文档库 最新最全的文档下载
当前位置:文档库 › 结构化学课后习题

结构化学课后习题

结构化学课后习题
结构化学课后习题

【1.6】对一个运动速度c υ (光速)的自由粒子,有人

进行了如下推导:1

v v

v v 2h h E m p m νλ=====①

②③④⑤

结果得出mv=1/2mv 的结论。上述推导错在何处?请说明理由。

解:微观粒子具有波性和粒性,两者的对立统相互制约可由下列关系式表达:E=h ν p=h/λ 式中,等号左边的物理量体现了粒性,等号右边的物理量体现了波性,而联系波性和粒性的纽带是Planck 常数。根据上述两式及早为人们所熟知的力学公式:p=mv 知 ①,②,④和⑤四步都是正确的。

微粒波的波长λ服从下式:/u v λ=

式中,u 是微粒的传播速度,它不等于微粒的运动速度υ ,但③中用了/u v λ=,显然是错的。

在④中,E hv =无疑是正确的,这里的E 是微粒的总能量。若计及E 中的势能,则⑤也不正确。

【1.11】2

ax xe ?-=是算符22224d a x dx

??

- ???的本征函数,求其本征值。

解:应用量子力学基本假设Ⅱ(算符)和Ⅲ(本征函数,本征值和本征方程)得:

2

2222222244ax d d a x a x xe dx dx ψ-????-=- ? ????? ()

222

2224ax ax d

xe a x xe dx --=-

()

2

22222

2

2232323242444ax ax ax ax ax ax ax d e ax e a x e dx

axe axe a x e a x e -------=--=--+-

2

66ax

axe a ψ

-=-=-

因此,本征值为6a -。

【4.11】SF 5Cl 分子的形状和SF 6相似,试指出它的点群。 解:SF 6分子呈正八面体构型,属O h 点群。当其中一个F 原子被Cl 原子取代后,所得分子SF 5Cl 的形状与SF 6 分子的形状相似,但对称性降低了。SF 5Cl 分子的点群为C 4v 。

谱项共分裂为

10

个光谱支项:

3

3

3

3

3

3

3

132********

,

,

,

,

,,

,,,D D D P P P S D P S 。

【1.21】已知封闭的圆环中粒子的能级为:

0,1,2,3,n =±±±???22

228n n h E mR π=

式中n 为量子数,R 是圆环的半径,若将此能级公式近似地用于苯分子中6

6π离域π键,取R=140pm ,试求其电子从基态跃迁到第一激发态所吸收的光的波长。

解:由量子数n 可知,n=0为非简并态,|n|≥1都为二重简

并态,6个π电子填入n=0,1,1-等3个轨道

()221

22

418h hc

E E E mR πλ-?=-==

()()()

()

222

2

31

10

813498389.1110 1.4010 2.998103 6.6261021210212mR c

h kg m m s J s m nm

πλπ-----=

??????=

??=?=

【2.20】写出Na 原子的基组态、F 原子的基组态和碳原子的激发态(1s 22s 22p 13p 1)存在的光谱支项符号。

解:Na 原子的基组态为2261

(1)(2)(2)(3)s s p s 。其中1s ,2s 和2p 三个电子层皆充满电子,它们对对整个原子的轨道角动量和自旋角动量均无贡献。Na 原子的轨道角动

量和自旋角动量仅由3s 电子决定:1

20,L S ==,故光谱项为2

S ;J 只能为1

2,故光谱支项为2

1/2S 。

F 原子的基组态为(1s)2(2s)2(2p)5。与上述理由相同,该组态的光谱项和光谱支项只决定于(2p)5组态。根据等价电子组态的“电子----空位”关系,(2p)5组态与(2p)1组态具有相同的项谱。因此,本问题转化为推求(2p)1组态的光

谱项和光谱支项。这里只有一个电子,1

2,1S L ==,故光谱项为2

P 。又31221J =+=或11221J =-=,因此有两个光谱支项:2

3/2P

和2

1/2P 。 对C 原子激发态(1s 22s 22p 13p 1),只考虑组态(2p)1 (3p)1

即可。2p 和3p 的电子是不等价电子,因而(2p)1 (3p)1组态不受Pauli 原理限制,可按下述步骤推求其项谱:由

121,1l l ==得2,1,0L =;由11

1222,s s ==得1,0S =。因

此可得6个光谱项:333111

,,,,,D P S D P S 。根据自旋----

轨道相互作用,每一光谱项又分裂为数目不等的光谱支

项,如3

D ,它分裂为3

332,D D 和31D 等三个支项。6个光

【2.8】已知氢原子的归一化基态波函数为

()

[]

1/2

3

100exp /s a r a ?π-=-

(a)利用量子力学基本假设求该基态的能量和角动量; (b)利用维里定理求该基态的平均势能和零点能。 解:(a )根据量子力学关于“本征函数、本征值和本征方程”的假设,当用Hamilton 算符作用于ψ1s 时,若所得结果等于一常数乘以此ψ1s ,则该常数即氢原子的基态能量E 1s 。氢原子的Hamiltton 算符为:

22

220?84h e H m r ππε=-?- 由于ψ1s 的角度部分是常数,因而?H

与θ,ф无关:

22

222

01?84h e H r m r r r r ππε????=-- ????? 将?H

作用于ψ1s ,有: 2221122

01?84s s h e H r m r r r r ψψππε??????=--?? ??????? 22

21122

0184s s h e r m r r r r

ψψππε????=-- ?????22

22111222

01284s s s

h e r r m r r r r

ψψψππε????=-+- ?????

(

)

00

57112222

2

2

20122

01284r r a a s

h e

r a e r a e m r

r

ππψππε------=-

-+-

()220122

0284s h r a e mra r ψππε??-=--????22122200084s

h e ma a ψππε??=-???? (r=a 0)

所以

22

1222

000

84h e E ma a ππε=- =-2.18×10-18

J

(b )对氢原子,1

V r -∝

,故:12T V =-

111

22s E T V V V V

=+=-+=

122(13.6)27.2s V E eV eV ==?-=-

11

()(27.2)13.622T V eV eV =-

=-?-=

此即氢原子的零点能。

【2.10】对氢原子,121022113311c c c ????=++,所有

波函数都已归一化。请对?所描述的状态计算: (a)能量平均值及能量 3.4eV -出现的概率;

(b)角动量平均值及角动量2/2h π出现的概率; (c)角动量在z 轴上的分量的平均值及角动量z 轴分量

/h π出现的概率。

解:根据量子力学基本假设Ⅳ-态叠加原理,对氢原子

ψ所描述的状态:

(a)能量平均值

2222

112233

i i i

E c E c E c E c E ==++∑

22212322211113.613.613.6223c eV c eV c eV ??????

=-?+-?+-? ? ? ?

?????

?()222123

13.613.649c c eV c eV =-+-

()222

1233.4 3.4 1.5c c c eV

=-++

能量 3.4eV -出现的概率为22

22

1

212

222

123c c c c c c c +=+++

(b)角动量平均值为

2222

112233i i

M c M c M c M c M ==++∑

()

()

()22

21112

22333

111222h h

h

c l l c l l c l l π

π

π=+++++

()

()()222

123111*********h h h c c c πππ

=+++++

()222

12322h c c c π

=

++ 角动量22h

π出现的概率为 223

1231c c c ++= (c)角动量在z 轴上的分量的平均值为

2221

11

2233222z i zi i

h h h M c M c m c m c m πππ==++∑

()()2222212323

01122h h

c c c c c π

π??=?+?+?-=-??

