文档库 最新最全的文档下载
当前位置:文档库 › 【CN109796381A】一种从禽蛋、禽肉及猪肉中高效同时提取甲砜霉素、氟苯尼考和氟苯尼考胺多残留

【CN109796381A】一种从禽蛋、禽肉及猪肉中高效同时提取甲砜霉素、氟苯尼考和氟苯尼考胺多残留

【CN109796381A】一种从禽蛋、禽肉及猪肉中高效同时提取甲砜霉素、氟苯尼考和氟苯尼考胺多残留
【CN109796381A】一种从禽蛋、禽肉及猪肉中高效同时提取甲砜霉素、氟苯尼考和氟苯尼考胺多残留

无溶剂合成共性技术研究——4-甲砜基甲苯合成工艺的改进[设计、开题、综述]

BI YE SHE JI (20 届) 无溶剂合成共性技术研究——4-甲砜基甲苯合成工艺的改进 所在学院 专业班级化学工程与工艺 学生姓名学号 指导教师职称 完成日期年月

摘要:本文研究无溶剂条件下合成4-甲砜基甲苯的工艺。使用对甲苯磺酰氯为原料通过亚硫酸钠还原得到4-甲基苯亚磺酸钠,在无溶剂条件下利用离子液体催化与氯甲烷反应获得4-甲砜基甲苯。工艺改进去除了原工艺中剧毒试剂硫酸二甲酯的使用而采用低毒性的氯甲烷;还原反应中改进了原工艺中4-甲基苯磺酰氯固体投料方式。改进工艺并对还原反应进行了条件优化,获得还原工艺的最佳工艺条件为:n(4-甲基苯磺酰氯)/ n(亚硫酸钠)=1:1.09,反应温度85℃,保温时间60min,m(水)/ m(4-甲基苯磺酰氯)=10,pH=7.6,这时还原收率可达89%。 关键词:4-甲基苯亚磺酸钠; 4-甲砜基甲苯; 离子液

Abstract:This paper studies solvent-free condition synthesis 4 - a toluene process. Use p-toluene sulfo-chloride as raw materials by sodium sulfite, reductive get 4 - methyl benzene sulfonic acid sodium, Abigail in solvent-free conditions using ionic liquids catalytic and chloride methane reaction - butanoic yankees earned four PSF TNT.Process improvement to besides former process of dimethyl sulfate hypertoxic reagent use and use low toxicity chloric methane; Improved reduction reaction in the original process of 4 - methyl benzene sulfo-chloride solid feeding way.To improve the process and the conditions of REDOX reactions won reduction process optimization, the optimum technological conditions for: n (4 - methyl benzene sulfo-chloride) / n (sodium sulfite,) = 1:1. 09, reaction temperature, holding time 60min 85 ℃, m (water) / m (4 - methyl benzene sulfo-chloride) = 10, pH = 7.6 when reductive yield of 89%. Key words:4 - methyl benzene and sulfonic acid sodium ; Sodium 4-methylbenzene sulfinate; Ionic liquid

氯化亚砜特性及制备技术

氯化亚砜制备技术 氯化亚砜能溶解某些金属的碘化物,在水中分解为亚硫酸和盐酸。加热到约140℃则分解成氯、二氧化硫和一氧化硫。与磺酸反应生成磺酰氯,与格氏试剂反应生成相应的亚砜化合物。与羟基的酚、醇有机物反应生成相应的氯化物,它的氯原子取代羟基巯基能力显著,有时还可取代二氧化硫、氢、氧 在工业上,氯化亚砜主要由三氧化硫和二氯化硫反应制得 SO?+ SCl? → SOCl? +SO? 其他制取方法包括: SO? +PCl5→ SOCl? + POCl? SO? +Cl?+ SCl? → 2SOCl? SO? + Cl? + 2SCl? → 3SOCl2 目前国内外合成氯化亚砜的主要工艺路线有如下几种: (1)氯磺酸法 第一,氯磺酸法生产的二氯化硫浓度低,质量较差,以此生产的氯化亚砜的纯度不高,限制了氯化亚砜在农药、制药行业的用途;第二,氯磺酸法在合成氯化亚砜的过程中会产生大量的盐酸和二氧化硫混合尾气,由于盐酸和二氧化硫难以有效地分离,因此无法有效地回收利用混合尾气,只能用碱性液体中和排放,既造成了资源的浪费,又污染了环境;第三,由于氯磺酸是强腐蚀物质,反应过程中又会产生盐酸和二氧化硫,在生产过程中对设备、管道的腐蚀非常严重;第四,目前国内生产氯化亚砜采用釜式反应器和间歇生产模式,辅助生产时间长、生产率低、劳动强度大,并且间歇生产很难做到完全密封,造成生产车间环境差、污染严重。 (2)五氯化磷——二氧化硫法 以五氯化磷、二氧化硫为原料生成氯化亚砜,收率为50%。该方法工艺流程简单,但生产成本高,且产物中通常有磷化合物、不易分离,故工业上较少采用。 (3)二氯化硫、三氧化硫法 以二氯化硫、三氧化硫为原料生成氯化亚砜,收率为80%。该方法工艺流程较简单,所得收率也较高,但反应激烈,不易控制,且反应后的二氧化硫气体不能重新使用,原料消耗较大,生产成本较高。 (4)三氧化硫法 三氧化硫法生产工艺较先进,产品质量高,无“三废”排放,但投资较大。由于所用原料三氧化硫贮运危险,该法适合与硫酸联产,三氧化硫采用保温输送,国外企业大多数采用此法。

