller, and ultimately display temperature by the LED. The digital thermometer requires the high degree is positive 125and the low degree is negative 55, the error is less than 0.5, LED can read the number. This digital thermometer could

加热炉出口温度与炉膛温度串级控制系统设计

第一章系统分析与控制方案的确立 1.系统分析 图1.1所示为某工业生产中的加热炉,其任务是将被加热物料加热到一定温度,然后送到下道工序进行加工。加热炉工艺过程为:被加热物料流过排列炉膛四周的管道后,加热到炉出口工艺所要求的温度。在加热用的燃料油管道上装有一个调节阀,用以控制燃料油流量,以达到控制出口温度的目的。 T1出口 支路1 炉膛 支路2 燃料 被加热物料 图1.1加热炉出口温度系统 由于加热炉时间常数大,而且扰动的因素多,比如原料侧的扰动及负荷扰动;燃烧侧的扰动等,单回路反馈控制系统不能满足工艺对加热炉出口温度的要求。为了提高控制质量,采用串级控制系统,运用副回路的快速作用,有效地提高控制质量,满足生产要求。 2.串级控制系统的设计 加热炉工艺过程为:被加热物料流过排列炉膛四周的管道后,加热到炉出口工艺所要求的温度。在加热用的燃料油管道上装有一个调节阀,用以控制燃料油流量,以达到控制出口温度的目的。由于加热炉时间常数大,而且扰动的因素多,比如原料侧的扰动及负荷扰动;燃烧侧的扰动等,单回路反馈控制系统不能满足工艺对加热炉出口温度的要求。为了提高控制质量,采用串级控制系统,运用副回路的快速作用,以加热炉出口温度为主变量,选择滞后较小的炉膛温度为副变量,构成炉出口温度与炉膛温度的串级控制系统有效地提高控制质量,以满足工业生产的要求,系统的串级控制结构图如图1.2所示。

图 1.2 加热炉出口温度串级控制系统结构图 串级控制系统的工作过程,就是指在扰动作用下,引起主、副变量偏离设 定值,由主、副调节器通过控制作用克服扰动,使系统恢复到新的稳定状态的 过渡过程。由加热炉出口温度串级控制系统结构图可绘制出其结构方框图,如 图 1.3 所示。 图 1.3 加热炉出口温度串级控制系统结构方框图 (1) 主被控参数的选择 应选择被控过程中能直接反映生产过程中的产品产量和质量,又易于测量 的参数。在加热炉出口温度与炉膛温度的串级控制系统中加热炉出口温度为系 统的主被控参数,因为加热炉出口温度是整个控制作用的关键,要求出口物料 温度维持在某给定值上下。如果其调节欠妥当,会造成整个系统控制设计的失 败。 (2) 副被控制参数的选择 从整个系统来看,加热炉的炉膛温度虽然不是我们要控制的直接目标,但 是炉膛温度会很大程度上影响出口物料的温度,因此我们选择炉膛温度为副被 控参数。 (3) 控制器的选择 主控制器的选择:主被控变量是工艺操作的主要指标(温度),允许波动的 度 副控制器 调节阀 主控制器 主检测、变送仪表 副检测、变送仪表 炉膛 出口温度