角动量z 轴分量h/π出现的概率为0。

【3.10】试用分子轨道理论讨论SO 分子的电子结构,说明基态时有几个不成对电子。

解:在SO 分子的紫外光电子能谱中观察到6个峰。它们所对应的分子轨道的归属和性质已借助于量子力学半经验计算(CNDO )得到指认。结果表明,SO 分子的价电子结构与O 2分子和S 2分子的价电子结构相似。但SO 是异核双原子分子,因而其价电子组态可表述为: ()()()()()2

2

2

4

2

12312σσσππ

其中,1,3σσ和1π轨道是成键轨道,2σ和2π轨道是反键轨道。这些价层分子轨道是由O 原子的2s 、2p 轨道和S 原子的3s 、3p 轨道叠加成的。

根据价层分子轨道的性质和电子数,可算出SO 分子的键级为:P=0.5(8—4)=2

在简并的2π轨道上各有一个电子,因而SO 分子的不成对电子数为2,若忽略轨道运动对磁距的影响,则SO 分子的磁距为

()22222e e

ββ+=。

【3.13】写出2Cl ,CN 的价电子组态和基态光谱项。 Cl 2:

()()()()()()()

2

2

2

2

2

2

2

33333333z

x

y

z

y

n z z p p p p μ

σσσππππ

0,0S =Λ=,基态光谱项:1∑。

CN :()()()()22411213σσπσ 1/2,0S =Λ=,基态光谱项:

2

【4.6】用对称操作的表示矩阵证明:

(a )()2xy C z i σ= (b ) ()()()222C x C y C z =

解:

(a )()()11

2

2xy z z x x x C y C y y z z z σ-??????

??????==-??????

??????--??????, x x i y y z z -????

????=-????????-????

()

1

2xy z C i σ=

推广之,有,

()()1122xy

xy n z n z C C i σσ==

即:一个偶次旋转轴与一个垂直于它的镜面组合,必定在垂足上出现对称中心。

【3.15】79H Br 在远红外区有一系列间隔为1

16.94cm -的谱线,计算HBr 分子的转动惯量和平衡核间距。

解:双原子分子的转动可用刚性转子模型来模拟。据此模型,可建立起双原子分子的Schr?dinger 方程。解之,便得到转动波函数R ψ、转动能级E R 和转动量子数J 。由E R 的表达式可推演出分子在相邻两能级间跃迁所产生的

吸收光的波数为:2(1)B J ν

=+ 而相邻两条谱线的波数之差(亦即第一条谱线的波数)为:

2B ν?=

B 为转动常数:

28h B Ic π=

由题意知,H 79Br 分子的转动常数为 B =16.94cm -1/2=8.470 cm -1 所以,其转动惯量为:

3422

21816.62621088(8.47010)(2.997910)h J s I Bc m m s ππ---??==?????

47

23.30810

kg m -=??

H 79Br 的约化质量为:

271.64310H Br

H Br

m m kg

m m μ-=

=?+

所以,其平衡核间距为:

12

47227

3.30810141.91.64310e I kg m r pm kg μ--??????=== ? ??????

(b )

()1

2

z x x C y y z z -????

????=-???????????? 这说明,若分子中存在两个互相垂直的C 2轴,则其交点上必定出现垂直于这两个C 2轴的第三个C 2轴。推广之,交角为2/2n π的两个轴组合,在其交点上必定出现一个垂直于这两个C 2轴n C 轴,在垂直于n C 轴且过交点的平面内必有n 个C 2 轴。进而可推得,一个n C 轴与垂直于它的C 2 轴组合,在垂直于n C 的平面内有n 个C 2 轴,相邻两轴的夹角为2/2n π。

【4.16】指出下列分子的点群、旋光性和偶极矩情况:

(a)32H C CH CH -= (b)Br

N

序号 点群 旋光性 偶极距 (a) (b)

Cs Cs

无 无

有 有

【5.1】利用价电子互斥理论,说明XeF 4,XeO 4,XeO 3,XeF 2,XeOF 4等分子的形状。 解: 分子

4XeF 4XeO 3XeO 2XeF

4XeOF

m +n (不计π电子) 6 4 4 5 6 价电子空间分布 八面体 四面体 四面体 三角双锥 八面体 孤对电子对数 2 0 1 3 1 配位原子数(σ电子对) 4 4 3 2 5 几何构型

正方形

四面体

三角锥

直线形

四方锥

【5.5】由d x2-y2,s ,p x ,p y 轨道组成dsp 2等性杂化轨道1φ,

234,,φφφ,这些轨道极大值方向按平面四方形分别和,x y

轴平行。根据原子轨道正交、归一性推出各个杂化轨道的

,,,x y d s p p 的组合系数,验证它们是正交,归一的。

解:因为4dsp 2个杂化轨道是等性的,所以每一条杂化轨道的s ,p 和d 成分依次为1/4,1/2和1/4。这些成分值即s ,p 和d 轨道在组成杂化轨道时的组合系数的平方。据此,可求出各轨道的组合系数并写出dsp 2杂化轨道的一般形式:

2

1

21222s p d dsp φψψψ=+

+

根据题意,4个dsp 2杂化轨道的极大值方向按平面四方形分别和x ,y 轴平行。设4个杂化轨道123,,φφφ和4φ的极大值方向分别在x 轴的正方向、x 轴的负方向、y 轴的正方向和y 轴的负方向,则这4个杂化轨道可写成:

22

22

12121

222121

222x x y x x y s p d s p d φψψψφψψψ--=+

+=-+

22

22

34121

222121

222y x y y x y s p d s p d φψψψφψψψ--=+-=-- 这4个dsp 2杂化轨道是正交,归一的。归一性可用该杂化

轨道的一般形式证明如下:

22

2

121222x s p d dsp d d φτψψψτ

??=++ ? ?????

222222111212

424222111212424222111

0004241x x x x x x s p d s p s d p d s p d s p s d p d d d d d d d d ψψψψψψψψψτψτψτψτψψτψψτψψτ??=+++++ ? ???

=

+++++=+++++=????? 正交性证明如下:

22121

21

121

2

22222x x x y

s p d s p d φφτψψψψψψ-???=+

+-+ ?? ?????

??

222222

2222222222221122221

11144221111442211104420x x y x x y x y x x y x y s d p s d s d p s d s d p d d d d d d ψψψτψψψψψτψτψτψψτψτ-----????????=+- ? ? ?????????

??=++- ???

=++-=++-=?????

