文档库 最新最全的文档下载
当前位置:文档库 › 抛物线及标准方程典型例题jfjg

抛物线及标准方程典型例题jfjg

抛物线及标准方程典型例题jfjg
抛物线及标准方程典型例题jfjg

典型例题一

例1 指出抛物线的焦点坐标、准线方程. (1)y x 42= (2))0(2≠=a ay x

分析:(1)先根据抛物线方程确定抛物线是四种中哪一种,求出p ,再写出焦点坐标和准线方程. (2)先把方程化为标准方程形式,再对a 进行讨论,确定是哪一种后,求p 及焦点坐标与准线方程. 解:(1)2=p ,∴焦点坐标是(0,1),准线方程是:1-=y (2)原抛物线方程为:x a y 12

=

,a

p 1

2=∴ ①当0>a 时,

a p 41

2=,抛物线开口向右, ∴焦点坐标是)0,41(a ,准线方程是:a x 41-=. ②当0

2-=,抛物线开口向左,

∴焦点坐标是)0,41(a ,准线方程是:a

x 41-=. 综合上述,当0≠a 时,抛物线2

ay x =的焦点坐标为)0,41(

a ,准线方程是:a

x 41-=. 典型例题二

例2 若直线2-=kx y 与抛物线x y 82

=交于A 、B 两点,且AB 中点的横坐标为2,求此直线方程.

分析:由直线与抛物线相交利用韦达定理列出k 的方程求解.另由于已知与直线斜率及弦中点坐标有关,故也

可利用“作差法”求k .

解法一:设),(11y x A 、),(22y x B ,则由:??

?=-=x

y kx y 82

2

可得:04)84(22=++-x k x k .

∵直线与抛物线相交,0≠∴k 且0>?,则1->k . ∵AB 中点横坐标为:28

422

21=+=+∴

k k x x , 解得:2=k 或1-=k (舍去). 故所求直线方程为:22-=x y .

解法二:设),(11y x A 、),(22y x B ,则有22

212

188x y x y ==.

两式作差解:)(8))((212121x x y y y y -=+-,即

2

121218

y y x x y y +=--.

421=+x x 444)(22212121-=-+=-+-=+∴k x x k kx kx y y ,

4

48

-=

∴k k 故2=k 或1-=k (舍去).

则所求直线方程为:22-=x y .

典型例题三

例3 求证:以抛物线的焦点弦为直径的圆心与抛物线的准线相切. 分析:可设抛物线方程为)0(22>=p px y .如图所示,只须证明12

MM AB =,则以AB 为直径的圆,必与抛

物线准线相切.

证明:作l AA ⊥1于l BB A ⊥11,于1B .M 为AB 中点,作l MM ⊥1于1M ,则由抛物线的

定义可知:BF BB AF AA ==11,

在直角梯形A A BB 11中:

AB BF AF BB AA MM 21

)(21)(21111=+=+=

AB MM 21

1=∴,故以AB 为直径的圆,必与抛物线的准线相切.

说明:类似有:以椭圆焦点弦为直径的圆与相对应的准线相离,以双曲线焦点弦为直径的圆与相应的准线相交.

典型例题四

例4(1)设抛物线x y 42=被直线k x y +=2截得的弦长为53,求k 值.

(2)以(1)中的弦为底边,以x 轴上的点P 为顶点作三角形,当三角形的面积为9时,求P 点坐标. 分析:(1)题可利用弦长公式求k ,(2)题可利用面积求高,再用点到直线距离求P 点坐标.

解:(1)由???+==k

x y x y 242得:0)44(422=+-+k x k x

设直线与抛物线交于),(11y x A 与),(22y x B 两点.则有:4,12

2121k x x k x x =?-=+

[][]

)

21(5)1(54)(5))(21(22212212212k k k x x x x x x AB -=--=-+=-+=∴

53)21(5,53=-∴=∴k AB ,即4-=k

(2)9=?S ,底边长为53,∴三角形高55

65

392=?=h ∵点P 在x 轴上,∴设P 点坐标是)0,(0x

则点P 到直线42-=x y 的距离就等于h ,即

5

5

6124022

20=

+--x 10-=∴x 或50=x ,即所求P 点坐标是(-1,0)或(5,0).

典型例题五

例5 已知定直线l 及定点A (A 不在l 上),n 为过A 且垂直于l 的直线,设N 为l 上任一点,AN 的垂直平分线交n 于B ,点B 关于AN 的对称点为P ,求证P 的轨迹为抛物线.

分析:要证P 的轨迹为抛物线,有两个途径,一个证明P 点的轨迹符合抛物线的定义,二是证明P 的轨迹方程为抛物线的方程,可先用第一种方法,由A 为定点,l 为定直线,为我们提供了利用定义的信息,若能证明PN PA =且l PN ⊥即可.

证明:如图所示,连结P A 、PN 、NB .

由已知条件可知:PB 垂直平分NA ,且B 关于AN 的对称点为P . ∴AN 也垂直平分PB .则四边形P ABN 为菱形.即有PN PA =. ..l PN l AB ⊥∴⊥

则P 点符合抛物线上点的条件:到定点A 的距离与到定直线的距离相等,所以P 点的轨迹为抛物线.

典型例题六

)0(2:2>=p px y C 的一条焦点弦,

F 为C 的例

6 若线段21P P 为抛物线

焦点,求证:

p F P F

P 2

1121=+. 分析:此题证的是距离问题,如果把它们用两点间的距离表示出来,其计算量是很大的.我们可以用抛物线的

定义,巧妙运用韦达定理,也可以用抛物线的定义与平面几何知识,把结论证明出来.

证法一:)0,2

(

p

F ,若过F 的直线即线段21P P 所在直线斜率不存在时, 则有p F P F P ==21,p p p F P F

P 2

111121=+=+∴

. 若线段21P P 所在直线斜率存在时,设为k ,则此直线为:)0)(2

(≠-

=k p

x k y ,且设),(),,(222111y x P y x P . 由??????

?

-=-=)2

()

2(p x k y p

x k y 得:04)2(222

22=+

+-p k x k p x k 2

221)

2(k

k p x x +=+∴ ①

4

2

21p x x =? ② 根据抛物线定义有:p x x P P p

x F P p x F P ++=∴+=+=21211211,2

,2 则

F P F P F P F P F P F P 21212111?+=+4

)(2)2)(2(2

2121212121p x x p x x p x x p x p x p x x +++++=++++= 请将①②代入并化简得:

p F P F

P 2

1121=+ 证法二:如图所示,设1P 、2P 、F 点在C 的准线l 上的射影分别是'

1P 、'

2P 、F ',且不妨设1122P P m n P P '=<=',又设2P 点在F F '、11P P '上的射影分别是A 、B 点,由抛物线定义知,

p F F m F P n F P ='==,,12

又AF P 2?∽12BP P ?,1

221

P P F P BP AF =

n

m n

n m n p +=-- p

n m m n

n m p 2

112)(=+∴=+∴ 故原命题成立.

典型例题七

例7 设抛物线方程为)0(22

>=p px y ,过焦点F 的弦AB 的倾斜角为α,求证:焦点弦长为α

2

sin 2p

AB =

. 分析:此题做法跟上题类似,也可采用韦达定理与抛物线定义解决问题.

证法一:抛物线)0(22

>=p px y 的焦点为)0,2

(

p

, 过焦点的弦AB 所在的直线方程为:)2

(tan p

x y -=α

由方程组??