智能温度控制系统毕业设计开题报告

毕业设计开题报告 题目名称智能温度控制系统设计 学生姓名郑如顺专业电气信息工程班级10级一、选题的目的意义 温度控制无论是在工业生产过程中,还是在日常生活中都起着非常重要的作用,而当今,我国农村的锅炉取暖等大多数都没有温度监控系统,部分厂矿,企业还一直沿用简单的温度设备和纸质数据记录仪。无法实现温度数据的测量与控制。随着社会经济的高速发展,越来越多的生产部门和生产环节对温度控制精度的可靠性和稳定性等有了更高的要求。传统的温度控制器控制精度普遍不高,不能满足对温度要求较为苛刻的生产环节。 在温度控制中,由于受到温度被控对象特性(如惯性大、滞后大、非线性等)的影响,使得控制性能难以提高,有些工艺过程其温度控制的好坏直接影响着产品的质量,因而设计一种较为理想的温度控制系统是非常有价值的。 此次的智能温度控制系统的设计基于此而设计,针对一些大型公共场合,为达到对其温度的良好控制,从实用的角度以AT89C51为核心设计一套温度智能控制系统。其控制温度不是一个点,而是一个范围。系统以AT89C51单片机为核心,组成一个集温度的采集、处理、显示、自动控制为一身的闭环控制系统。利用单片机采集环境温度值,以数字量的形式存储和显示,可以独立作为一种设备对温室温度进行有一定精度的控制,经过简单的运算发出各种控制命令,并能动态的显示当前温度值,设定目标控制温度值。同时,也可以作为数据采集装置,为上位机进行复杂运算决策提供数据来源。 该智能温度控制系统功耗低,本系统运行情况良好且经济可靠。能利用最少的资源对不同温度进行高精度的测量,信息性能可靠、操作便利,复杂的工作通过软件编程来完成,可以方便的获取结果,在实际的使用中获得了理想的效果。

基于模糊控制算法的温度控制系统的毕业设计

基于模糊控制算法的温度控制系统的毕业设计 第1章绪论 温度控制,在工业自动化控制中占有非常重要的地位。将模糊控制方法运用到温度控制系统中,可以克服温度控制系统中存在的严重滞后现象,同时在提高采样频率的基础上可以很大程度的提高控制效果和控制精度。 1.1 课题背景 1965年,美国著名控制论学者L.A.Zadeh发表了开创性论文,《FUZZY SETS》首次提出了一种完全不同于传统数学与控制理论的模糊集合理论。在短短的30年里,以模糊集理论为基础发展而来的模糊控制策略已经成功为将人的控制经验纳入自动控制策略之中。在现今的模糊控制领域中,经典模糊控制理论已经在很多方面取得了一大批有实际意义的成果(如90年代日本家电模糊控制产品和工业模糊控制系统)。此外经典模糊控制也得到了相应的改善,如模糊集成系统、模糊自适应系统、神经模糊控制等。 现代自动控制越来越朝着智能化发展,在很多自动控制系统中都用到了工控机,小型机、甚至是巨型机处理机等,当然这些处理机有一个很大的特点,那就是很高的运行速度,很大的内存,大量的数据存储器。但随之而来的是巨额的成本。在很多的小型系统中,处理机的成本占系统成本的比例高达20%,而对于这些小型的系统来说,配置一个如此高速的处理机没有任何必要,因为这些小系统追求经济效益,而不是最在乎系统的快速性,所以用成本低廉的单片机控制小型的,而又不是很复杂,不需要大量复杂运算的系统中是非常适合的。 温度控制,在工业自动化控制中占有非常重要的地位,如在钢铁冶炼过程中要对出炉的钢铁进行热处理,才能达到性能指标,塑料的定型过程中也要保持一定的温度[2]。

随着科学技术的迅猛发展,各个领域对自动控制系统控制精度、响应速度、系统稳定性与自适应能力的要求越来越高,被控对象或过程的非线性、时变性、多参数点的强烈耦合、较大的随机扰动、各种不确定性以及现场测试手段不完善等,使难以按数学方法建立被控对象的精确模型的情况[3]。对于这些系统来说采用传统的方法包括基于现代控制理论的方法往往不如一个有实践经验的操作人员的手动控制效果好,而模糊控制理论正是以人的经验为重要组成部分。这就使模糊控制在一般情况下比传统控制方法更有效、更安全。 将模糊控制方法运用到温度控制系统中,可以克服温度控制系统中存在的严重的滞后现象,同时在提高采样频率的基础上可以很大程度的提高控制效果和控制精度。 模糊控制是基于模糊数学上发展起来的一门新的控制科学[3]。其运算过程中有很多都要用到矩阵运算,但控制其级别很少的时候可以进行离线计算,很方便的完成矩阵运算。这样一来模糊控制就已经简化了,甚至比一般的PID运算还更简单。运用一般的处理机,如单片机就能完成。 1.2 设计指标 设计一个基于模糊控制算法的温度控制系统具体化技术指标如下。 1. 被控对象可以是电炉或燃烧炉,温度控制在0~100℃,误差为±0.5℃; 2. 恒温控制; 3. LED实时显示系统温度,用键盘输入温度; 4. 采用模糊算法,要求误差小,平稳性好。 1.3 本文的工作 详细分析课题任务,对模糊控制和温度控制的历史和现状进行分析,并对模糊控制和温度控制的原理进行了深入的研究,并将其综合。然后根据课题任务的要求设计出实现控制任务的硬件原理图和软件,并进行访真调试。