任选两个杂化轨道,都得同样结果。

【7.7】列表比较晶体结构和分子结构的对称元素和对称操作。晶体结构比分子结构增加了哪几类对称元素和对称操作?晶体结构的对称元素和对称操作受到哪些限制?原因是什么? 解: 分子对称性

晶体对称性

(1)旋转操作——旋转轴 (2)反映操作——镜面 (3)反演操作——对称中心 (4)旋转反演操作——反轴

(5)平行操作——点阵 (6)螺旋旋转操作——螺旋轴 (7)反映滑移操作——滑移面

由表可见,晶体结构比分子结构增加了(5)—(7)3类对称元素和对称操作。晶体结构因为是点阵结构,其对称元素和对称操作要受到点阵制约,对称轴轴次为1,2,3,4,6。螺旋轴和滑移面中的滑移量只能为点阵结构所允许的几种数值。

【7.35】冰为立方晶系晶体,晶胞参数152.27a pm =,

736.71c pm =,晶胞中含24H O ,括弧内为O 原子分数

坐标(0,0,0;0,0,0.375;2/3,1/3,1/2;2/3,1/3,0.875),请根据此计算或说明: (a ) 计算冰的密度;

(b ) 计算氢键O H O -???键长;

(c ) 冰的点阵式是什么?结构单元包含哪些内容?

解:

(a ) 密度/A D ZM N V =

()2

83452.27sin 60736.71 1.30510V pm pm pm =??=?

2231.30510cm -=?

()1

23

1

223

42 1.00816.00/6.02210 1.30510D g mol mol cm ---=?+??? 3

0.917g

c m -= (b ) 坐标为(0,0,0)和(0,0,0.375)的两个O 原

子间的距离即为氢键键长r :

【7.28】8S 分子既可形成单斜硫,也可形成正交硫。用X 射线衍射法(Cu Ka 射线)测得某正交硫晶体的晶胞参数1048a pm =,1292b pm =,2455c pm =。已知该硫磺的密度为3

2.07g cm -?,s 的相对原子质量为32。 (a ) 计算每个晶胞中8S 分子的数目; (b ) 计算224衍射线的Bragg 角θ;

(c ) 写出气相中8S 分子的全部独立的对称元素。 解:(a )按求晶胞中分子数Z 的公式,得:

/A Z N VD M =

()23136.0210104812922455mol pm -=???

()

30

3

3

3

1

102.07/8

32c m p m g c m g m o l ----??? 16

=

(b )按正交晶系公式:

1222

2

222hkl h k l d a b c -

??=++ ?

??

代入有关数据,得:

12

2

2

2

224

2226222411.048 1.292 2.45510d pm -??

??=++??? ??

???

()1

2

6213.642 2.396 2.65510339.2pm pm -??=++???

?

?=

1154.2sin 13.142339.2pm pm θ-??

==?

???? (c )8S 分子属于点群4d D ,独立的对称元素有:82,4,4d I C σ。

()0.3750736.71276.3r pm pm =-?=

(c )冰的点阵形式是简单六方点阵(hP ),整个晶胞包含的内容即4H

2

O 为结构基元。

结构化学课后答案第四章

04分子的对称性 【4.1】HCN 和2CS 都是直线型分子,写出该分子的对称元素。 解:HCN :(),C υσ∞∞; CS 2:()()2,,,,h C C i υσσ∞∞∞ 【4.2】写出3H CCl 分子中的对称元素。 解:()3,3C υσ 【4.3】写出三重映轴3S 和三重反轴3I 的全部对称操作。 解:依据三重映轴S 3所进行的全部对称操作为: 1133h S C σ=,2233S C =, 33h S σ= 4133S C =,52 33h S C σ=,63S E = 依据三重反轴3I 进行的全部对称操作为: 1133I iC =,2233I C =,3 3I i = 4133I C =,5233I iC =,63I E = 【4.4】写出四重映轴4S 和四重反轴4I 的全部对称操作。 解:依据S 4进行的全部对称操作为: 1121334 4442444,,,h h S C S C S C S E σσ==== 依据4I 进行的全部对称操作为: 11213344442444,,,I iC I C I iC I E ==== 【4.5】写出xz σ和通过原点并与χ轴重合的2C 轴的对称操作12C 的表示矩阵。 解: 100010001xz σ????=-??????, ()1 2100010001x C ?? ??=-?? ??-?? 【4.6】用对称操作的表示矩阵证明: (a ) ()2xy C z i σ= (b ) ()()()222C x C y C z = (c ) ()2yz xz C z σσ= 解: (a ) ()()11 2 2xy z z x x x C y C y y z z z σ-?????? ??????==-?????? ??????--??????, x x i y y z z -????????=-????????-????

结构化学第一章习题

第一章习题 一、选择题 1. 任一自由的实物粒子,其波长为λ,今欲求其能量,须用下列哪个公式---------------( ) (A) λc h E = (B) 22 2λm h E = (C) 2) 25.12 (λe E = (D) A ,B ,C 都可以 2. 下列哪些算符是线性算符---------------------------------------------------------------- ( ) (A) dx d (B) ?2 (C) 用常数乘 (D) (E) 积分 3. 一个在一维势箱中运动的粒子, (1) 其能量随着量子数n 的增大:------------------------ ( ) (A) 越来越小 (B) 越来越大 (C) 不变 (2) 其能级差 E n +1-E n 随着势箱长度的增大:-------------------( ) (A) 越来越小 (B) 越来越大 (C) 不变 4. 关于光电效应,下列叙述正确的是:(可多选) ---------------------------------( ) (A)光电流大小与入射光子能量成正比 (B)光电流大小与入射光子频率成正比 (C)光电流大小与入射光强度成正比 (D)入射光子能量越大,则光电子的动能越大 5. 下列哪几点是属于量子力学的基本假设(多重选择):-------------------------( ) (A)电子自旋(保里原理) (B)微观粒子运动的可测量的物理量可用线性厄米算符表征 (C)描写微观粒子运动的波函数必须是正交归一化的 (D)微观体系的力学量总是测不准的,所以满足测不准原理 6. 描述微观粒子体系运动的薛定谔方程是:--------------------------------------( ) (A) 由经典的驻波方程推得 (B) 由光的电磁波方程推得 (C) 由经典的弦振动方程导出 (D) 量子力学的一个基本假设 二、填空题 1. 光波粒二象性的关系式为_______________________________________。 2. 在电子衍射实验中,│ψ│2对一个电子来说,代表___________________。 3. 质量为 m 的一个粒子在长为l 的一维势箱中运动, (1) 体系哈密顿算符的本征函数集为_______________________________ ; (2) 体系的本征值谱为____________________,最低能量为____________ ; (3) 体系处于基态时, 粒子出现在0 ─ l /2间的概率为_______________ ; (4) 势箱越长, 其电子从基态向激发态跃迁时吸收光谱波长__________; 三、问答题 1. 写出一个合格的波函数所应具有的条件。 2. 指出下列论述是哪个科学家的功绩: (1)证明了光具有波粒二象性; (2)提出了实物微粒具有波粒二象性; (3)提出了微观粒子受测不准关系的限制; (4)提出了实物微粒的运动规律-Schr?dinger 方程; (5)提出实物微粒波是物质波、概率波。 四、计算题 1. 一子弹运动速率为300 m·s -1,假设其位置的不确定度为 4.4×10-31 m ,速率不确定度为 0.01%×300 m·s -1 ,根据测不准关系式,求该子弹的质量。 2. 计算德布罗意波长为70.8 pm 的电子所具有的动量。