???

=-=px y p x y 2)

2(tan 2α消去y 得:

0tan )(tan 4tan 422222=+-αααp p x

设),(),,(2211y x B y x A ,则???

????=?+=+=+4)cot 21(tan )2(tan 2

2122221p x x p p x x ααα

又)(tan 2121x x y y -=α

[]

α

α

ααααααα2422

2

2

2

22

22

2

122122212sin 2sin 14)cot 1(cot 4sec 44)cot 1()tan 1(4)()tan 1())(tan 1(p

p p p p x x x x x x AB =?=+?=?

??????-++=-++=-+=∴

即α

2

sin 2p

AB =

证法二:如图所示,分别作1AA 、1BB 垂直于准线l .由抛物线定义有:

α

αcos cos 11?-==+?==BF p BB BF p AF AA AF

于是可得出:αcos 1-=

p AF α

cos 1+=p

BF

ααα

α22sin 2cos 12cos 1cos 1p p

p p BF

AF AB =

-=

++

-=

+=∴ 故原命题成立.

典型例题八

例8 已知圆锥曲线C 经过定点)32,3(P ,它的一个焦点为F (1,0),对应于该焦点的准线为1-=x ,过焦点F 任意作曲线C 的弦AB ,若弦AB 的长度不超过8,且直线AB 与椭圆2232

2

=+y x 相交于不同的两点,求

(1)AB 的倾斜角θ的取值范围.

(2)设直线AB 与椭圆相交于C 、D 两点,求CD 中点M 的轨迹方程.

分析:由已知条件可确定出圆锥曲线C 为抛物线,AB 为抛物线的焦点弦,设其斜率为k ,弦AB 与椭圆相交于不同的两点,可求出k 的取值范围,从而可得θ的取值范围,求CD 中点M 的轨迹方程时,可设出M 的坐标,利用韦达定理化简即可.

解:(1)由已知得4=PF .故P 到1-=x 的距离4=d ,从而d PF = ∴曲线C 是抛物线,其方程为x y 42=.

设直线AB 的斜率为k ,若k 不存在,则直线AB 与22322=+y x 无交点. ∴k 存在.设AB 的方程为)1(-=x k y

由???-==)

1(42x k y x y 可得:0442=--k y ky 设A 、B 坐标分别为),(11y x 、),(22y x ,则:442121-=?=

+y y k

y y

2

22122122212

)1(44)(1))(11(k k y y y y k k y y k AB +=

-++=-+

=∴

∵弦AB 的长度不超过8,8)

1(42

2≤+∴k k 即12≥k 由???=+-=2

23)1(2

2y x x k y 得:0)1(24)32(2222=-+-+k x k x k ∵AB 与椭圆相交于不同的两点,32

<∴k

由12

≥k 和32

3

4

π

θπ

<

≤或

4

332πθπ≤< (2)设CD 中点),(y x M 、),(33y x C 、),(44y x D

由???=+-=2

23)1(2

2y x x k y 得:0)1(24)32(2

222=-+-+k x k x k

93253

13

23

1322232)

1(2,324222

2

2

4322132243<+≤∴<≤+-=∴+=+=+-=

?+=+∴k k k x k k x x x k k x x k k x x 则323211522<+-≤k 即32

52<≤x .

3)

1(2)1(23

221

2

22

22+-?-?=

+=∴-=

x y x y k k x x y

k

化简得:032322=-+x y x

∴所求轨迹方程为:)3

252(03232

2

<≤=-+x x y x

典型例题九

例9 定长为3的线段AB 的端点A 、B 在抛物线x y =2

上移动,求AB 的中点到y 轴的距离的最小值,并求出此时AB 中点的坐标.

分析:线段AB 中点到y 轴距离的最小值,就是其横坐标的最小值.这是中点坐标问题,因此只要研究A 、B 两点的横坐标之和取什么最小值即可.

解:如图,设F 是x y =2

的焦点,A 、B 两点到准线的垂线分别是AC 、BD ,又M 到准线的垂线为MN ,

C 、

D 和N 是垂足,则

2

3

21)(21)(21=≥+=+=

AB BF AF BD AC MN .

设M 点的横坐标为x ,纵坐标为y ,41+=x MN ,则4

54123=-≥x . 等式成立的条件是AB 过点F . 当4

5=

x 时,412

21-=-=P y y ,故

22

1

22)(212

22

1221=-

=++=+x y y y y y y , 221±=+y y ,2

=y . 所以)2

2

,4

5(±

M ,此时M 到y 轴的距离的最小值为45.

说明:本题从分析图形性质出发,把三角形的性质应用到解析几何中,解法较简.

典型例题十

例10 过抛物线px y 2=的焦点F 作倾斜角为θ的直线,交抛物线于A 、B 两点,求AB 的最小值. 分析:本题可分2

π

θ=和2

π

θ≠

两种情况讨论.当2

π

θ≠

时,先写出AB 的表达式,再求范围.

解:(1)若2

π

θ=,此时p AB 2=.

(2)若2

π

θ≠

,因有两交点,所以0≠θ.

)2(tan p x y AB -=θ:,即2

tan p

y x +=θ.

代入抛物线方程,有0tan 222

=--

p y p y θ

. 故θθ

2222

2

2

12csc 44tan 4)(p p p y y =+=-, θ

θθ22

222122

12tan csc 4tan )()(p y y x x =-=-. 故θθ

θ422

2

22

csc 4)tan 1

1(csc 4p p AB =+=. 所以p p AB 2sin 22

>=

θ

.因2π

θ≠,所以这里不能取“=”. 综合(1)(2),当2

π

θ=时,p AB 2=最小值.

说明:

(1)此题须对θ分2

π

θ=

和2

π

θ≠

两种情况进行讨论;

(2)从解题过程可知,抛物线点弦长公式为θ

2

sin 2p

l =; (3)当2

π

θ=

时,AB 叫做抛物线的通径.通径是最短的焦点弦.

典型例题十一

例11 过抛物线px y 22=)0(>p 的焦点F 作弦AB ,l 为准线,过A 、B 作l 的垂线,垂足分别为'

A 、'

B ,则①'

'

FB A ∠为( ),②B AF '

∠为( ).

A .大于等于?90

B .小于等于?90

C .等于?90

D 不确定

分析:本题考查抛物线的定义、直线与圆的位置关系等方面的知识,关键是求角的大小以及判定直线与圆是否相切.

解:①点A 在抛物线上,由抛物线定义,则21'

∠=∠?=AF AA ,

又x AA //'

轴31∠=∠?.

∴32∠=∠,同理64∠=∠,

而?=∠+∠+∠+∠1804632,∴?=∠+∠9063, ∴?=∠90'

'FB A .选C .

②过AB 中点M 作l MM ⊥',垂中为'

M , 则AB BF AF BB AA MM 2

1

)(21)(21'''

=+=+=

. ∴以AB 为直径的圆与直线l 相切,切点为'

M . 又'F 在圆的外部,∴?<∠90'

B AF .

特别地,当x AB ⊥轴时,'M 与'F 重合,?=∠90'

B AF .

即?≤∠90'

B AF ,选B .

典型例题十二

例12 已知点)2,3(M ,F 为抛物线x y 22=的焦点,点P 在该抛物线上移动,当PF PM +取最小值时,点P 的坐标为__________.