毕业设计-电加热炉控制系统设计

密级: NANCHANG UNIVERSITY 学士学位论文 THESIS OF BACHELOR (2006 —2010 年) 题目锅炉控制系统的设计 学院:环境与化学工程系化工 专业班级:测控技术与仪器 学生姓名:魏彩昊学号:5801206025 指导教师:杨大勇职称:讲师 起讫日期:2010-3至2010-6

南昌大学 学士学位论文原创性申明 本人郑重申明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果。对本文的研究作出重要贡献的个人和集体,均已在文中以明确方式表明。本人完全意识到本申明的法律后果由本人承担。 作者签名:日期: 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权南昌大学可以将本论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 保密□,在年解密后适用本授权书。 本学位论文属于 不保密□。 (请在以上相应方框内打“√”) 作者签名:日期: 导师签名:日期:

锅炉控制系统设计 专业:测控技术与仪器学号:5801206025 学生姓名:魏彩昊指导教师:杨大勇 摘要 温度是流程工业中极为常见的热工参数,对它的控制也是过程控制的一个重点。由于加热过程、加热装置特殊结构等具体原因,使得过程对象经常具有大时滞、非线性、难以建立精确数学模型等特点,利用传统的PID控制策略对其进行控制,难以取得理想的控制效果,而应用数字PID控制算法能得到较好的控制效果。 本文主要阐述了一种改进型的加热炉对象及其工艺流程,采用了PLC控制装置设计了控制系统,使加热炉的恒温及点火实现了自动控制,从而使加热炉实现了全自动化的控制。此种加热炉可广泛应用于铝厂、钢厂等金属冶炼、金属加工行业以及化工行业。 此设计以工业中的电加热炉为原型,以实验室中的电加热炉为实际的被控对象,采用PID控制算法对其温度进行控制。提出了一种适合电加热炉对象特点的控制算法,并以PLC 为核心,组成电加热炉自适应控制系统,其控制精度,可靠性,稳定性指标均远高于常规仪表组成的系统。 关键词:温度;电加热炉;PLC;控制系统