结构化学课后答案第二章

02 原子的结构和性质 【】氢原子光谱可见波段相邻4条谱线的波长分别为、、和,试通过数学处理将谱线的波数归纳成为下式表示,并求出常数R 及整数n 1、n 2的数值。 2 21211 ( )R n n ν=- 解:将各波长换算成波数: 1656.47nm λ= 1115233v cm - -= 2486.27nm λ= 1220565v cm - -= 3434.17nm λ= 1323032v cm - -= 4410.29nm λ= 1424373v cm - -= 由于这些谱线相邻,可令1n m =,21,2,n m m =++……。列出下列4式: ()2 2152331R R m m = - + ()22205652R R m m =- + ()2 2230323R R m m = - + ()2 2243734R R m m =- + (1)÷(2)得: ()()()2 3212152330.7407252056541m m m ++==+ 用尝试法得m=2(任意两式计算,结果皆同)。将m=2带入上列4式中任意一式,得: 1109678R cm -= 因而,氢原子可见光谱(Balmer 线系)各谱线的波数可归纳为下式: 221211v R n n - ??=- ? ?? 式中, 1 12109678,2,3,4,5,6R cm n n -===。 【】按Bohr 模型计算氢原子处于基态时电子绕核运动的半径(分别用原子的折合质量和电子的质量计算并精确到5位有效数字)和线速度。 解:根据Bohr 提出的氢原子结构模型,当电子稳定地绕核做圆周运动时,其向心力与核和电子间的库仑引力大小相等,即:

(完整版)结构化学课后答案第二章

02 原子的结构和性质 【2.1】氢原子光谱可见波段相邻4条谱线的波长分别为656.47、486.27、434.17和410.29nm ,试通过数学处理将谱线的波数归纳成为下式表示,并求出常数R 及整数n 1、n 2的数值。 2212 11 ( )R n n ν=-% 解:将各波长换算成波数: 1656.47nm λ= 1115233v cm - -= 2486.27nm λ= 1220565v cm - -= 3434.17nm λ= 1323032v cm - -= 4410.29nm λ= 1424373v cm - -= 由于这些谱线相邻,可令1n m =,21,2,n m m =++……。列出下列4式: ()2 2152331R R m m = - + ()22205652R R m m =- + ()2 2230323R R m m = - + ()2 2243734R R m m =- + (1)÷(2)得: ()()()2 3212152330.7407252056541m m m ++==+ 用尝试法得m=2(任意两式计算,结果皆同)。将m=2带入上列4式中任意一式,得: 1109678R cm -= 因而,氢原子可见光谱(Balmer 线系)各谱线的波数可归纳为下式: 221211v R n n - ??=- ? ?? 式中, 1 12109678,2,3,4,5,6R cm n n -===。 【2.2】按Bohr 模型计算氢原子处于基态时电子绕核运动的半径(分别用原子的折合质量和电子的质量计算并精确到5位有效数字)和线速度。 解:根据Bohr 提出的氢原子结构模型,当电子稳定地绕核做圆周运动时,其向心力与核和电子间的库仑引力大小相等,即:

结构化学习题答案

《结构化学》第三章习题 3001 H 2+的H ?= 212 - a r 1 - b r 1 +R 1, 此种形式已采用了下列哪几种方法: ------------------------------ ( ) (A) 波恩-奥本海默近似 (B) 单电子近似 (C) 原子单位制 (D) 中心力场近似 3002 分析 H 2+的交换积分(积分) H ab 为负值的根据。 3003 证明波函数 ()()() ()b a b a ψψψψψψS S s 1s 121u s 1s 121g 221221--=++= 是相互正交的。 3004 通过变分法计算得到的微观体系的能量总是:----------------- ( ) (A) 等于真实基态能量 (B) 大于真实基态能量 (C) 不小于真实基态能量 (D) 小于真实基态能量 3006 什么叫分子轨道?按量子力学基本原理做了哪些近似以后才有分子轨道的概念? 这些近似的根据是什么? 3007 描述分子中 _______________ 空间运动状态的波函数称为分子轨道。 3008 对于"分子轨道"的定义,下列叙述中正确的是:----------------- ( ) (A) 分子中电子在空间运动的波函数 (B) 分子中单个电子空间运动的波函数 (C) 分子中单电子完全波函数(包括空间运动和自旋运动) (D) 原子轨道线性组合成的新轨道 3009 试述由原子轨道有效地形成分子轨道的条件。 3010 在 LCAO-MO 中,所谓对称性匹配就是指两个原子轨道的位相相同。这种说法是否 正确? 3011 在LCAO-MO 方法中,各原子轨道对分子轨道的贡献可由哪个决定: ----------------- ( ) (A) 组合系数 c ij (B) (c ij )2

结构化学试题库

结构化学试题库 一、选择题(本题包括小题,每小题2分,共分,每小题只有一个选项符合 题意) 1.若力学量E、F、G 所对应的的三个量子力学算符有共同的本征态,则( A )。 (A)E、F、G可同时确定(B)可同时确定其中二个力学量 (C)可确定其中一个力学量(D)三个力学量均无确定值 2.对长度为l的一维无限深势箱中的粒子( C )。(A)Δx = 0 Δp2x= 0 (B)Δx = lΔp x = 0 (C)Δx = lΔp x2= 0 (D)Δx = 0 Δp x= 0 3.在长度为0.3 nm的一维势箱中,电子的的基态能量为4eV,则在每边长为0.1 nm的三维势箱中,电子的基态能量为( C )。 (A)12 eV (B)36 eV (C)108 eV (D)120 eV 4.质量为m的粒子放在一维无限深势箱中,由薛定谔(Schrodinger)方程的合理解可知其能量的特征为( D )。 (A)可连续变化(B)与势箱长度无关 (C)与质量m成正比(D)由量子数决定 5.与微观粒子的能量相对应的量子力学算符是( D )。 (A)角动量平方算符(B)勒让德(Legendre)算符 (C)交换算符(D)哈密顿(Hamilton)算符 6.氢原子的2p x状态( D )。(A)n = 2,l = 1,m = 1,m s= 1/2 (B)n = 2,l = 1,m = 1,m s未确定(C)n = 2,l = 1,m = -1,m s未确定(D)n = 2,l = 1,m 、m s均未确定7.组态(1s)2(2s)2(2p)1( B )。 (A)有偶宇称(B)有奇宇称 (C)没有确定的宇称(D)有一定的宇称,但不能确定 8.如果氢原子的电离能是13.6eV,则He+的电离能是( C )。 (A)13.6eV (B)6.8eV (C)54.4eV (D)27.2eV 9.一个电子在s轨道上运动,其总角动量为( D )。 (A)0 (B)1/2(h / 2π)(C)h / 2π(D)(√3 / 2)(h / 2π)10.O2与O2+比较( D )。 (A)O2+的总能量低于O2的总能量 (B)O2+的总能量与O2的总能量相同,而O2+的解离能高于O2的解离能(C)O2+的总能量高于O2的总能量,但O2+的解离能低于O2的解离能 (D)O2+的总能量高于O2的总能量,O2+的解离能亦高于O2的解离能11.双原子分子在平衡核间距时,与分离原子时比较( C )。 (A)平均动能和平均势能均降低(B)平均动能降低而平均势能升高 (C)平均势能降低而平均动能升高(D)平均势能降低而平均动能不变12.He2+中的化学键是( C )。 (A)单电子σ键(B)正常σ键(C)三电子σ键(D)三电子π键13.氨分子的可能构型是.( B )。 (A)平面正方形(B)锥形(C)线型(D)正四面体