分析:本题若建立目标函数来求PF PM +的最小值是困难的,若巧妙地利用抛物线定义,结合图形则问题不难解决.

解:如图,

由定义知PE PF =,故2

13

=≥≥+=+MN ME PM PF PF PM . 取等号时,M 、P 、E 三点共线,∴P 点纵坐标为2,代入方程,求出其横坐标为2, 所以P 点坐标为)2,2(.

说明:由抛物线的定义可知,抛物线上的点到焦点的距离等于它到准线的距离.要重视定义在解题中的应用,灵活地进行抛物线上的点到焦点距离与到准线距离的相互转换.

高考数学抛物线大题专练30题(含详解)经典收藏版

目录 目录-------------------------------------------------------------------------------------------------1抛物线大题专练(一)--------------------------------------------------------------------------------2抛物线大题专练(二)--------------------------------------------------------------------------------5抛物线大题专练(三)--------------------------------------------------------------------------------8抛物线大题专练---------------------------------------------------------------------------------------11参考答案与试题解析---------------------------------------------------------------------------------11

抛物线大题专练(一) 1.已知抛物线C的方程为x2=2py,设点M(x0,1)(x0>0)在抛物线C上,且它到抛物线C的准线距离为; (1)求抛物线C的方程; (2)过点M作倾斜角互补的两条直线分别交抛物线C于A(x1,y1),B(x2,y2)两点(M、A、B三点互不相同), 求当∠MAB为钝角时,点A的纵坐标y1的取值范围. 2.在平面直角坐标系xOy中,已知抛物线y2=2px(p>0)的准线方程为x=﹣,过点M(0,﹣2)作抛物线的切 线MA,切点为A(异于点O).直线l过点M与抛物线交于两点B,C,与直线OA交于点N. (1)求抛物线的方程; (2)试问:的值是否为定值?若是,求出定值;若不是,说明理由.

高中数学《抛物线及其标准方程》教学设计

拋物线及其标准方程 一、教学内容分析 《抛物线及其标准方程》是全日制普通高级中学教科书(必修)数学第二册(上)第八章《圆锥曲线》第三节第一课时内容。本节在教材中的地位和作用:在初中阶段,抛物线为学生学习二次函数2 =++提供直观的图象感觉;在 y ax bx c 高中阶段,它在一元二次不等式的解法、求最大(小)值等方面有着重要的作用。但学生并不清楚这种曲线的本质,随着学生数学知识的逐渐完备,尤其是学习了椭圆、双曲线的第二定义之后,已具备了探讨这个问题的能力。从本章来讲,这一节放在椭圆和双曲线之后,一方面是三种圆锥曲线统一定义的需要,e=的特例;另一方面也是解析几何“用方程研究曲线”这一拋物线是离心率1 基本思想的再次强化。本节对拋物线定义的研究,与初中阶段二次函数的图象遥相呼应,体现了数学的和谐之美。教材的这种安排,是为了分散难点,符合认知的渐进性原则。 二、学生学习情况分析 我校是省一级达标学校,有优越的多媒体设备,学生的数学基础较好, 有强烈的求知欲,具备一定的分析、观察等能力。在此之前,学生已经熟练掌握二次函数图象、椭圆、双曲线的第二定义与求轨迹方程等内容,迫切想了解抛物线的本质特征。但是在动手操作与合作学习等方面,发展不均衡,有待加强。三、设计思想 为了培养不仅能“学会”知识,而且能“会学”知识的人才以及根据我校提出的“创设情景、激发情感、主动发现、主动发展”的教学模式,在课堂设计上,教师应学会如何创设情景,激发学生学习的兴趣;围绕教材的重难点,比如本节的“拋物线的标准方程及其推导”和“拋物线概念的形成”,教师应学会如何设计不同的活动环节,设置由浅入深、环环相扣的问题,通过教师适时的引导,通过生生间、师生间的交流互动,通过学生自己的发现、分析、探究、反思,使学生真正成为学习的主人,不断完善自己的知识体系,提高获取知识的能力,尝试合作学习的快乐,体验成功的喜悦。 四、教学目标 1.理解拋物线的定义,掌握拋物线的标准方程及其推导。明确拋物线标准方程中p的几何意义,能解决简单的求拋物线标准方程问题。 2、通过对拋物线和椭圆、双曲线离心率的比较,体会三种圆锥曲线内在的区

(完整版)《抛物线定义及其标准方程》

抛物线及其标准方程 一、教学目标 1.知识目标:①掌握抛物线的定义、方程及标准方程的推导;②掌握焦点、焦点位置与方程关系;③进一步了解建立坐标系的选择原则. 2. 能力目标:使学生充分认识到“数与形”的联系,体会“数形结合”的思想。 二、教学过程 (一)、复习引入 问题1、 椭圆、双曲线的第二定义如何叙述?其离心率e 的取值范围各是什么? 平面内,到一个定点F 的距离和一条定直线l 的距离的比是常数e 的轨迹,当0<e <1时是椭圆,当e >1时是双曲线。自然引出问题:那么,当1 e 时,轨迹是什么形状的曲线呢? (二).创设情境 问题2、用制作好的教具实验:三角板ABC 的直角边BC 边上固定一个钉子,一根绳子连接钉子和平面上一个固定点F ,并且使绳子的长度等于钉子到直角顶点C 的距离。用笔尖绷紧绳子,并且使三角板AC 在定直线l 上滑动,问笔尖随之滑动时,在平面上留下什么图形?如何用方程表示该图形? 设计意图:从实际问题出发,激发学生的求知欲,将问题交给学生,充分发挥学生的聪明才智,体现学生的主体地位,同时引入本节课的内容. 师生活动: (1) 你们如何把这个实际问题抽象成数学问题吗? (2) 学生不一定能正确抽象出来,教师可适当引导:当笔 尖滑动时,笔尖到定点F 的距离等于到定直线l 的距离,在满足这样条件下,笔尖画出的图形。并抽象数学问题: (三)、新课讲授: (1)抛物线定义:平面内,到一个定点F 和一条定直线l 的距离相等的点的轨迹叫做抛物线 定点F 叫做抛物线的焦点,定直线l 叫做抛物线的准线,F 到直线l 的距离简 称焦准距。 特别提醒:定点F 在定直线l 外。(并假设F 在直线l 上)

(完整版)《抛物线》典型例题12例(含标准答案)

《抛物线》典型例题12例 典型例题一 例1 指出抛物线的焦点坐标、准线方程. (1)y x 42= (2))0(2≠=a ay x 分析:(1)先根据抛物线方程确定抛物线是四种中哪一种,求出p ,再写出焦点坐标和准线方程. (2)先把方程化为标准方程形式,再对a 进行讨论,确定是哪一种后,求p 及焦点坐标与准线方程. 解:(1)2=p Θ,∴焦点坐标是(0,1),准线方程是:1-=y (2)原抛物线方程为:x a y 12=,a p 1 2=∴ ①当0>a 时, a p 41 2=,抛物线开口向右, ∴焦点坐标是)0,41(a ,准线方程是:a x 41 -=. ②当0?,则1->k .