加热炉控制系课程设计

第1章加热炉控制系统 加热炉控制系统工程背景及说明 加热炉自动控制(automatic control of reheating furnace),是对加热炉的出口温度、燃烧过程、联锁保护等进行的自动控制。早期加热炉的自动控制仅限控制出口温度,方法是调节燃料进口的流量。现代化大型加热炉自动控制的目标是进一步提高加热炉燃烧效率,减少热量损失。为了保证安全生产,在生产线中增加了安全联锁保护系统。 影响加热炉出口温度的干扰因素很多,炉子的动态响应一般都比较迟缓,因此加热炉温度控制系统多选择串级和前馈控制方案。根据干扰施加点位置的不同,可组成多参数的串级控制。使用气体燃料时,可以采用浮动阀代替串级控制中的副调节器,还可以预先克服燃料气的压力波动对出口温度的影响。这种方案比较简单,在炼油厂中应用广泛。 这种控制的主要目的是在工艺允许的条件下尽量降低过剩空气量,保证加热炉高效率燃烧。简单的控制方案是通过测量烟道气中的含氧量,组成含氧量控制系统,或设计燃料量和空气量比值调节系统,再利用含氧量信号修正比值系数。含氧量控制系统能否正常运行的关键在于检测仪表和执行机构两部分。现代工业中都趋向于用氧化锆测氧技术检测烟道气中的含氧量。应用时需要注意测量点的选择、参比气体流量和锆管温度控制等问题。加热炉燃烧控制系统中的执行机构特性往往都较差,影响系统的稳定性。一般通过引入阻尼滞后或增加非线性环节来改善控制品质。 在加热炉燃烧过程中,若工艺介质流量过低或中断烧嘴火焰熄灭和燃料管道压力过低,都会导致回火事故,而当燃料管道压力过高时又会造成脱火事故。为了防止事故,设计了联锁保护系统防止回火和温度压力选择性控制系统防止脱火。联锁保护系统由压力调节器、温度调节器、流量变送器、火焰检测器、低选器等部分组成。当燃料管道压力高于规定的极限时,压力调节系统通过低选器取代正常工作的温度调节系统,此时出料温度无控制,自行浮动。压力调节系统投入运行保证燃料管道压力不超过规定上限。当管道压力恢复正常时,温度调节系统通过低选器投入正常运行,出料温度重新受到控制。当进料流量和燃料流量低于允许下限或火焰熄灭时,便会发出双位信号,控制电磁阀切断燃料气供给量以防回火。 随着节能技术不断发展,加热炉节能控制系统正日趋完善。以燃烧过程数学模型为依据建立的最佳燃烧过程计算机控制方案已进入实用阶段。例如,按燃烧过程稳态数学模型组成的微机控制系统已开始在炼油厂成功使用。有时利用计算机实现约束控制,使加热炉经常维持在约束条件边界附近工作,以保证最佳燃烧。

课程设计(论文)-基于PLC的电加热炉温度控制系统设计

第一章绪论 1.1选题背景及意义 加热炉是利用电能来产生蒸汽或热水的装置。因为其效率高、无污染、自动化程度高,稳定性好的优点,冶金、机械、化工等各类工业生产过程中广泛使用电加热炉对温度进行控制。而传统的加热炉普遍采用继电器控制。由于继电器控制系统中,线路庞杂,故障查找和排除都相对困难,而且花费大量时间,影响工业生产。随着计算机技术的发展,传统继电器控制系统势必被PLC所取代。二十世纪七十年代后期,伴随着微电子技术和计算机技术的快速发展,也使得PLC 具有了计算机的功能,成为了一种以电子计算机为核心的工业控制装置,在温度控制领域可以让控制系统变得更高效,稳定且维护方便。 在过去的几十年里至今,PID控制已在工业控制中得到了广泛的应用。在工业自动化的三大支柱(PLC、工业机器人、CAD/CAM)中位居第一。由于其原理简单、使用方便、适应能力强,在工业过程控制中95%甚至以上的控制回路都采用了PID结构。虽然后来也出现了很多不同新的算法,但PID仍旧是最普遍的规律。 1.2国内外研究现状及发展趋势 一些先进国家在二十世纪七十年代后期到八十年代初期就开始研发电热锅炉,中国到八十年代中期才开始起步,对电加热炉的生产过程进行计算机控制的研究。直到九十年代中期,不少企业才开始应用计算机控制的连续加热炉,可以说发展缓慢,而且对于国内的温度控制器,总体发展水平仍不高,不少企业还相当落后。与欧美、日本,德国等先进国家相比,其差距较大。目前我国的产品主要以“点位”控制和常规PID为主,只能处理一些简单的温度控制。对于一些过程复杂的,时变温度系统的场合往往束手无策。而相对于一些技术领先的国家,他们生产出了一批能够适应于大惯性、大滞后、过程复杂,参数时变的温度控制系统。并且普遍采用自适应控制、模糊控制及计算机技术。 近年来,伴随着科学技术的不断快速发展,计算机技术的进步和检测设备及

相关文档
相关文档 最新文档