注射用盐酸甲砜霉素甘氨酸酯说明书

来源快易捷药品网 【药品名称】 注射用盐酸甲砜霉素甘氨酸酯 【汉语拼音】 Zhusheyong Yansuan Jiafengmeisu Gan’ansuanzhi 【英文名】 Thiamphenicol Glycinate Hydrochloride for Injection 【主要成分】 主要组成成分本品主要成份为盐酸甲砜霉素甘氨酸酯。无辅料。 化学名称:[R-(R*,R*)]N-[1-(羟基甲基)-2-羟基-2-[4-(甲基磺酰基)苯基]乙基]-2,2-二氯乙酰胺甘氨酸酯盐酸盐。 【分子式】 C14H18Cl2N2O6S.HCl 【分子量】 449.73 【性状】 本品为白色或类白色的冻干块状物或粉末。 【适应症】 用于敏感菌如流感嗜血杆菌、大肠杆菌、沙门菌属等所致的呼吸道、尿路、肠道等感染。【规格】 按C12H15Cl2NO5S计:(1)0.5g(2)1.0g 【用法用量】 肌肉、静脉注射或静脉滴注。每日1g,分1~2次注射。肌肉注射时每次500mg,用0.9%氯化钠注射液3~5ml溶解后使用;静脉注射时每次1g,用0.9%氯化钠注射液20ml溶解后使用;静脉滴注时每次1g,用0.9%氯化钠注射液或5%葡萄糖注射液50ml~100ml溶解后使用。【不良反应】 在总共5943例中,有269例(4.53%)的不良反应报告。 1.由静脉注射引起的休克(≤0.1%)。头晕在0.1~5%之间。因此,要注意注射的剂量,并尽量减慢注射速度。 2.本品亦可引起造血系统的毒性反应,可发生再生障碍性贫血、红细胞生成抑制、白细胞和血小板减少,应进行充分的血液检查,当确认血液出现异常时,立即中止用药。 3.可发生腹痛、腹泻、恶心、呕吐等消化道反应及肝功能损害,其发生率在10%以下。 4.可出现过敏反应或皮疹,一旦出现症状或血液检查出现异常应立即中止使用。 4.早产儿及新生儿中尚未发现有"灰婴综合症"者。仅有个别报道有出现短暂性皮肤和面色苍白。 5.有时会出现末梢性神经炎,需进行细致的观察。 6.中枢神经系统反应主要表现为头痛、嗜睡、头晕和周围性神经炎。有神经系统病变者长期接受甲砜霉素治疗,会引起触觉减退、触物感痛和痛觉过敏等症状。脚部症状较手更为严重,停药后可改善,但不能完全恢复。 【禁忌】 1.造血机能低下的患者。 2.使用有可能引起骨髓抑制药物的患者。 3.对本品任一成份过敏的患者。 【注意事项】

黄芪甲苷的测定方法

黄芪甲苷含量测定几种常用方法的比较 黄芪甲苷为黄芪的主要活性成分之一。能抗炎降压、镇痛镇静和促进再生肝DNA水平。现代药理研究表明,黄芪甲苷具有改善白细胞变形能力、改善心肌收缩及舒张功能、促进胰岛素分泌和清除自由基等药理作用。近年来,对黄芪甲苷的含量测定方法的研究很多。本人就几种常用方法作一比较。 1高效液相色谱法(I-R_C法) HPLC法因其分离度好、灵敏性高,适用范围广等优点,已广泛用于黄芪甲苷的含量测定、稳定性、药理和临床研究中。 1.1 HPLC—uv法黄芪甲苷属于四环三萜类皂苷,紫外末端吸收f max200.8 nm)。紫外检测灵敏度低,干扰因素多,目前HPLC法是最常用的检测器是紫外检测器。苏瑞强Ⅲ等采用HPLC法测定黄芪甲苷的含量,色谱柱为YWG—C18柱0.9 mm x250 mm,5 m),流动相为乙腈一水(1:2.3),检测波长为203nm,结果线性范围为0.86—5.27 I,L g/mL,加样回收率为97.52%,RSD为3.10%。 1.2 HPLC一示差折光检测法由于黄芪甲苷在紫外区仅有微弱的末端吸收,溶剂噪音对结果有较大的影响,且其前处理繁杂。池玉梅等四应用HPLC示差折光检测法测定黄芪精12I服液中黄芪甲苷的含量,色谱柱为Hypersi|ODS 2(4.6ram X 200ram,5 I,Lm),流动相为甲醇一水(67:33),结果黄芪甲苷线性范围是1-5 g/ml,回收率为98.1%,RSD为2.02%。该法简单方便,重现性好,灵敏度高,结果准确、可靠。 1.3 RP—HPLC法路玫等[3j采用RP—HPLC法测定黄芪注射液中黄芪甲苷的含量。色谱柱为Nova—PakC18柱0.9ram xl5Omm,4la,m),流动相为乙腈一水一磷酸(1:2:O.1),检测波长为203nm,柱温为40%。实验中将样品蒸干,采用水饱和的正丁醇溶解,用氨试液洗涤后蒸干,残渣用甲醇溶解。结果加样回收率为94.7%,RSD为2.6%。该法简便、稳定性好、重珊陆好、灵敏度高,且由于在流动相中加入磷酸,可使基线平稳,样品峰与其他峰达到基线分离。郑志仁等H将药材置索氏提取器提取1 h后采用RP—HPLC法测定提取液中黄芪甲苷的含量,色谱柱为Nueleosil c 18柱,流动相为乙腈一水(1:2),检测波长为205rim。结果黄芪甲苷线性范围是l0.64~53.20I.L g/mL,加样回收率为92.66%。 1.4 HPLC—ELSD法蒸发光散射检测原理是使流动相溶剂喷雾汽化,进入加热管后溶剂挥发;被分析检测的物质颗粒经镭射光产生散射,散射光由光电倍增管收集得到响应,光散射检测器的响应大小决定由被分析物质的颗粒的数量和大小,而不受流动相溶剂的干扰;不要求被检测组分有特定的化学结构。赵灵芝等15]采用HPLC—ELSD法测定黄芪中黄芪甲苷的含量,以Blite—ODS柱为色谱柱,乙腈一水(36:64)为流动相,流速为0.8ml/rain;ELSD参数中漂移管温度为100℃,N 流速为2.74ml/min。结果黄芪甲苷线性范围是2.016~12.096g,加样回收率为97.43%,RSD为1.57%。该法灵敏度高,分离度好,干扰少,前处理简便,回收率高,重现性好。周春玲等对甲醇一水(4o:6o)、四氢呋喃一水(25:75)及乙腈一水(1:21等不同流动相进行了试验,并考察了黄芪甲苷的分离情况及检测灵敏度,同时通过观察峰面积、基线噪音和信噪比,研究了漂移管温度和气体流速等ELSD参数条件。结果表明,采用乙腈一水(1:2)为流动相时,分离情况最好;最佳的测定参数是漂移管温度为105 oC,气体流速为2.96L/rain;样品加样回收率为100.5%,RSD为3.23%。该法分离度好,精密度和重珊性俱佳,回收率高。 1.5 HPLC—MS法高效液相一质谱(HPLC—Ms)联用仪是当前天然药物的成分、药理与临床研究中最重要的联用仪器,能解决复杂成分样品的定性、定量问题。顾泳川等[61建立HPLC—MS法测定大鼠尿中黄芪甲苷的含量,并对其尿药动力学进行研究。采用Diamonsil TMC18柱为色谱柱;乙腈一水(40:60)为流动相;电喷雾离子化接口的四级质谱检测器,内标为地高辛,选择性离子检测(sIM1。实验中尿样加入地高辛混匀离心后,上清液通过已活化的固相萃取小柱,用3ml水淋洗,残渣用2ml甲醇洗脱,N:吹干后用流动相溶解。该法专属性好,方法灵敏度高,最低检测限为lOng/ml,杂质干扰小,操作简便,是检测体内黄芪甲苷的一种新型有效的分析方法。 2 薄层扫描法fLcs法) TLCS法多采用双波长扫描法,能消除有机成分的干扰及操作误差,使测定的灵敏度和准确度提高,一般有内标法和外标法。 2.1普通TLCS法实验中样品用氢氧化钾液提取除去酸性成分,以正丁醇萃取使背景干扰少,用大孔树脂分离皂苷除去样品中糖类等水溶性杂质,并在层析缸中放一小杯氨水,使斑点分离明显;采用硅胶G板,以氯仿一甲醇一水(65:35:lO) 为展开剂,在氨饱和蒸气环境下展开,喷以10%硫酸乙醇溶液后加热显色。加样回收率为97.39%,RSD为1.4%。将样品超声提取后,在硅胶GF254板上以氯仿一醋酸乙酯一甲醇(8:

常用药物配伍禁忌大全完整版

最新常用药物配伍禁忌大全(完整版) 正确的药物配伍可增强药物疗效、缩短疗程、降低成本。常见药物配伍有以下几类。 β-内酰胺类 包括青霉素类和头孢菌素类。β-内酰胺类与β-内酰胺酶抑制剂如克拉维酸、舒巴坦合用有增效作用。青霉素类与氨基苷类(庆大霉素、卡那霉素除外)等量配伍有协同作用,但大剂量青霉素药物可降低氨基苷类药物的活性;其禁与四环素类、大环内脂类、磺胺类、氨茶碱等药物合用,但青霉素不易透过血脑屏障,可用青霉素与磺胺嘧啶分别注射治疗脑膜炎。青霉素G、苯唑青霉素与甲氧嘧啶联合应用有增效作用。青霉素与葡萄糖注射液配伍效价降低,应用生理盐水稀释。头孢拉定、头孢氨苄与氨茶碱、磺胺类、红霉素、强力霉素、氟苯尼考合用分解失效;与新霉素、庆大霉素、喹诺酮类联合疗效增强。头孢唑啉钠与葡萄糖注射液及生理盐水配伍析出晶体,应用灭菌注射用水溶解。 氨基苷类 有链霉素、双氢链霉素、庆大霉素、新霉素、卡那霉素、丁胺卡那霉素、壮观霉素等。氨基苷类与β-内酰胺类、甲氧嘧啶、多粘菌素类配伍有协同作用。链霉素与四环素(对布氏杆菌)、红霉素(对猪链球菌)、万古霉素(对肠球菌)或

异烟肼(对结核杆菌),庆大霉素、卡那霉素与喹诺酮类药物合用有协同作用。氨基苷类同类药物之间及高效利尿药、头孢菌素类等合用毒性增强;与碱性药物联用虽抗菌效能增强,但毒性增强。链霉素与磺胺类药物配伍水解失效。 四环素类 包括土霉素、金霉素、四环素、甲烯土霉素、强力霉素等。四环素类同类之间或与泰妙菌素、泰乐菌素配伍对治疗胃肠道和呼吸道有协同作用;与甲氧嘧啶等抗菌增效剂、硫酸钠(1﹕1)同时给药分别有明显增效和促进本品吸收作用;与碱性药物如氨茶碱联合分解失效;与钙、镁、铁等二价金属离子发生络合阻滞其吸收。土霉素不能与喹乙醇、北里霉素合用。 氯霉素类 氟苯尼考与强力霉素、新霉素、硫酸粘杆菌素联用疗效增强;与氨苄西林钠、头孢拉定、头孢氨苄联用疗效降低;与卡那霉素、磺胺类、喹诺酮类、链霉素联用毒性增强。 大环内酯类 有红霉素、罗红霉素、阿奇霉素、泰乐菌素、替米考星、螺旋霉素、北里霉素等。红霉素与磺胺类、泰乐菌素、及链霉素,北里霉素与链霉素、泰乐菌素与磺胺类,竹桃霉素与四环素类合用有协同作用。红霉素不宜与β-内酰胺类、林可酰胺类、四环素联用。