∵AB 中点横坐标为:28 422 21=+=+∴ k k x x , 解得:2=k 或1-=k (舍去). 故所求直线方程为:22-=x y . 解法二:设),(11y x A 、),(22y x B ,则有22 212 188x y x y ==. 两式作差解:)(8))((212121x x y y y y -=+-,即 2 121218 y y x x y y +=--. 421=+x x Θ444)(22212121-=-+=-+-=+∴k x x k kx kx y y , 4 48 -= ∴k k 故2=k 或1-=k (舍去). 则所求直线方程为:22-=x y . 典型例题三 例3 求证:以抛物线的焦点弦为直径的圆心与抛物线的准线相切. 分析:可设抛物线方程为)0(22>=p px y .如图所示,只须证明12 MM AB =, 则以AB 为直径的圆,必与抛物线准线相切. 证明:作l AA ⊥1于l BB A ⊥11,于1B .M 为AB 中点,作 l MM ⊥1于1M ,则由抛物线的定义可知: BF BB AF AA ==11, 在直角梯形A A BB 11中: AB BF AF BB AA MM 21 )(21)(21111=+=+= AB MM 21 1=∴,故以AB 为直径的圆,必与抛物线的准线相切. 说明:类似有:以椭圆焦点弦为直径的圆与相对应的准线相离,以双曲线焦点弦为直径的圆与相应的准线相交. 典型例题四 例4(1)设抛物线x y 42=被直线k x y +=2截得的弦长为53,求k 值. (2)以(1)中的弦为底边,以x 轴上的点P 为顶点作三角形,当三角形的面

抛物线及其标准方程学案

抛物线及其标准方程学 案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

2.4.1抛物线及其标准方程 【学习目标】 掌握抛物线的定义、标准方程及其推导过程. 【自主学习】 1. 抛物线定义: . 2.推导抛物线的标准方程: 如图所示,建立直角坐标系系,设|KF|=p (p >0),那么焦点F 的坐标为 )0,2(p ,准线l 的方程为2p x -=,(自己完成推导过程) (1)它表示的抛物线的焦点在x 轴的正半轴 上,焦 点坐标是F ( 2p ,0),准线方程是2 p x -= (2)一条抛物线,由于它在坐标系的位置不同,方程也不同,有四种不同的情 况,所以抛物线的标准方程还有其他几种形式. 3.抛物线的准线方程:如图所示,分别建立直角坐标系,设出|KF|=p (p >0),则抛物线的标准方程如下: 按要求填写下表:

比较四种标准方程的异同: 相同点: 不同点: 【自主检测】 1.抛物线y =2x 2的焦点坐标是 ( ) (A) (0, 41) (B) (0,81) (C) (21,0) (D) (4 1 ,0) 2.顶点在原点,焦点在y 轴上,且过点P (4,2)的抛物线方程是 . 【典型例题】 例1求下列抛物线方程的焦点坐标和准线方程. (1)y 2=12x , (2)y =12x 2, 例2 求满足下列条件的抛物线的标准方程: (1)焦点坐标是F (-5,0), (2)焦点到准线的距离是4,焦点在y 轴上. 【课堂检测】 1.抛物线24x y 上一点M 的纵坐标为4,则点M 与抛物线焦点的距离为 .

2.已知抛物线方程是2 y ,求它的焦点坐标和准线方程. 6x

《抛物线及其标准方程》教学设计

《抛物线及其标准方程》教学设计 教材:普通高中数学课程标准实验教科书(人教A版) 选修2-1 一第二章第四节 课题:抛物线及其标准方程 课时:第一课时 一、背景分析 1 课标的要求 (1)了解圆锥曲线的实际背景,感受圆锥曲线在刻画现实世界和解决实际问题中的作用。 (2)经历从具体情境中抽象出椭圆,抛物线模型的过程,掌握椭 圆,抛物线的定义、标准方程及简单性质。 (3)了解双曲线的定义、几何图形和标准方程,知道它们的有关性质,体会数形结 合的思想。 (4)了解圆锥曲线的简单应用。 2本节课在圆锥曲线中的地位: 圆锥曲线是解析几何中的一个重要内容。而抛物线在圆锥曲线中地位仅次于椭圆而高于双曲 线,抛物线在初中以二次函数的形式初步探讨过,本节内容安排篇幅不多,并非不重要,主 要是因为学生对于椭圆、双曲线的基本知识和研究方法已经熟悉了,这里精简介绍,学生是可以接受的,它是高考的重要考察内容,要引起师生足够的重视。 3、学习任务分析 (1)、通过实验,结合几何画板课件,观察、发现和认识抛物线。 (2)、坐标法求抛物线的标准方程是本节课的重点和难点。 通过几何画板动态演示建立不同的坐标系,对比所得方程的异同,使学生认识到恰当建立坐 标系的重要性。 (3)、由抛物线的标准方程,熟练写出焦点坐标、准线方程;反之也会。 (4)、放手让学生类似地推导开口向左、向上、向下的情况下的标准方程。让学生根据课件展示的图形填充表格、对比异同。

(5)、p的几何意义:它指抛物线焦点到准线的距离,因此p>0。在抛物线宀, *=一2即中,负号只管抛物线的开口方向,与p无关。 (6)、由于学生对数学图形、符号、文字三种语言的相互转化有一定困难,教学中应根据 图形培养学生运用三种语言的能力。借助图形使原本较为陌生的定义变得容易理解和便于记忆。 4、学生情况分析 在经过高一的学习和训练后,大多同学有较扎实的数学基本功和较好的理解力,有一定的自主学习能力,但在数学思想方法的形成上尚有不足,针对我所带班级学生的学习情况和数学 素养,我把本节内容借助powerpoint、几何画板课件,从形象、动态的演示入手,使学生 对抛物线有一个较为深刻的认识。 二、教学目标设计 根据课程标准和考试大纲的要求、教材的具体内容和学生认知心理,我确定本堂课的教学目 标如下: 1知识与能力 ①让学生理解抛物线的概念及与椭圆、双曲线第二定义的联系。 ②让学生掌握抛物线的四种标准方程及其对应的图形。 2、技能与方法 ①培养建立适当坐标系的能力。 ②培养学生的观察、比较、分析、概括的能力。 3、情感态度与价值观 ①培养学生的探索精神。 ②渗透辩证唯物主义的方法论和认识论教育。 4教学重点和难点 根据以上所说的教材的地位、作用、内容与学生情况,我确定教材重点、难点如下: (1)、教学重点: ①选择适当坐标系探求抛物线的标准方程。 ②标准方程的形式与图形、焦点坐标、准线方程的对应关系。 (2)、教学难点:

高中数学《抛物线及其标准方程》说

《抛物线及其标准方程》说课稿 一.教材分析 1.教材所处的地位和作用 本节内容是学生在已学习了椭圆、双曲线的定义,经历了根据椭圆.双曲线的几何特征,建立适当的直角坐标系,求椭圆.双曲线的标准方程的基础上,通过类比的思想借助圆锥曲线第二定义的统一性展开的,同时,它还是学习抛物线几何性质的基础。因此本节内容起到一个承上启下的作用。 2.本节课的主要教学内容 ⑴通过欣赏一组图片,观察.发现和认识抛物线,并利用用课件,作与一个定点的距离等于它到定直线的距离的动点的轨迹(图形)——抛物线,培养探索,实验精神。 ⑵坐标法求抛物线的标准方程是本节课的重点和难点。如何建立坐标系,请学生将自己的感悟画在纸板上。学生分两人一组互相讨论,老师展示几组学生的建系方案,选择正确的一个建系方案,师生一起探究抛物线方程的建立。 ⑶由抛物线的标准方程,熟练写出焦点坐标、准线方程;反之也会。 ⑷抛物线开口方向有左、右、上、下四种情况。让学生根据课件展示的图形写出焦点坐标、准线方程。 ⑸p的几何意义:抛物线焦点到准线的距离,故p>0。 根据以上对教材内容分析以及新课程标准的要求,拟定了如下的教学目标: 3.教学目标 (1)知识目标:掌握抛物线的定义及四种形式标准方程;会根据抛物线的标准方程,求出焦点坐标、准线方程,反之也会求;理解p的几何意义。 (2)能力目标:培养学生观察、比较、发现、归纳、数形结合等能力。 (3)情感目标:通过学生参与实验操作和标准方程的推导,培养学生善于观察、自主探索的精神和创新意识,激发学生积极主动地参与数学学习活动. 4.教学重点和难点 重点:掌握抛物线的定义及四种形式标准方程;会求抛物线方程,焦点坐标和准线方程。 难点:抛物线定义的形成过程及抛物线标准方程的推导(关键是坐标系方案的选择)