结构化学基础习题及答案(结构化学总复习)

结构化学基础习题和答案 01.量子力学基础知识 【1.1】将锂在火焰上燃烧,放出红光,波长λ=670.8nm ,这是Li 原子由电子组态 (1s)2(2p)1→(1s)2(2s)1跃迁时产生的,试计算该红光的频率、波数以及以k J ·mol -1 为单位的能量。 解:81 141 2.99810m s 4.46910s 670.8m c νλ--??===? 41 71 1 1.49110cm 670.810cm νλ --= = =?? 3414123-1 -16.62610J s 4.46910 6.602310mol 178.4kJ mol A E h N s ν--==??????=? 【1.2】 实验测定金属钠的光电效应数据如下: 波长λ/nm 312.5 365.0 404.7 546.1 光电子最大动能E k /10-19J 3.41 2.56 1.95 0.75 作“动能-频率”,从图的斜率和截距计算出Plank 常数(h)值、钠的脱出功(W)和临阈频率(ν 0)。 解:将各照射光波长换算成频率v ,并将各频率与对应的光电子的最大动能E k 列于下表: λ/nm 312.5 365.0 404.7 546.1 v /1014s -1 9.59 8.21 7.41 5.49 E k /10 -19 J 3.41 2.56 1.95 0.75 由表中数据作图,示于图1.2中 E k /10-19 J ν/1014g -1 图1.2 金属的 k E ν -图 由式

0k hv hv E =+ 推知 0k k E E h v v v ?= =-? 即Planck 常数等于k E v -图的斜率。选取两合适点,将k E 和v 值带入上式,即可求出h 。 例如: ()()1934141 2.70 1.0510 6.60108.5060010J h J s s ---?==?-? 图中直线与横坐标的交点所代表的v 即金属的临界频率0v ,由图可知, 141 0 4.3610v s -=?。因此,金属钠的脱出功为: 341410196.6010 4.36102.8810W hv J s s J ---==???=? 【1.3】金属钾的临阈频率为5.464×10-14s -1 ,如用它作为光电极的阴极当用波长为300nm 的紫外光照射该电池时,发射光电子的最大速度是多少? 解:2 01 2hv hv mv =+ ()1 2 018 1 2 341419 312 2.998102 6.62610 5.46410300109.10910h v v m m s J s s m kg υ------??=? ??? ???????-??? ?????? =?????? ? 1 34 141 2 31512 6.62610 4.529109.109108.1210J s s kg m s ----??????=?????=? 【1.4】计算下列粒子的德布罗意波的波长: (a ) 质量为10-10kg ,运动速度为0.01m ·s -1 的尘埃; (b ) 动能为0.1eV 的中子; (c ) 动能为300eV 的自由电子。 解:根据关系式: (1)3422101 6.62610J s 6.62610m 10kg 0.01m s h mv λ----??===???

结构化学习题答案(1)

《结构化学》第二章习题答案 2001ψψE r εe m h =??????π-?π-20222438 式中:z y x ??+??+??=?2222222 r = ( x 2+ y 2+ z 2)1/2 2002(a) -13.6 eV; (b) 0; (c) 0; (d) 2,0,0; (e) 0 2003(1) r = a 0/ 3 , (2) = a 0/2 , (3) () 27 ,03 02a r ψπ=→ 2004() j i E r εe r εe m h ψψi i j ij i i i ≠=??? ? ????π+π-?π-∑∑∑∑====2 41414102024122421448 2005(a) 0 (b) 0 (c) 2.618 a 0 2006 不对。 2007 不对。 2008 2 2009 (a) n , l (b) l , m (c) m 2010 (D) 2011 (C) 根据Φ函数的单值性可确定│m │的取值为 0, 1, 2,...,但不能确定 其最大取值 l , │m │的最大值是由Θ方程求解确定的。 2012不对。 2013 不对。 2014否。2015 否。2016 n =3, l =1, m =0 。 2017 τM M ψψd ?*3 sp 2sp 2 3?= 根据正交归一化条件 ()π ? ? ? ??=π= 22322 3 2 122h M h M 2018 (1) (-1/4)313.6 = -3.4 eV (2) ()π 2= π?= h h M 22 (3) 90° 2019将波函数与 H 原子一般波函数比较可得 : n = 3 , l = 2 , E = (-1/9)313.6 eV = - 1.51 eV π=26h M 该波函数为实函数, z xy M d ψψi 23232320--= 无确定值 , 求平均值如下 : ()()022212221=π-?+π?=h h M z 2020??== τV τV V ψ ψψd d 2 * r υθθr r εe a a r d d d sin 4e 12 0220 20 300???? ? ?π-π=-∞ ππ ? ?? 0024a εe π-=2021(1) ψψψE r εe m h =π-?π-2022 2438 (2) 能量相同

最新结构化学练习题带答案

结构化学复习题 一、选择填空题 第一章量子力学基础知识 1.实物微粒和光一样,既有性,又有性,这种性质称为性。 2.光的微粒性由实验证实,电子波动性由实验证实。 3.电子具有波动性,其波长与下列哪种电磁波同数量级? (A)X射线(B)紫外线(C)可见光(D)红外线 4.电子自旋的假设是被下列何人的实验证明的? (A)Zeeman (B)Gouy (C)Stark (D)Stern-Gerlach 5.如果f和g是算符,则 (f+g)(f-g)等于下列的哪一个? (A)f2-g2; (B)f2-g2-fg+gf; (C)f2+g2; (D)(f-g)(f+g) 6.在能量的本征态下,下列哪种说法是正确的? (A)只有能量有确定值;(B)所有力学量都有确定值; (C)动量一定有确定值;(D)几个力学量可同时有确定值; 7.试将指数函数e±ix表示成三角函数的形式------ 8.微观粒子的任何一个状态都可以用来描述;表示粒子出现的概率密度。 9.Planck常数h的值为下列的哪一个? (A)1.38×10-30J/s (B)1.38×10-16J/s (C)6.02×10-27J·s (D)6.62×10-34J·s 10.一维势箱中粒子的零点能是 答案: 1.略. 2.略. 3.A 4.D 5.B 6.D 7.略 8.略 9.D 10.略 第二章原子的结构性质 1.用来表示核外某电子的运动状态的下列各组量子数(n, 1, m, m s)中,哪一组是合理的? (A)2,1,-1,-1/2;(B)0,0,0,1/2;(C)3,1,2,1/2;(D)2,1,0,0。 2.若氢原子中的电子处于主量子数n=100的能级上,其能量是下列的哪一个: (A)13.6Ev; (B)13.6/10000eV; (C)-13.6/100eV; (D)-13.6/10000eV; 3.氢原子的p x状态,其磁量子数为下列的哪一个? (A)m=+1; (B)m=-1; (C)|m|=1; (D)m=0; 4.若将N原子的基电子组态写成1s22s22p x22p y1违背了下列哪一条? (A)Pauli原理;(B)Hund规则;(C)对称性一致的原则;(D)Bohr理论 5.B原子的基态为1s22s2p1,其光谱项为下列的哪一个? (A) 2P;(B)1S; (C)2D; (D)3P; 6.p2组态的光谱基项是下列的哪一个? (A)3F;(B)1D ;(C)3P;(D)1S; 7.p电子的角动量大小为下列的哪一个?