环境影响评价报告公示:年产吨D-对甲砜基苯丝氨酸乙酯项目环境风险分析环评报告

第八章环境风险分析 建设项目环境风险评价是对建设项目建设及运行期间发生的可预测的突发性事件或事故引起的有毒有害、易燃易爆等物质的泄漏,或突发事件产生的新的有毒有害物质所造成的对人身安全与环境的影响和损害进行评估,提出防范、应急与减缓措施。 环境风险排污是非正常生产排污的类型之一。国内外工业尤其是化学化工和石油化工的发展表明,伴随工业的发展,环境风险将不断增加。化学、石化工业的原料和产品大多数为易燃易爆和有毒有害物质,生产过程多处于高温高压或低温负压等苛刻条件下,潜在危险性很大,一旦出现化学突发事故,往往与爆炸火灾相互引发,发展迅猛,致使毒物大量外泄,通过大气或水体弥散致环境,造成对人群的危害和财产损失。虽然工艺本身配套有安全措施和自控装置,但在设计、施工、操作和管理的某个环节发生问题时,均有可能导致事故出现而造成环境风险。 《建设项目环境风险评价技术导则》(HJ/T169-2004)适用于涉及有毒有害和易燃易爆物质的生产、使用和贮运等的新建、改建、扩建和技术改造项目,本次评价以该导则为基准,通过对工程的风险识别、分析和后果预测,提出本项目的风险防范措施和应急预案,把工程环境风险尽可能降低至可接受水平。 8.1 风险识别 8.1.1 物质危险性分析 本项目涉及的原辅材料和中间产品主要有(98%)硫酸、D-酒石酸、乙醇、对甲砜基苯甲醛、甘氨酸、硫酸铜、烧碱、氨水,物质理化性质及危险特性见表8.1-1,毒理性质见表8.1-2。

表8.1-1 物质理化性质及危险特性 表8.1-2 物质毒理性质简表 由《建设项目环境风险评价技术导则》附录A表2、表3和《危险化学品重大危险源辨识》(GB18218-2009)可知,氨、乙醇、硫酸为危险化学品,涉及的风险源包括生产、输送、储存等。 8.1.2 生产、储运过程危险性 根据可研报告及工程分析,本项目具备发生重大泄漏、着火爆炸生产工序包括酯化、氨析、母液蒸馏分离等工序;易造成物料泄漏的区域有原料罐区以及卸车场,各生产单元危险、有害性分析见表8.1-3。

氯化亚砜安全技术说明书

编号:JM-EHS-MSDS-010 氯化亚砜安全技术说明书(MSDS) 1、物质的理化常数 2.对环境的影响: 一、健康危害 侵入途径:吸入、食入、经皮吸收。 健康危害:吸入、口服或经皮吸收后对身体有害。对眼睛、皮肤、粘膜和呼吸道有强烈的刺激作用,可引起灼伤。吸入后可因喉、支气管的痉挛、水肿而致死。中毒表现有烧灼感、咳嗽、喘息、头晕、喉炎、气短、头痛、恶心和呕吐。 二、毒理学资料及环境行为

急性毒性:LC502435mg/m3(大鼠吸入) 刺激性:家兔经眼:1380μg,重度刺激。 危险特性:本品不燃,遇水或潮气会分解放出二氧化硫、氯化氢等刺激性的有毒烟气。受热分解也能主生有毒物质。对很多金属尤其是潮湿空气存在下具有腐蚀性。 燃烧(分解)产物:硫化氢、氯化氢、氯气。 3.现场应急监测方法: 4.实验室监测方法: 5.环境标准: 美国车间卫生标准 4.9mg/m3 6.应急处理处置方法: 一、泄漏应急处理 迅速撤离泄漏污染区人员至安全区,并进行隔离,严格限制出入。建议应急处理人员戴自给正压式呼吸器,穿防酸碱工作服。从上风处进入现场。尽可能切断泄漏源。防止进入下水道、排洪沟等限制性空间。小量泄漏:用砂土或其它不燃材料吸附或吸收。大量泄漏:构筑围堤或挖坑收容;在专家指导下清除。 二、防护措施 呼吸系统防护:空气中浓度超标时,必须佩戴自吸过滤式防毒面具(全面罩)或隔离式呼吸器。紧急事态抢救或撤离时,佩戴自给式呼吸器。

眼睛防护:呼吸系统防护中已作防护。 防护服:穿橡胶耐酸碱服。 手防护:戴橡胶耐酸碱手套。 其它:工作现场禁止吸烟、进食和饮水。工作毕,淋浴更衣。 三、急救措施 皮肤接触:立即脱去被污染的衣着,用大量流动清水冲洗,至少15分钟。就医。 眼睛接触:立即提起眼睑,用大量流动清水或生理盐水彻底冲洗至少15分钟。就医。 吸入:迅速脱离现场至空气新鲜处。保持呼吸道通畅。如呼吸困难,给输氧。如呼吸停止,立即进行人工呼吸。就医。 食入:误服者用水漱口,给饮牛奶或蛋清。就医。 灭火方法:消防人员必须穿全身耐酸碱消防服。灭火剂:二氧化碳、砂土。禁止用水。

黄芪叶中黄芪甲苷含量测定论文

黄芪叶中黄芪甲苷含量测定论文 黄芪为常用中药,素有“补药之长”之称,具有益气固表,利尿托毒等功效.黄芪药用价值很高,临床上常用来治疗非特异性免疫功能低下、乙肝和心血管系统疾病.黄芪甲苷作为黄芪成分之一,它具有降压、抗炎、稳定红细胞膜、提高血浆CAMP含量,促进小鼠再生肝DNA合成和增强免疫功能等多种作用.因此在研究黄芪过程中,我们对其成分黄芪甲苷进行了含量测定方法研究,本文用HPLC法测定黄芪甲苷的含量,其样品浓度的范围在0.01~0.2mg/ml之间与峰面积呈线性,该法灵敏度高,重现性好,可准确地测定黄芪甲苷的含量。 1仪器与试剂 Waters高效液相色谱仪:包括510型泵,991光电二极管阵列型检测器,U6K 型进样器;NECPowerMate型计算机,黄芪甲苷标准品购自辽宁省药品检验所。甲醇、正丁醇为分析纯,乙腈为色谱纯、水为去离子水。试验用黄芪叶6月份采自沈阳医学院草药园。 2方法与结果 2.1色谱条件色谱柱为NucleosilC18柱(4.6mm×250mm,5μm);流动相为乙腈-水=1∶2;流速为0.8ml/min;检测波长为205nm;速度为0.4mm/min。 2.2标准曲线制作精密称取黄芪甲苷标准品2.128mg,加流动相定容至2ml,配制成1.064mg/ml的标准品溶液,分别以10、20、30、40、50μl进样测定,以峰面积对进样量作线性回归,得回归方程为Y=-5.6×10-5+6.9365×10-4X(Y为峰面积,X为黄芪甲苷量),r=0.9994,黄芪甲苷标准品在10.64~5 3.20μg范围内与峰面积呈良好线性关系。 2.3提取方法的选择用3种不同提取方法(索氏提取器提取1h;80℃温浸提取1h和超声波提取1h)提取样品,后2种提取方法测得黄氏甲苷含量略低,故选索氏提取器提取方法。 2.4流动相的选择实验试用多种溶剂系统,最后确定以乙腈-水=1∶2为流动相,黄芪甲苷分离效果最好,保留时间也较适宜。色谱图见上图2(ABC)。 2.5样品液制备将黄芪叶阴干后研成粉过40目筛,然后精密称取5.00g,放置索氏提取器中,用100ml80%甲醇加热提取2h,提取液减压蒸去甲醇,用20ml