抛物线的标准方程及性质

抛物线的标准方程及性质2018/11/25 题型一、抛物线的标准方程: 例题: 1、 顶点在原点,坐标轴为对称轴的抛物线过点(-2,3),则它的方程是 _______ 2、 已知抛物线的顶点在原点,焦点在y 轴上,其上的点)3,(-m P 到焦点的距离为5,则抛物线方程为 3、 以抛物线y 2=2px (p >0)的焦半径|PF |为直径的圆与y 轴的位置关系为 4、 点M 与点F (4,0)的距离比它到直线:50x +=的距离小1,则点M 的轨迹方程是 _______ 5、 抛物线x y =2上到其准线和顶点距离相等的点的坐标为 _______ 练习: 1、 抛物线的顶点在原点,对称轴是x 轴,点(-到焦点距离是6,则抛物线的方程为 _______ 2、 顶点在原点,以坐标轴为对称轴,且焦点在直线3x-4y =12上的抛物线方程是 _______ 3、 已知圆07622=--+x y x ,与抛物线)0(22>=p px y 的准线相切,则=p ________ 4、 若点A 的坐标是(3,2),F 为抛物线y 2=2x 的焦点,点M 在抛物线上移动时,使|MA |+|MF |取最小值的M 的坐标为 _______ 题型二、抛物线性质: 例题: 1、 抛物线x y 122=截直线12+=x y 所得弦长等于 2、 抛物线y 2=4x 与直线2x +y -4=0交于两点A 与B ,F 是抛物线的焦点,则|FA |+|FB |=________ 3、 如果过两点)0,(a A 和),0(a B 的直线与抛物线322 --=x x y 没有交点,那么实数a 的取值范围是 4、 已知抛物线的顶点在坐标原点,对称轴为x 轴,且与圆x 2+y 2=4相交的公共弦长等于23,则这抛物线的方程是 练习: 1、 过A (-1,1),且与抛物线22y x =+有一个公共点的直线方程为 2、 边长为1的等边三角形AOB ,O 为原点,AB ⊥x 轴,则以O 为顶点,且过A 、B 的抛物线方程是________ 3、 若直线l 过抛物线y 2=4x 的焦点,与抛物线交于A ,B 两点,且线段AB 中点的横坐标为2,则线段AB 的长 4、 过点Q (4,1)的抛物线y 2=8x 的弦AB 恰被点Q 平分,则AB 所在直线方程是 题型三、抛物线的应用 例题: 1、 已知圆2290x y x +-=与顶点原点O ,焦点在x 轴上的抛物线交于A 、B 两点,△AOB 的垂心恰为抛物线的焦点,求抛物线C 的方程。

高中数学 抛物线知识点归纳总结与经典习题

抛物线经典结论和例题

方程 1. 直线与抛物线的位置关系 直线 ,抛物线 , ,消y 得: (1)当k=0时,直线l 与抛物线的对称轴平行,有一个交点; (2)当k ≠0时, Δ>0,直线l 与抛物线相交,两个不同交点; Δ=0, 直线l 与抛物线相切,一个切点; Δ<0,直线l 与抛物线相离,无公共点。 (3)若直线与抛物线只有一个公共点,则直线与抛物线必相切吗?(不一定) 2. 关于直线与抛物线的位置关系问题常用处理方法 直线l :b kx y += 抛物线 ,)0(φp ① 联立方程法: ???=+=px y b kx y 22 ?0)(2222=+-+b x p kb x k 设交点坐标为),(11y x A ,),(22y x B ,则有0φ?,以及2121,x x x x +,还可进一步求出 b x x k b kx b kx y y 2)(212121++=+++=+,

2212122121)())((b x x kb x x k b kx b kx y y +++=++= 在涉及弦长,中点,对称,面积等问题时,常用此法,比如 a. 相交弦AB 的弦长 2122122124)(11x x x x k x x k AB -++=-+=a k ?+=2 1 或 2122122124)(1111y y y y k y y k AB -++=-+ =a k ?+=2 1 b. 中点),(00y x M , 2210x x x += , 2 2 10y y y += ② 点差法: 设交点坐标为),(11y x A ,),(22y x B ,代入抛物线方程,得 1212px y = 22 22px y = 将两式相减,可得 )(2))((212121x x p y y y y -=+-所以 2 121212y y p x x y y += -- a. 在涉及斜率问题时,2 12y y p k AB += b. 在涉及中点轨迹问题时,设线段AB 的中点为),(00y x M , 021*******y p y p y y p x x y y ==+=--,即0y p k AB =, 同理,对于抛物线)0(22≠=p py x ,若直线l 与抛物线相交于B A 、两点,点 ),(00y x M 是弦AB 的中点,则有p x p x p x x k AB 0 021222==+= (注意能用这个公式的条件:1)直线与抛物线有两个不同的交点,2)直线的斜率存在,且不等于零) 一、抛物线的定义及其应用

抛物线及其标准方程

拋物线及其标准方程 设计思想 为了培养不仅能“学会”知识,而且能“会学”知识的人才以及根据我校提出的“创设情景、激发情感、主动发现、主动发展”的教学模式,在课堂设计上,教师应学会如何创设情景,激发学生学习的兴趣;围绕教材的重难点,比如本节的“拋物线的标准方程及其推导”和“拋物线概念的形成”,教师应学会如何设计不同的活动环节,设置由浅入深、环环相扣的问题,通过教师适时的引导,通过生生间、师生间的交流互动,通过学生自己的发现、分析、探究、反思,使学生真正成为学习的主人,不断完善自己的知识体系,提高获取知识的能力,尝试合作学习的快乐,体验成功的喜悦。 教学过程设计 一.设置情景,导入新课 (借助多媒体)先给出一张姚明的图片。(此时学生的兴 趣来啦!) 师:姚明是我们中国人的骄傲,我们要向他学习!大家 都知道姚明的投篮非常精准!为什么呢? 生:天赋、身高! 生:勤奋练习!(再给出两张姚明的图片) 生:与投篮时的弧线有关! 生:这弧线是抛物线! 师:对!姚明有许多优越的先天条件,同时好的技术也是一个关键的因素,今天我们就着手研究这个内容。 (进而引出本节研究的课题:抛物线及其标准方程) 【学情预设】学生被教师设置的情景所吸引,学习的热情高涨。 【设计意图】一个引人入胜的开头会拓宽学生思路,尊重学生的生命活动,激发兴趣,陶冶情操,大大提高教学效率。 二.引导探究,获得新知 师:在初中我们已经从函数角度学过抛物线,那么,这一节课我们将冲破初中的界限从曲线和方程的角度来学习抛物线。