结构化学-第五章习题及答案

习 题 1. 用VSEPR 理论简要说明下列分子和离子中价电子空间分布情况以及分子和离子的几何构型。 (1) AsH 3; (2)ClF 3; (3) SO 3; (4) SO 32-; (5) CH 3+ ; (6) CH 3- 2. 用VSEPR 理论推测下列分子或离子的形状。 (1) AlF 63-; (2) TaI 4-; (3) CaBr 4; (4) NO 3-; (5) NCO -; (6) ClNO 3. 指出下列每种分子的中心原子价轨道的杂化类型和分子构型。 (1) CS 2; (2) NO 2+ ; (3) SO 3; (4) BF 3; (5) CBr 4; (6) SiH 4; (7) MnO 4-; (8) SeF 6; (9) AlF 63-; (10) PF 4+ ; (11) IF 6+ ; (12) (CH 3)2SnF 2 4. 根据图示的各轨道的位向关系,遵循杂化原则求出dsp 2 等性杂化轨道的表达式。 5. 写出下列分子的休克尔行列式: CH CH 2 123 4 56781 2 34 6. 某富烯的久期行列式如下,试画出分子骨架,并给碳原子编号。 0100001100101100001100 001101001 x x x x x x 7. 用HMO 法计算烯丙基自由基的正离子和负离子的π能级和π分子轨道,讨论它们的稳定性,并与烯丙基自由基相比较。

8. 用HMO法讨论环丙烯基自由基C3H3·的离域π分子轨道并画出图形,观察轨道节面数目和分布特点;计算各碳原子的π电荷密度,键级和自由价,画出分子图。 9. 判断下列分子中的离域π键类型: (1) CO2 (2) BF3 (3) C6H6 (4) CH2=CH-CH=O (5) NO3- (6) C6H5COO- (7) O3 (8) C6H5NO2 (9) CH2=CH-O-CH=CH2 (10) CH2=C=CH2 10. 比较CO2, CO和丙酮中C—O键的相对长度,并说明理由。 11. 试分析下列分子中的成键情况,比较氯的活泼性并说明理由: CH3CH2Cl, CH2=CHCl, CH2=CH-CH2Cl, C6H5Cl, C6H5CH2Cl, (C6H5)2CHCl, (C6H5)3CCl 12. 苯胺的紫外可见光谱和苯差别很大,但其盐酸盐的光谱却和苯很接近,试解释此现象。 13. 试分析下列分子中的成键情况,比较其碱性的强弱,说明理由。 NH3, N(CH3)2, C6H5NH2, CH3CONH2 14. 用前线分子轨道理论乙烯环加成变为环丁烷的反应条件及轨道叠加情况。 15. 分别用前线分子轨道理论和分子轨道对称性守恒原理讨论己三烯衍生物的电环化反应 在加热或者光照的条件下的环合方式,以及产物的立体构型。 参考文献: 1. 周公度,段连运. 结构化学基础(第三版). 北京:北京大学出版社,2002 2. 张季爽,申成. 基础结构化学(第二版). 北京:科学出版社,2006 3. 李炳瑞.结构化学(多媒体版).北京:高等教育出版社,2004 4. 林梦海,林银中. 结构化学. 北京:科学出版社,2004 5. 邓存,刘怡春. 结构化学基础(第二版). 北京:高等教育出版社,1995 6.王荣顺. 结构化学(第二版). 北京:高等教育出版社,2003 7. 夏少武. 简明结构化学教程(第二版). 北京:化学工业出版社,2001 8. 麦松威,周公度,李伟基. 高等无机结构化学. 北京:北京大学出版社,2001 9. 潘道皑. 物质结构(第二版). 北京:高等教育出版社,1989 10. 谢有畅,邵美成. 结构化学. 北京:高等教育出版社,1979 11. 周公度,段连运. 结构化学基础习题解析(第三版). 北京:北京大学出版社,2002 12. 倪行,高剑南. 物质结构学习指导. 北京:科学出版社,1999 13. 夏树伟,夏少武. 简明结构化学学习指导. 北京:化学工业出版社,2004 14. 徐光宪,王祥云. 物质结构(第二版). 北京:科学出版社, 1987 15. 周公度. 结构和物性:化学原理的应用(第二版). 北京:高等教育出版社, 2000 16. 曹阳. 结构与材料. 北京:高等教育出版社, 2003 17. 江元生. 结构化学. 北京:高等教育出版社, 1997 18. 马树人. 结构化学. 北京:化学工业出版社, 2001 19. 孙墨珑. 结构化学. 哈尔滨:东北林业大学出版社, 2003

结构化学考试题讲解学习

1首先提出能量量子化假定的科学家是: ( ) (A) Einstein (B) Bohr (C) Schrodinger (D) Planck 1 下列算符中,哪些不是线性算符( ) A ?2 B i d dx C x D sin 2考虑电子的自旋, 氢原子n=2的简并波函数有( )种 A3 B 9 C 4 D 1 3 关于四个量子数n 、l 、m 、m s ,下列叙述正确的是: ( ) A .由实验测定的 B .解氢原子薛定谔方程得到的: C .解氢原子薛定谔方程得到n 、l 、m .由电子自旋假设引入m s D .自旋假设引入的 4 氢原子3d 状态轨道角动量沿磁场方向的分量最大值是( ) A.5h B.4h C.3h D.2h 5 氢原子ψ321状态的角动量大小是( ) A 3 η B 2 η C 1 η D 6 η 6 H 2+的H ?= 21?2- a r 1 - b r 1 +R 1, 此种形式的书写没有采用下列哪种方法: () (A) 中心力场近似 (B) 单电子近似 (C) 原子单位制 (D) 波恩-奥本海默近似 7 对于"分子轨道"的定义,下列叙述中正确的是:() (A) 分子中电子在空间运动的波函数 (B) 分子中单个电子空间运动的波函数 (C) 分子空间运动的轨道 (D) 原子轨道线性组合成的新轨道 8 类氢原子体系ψ432的总节面数为() A 4 B 1 C 3 D 0 9 下列分子键长次序正确的是: ( ) A.OF-> OF> OF+ B. OF > OF - > OF + C. OF +> OF> OF - D. OF > OF + > OF - 10 以Z 轴为键轴,按对称性匹配原则,下列那对原子轨道不能组成分子轨道: A.s dz2 B. s dxy C. dyz dyz D. y p y p

《结构化学》第三章习题答案

《结构化学》第三章习题答案 3001 ( A, C ) 3002 H ab =∫ψa [-21?2- a r 1 - b r 1 +R 1 ] ψb d τ =E H S ab + R 1 S ab - ∫a r 1ψa ψb d τ = E H S ab + K 因 E H = -13.6e V , S ab 为正值,故第一项为负值; 在分子的核间距条件下, K 为负值。 所以 H ab 为负值。 3003 ∫ψg ψu d τ=(4 - 4S 2)-1/2∫(ψa s 1+ψ b s 1)((ψa s 1-ψb s 1)d τ = (4 - 4S 2)-1/2∫[ψa s 12 -ψb s 12 ] d τ = (4 - 4S 2)-1/2 [ 1 - 1 ] = 0 故相互正交。 3004 ( C ) 3006 描述分子中单个电子空间运动状态的波函数叫分子轨道。 两个近似 (1) 波恩 - 奥本海默近似 ( 核质量 >> 电子质量 ) (2) 单电子近似 (定态) 3007 单个电子 3008 (B) 3009 (1) 能级高低相近 (2) 对称性匹配 (3) 轨道最大重叠 3010 不正确 3011 (B) 3012 ψ= (0.8)1/2φA + (0.2)1/2φB 3013 能量相近, 对称性匹配, 最大重叠 > , < 或 < , > 3014 正确 3015 不正确 3016 σ π π δ 3017 3018 z