无溶剂合成共性技术研究——4-甲砜基甲苯合成工艺的改进文献综述【文献综述】

毕业论文文献综述 化学工程与工艺 无溶剂合成共性技术研究——4-甲砜基甲苯合成工艺的改进 1 前言 甲砜甲苯(英文名称:methyl ptolyl sulfoue)为白色或米黄色粉状结晶,无味,中性。在医药方面,是合成抗生素甲砜霉素、甲砜霉素甘氨酸酯盐酸盐和兽用抗菌药氟洛芬的重要中间体;在农业方面,是合成除草剂磺草酮以及有机合成中间体。 甲砜霉素及衍生物甘氨酸酯盐酸盐是新型的广谱抗生素[1-2],毒性低、副作用小;疗效长,具有优异抗菌作用,抗菌活性较氯霉素强6倍以上。在国外已广泛允许用于免疫抑制状态抗生素以及用作食品、饲料添加剂等,需求量逐渐增加[3]。国内甲砜霉素合成均采用对甲砜甲苯为原料,产量越来越大。造成对甲砜甲苯国内生产量满足不了市场需求。 磺草酮是捷利康公司80年代开发的新颖玉米田苗后除草剂。磺草酮是一种用酮于防玉米田阔叶杂草及禾本科杂草的环己二酮类除草剂。现已在美国、欧洲等许多国家获得广泛应用。我国玉米田播种面积约占早田播种面积的1/3,玉米产量约占粮食作物总产量的1/4,每年我国玉米草容面积约达700万公顷以上。现用的玉米田除草剂品种较多,但多为苗前使用,如乙草胺、芬拉津等,使用效果受环境影响较大;苗后除草剂主要是澳苯睛等少数正在推广阶段的品种。因此,磺草酮的开发,对我国的农业生产具有十分重要的意义[4]。 磺草酮的合成路线非常多,可以甲苯、对甲基苯磺酸、对甲基苯磺酰氯、对氯甲苯、对硝基甲苯等常见工业原料为起始原料,最终合成磺草酮原药[5]。 目前,国内外工业生产甲砜甲苯的主要方法是以廉价易得的对甲苯磺酰氯为起始原料经还原和甲基化反应来合成:第一步对甲苯磺酰氯为原料,经亚硫酸钠还原成亚磺酸。第二步对甲苯亚磺酸钠经硫酸二甲酯甲基化反应得到甲砜甲苯[6]。 见下列反应方程式,两步反应都在水溶液中进行。 该工艺存在的缺点:1.第一步还原,对甲苯磺酰氯在水相进行,水解副反应影响收率[7]; 采用固体投料,产率不稳定。2.第二步甲基化,使用硫酸二甲酯作为甲基化试剂,该试剂毒性大,易水解,价格贵,且反应速率低。3.整个工艺生产成本高,总收率低,产品纯度不高。 对甲苯磺酰氯的水解:

二、缩合工序

氟苯尼考岗位标准操作规程缩合工序操作规程 宁夏太平洋生物制药有限公司 二OO五年九月

技术文件 1.主要原料化学物理性质及产物化学物理性质 1.1主要原料性质 1.1.1五水硫酸铜 1.1.1.1英文名:别名:蓝矾、胆矾分子 式:CuSO 4.5H 2 O 分子量:250 1.1.1.2物化性质:亮蓝色不对称,三斜晶系结晶或粉末。密度2.284,易溶于水(0℃时, 31.6g/100ml水,100℃时203.3 g/100ml水),微溶于甲醇,不溶于无水乙醇,110℃失去4个结晶水,150℃以上将失去全部结晶水形成白色强烈吸湿性无水硫酸铜粉末。加热到897--934℃分解成氧化铜(CuO)和三氧化硫,在干燥空气中慢慢风化,表面变成白色粉末状物,有毒!内衬两层聚乙烯塑料袋的塑料编织袋 1.1.1.3毒性与防护:铜及其盐均有毒,对皮肤有刺激作用,粉尘刺激眼睛。工作环境中最高容许浓度规定金属铜为1,每班平均为0.5 mg/M3,空气中存在铜及其化合物的气溶胶时,要戴口罩,避免吸入本品粉尘,接触皮肤后立即用大量水冲洗。佩戴防护眼镜,穿工作服,工作后要温水淋浴。 1.1.1.4包装贮运:内衬聚乙烯塑料袋,外套塑料编织袋或麻袋包装,有“毒害品”标志。贮存干燥库房中不可与食用商品、种子、饲料共贮运,运输时防止雨淋,防日光曝晒,装卸时要轻拿轻放,防止包装破损。 灭火措施:失火时可用水和各种灭火器扑救。 1.1.2甘氨酸 1.1.2.1英文名: 结构式:H 2NCH 2 COOH 分子式:C 2 H 5 NO 2 分子量:75 1.1.2.2物化性质:白色单斜晶系或六方晶系晶体或白色结晶粉末,无臭,有特殊甜味,密度1.1607,熔点248℃(分解),易溶于水,在水中的溶解度25℃时为25g/100ml,50时为39.1 g/100ml,75℃时为54.4 g/100ml,100℃时为67.2 g/100ml,,极难溶于乙醇,在100 g无水乙醇中约溶解0.06 g,几乎不溶于丙酮和乙醚,与盐酸反应生成盐酸盐。 1.1.2.3毒性与防护:本品无毒、无腐蚀性。 1.1.2.4包装及贮运:袋装,贮于阴凉通风干燥处,按一般化学品贮运。25kg 内衬塑料袋外用丙纶编织袋包装。 1.1.3氨水 1.1.3.1英文名: 别名:氢氧化铵分子式:NH 4 OH 分子量:35 1.1.3.2物化性质:无色液体,约含28~29%氨的水溶液具有浓重的辛辣窒息气味,比重0.90(25/25),熔点-77℃,能溶于水,呈碱性,和酸类起中和作用,