师:前面,我们学习了椭圆和双曲线的相关知识,那么它们的联系和差异是什么? 生:定义不一样! 生:方程!椭圆是22 2 21x y a b +=,双曲线是22 221x y a b -=。 师:还有吗? 生:椭圆是封闭的,双曲线是开放的。 师:这只是图象不同,为什么会这样呢? 生:就是它们到定点的距离与到定直线的距离的比等于一个常数! 生:这个常数是离心率e ! 师:对啊!这是定性上的,定量上有不同吗? 生:离心率e 不同,椭圆离心率e 的范围是01e <<,双曲线离心率e 的范围是1e >。 师:对了,e 可看成是它们的相同点,又是不同点! (打开几何画板) 师:现在我慢慢拖动,大家认真观察图象。 生:01e <<是椭圆,1e >是双曲线。 师:但你们有没观察到1e =时的图象? 生:抛物线! 【学情预设】学生认真观察图象的变化,认知1e =的图象就是抛物线。 【设计意图】不仅回顾了椭圆与双曲线的相关内容,而且为如何画抛物线奠定坚实基础。

高中数学导学案抛物线及其标准方程

2. 3.1 抛物线及其标准方程 一、学习目标 1.掌握抛物线的定义、几何图形,会推导抛物线的标准方程 2.能够利用给定条件求抛物线的标准方程 3.通过“观察”、“思考”、“探究”与“合作交流”等一系列数学活动,培养学生观察、类比、分析、概括的能力以及逻辑思维的能力,使学生学会数学思考与推理,学会反思与感悟,形成良好的数学观。并进一步感受坐标法及数形结合的思想 二、学习重点 抛物线的定义及标准方程 三、学习难点 抛物线定义的形成过程及抛物线标准方程的推导(关键是坐标系方案的选择) 四、学习过程 (一)复习旧知 在初中,我们学习过了二次函数2y ax bx c =++,知道二次函数的图象是一条抛物线 例如:(1)24y x =,(2)24y x =-的图象(自己画出函数图像) (二)学习新课 1.抛物线的定义 探究1观察抛物线的作图过程,探究抛物线的定义: 抛物线的定义: 思考:若F 在l 上呢?(学生思考、讨论、画图) 2.抛物线的标准方程 要求抛物线的方程,必须先建立直角坐标系. 探究2 设焦点F 到准线l 的距离为(0)p p >,你认为应该如何选择坐标系求抛物线的方程?按照你建立直角坐标系的方案,求抛物线的方程. 讨论:小组讨论建系方案及其对应的方程,你认为哪种建系方案使方程更简单? 推导过程: 我们把方程2 2(0)y px p =>叫做抛物线的标准方程,它表示的抛物线的焦点坐标是,02p ?? ???,准线方程是2p x =-。 在建立椭圆、双曲线的标准方程的过程中,选择不同的坐标系得到了不同形式的标准方程,对于抛物线,当我们选择如图三种建立坐标系的方法,我们也可以得到不同形式的抛物线的标准方程: (学生分前两排,中间两排,后面两排三组分别计算三种情况,一起填充表格) 图形 标准方程 焦点坐标 准线方程

抛物线及其标准方程-课时作业

学习资料[文档副标题] [日期] 世纪金榜 [公司地址]

抛物线及其标准方程 (45分钟 100分) 一、选择题(每小题6分,共30分) 1.(2013·大理高二检测)已知抛物线的焦点坐标是F(0,-2),则它的标准方程为 ( ) A.y2=8x B.y2=-8x C.x2=8y D.x2=-8y 2.如果抛物线y2=ax的准线是直线x=1,那么它的焦点坐标为( ) A.(1,0) B.(2,0) C.(3,0) D.(-1,0) 3.(2013·遵义高二检测)以坐标轴为对称轴,以原点为顶点且过圆x2+y2-2x+ 6y+9=0的圆心的抛物线的方程是( ) A.y=3x2或y=-3x2 B.y=3x2 C.y2=-9x或y=3x2 D.y=-3x2或y2=9x 4.抛物线y2=12x上与焦点的距离等于8的点的横坐标是( ) A.5 B.4 C.3 D.2 5.(2013·汝阳高二检测)一个动圆的圆心在抛物线y2=8x上,且动圆恒与直线x+2=0相切,则动圆必过定点( ) A.(0,2) B.(0,-2) C.(2,0) D.(4,0) 二、填空题(每小题8分,共24分) 6.(2013·安阳高二检测)抛物线y=4x2上的一点M到焦点的距离为1,则点M的纵坐标是.

7.已知抛物线y2=2px的准线与圆(x-3)2+y2=16相切,则p的值为. 8.(2012·陕西高考)如图是抛物线形拱桥,当水面在l时,拱顶离水面2米,水面宽4米,水位下降1米后,水面宽米. 三、解答题(9题,10题14分,11题18分) 9.(2013·宜春高二检测)已知抛物线的顶点在原点,它的准线过-=1的左焦点,而且与x轴垂直,又抛物线与此双曲线交于点(,),求抛物线和双曲线的方程. 10.平面上动点P到定点F(1,0)的距离比到y轴的距离大1,求动点P的轨迹方程. 11.(能力挑战题)已知抛物线的方程为x2=8y,F是焦点,点A(-2,4),在此抛物线上求一点P,使|PF|+|PA|的值最小. 答案解析 1.【解析】选D.由条件可知,抛物线的焦点在y轴负半轴上,且=2,∴p=4,所以它的标准方程为x2=-8y. 【举一反三】把题中条件改为“准线方程为x=-7”,它的标准方程如何?

抛物线及其标准方程

“抛物线及其标准方程”(第一课时)教学设计 数学组韦云校 【教材分析】 1、教材所处的位置及其前后联系 浙江省中等职业学校二年级第八章第六部分内容为抛物线,是在学生掌握了椭圆,双曲线相关知识的基础上引出的,平面解析几何“抛物线及其标准方程”一节内容主要是抛物线的概念和抛物线标准方程(有四种形式),这是继椭圆、双曲线之后的又一重要内容,有着广泛的应用。本课是第一课时,它是学习抛物线的性质及其应用的基础。根据抛物线定义推出的标准方程,也为以后用代数方法研究抛物线的几何性质和实际应用提供了必要的工具和基础,是解决实际生活中问题的有力工具之一。对于中等职业学校的学生必须加以熟练掌握。 2、内容结构 根据实际教学处理,抛物线及其标准方程这部分内容共分为三个层次:第一层次教师通过动画演示,给出抛物线的物理定义:抛物线是抛出的物体在空中所运动的轨迹;用数学定义——平面内与一个定点F和一条定直线l的距离相等的点的轨迹称为抛物线来统一实际生活中出现的各种各样的抛物线;第二层次建立合理坐标系,推导出焦点在x正半轴上的抛物线的标准方程;第三层次由学生猜想焦点不在x正半轴上的抛物线的标准方程,并加以应用。 三个层次很自然,渐入高潮,且教学过程符合学生“由特殊到一般,又由一般回到特殊”的基本认知规律,并在很大程度上培养职高生“学以致用”的能力。 【学情分析】 对中等职业学校的学生来说,数学基础欠扎实,思维、灵活性受基础等原因制约欠佳,对前后知识间的联系、理解、应用有一定难度,反应速度相对较慢。根据以上特点,教师讲解时要放慢步骤,提高学生主体能动性,多加以前后知识间的联系,带领学生直接参与分析问题、解决问题并品尝劳动成果的喜悦,教学要按步就班,不要急于求成,要充分发挥学生的主体作用和教师的主导作用。教师应加以积极引导,使其对标准方程的推导加以理解,并会加以应用。 【教学理念】 《数学课程标准》明确指出“有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践,自主探索和合作交流是学生学习数学的重要方式。”并且把过程性目标确定为“经历”、“体验”和“探索”三个方面。要倡导积极主动,勇于探索的学习方式,数学教学应从学生的生活经验和已有的知识背景出发,向他们提供充分的从事数学活动和交流的机会,让他们在自己的生活中寻找数学、发现数学、探究数学、认识数学和掌握数学。 让学生亲历探究发现过程,不仅是为了让学生通过多种活动去探索和获取数学知识,以达到对知识的深层理解,更主要的是使学生掌握发现、认识并理解数学的一般方法,学习科学的探究的方法。因此亲历探究发现过程,不仅仅是一种获取知识的教学手段,而本身就是数学的重要目的。