3019 (C) 3020 π 3021 σ轨道: s -s , s -p z , s -d z , p z –p z , p z -2z d , 2z d -2z d , π轨道p x –p x ,p x –d xz ,p y –p y ,p y –d yz ,d yz –d yz ,d xz –d xz δ轨道:d xy -d xy , d 22y x -- d 22y x - 3022 σ δ π 不能 不能 3023 (B) 3024 原子轨道对 分子轨道 p z -d xy × p x -d xz π d 22y x -- d 22y x - δ 2z d -2z d σ p x –p x π 3025 1σ22σ21π43σ2 , 3 , 反磁 3026 d xy , δ 3027 p y , d xy 3028 C 2 ( 1σg )2( 1σu )2( 1πu )2+2 s -p 混杂显著. 因1σu 为弱反键,而1σg 和1πu 均为强成键,故键级在2-3之间. 3029 N 2: (1σg )2(1σu )2(1πu )4(2σg )2 O 2: σ2s 2σ2s σ2pz 2π2px 2π2py 2π2px *π2py *1 或 ( 1σg )2(1σu )22σg 2(1πu )4(1πg )2 3030 ( 1σg )2( 1σu )2( 1πu )4( 2σg )2 的三重键为 1 个σ键 (1σg )2,2个π键 (1πu )4,键级为 3 ( 1σu )2和(2σg )2分别具有弱反键和弱成键性质, 实际上成为参加成键作用很小的两对 孤对电子,可记为 :N ≡N: 。因此N 2的键长特别短,键能特别大, 是惰性较大的分子。 3031 O 2[KK (σg s 2) 2 (σu s 2*) 2 (σg2p *)2 (πu s 2)4 (πg2x p *)1 (πg2y p *)1 ] 顺磁性 C 2 [KK (σg s 2) 2 (σu s 2*) 2(πg2x p )2 (πg2y p )2] 反磁性 3032 KK ( 1σg )2(1σu )2 (1πu )3 约 3/2 [1σ22σ23σ21π44σ2]5σ22π4 1 3033 (1) 1σ22σ23σ21π4 1 反 (2) σ1s 2σ1s 2 σ2s 2σ2s 2σ2pz 2π2py 2π2pz 2π2py *2π2px *1 1.5 顺 3034 π3py , π3pz ; π3px 3035 CN -( 1σ)2(2σ) 2(1π)2+2(3σ)2 键级: 3 3036 CF KK -( 1σ)2(2σ) 2(3σ)2 (1π)4(2π)1 不论 s -p 混杂是否明显, 最高占据的 MO 为(2π)1 , 它是反键轨道。故(C-F)+键强些, 短些。 3037 Cl 2: σ3s 2σ3s *σ3px 2π3py 2π3pz 2π3py *2π2pz *2 反磁性

结构化学试题及答案

本卷共 页第1页 本卷共 页第2页 2015级周口师范学院毕业考试试卷——结构化学 一、填空题(每小题2分,共20分) 1、测不准关系::__________________________ _______________________________________________。 2、对氢原子 1s 态, (1) 2ψ在 r 为_________处有最高值;(2) 径向分布函数 224ψr π 在 r 为____________处有极大值; 3、OF , OF +, OF -三个分子中, 键级顺序为________________。 4、判别分子有无旋光性的标准是__________。 5、属于立方晶系的晶体可抽象出的点阵类型有 ____________。 6、NaCl 晶体的空间点阵型式为___________,结构基元为___________。 7、双原子分子刚性转子模型主要内容:_ ________________________________ _______________________________________________。 8、双原子分子振动光谱选律为:_______________________________________, 谱线波数为_______________________________。 9、什么是分裂能____________________________________________________。 10、分子H 2,N 2,HCl ,CH 4,CH 3Cl ,NH 3中不显示纯转动光谱的有: __________________,不显示红外吸收光谱的分子有:____________。 二、选择题(每小题2分,共30分) 1、对于"分子轨道"的定义,下列叙述中正确的是:----------------- ( ) (A) 分子中电子在空间运动的波函数 (B) 分子中单个电子空间运动的波函数 (C) 分子中单电子完全波函数(包括空间运动和自旋运动) (D) 原子轨道线性组合成的新轨道 2、含奇数个电子的分子或自由基在磁性上:---------------------------- ( ) (A) 一定是顺磁性 (B) 一定是反磁性 (C) 可为顺磁性或反磁性 (D )无法确定 3、下列氯化物中, 哪个氯的活泼性最差?--------------------------------- ( ) (A) C 6H 5Cl (B) C 2H 5Cl (C) CH 2═CH —CH 2Cl (D) C 6H 5CH 2Cl 4、下列哪个络合物的磁矩最大?------------------------------------ ( ) (A) 六氰合钴(Ⅲ)离子 (B) 六氰合铁(Ⅲ)离子 (C) 六氨合钴(Ⅲ)离子 (D) 六水合锰(Ⅱ)离子 5、下列络合物的几何构型哪一个偏离正八面体最大?------------------------------------ ( ) (A) 六水合铜(Ⅱ) (B) 六水合钴(Ⅱ) (C) 六氰合铁(Ⅲ) (D) 六氰合镍(Ⅱ) 6、2,4,6-三硝基苯酚是平面分子,存在离域π键,它是:--------- ( ) (A) 1612∏ (B) 18 14∏ (C) 1816∏ (D)20 16∏ 7、B 2H 6所属点群是:---------------------------- ( ) (A) C 2v (B) D 2h (C) C 3v (D) D 3h 考号_______________________ 姓名_______________________

结构化学 试题及答案

结构化学试题及答案 A.等于真实体系基态能量 B.大于真实体系基态能量 《结构化学》答案 C.不小于真实体系基态能量 D.小于真实体系基态能量 一、填空(共30分,每空2分 ) 4、求解氢原子薛定谔方程,我们常采用下列哪些近似( B )。 1)核固定 2)以电子质量代替折合质量 3)变数分离 4)球极坐标 ,6,1、氢原子 的态函数为,轨道能量为 - 1.51 eV ,轨道角动量为,3,2,1)2)3)4) A.1)3) B.1)2) C.1)4) D.1学号,轨道角动量在磁场方向的分量为。 5、下列分子中磁矩 最大的是( D )。 : +2、(312)晶面在a、b、c轴上的截距分别为 1/3 , 1 , 1/2 。 B.C C.C D.B A.Li22223、NaCl晶体中负离子的堆积型式为 A1(或面心立方) ,正离子填入八面体的6、由一维势箱的薛定谔方程求解结果所得量子数 n,下面论述正确的是( C ) 装 A. 可取任一整数 B.与势箱宽度一起决定节点数空隙中,CaF晶体中负离子的 堆积型式为简单立方,正离子填入立方体的2 2姓空隙中。 C. 能量与n成正比 D.对应于可能的简并态名3: D4、多电子 原子的一个光谱支项为,在此光谱支项所表征的状态中,原了的总轨道2,,,,,7、 氢原子处于下列各状态:1) 2) 3) 4) 5) ,问哪22px3p3dxz3223dzz订6,角动量等于,原子的总自旋角动量等于 2, ,原子的总角动量等于 ,,2M些状态既是算符的本征函数又是算符的本征函数( C )。 Mz 6,,在磁场中,此光谱支项分裂出5个塞曼能级。系A.1)3) B.2)4) C.3)4)5) D.1)2)5) 别: 11线 8、下列光谱项不属于pd组态的是( C ) 1/22,r/2a0(3/4,)cos,(3/4,)cos,,(r,,,,)5、= ,若以对作图, (,,,)N(r/a)e2PZ01131 A. B. C. D. PDFS