处方药目录(2015.4)

抗微生物药物 一抗生素 (一)青霉素类 1 青霉素G Benzylpenicillin 2 青霉素V钾 Phenoxymethylpenicillin Potassium 3 普鲁卡因青霉素 Procaine Benzylpenicillin 4 苄星青霉素 Benzathine Benzylpenicillin 5 氯唑西林 Cloxacillin 6 氨苄西林氯唑西林 Ampicillin and Cloxacillin 7 苯唑西林 Oxacillin 8 哌拉西林 Piperacillin 9 哌拉西林三唑巴坦 Piperacillin and Tazobactam 10 哌拉西林舒巴坦 Piperacillin and Sulbactam 11 阿莫西林 Amoxicillin 12 阿莫西林钠氟氯西林 Amoxicillin and Flucloxacillin 13 阿莫西林舒巴坦钠 Amoxicillin and Sulbactam 14 阿莫西林克拉维酸钾 Amoxicillin and Clavulanate Potassium 15 氨苄西林钠舒巴坦 Ampicillin and Sulbactam 16 替卡西林钠克拉维酸钾 Ticarcillin and Clavulanate Potassium 17 氨苄西林 Ampicillin 18 阿洛西林 Azlocillin 19 美洛西林 Mezlocillin 20 替卡西林 Ticarcillin 21 氟氯西林 Flucloxacillin (二)头孢菌素类 22 头孢氨苄 Cefalexin 23 头孢唑林 Cefazolin 24 头孢拉定 Cefradine 25 头孢羟氨苄 Cefadroxil 26 头孢硫脒 Cefathiamidine 27 头孢呋辛 Cefuroxime 28 头孢克洛 Cefaclor 29 头孢美唑 Cefmetazole 30 头孢替安 Cefotiam 31 头孢西丁 Cefoxitin 32 头孢地尼 Cefdinir 33 头孢尼西 Cefonicid 34 头孢克肟 Cefixime 35 头孢他啶 Ceftazidime 36 头孢曲松 Ceftiaxone 37 头孢哌酮 Cefoperazone 38 头孢哌酮舒巴坦 Cefoperazone and Sulbactam 39 拉氧头孢 Latamoxef 40 头孢米诺 Cefminox 41 头孢唑肟 Ceftizoxime

药物化学多选分析

四、多项选择题 1) 下列属于“药物化学”研究范畴的是() A.发现与发明新药 B.合成化学药物 C.阐明药物的化学性质 D.研究药物分子与机体细胞(生物大分子)之间的相互作用 E. 剂型对生物利用度的影响 2) 已发现的药物的作用靶点包括() A. 受体 B. 细胞核 C. 酶 D. 离子通道 E. 核酸 3) 下列哪些药物以酶为作用靶点() A. 卡托普利 B. 溴新斯的明 C. 降钙素 D. 吗啡 E. 青霉素 4) 药物之所以可以预防、治疗、诊断疾病是由于(ACD) A. 药物可以补充体内的必需物质的不足 B.药物可以产生新的生理作用 C.药物对受体、酶、离子通道等有激动作用 D.药物对受体、酶、离子通道等有抑制作用 E.药物没有毒副作用 5) 下列哪些是天然药物() A. 基因工程药物 B. 植物药 C. 抗生素 D. 合成药物 E. 生化药物 6) 按照中国新药审批办法的规定,药物的命名包括(ACDE) A. 通用名D. 常用名 B. 俗名 E. 商品名 C. 化学名(中文和英文) 7) 7)下列药物是受体拮抗剂的为() A. 可乐定 B. 普萘洛尔 C. 氟哌啶醇 D. 雷洛昔芬 E. 吗啡 8) 全世界科学家用于肿瘤药物治疗研究可以说是开发规模最大,投资最多的项目,下列 药物为抗肿瘤药的是() A. 紫杉醇 B. 苯海拉明 C. 西咪替丁 D. 氮芥 E. 甲氧苄啶 9) 下列哪些技术已被用于药物化学的研究() A. 计算机技术 B. PCR技术 C. 超导技术 D. 基因芯片 E. 固相合成 10) 下列药物作用于肾上腺素的β受体有() A. 阿替洛尔 B. 可乐定 C. 沙丁胺醇 D. 普萘洛尔 E. 雷尼替丁 11) 影响巴比妥类药物镇静催眠作用的强弱和起效快慢的理化性质和结构因素是() A. pKa B. 脂溶性 C.5 位取代基的氧化性质 D. 5 取代基碳的数目 E. 酰胺氮上是否含烃基取代 12) 巴比妥类药物的性质有(ABDE) A.具有内酰亚胺醇-内酰胺的互变异构体 B.与吡啶和硫酸酮试液作用显紫蓝色

氯化亚砜只是大全

氯化亚砜知识大全 物竞编号:0JZX 中文名称:氯化亚砜 英文名称:Thionyl chloride 别名名称:亚硫酰(二)氯亚硫酰氯氯化亚砜二氯氧硫氯化亚硫酰亚硫酰二氯二氯氧化硫更多别名:SOCl2 Sulfinyl chloride Sulfinyl dichloride 分子式:SOCl2

分子量:118.98 CAS号:7719-09-7 MDL号:MFCD00011449 EINECS号:231-748-8 RTECS号:XM5150000 BRN号:1209273 PubChem号:

1. 性状:无色液体,市售品常因轻度分解呈浅黄色,使用前最好重蒸馏。 2. 密度(g/mL,0/4oC):1.675 3. 相对蒸汽密度(g/mL,空气=1): 4.1 4. 熔点(oC):-104.5 5. 沸点(oC,常压):76 6. 折射率(10oC):1.527 7. 黏度(mPa·s,0oC):0.80 8. 黏度(mPa·s,38oC):0.545 9. 闪点(oC):105

10. 蒸发热(KJ/mol):31.32 11. 生成热(KJ/mol):206.0 12. 电导率(S/m):2×10-6 13. 蒸气压(kPa,20oC):13.3 14. 蒸气压(kPa,50oC):42.9 15. 蒸气压(kPa,70oC):85.0 16. 蒸气压(kPa,75oC):99.5 17. 体膨胀系数(K-1):0.0010 18. 溶解性:能水解而生成SO2和HCl。能与苯、氯仿、四氯化碳等混溶。

1、本品有毒,其蒸气刺激眼睛和黏膜,液体触及皮肤能引起烧伤。 2、毒性比二氧化硫大,蒸气对呼吸道和眼结膜有明显的刺激作用。皮肤接触引起灼伤。工作场所最高容许浓度24.15mg/m3(空气中)。猫吸入85mg/m3浓度的亚硫酰(二)氯蒸气,20分钟可引起死亡。 对水是稍微危害的,若无政府许可,勿将材料排入周围环境。 危险性类别:第8.1类酸性腐蚀品 侵入途径:吸入、食入

甲砜霉素

甲砜霉素 Jiafengmeisu Thiamphenicol C12H15Cl2NO5S 356.23本品为﹝R-(R*, R*)﹞N-﹝1-(羟基甲基)-2-羟基-2-﹝4-(甲基磺酰基)苯基﹞乙基﹞-2,2-二氯乙酰胺。按干燥品计算,含C12H15Cl2NO5S不得少于98.0%。 【性状】本品为白色结晶性粉末;无臭。 本品在二甲基甲酰胺中易溶,在无水乙醇中略溶,在水中微溶。 熔点本品的熔点(附录51页)为163~167℃。 比旋度取本品,精密称定,加二甲基甲酰胺溶解并定量稀释制成每1ml 中约含50mg的溶液,依法测定(附录53页),比旋度为-21°至-24°。 吸收系数取本品,精密称定,加水溶解(约40℃加热助溶)并定量稀释制成每1ml中约含0.2mg的溶液,照紫外-可见分光光度法(附录26页),分别 1%)分别为25~28和在266nm和273nm的波长处测定吸光度,吸收系数(E 1cm 21.5~23.5;精密量取上述供试品溶液适量,用水定量稀释制成每1ml中约含10μg的溶液,在224nm的波长处测定吸光度,吸收系数(E1cm1%)为370~400。 【鉴别】(1)取本品与甲砜霉素对照品适量,分别加甲醇溶解并稀释制成每1ml中约含10mg的溶液。照薄层色谱法(附录33页)试验,吸取上述两种溶液各5μl,分别点于同一硅胶GF254薄层板上,以乙酸乙酯-甲醇(97:3)为展开剂,展开,晾干,置紫外光灯(254nm)下检视。供试品溶液所显主斑点的位置和颜色应与对照品溶液主斑点的位置和颜色相同。 (2)在含量测定项下记录的色谱图中,供试品溶液主峰的保留时间应与对照品溶液主峰的保留时间一致。 (3)本品的红外光吸收图谱应与对照的图谱一致。 (4)取0.1%的本品溶液5ml,加0.1mol/L硝酸银溶液2ml,不得有沉淀生成。取本品50mg,加乙醇制氢氧化钾试液2ml使溶解,防止乙醇挥散,在水浴中加热15分钟,溶液显氯化物的鉴别反应(附录25页)。 即:取上述溶液,加稀硝酸使成酸性后,滴加硝酸银试液,即生成白色凝乳状沉淀;分离,沉淀加氨试液即溶解,再加稀硝酸酸化后,沉淀复生成。