高中数学抛物线-高考经典例题

1抛物线的定义:平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹叫做抛物线,定点F 叫做抛物线的焦点,定直线l 叫做抛物线的准线. 2抛物线的图形和性质: ①顶点是焦点向准线所作垂线段中点。 ②焦准距:FK p = ③通径:过焦点垂直于轴的弦长为2p 。 ④顶点平分焦点到准线的垂线段:2 p OF OK == 。 ⑤焦半径为半径的圆:以P 为圆心、FP 为半径的圆必与准线相切。所有这样的圆过定点F 、 准线是公切线。 ⑥焦半径为直径的圆:以焦半径 FP 为直径的圆必与过顶点垂直于轴的直线相切。所有这样的圆过定点F 、过顶点垂直于轴的直线是公切线。 ⑦焦点弦为直径的圆:以焦点弦PQ 为直径的圆必与准线相切。所有这样的圆的公切线是准线。 3抛物线标准方程的四种形式: ,,px y px y 2222-==。,py x py x 2222-== 4抛物线px y 22 =的图像和性质: ①焦点坐标是:?? ? ??02,p , ②准线方程是:2 p x - =。 ③焦半径公式:若点),(00y x P 是抛物线px y 22 =上一点,则该点到抛物线的焦点的距离(称为焦半径)是:02 p PF x =+ , ④焦点弦长公式:过焦点弦长121222 p p PQ x x x x p =+ ++=++ ⑤抛物线px y 22 =上的动点可设为P ),2(2 οοy p y 或2(2,2)P pt pt 或P οοοοpx y y x 2),(2=其中 5一般情况归纳:

y 2=kx k>0时开口向右 (k/4,0) x= ─k/4 到焦点(k/4,0)的距离等于到准线x= ─k/4的距 离 k<0时开口向左 x 2=ky k>0时开口向上 (0,k/4) y= ─k/4 到焦点(0,k/4)的距离等于到准线y= ─k/4的距 离 k<0时开口向下 抛物线的定义: 例1:点M 与点F (-4,0)的距离比它到直线l :x -6=0的距离4.2,求点M 的轨迹方 程. 分析:点M 到点F 的距离与到直线x =4的距离恰好相等,符合抛物线定义. 答案:y 2=-16x 例2:斜率为1的直线l 经过抛物线y 2=4x 的焦点,与抛物线相交于点A 、B ,求线段A 、B 的长. 分析:这是灵活运用抛物线定义的题目.基本思路是:把求弦长AB 转化为求A 、B 两点到准线距离的和. 解:如图8-3-1,y 2=4x 的焦点为F (1,0),则l 的方程为y =x -1. 由???+==1 42x y x y 消去y 得x 2-6x +1=0. 设A (x 1,y 1),B (x 2,y 2) 则x 1+x 2=6. 又A 、B 两点到准线的距离为A ',B ',则 ()()()8262112121=+=++=+++='+'x x x x B B A A 点评:抛物线的定义本身也是抛物线最本质的性质,在解题中起到至关重要的作用。 例3:(1) 已知抛物线的标准方程是y 2=10x ,求它的焦点坐标和准线方程; (2) 已知抛物线的焦点是F (0,3)求它的标准方程; (3) 已知抛物线方程为y =-mx 2 (m >0)求它的焦点坐标和准线方程;

抛物线及其标准方程练习题

` 课时作业(十二) [学业水平层次] 一、选择题 1.(2014·广东省茂名)准线与x 轴垂直,且经过点(1,-2)的抛物线的标准方程是( ) A .y 2=-2x B .y 2=2x C .x 2=2y D .x 2=-2y 【解析】 本题考查抛物线标准方程的求法.由题意可设抛物线的标准方程为y 2=ax ,则(-2)2=a ,解得a =2,因此抛物线的标准方程为y 2=2x ,故选B. 【答案】 B ; 2.(2014·人大附中高二月考)以双曲线x 216-y 2 9 =1的右顶点为焦 点的抛物线的标准方程为( ) A .y 2=16x B .y 2=-16x C .y 2=8x D .y 2=-8x 【解析】 因为双曲线x 216-y 2 9=1的右顶点为(4,0),即抛物线的 焦点坐标为(4,0),所以抛物线的标准方程为y 2=16x . 【答案】 A 3.已知双曲线x 2a 2-y 2 b 2=1(a >0,b >0)的一条渐近线的斜率为2, 且右焦点与抛物线y 2=43x 的焦点重合,则该双曲线的离心率等于

( ) C .2 D .23 | 【解析】 抛物线的焦点为(3,0),即c = 3.双曲线的渐近 线方程为y =b a x ,由b a =2,即 b =2a ,所以b 2=2a 2= c 2-a 2,所以 c 2=3a 2,即e 2=3,e =3,即离心率为 3. 【答案】 B 4.抛物线y 2=12x 的准线与双曲线y 23-x 2 9=-1的两条渐近线所 围成的三角形的面积为( ) A .3 3 B .2 3 C .2 【解析】 本题主要考查抛物线和双曲线的基本量和三角形面积的计算.抛物线y 2=12x 的准线为x =-3,双曲线的两条渐近线为y =± 3 3 x ,它们所围成的三角形为边长为23的正三角形,所以面积为33,故选A. 【答案】 A 二、填空题 5.(2014·绵阳高二月考)抛物线y 2=2x 上的两点A 、B 到焦点的距离之和是5,则线段AB 的中点到y 轴的距离是________. · 【解析】 抛物线y 2 =2x 的焦点为F ? ?? ??12,0,准线方程为x =-12, 设A (x 1,y 1)、B (x 2,y 2),则|AF |+|BF |=x 1+12+x 2+1 2=5,解得x 1 +x 2=4,故线段AB 的中点横坐标为2.故线段AB 的中点到y 轴的距离是2.