(完整版)结构化学课后答案第一章

01.量子力学基础知识 1.1】将锂在火焰上燃烧,放出红光,波长λ=670.8nm,这是Li 原子由电子组态(1s)2(2p)1 →(1s)2(2s)1跃迁时产生的,试计算该红光的频率、波数以及以 1 4 1 7 1.491 104cm 1 670.8 10 7cm h N A6.626 10 34 J s 4.469 1014s 1 6.6023 1023mol-1 178.4kJ mol 波长λ /nm312.5365.0404.7546.1 光电子最大动能E k/10-19J 3.41 2.56 1.950.75 作“动能-频率” ,从图的斜率和截距计算出Plank 常数(h) 值、 钠的脱出功(W) 和临阈频率(ν 0)。 解:将各照射光波长换算成频率v,并将各频率与对应的光电子的最大动能E k 列于下表:λ/nm312.5365.0404.7546.1 v /1014s-19.598.217.41 5.49 E k/10 -19J 3.41 2.56 1.950.75 由表中数据作图,示于图中 由式 hv hv0 E k 推知 h E k E k v v0 v 即Planck 常数等于E k v图的斜率。选取两合适点,将E k 和v值带入上式,即可求出h。 2.70 1.05 10 19 J 34 h 14 16.60 1034 Jgs 8.50 600 1014 s 1 kJ· mol-1为单位的能量。 解: 8 2.998 108m s 670.8m 14 1 4.469 1014s 1 图 1.2 金属的E k 图

31 9.109 10 31 kg 1 2 6.626 10 34 Jgs 4.529 1014s 1 2 9.109 10 31kg 8.12 105mgs 1 1.4】计算下列粒子的德布罗意波的波长: -1 a) 质量为 10-10kg ,运动速度为 0.01m · s 的尘埃; b) 动能为 0.1eV 的中子; c) 动能为 300eV 的自由电子。 解:根据关系式: h 6.626 10 34 J s mv 10 10 kg 0.01m s 6.626 10 34 J s 2 1.675 10 27kg 0.1eV 1.602 10 19J eV 9.40 3 10-11m (3) h h p 2meV 6.626 10 34 J s 2 9.109 10 31kg 1.602 10 19C 300V 7.08 10 11m 【1.5】用透射电子显微镜摄取某化合物的选区电子衍射图,加速电压为 加速后运动时的波长。 图中直线与横坐标的交点所代表的 v 即金属的临界频率 v 0 ,由图可知, v 0 4.36 因此,金属钠的脱出功为: W hv 0 6.60 10 34Jgs 4.36 1014s 1 19 2.88 10 19 J 14 1 1014s 1 1.3】金属钾的临阈频率为 5.464×10-14 s -1,如用它作为光电极的阴极当用波长为 300nm 的 紫外光照射该电池时,发射光电子的最大速度是多少? hv hv 0 解: 1 2h v v 0 2 m 12 mv 2 34 2 6.626 10 34 Jgs 2.998 108 mgs 300 10 9m 14 1 5.464 1014 s 1 (1) (2) 22 6.626 10 22 m 200kV ,计算电子

结构化学练习题及答案

结构化 学练习题 一、 填空题 试卷中可能用到的常数:电子质量(×10-31kg ), 真空光速(×), 电子电荷(×10-19C ),Planck 常量(×), Bohr 半径(×10-11m ), Bohr 磁子×, Avogadro 常数×1023mol -1) 1. 导致"量子"概念引入的三个着名实验分别是 ___, ________ 和__________. 2. 测不准关系_____________________。 3. 氢原子光谱实验中,波尔提出原子存在于具有确定能量的( ),此时原子不辐射能量,从( )向( )跃迁才发射或吸收能量;光电效应实验中入射光的频率越大,则( )越大。 4. 按照晶体内部结构的周期性,划分出一个个大小和形状完全一样的平行六面体,以代表晶体结构的基本重复单位,叫 。 中,a 称为力学量算符A ? 的 。 5. 方程6. 如果某一微观体系有多种可能状态,则由它们线性组合所得的状态也是体系的可能状态,这叫做 原理。 7. 将多电子原子中的其它所有电子对某一个电子的排斥作用看成是球对称的,是只与径向有关的力场,这就是 近似。 8. 原子单位中,长度的单位是一个Bohr 半径,质量的单位是一个电子的静止质量,而能量的单位为 。 9. He + 离子的薛定谔方程为( )。 10. 钠的电子组态为1s 22s 22p 63s 1,写出光谱项______,光谱支项__________。 11. 给出下列分子所属点群:吡啶_______,BF 3______,NO 3-_______,二茂铁_____________。 12. 在C 2+,NO ,H 2+,He 2+,等分子中,存在单电子σ键的是________,存在三电子σ键的是__________,存在单电子π键的是________,存在三电子π键的是_____________。 13. 用分子轨道表示方法写出下列分子基态时价电子组态,键级,磁性。 O 2的价电子组态___1σg 21σu 22σg 22σu 23σg 21πu 41πg 2_([Be 2] 3σg 21πu 41πg 2)_键级__2___磁性_____。 NO 的价电子组态____1σ22σ23σ24σ21π45σ22π(KK1σ22σ21π43σ22π)___键级磁性________顺磁性__________。 14. d z 2sp 3杂化轨道形成__________________几何构型。 d 2sp 3杂化轨道形成____________________几何构型。 15. 原子轨道线性组合成分子轨道的三个原则是_______,_________和_______ 16. 事实证明Li 的2s 轨道能和H 的1s 轨道有效的组成分子轨道,说明原因( )、( )、( )。 17. 类氢体系的某一状态为Ψ43-1,该体系的能量为( )eV ,角动量大小为( ),角动量在Z 轴上的分量为( )。 18. 两个能级相近的原子轨道组合成分子轨道时,能级低于原子轨道的分子轨道称为 。 19. 对于简单的sp 杂化轨道,构成此轨道的分子一般为 构型。 20. 按HMO 处理, 苯分子的第_ __和第____个?分子轨道是非简并分, 其余都是 ___ 重简并的。 21. 按晶体场理论, 正四面体场中, 中央离子d 轨道分裂为两组, 分别记为(按能级由低到高)_____和______, 前者包括___,后者包括______ ψψa A =?

相关文档