黄芪甲苷的测定方法

黄芪甲苷含量测定几种常用方法的比较 为黄芪的主要活性成分之一。能抗炎降压、镇痛镇静和促进再生肝DNA水平。现代药理研究表明,黄芪甲苷具有改善白细胞变形能力、改善心肌收缩及舒张功能、促进胰岛素分泌和清除自由基等药理作用。近年来,对的含量测定方法的研究很多。本人就几种常用方法作一比较。 1高效液相色谱法(I-R_C法) HPLC法因其分离度好、灵敏性高,适用范围广等优点,已广泛用于黄芪甲苷的含量测定、稳定性、药理和临床研究中。 1.1 HPLC—uv法属于四环三萜类皂苷,紫外末端吸收f max200.8 nm)。紫外检测灵敏度低,干扰因素多,目前 HPLC法是最常用的检测器是紫外检测器。苏瑞强Ⅲ等采用 HPLC法测定黄芪甲苷的含量,色谱柱为YWG—C18柱0.9 mm x250 mm,5 m),流动相为乙腈一水(1:2.3),检测波长为 203nm,结果线性范围为0.86—5.27 I,L g/mL,加样回收率为 97.52%,RSD为3.10%。 1.2 HPLC一示差折光检测法由于在紫外区仅有微弱的末端吸收,溶剂噪音对结果有较大的影响,且其前处理繁杂。池玉梅等四应用HPLC示差折光检测法测定黄芪精 12I服液中黄芪甲苷的含量,色谱柱为Hypersi|ODS 2(4.6ram X 200ram,5 I,Lm),流动相为甲醇一水(67:33),结果黄芪甲苷线性范围是1-5 g/ml,回收率为98.1%,RSD为2.02%。该法简单方便,重现性好,灵敏度高,结果准确、可靠。 1.3 RP—HPLC法路玫等[3j采用RP—HPLC法测定黄芪注射液中的含量。色谱柱为Nova—PakC18柱0.9ram xl5Omm,4la,m),流动相为乙腈一水一磷酸(1:2:O.1),检测波长为203nm,柱温为40%。实验中将样品蒸干,采用水饱和的正丁醇溶解,用氨试液洗涤后蒸干,残渣用甲醇溶解。结果加样回收率为94.7%,RSD为2.6%。该法简便、稳定性好、重珊陆好、灵敏度高,且由于在流动相中加入磷酸,可使基线平稳,样品峰与其他峰达到基线分离。郑志仁等H将药材置索氏提取器提取1 h后采用RP—HPLC法测定提取液中的含量,色谱柱为Nueleosil c 18柱,流动相为乙腈一水(1:2),检测波长为205rim。结果黄芪甲苷线性范围是l0.64~ 53.20I.L g/mL,加样回收率为92.66%。 1.4 HPLC—ELSD法蒸发光散射检测原理是使流动相溶剂喷雾汽化,进入加热管后溶剂挥发;被分析检测的物质颗粒经镭射光产生散射,散射光由光电倍增管收集得到响应,光散射检测器的响应大小决定由被分析物质的颗粒的数量和大小,而不受流动相溶剂的干扰;不要求被检测组分有特定的化学结构。赵灵芝等15]采用HPLC—ELSD法测定黄芪中的含量,以Blite—ODS柱为色谱柱,乙腈一水(36:64)为流动相,流速为0.8ml /rain;ELSD参数中漂移管温度为100℃,N 流速为2.74ml/min。结果黄芪甲苷线性范围是2.016~ 12.096g,加样回收率为97.43%,RSD 为1.57%。该法灵敏度高,分离度好,干扰少,前处理简便,回收率高,重现性好。周春玲等对甲醇一水(4o:6o)、四氢呋喃一水(25:75)及乙腈一水 (1:21等不同流动相进行了试验,并考察了的分离情况及检测灵敏度,同时通过观察峰面积、基线噪音和信噪比,研究了漂移管温度和气体流速等ELSD参数条件。结果表明,采用乙腈一水(1:2)为流动相时,分离情况最好;最佳的测定参数是漂移管温度为105 oC,气体流速为2.96L/rain;样品加样回收率为100.5%,RSD为3.23%。该法分离度好,精密度和重珊性俱佳,回收率高。 1.5 HPLC—MS法高效液相一质谱(HPLC—Ms)联用仪是当前天然药物的成分、药理与临床研究中最重要的联用仪器,能解决复杂成分样品的定性、定量问题。顾泳川等[61建立 HPLC—MS法测定大鼠尿中黄芪甲苷的含量,并对其尿药动力学进行研究。采用Diamonsil TMC18柱为色谱柱;乙腈一水 (40:60)为流动相;电喷雾离子化接口的四级质谱检测器,内标为地高辛,选择性离子检测(sIM1。实验中尿样加入地高辛混匀离心后,上清液通过已活化的固相萃取小柱,用3ml水淋洗,残渣用2ml甲醇洗脱,N:吹干后用流动相溶解。该法专属性好,方法灵敏度高,最低检测限为lOng/ml,杂质干扰小,操作简便,是检测体内的一种新型有效的分析方法。 2 薄层扫描法fLcs法) TLCS法多采用双波长扫描法,能消除有机成分的干扰及操作误差,使测定的灵敏度和准确度提高,一般有内标法和外标法。 2.1普通TLCS法实验中样品用氢氧化钾液提取除去酸性成分,以正丁醇萃取使背景干扰少,用大孔树脂分离皂苷除去样品中糖类等水溶性杂质,并在层析缸中放一小杯氨水,使斑点分离明显;采用硅胶G板,以氯仿一甲醇一水(65:35:lO) 为展开剂,在氨饱和蒸气环境下展开,喷以10%硫酸乙醇溶液后加热显色。加样回收率为97.39%,RSD为1.4%。将样品超声提取后,在硅胶GF254板上以氯仿一醋酸乙酯一甲醇 (8:6:0.8)展开,254 BITI紫外光灯下定位,双波长( s=228 nm, It=370 nm)反射式锯齿扫描测定,平均加样回收率为 99.5%,RSD为2.5%。

对甲砜基甲苯项目可行性研究报告

对甲砜基甲苯项目 可行性研究报告 xxx有限责任公司

第一章项目概论 一、项目概况 (一)项目名称 对甲砜基甲苯项目 (二)项目选址 某开发区 节约土地资源,充分利用空闲地、非耕地或荒地,尽可能不占良田或少占耕地;应充分利用天然地形,选择土地综合利用率高、征地费用少的场址。 (三)项目用地规模 项目总用地面积50631.97平方米(折合约75.91亩)。 (四)项目用地控制指标 该工程规划建筑系数54.46%,建筑容积率1.68,建设区域绿化覆盖率5.74%,固定资产投资强度171.88万元/亩。 (五)土建工程指标 项目净用地面积50631.97平方米,建筑物基底占地面积27574.17平方米,总建筑面积85061.71平方米,其中:规划建设主体工程58382.29平方米,项目规划绿化面积4880.55平方米。 (六)设备选型方案

项目计划购置设备共计114台(套),设备购置费4810.14万元。 (七)节能分析 1、项目年用电量596005.95千瓦时,折合73.25吨标准煤。 2、项目年总用水量25514.39立方米,折合2.18吨标准煤。 3、“对甲砜基甲苯项目投资建设项目”,年用电量596005.95千瓦时,年总用水量25514.39立方米,项目年综合总耗能量(当量值)75.43吨标 准煤/年。达产年综合节能量20.05吨标准煤/年,项目总节能率29.09%, 能源利用效果良好。 (八)环境保护 项目符合某开发区发展规划,符合某开发区产业结构调整规划和国家 的产业发展政策;对产生的各类污染物都采取了切实可行的治理措施,严 格控制在国家规定的排放标准内,项目建设不会对区域生态环境产生明显 的影响。 (九)项目总投资及资金构成 项目预计总投资16400.43万元,其中:固定资产投资13047.41万元,占项目总投资的79.56%;流动资金3353.02万元,占项目总投资的20.44%。 (十)资金筹措 该项目现阶段投资均由企业自筹。 (十一)项目预期经济效益规划目标

相关文档