抛物线及其性质知识点大全和经典例题及解析

抛物线及其性质 【考纲说明】 1、掌握抛物线的简单几何性质,能运用性质解决与抛物线有关问题。 2、通过类比,找出抛物线与椭圆,双曲线的性质之间的区别与联系。 【知识梳理】 1.抛物线定义:平面内到一定点F 和一条定直线l 的距离相等的点的轨迹称为抛物线. 2.抛物线四种标准方程的几何性质: 图形 参数p 几何意义 参数p 表示焦点到准线的距离,p 越大,开口越阔. 开口方向 右 左 上 下 标 准方 程 22(0)y px p => 22(0)y px p =-> 22(0)x py p => 22(0)x py p =-> 焦 点位 置 X 正 X 负 Y 正 Y 负 焦 点坐 标 (,0)2 p (,0)2p - (0,)2p (0,)2p - 准 线方 程 2p x =- 2p x = 2p y =- 2p y = 范 围 0,x y R ≥∈ 0,x y R ≤∈ 0,y x R ≥∈ 0,y x R ≤∈ 对 称轴 X 轴 X 轴 Y 轴 Y 轴 顶 点坐 标 (0,0) 离心率 1e = 通 径 2p 焦半径11(,)A x y 12 p AF x =+ 12 p AF x =-+ 12 p AF y =+ 12 p AF y =-+ 焦点弦长AB 12()x x p ++ 12()x x p -++ 12()y y p ++ 12()y y p -++ 焦点弦长AB 以AB 为直径的圆必与准线l 相切

3.抛物线)0(22>=p px y 的几何性质: (1)范围 因为p>0,由方程可知x ≥0,所以抛物线在y 轴的右侧, 当x 的值增大时,|y |也增大,说明抛物线向右上方和右下方无限延伸. (2)对称性:对称轴要看一次项,符号决定开口方向. (3)顶点(0,0),离心率:1=e ,焦点( ,0)2p F ,准线2 p x -=,焦准距p . (4) 焦点弦:抛物线)0(22 >=p px y 的焦点弦AB ,),(11y x A ,),(22y x B ,则p x x AB ++=21||. 弦长|AB|=x 1+x 2+p,当x 1=x 2时,通径最短为2p 。 4.焦点弦的相关性质:焦点弦AB ,),(11y x A ,),(22y x B ,焦点( ,0)2 p F (1) 若AB 是抛物线2 2(0)y px p =>的焦点弦(过焦点的弦),且11(,)A x y ,22(,)B x y ,则:21 24 p x x =,2 12y y p =-。 (2) 若AB 是抛物线2 2(0)y px p =>的焦点弦,且直线AB 的倾斜角为α,则22sin P AB α =(α≠0)。 (3) 已知直线AB 是过抛物线2 2(0)y px p =>焦点F , 112AF BF AB AF BF AF BF AF BF p ++===?? (4) 焦点弦中通径最短长为2p 。通径:过焦点垂直于焦点所在的轴的焦点弦叫做通径. (5) 两个相切:○1以抛物线焦点弦为直径的圆与准线相切.○2过抛物线焦点弦的两端点向准线作垂线,以两垂足为直径端点的圆与焦点弦相切。 5.弦长公式:),(11y x A ,),(22y x B 是抛物线上两点,则 AB =||1 1||1212212y y k x x k -+ =-+= 【经典例题】 (1)抛物线——二次曲线的和谐线 椭圆与双曲线都有两种定义方法,可抛物线只有一种:到一个定点和一条定直线的距离相等的所有点的集合.其离心率e=1,这使它既与椭圆、双曲线相依相伴,又鼎立在圆锥曲线之中.由于这个美好的1,既使它享尽和谐之美,又生出多少华丽的篇章.

《抛物线》典型例题12例(含标准答案)

《抛物线》典型例题 12例 典型例题一 例1指出抛物线的焦点坐标、准线方程. (1) X 2 =4y (2) X =ay 2 (a H 0) 分析:(1)先根据抛物线方程确定抛物线是四种中哪一种,求出 P,再写出焦点 坐标和准线方程. (2)先把方程化为标准方程形式,再对 a 进行讨论,确定是哪一种后,求 P 及 焦点坐标与准线方程. 解:(1)寫P =2,.??焦点坐标是(0, 1),准线方程是:y = -1 (2)原抛物线方程为:y 2 a 1 ,二 2 P = — a ①当2时,牛右,抛物线开口向右, 二焦点坐标是(丄,0),准线方程是:x = 4a 4a ②当a < 0时,牛-右,抛物线开口向左, 1 1 ???焦点坐标是(丄,0),准线方程是:x =-' 4a 4a 综合上述,当a H0时,抛物线x=ay 2的焦点坐标为(丄,0),准线方程是:x = - 1 4a 4a 典型例题 例2若直线y =kx-2与抛物线y 2 =8x 交于A 、B 两点,且AB 中点的横坐标为2, 求此直线方程. 分析:由直线与抛物线相交利用韦达定理列出 k 的方程求解.另由于已知与直线 斜率及弦中点坐标有关,故也可利用 作差法”求k. 解法一:设 A (x 1, y 1)、 y = kx — 2 B( x 2, y 2),则由:{ 2 可得:k 2x 2-(4k+8)x + 4 = 0 . 2 C l y =8x ???直线与抛物线相交, ” k H 0 且 i >0,贝U k A —1 . ??? AB 中点横坐标为: 解得:k=2或k=—1 2 (舍去). k 2 =2 ,

高中数学教案抛物线

抛物线 一、知识网络 二、高考考点 1.抛物线定义的应用; 2.抛物线的标准方程及其几何性质;焦点、准线方程; 3.抛物线的焦点弦引出的问题; 4.直线与抛物线相交(或相切)引出的求法或范围问题; 5.抛物线与三角形(或四边形)问题。 三、知识要点 (一)定义与推论 1.定义:平面内与一个定点F和一条定直线l的距离相等的点的轨迹叫做抛物线.定点F叫做抛物线的焦点,定直线l叫做抛物线的准线. 这一定义为抛物线上任意一点M的焦点半径与水平线段(或垂直线段)的等价转换奠定理论基础. 2.推论:抛物线的焦点半径公式 设为抛物线上任意一点,则 设为抛物线上任意一点,则 其它情形从略。 (二)标准方程与几何性质 1.标准方程设抛物线的焦点F到准线l的距离为p(焦参数),则在特定直角坐标系下导出抛物线的标准方程: ①②③④ 认知:上述标准方程中的一次项的功能:一次项本身决定抛物线的形状与位置. 其中,一次项所含变元对应的数轴为对称轴(焦点所在数轴); 一次项系数的符号决定焦点所在半轴(或开口方向):系数为正,焦点在相应的正半轴上(或开口朝着对称轴正向),反之,焦点在负半轴上(或开口朝着对称轴负向); 一次项系数的绝对值决定抛物线开口大小(形状):恰等于焦点参数的2倍. 2.几何性质对于抛物线 (1)范围:这条抛物线在y轴右侧,且向右上方和右下方无限延伸; (2)对称性:关于x轴对称轴为这条抛物线的轴. 认知:抛物线的准线与其对称轴垂直(抛物线主要共性之一) (3)顶点:原点O(0,0)(抛物线方程为标准方程的必要条件之一) (4)离心率:(抛物线主要共性之二) (三)挖掘与引申 1.抛物线方程的统一形式 1)顶点在原点,以x轴为对称轴的抛物线方程为,其焦点参数(一次项系数绝对值的一半); 焦点,准线; 顶点在原点,以y轴为对称轴的抛物线方程为,其焦点参数(一次项系数绝对值的一半); 焦点,准线; (2)顶点在,对称轴垂直y轴的抛物线方程为:,其焦点参数;

相关文档
相关文档 最新文档