文档库 最新最全的文档下载
当前位置:文档库 › 第九章不等式与不等式组试题(3)新人教版同步练习题带答案

第九章不等式与不等式组试题(3)新人教版同步练习题带答案

第九章不等式与不等式组试题(3)新人教版同步练习题带答案
第九章不等式与不等式组试题(3)新人教版同步练习题带答案

第九章不等式与不等式组测试题(3)

班级 姓名

一、选择题:(每小题3分,共30分)

1.已知a

A.4a <4b

B.a +4

2.不等式1

132

x +<的正整数解有( ).

A.1个

B.2个 C.3个

D.4个

3.满足-1

4.如果|x -2|=x -2,那么x 的取值范围是( ).

A.x ≤2

B.x ≥2 C.x <2

D.x >2

5.从甲地到乙地有16千米,某人以4千米/时~8千米/时的速度由甲地到乙地,

则他用的时间大约为( ).

A.1小时~2小时 B.2小时~3小时 C.3小时~4小时 D.2小时

~4小时

6.不等式组102(1)x x x +

-?

≤的解集是( ).

A.x <-1 B.x ≤2 C.x >1 D.x ≥2

7.不等式2+x <6的非负整数解有( )

A .2个

B .3个

C .4个

D .5个 8.下图所表示的不等式组的解集为( )

-2

A .x 3>

B .23x -<<

C .2x >-

D .23x ->>

A . B. C. D.

9.若方程3m (x +1)+1=m (3-x )-5x 的解是负数,则m 的取值范围是( ).

A.m >-1.25

B.m <-1.25 C.m >1.25

D.m <1.25

10.某种出租车的收费标准:起步价7元(即行驶距离不超过3千米都需付7

元车费),超过3千米后,每增加1千米,加收2.4元(不足1千米按1千米计).某人乘这种出租车从甲地到乙地共付车费19元,那么甲地到乙地路程的最大值是( ).

A.5千米 B.7千米 C.8千米

D.15千米

二、填空题(每题3分,共30分)

11.已知三角形的两边为3和4,则第三边a 的取值范围是________.

12.如图9-1,在数轴上表示某不等式组中的两个不等式的解集,则该不等式组的解

集为 . 13.若

11

|

1|-=--x x ,则x 的取值范围是 . 14.不等式组1

10210x x ?+>???->?,

的解为 .

15.当0<

16.若点P (1-m ,m )在第二象限,则(m -1)x >1-m 的解集为_______________. 17.已知x =3是方程

2a x -—2=x —1的解,那么不等式(2—5a )x <3

1

的解集是 . 18.若不等式组841

x x x m +-??? 的解集是x >3,则m 的取值范围是 .

19.小明用100元钱购得笔记本和钢笔共30件,已知每本笔记本2元,每只钢笔5

元.那么小明最多能买 只钢笔.

20.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店

准备打折销售,但要保证利润率不低于5%,则至多可打 . 三、解答题(本题共 8个小题,共32分)

21.解不等式:1

12

x x >+

图9-1

22.解不等式组,并把它的解集表示在数轴上:

3(1)7251.3x x x

x --??

?--

① ②

23.x 为何值时,代数式5

123--+x x 的值是非负数?

24.已知:关于x 的方程m x m x =--+21

23的解是非正数,求m 的取值范围.

四、解答题(本题共3个小题,其中,25、26每题9分,27题10分,共28分)

25.北京奥运会期间,某旅行社组团去北京观看某场足球比赛,入住某宾馆.已知该宾馆一楼房间比二楼房间少5间,该旅游团有48人,若全部安排在一楼,每间住4人,房间不够,每间住5人,有房间没住满.若全部安排在二楼,每间住3人,房间不够,每间住4人,则有房间没住满.你能根据以上信息确定宾馆一楼有多少房间吗?

26.国庆节期间,电器市场火爆.某商店需要购进一批电视机和洗衣机,根据市场调查,决定电视机进货量不少于洗衣机的进货量的一半.电视机与洗衣机的进价和售价如下表:

计划购进电视机和洗衣机共100台,商店

最多可筹集资金161 800元.

(1)请你帮助商店算一算有多少种进货方

案?

(不考虑除进价之外的其它费用)

(2)哪种进货方案待商店销售购进的电视机

与洗衣机完毕后获得利润最多?并求出最多利润.

(利润=售价-进价)

27.今秋,某市白玉村水果喜获丰收,果农王灿收获枇杷20吨,桃子12吨.现计划租用甲、乙两种货车共8辆将这批水果全部运往外地销售,已知一辆甲种货车装枇杷4吨和桃子1吨,一辆乙种货车可装枇杷和桃子各2吨.

(1)王灿如何安排甲、乙两种货车可一次性地运到销售地?有几种方案?

(2)若甲种货车每辆要付运输费300元,乙种货车每辆要付运输费240元,则果农王灿应选择哪种方案,使运输费最少?最少运费是多少?

第九章不等式与不等式组测试题(3)参考答案

一、选择

1.C 2.C 3.B 4.B 5.D 6.A 7.C 8.A 9.A 10.C 二、填空

11.1<a <7 12.x <2 13.x <1 14.21x -<< 15.2x >ax 16.x >-1

17.x <1

9

18.m <3 19.13支 20.7折

三、解答题 21.解析:(1)1

12

x x -

>,112x >,所以2x >.

22.解析:解不等式①,得2x -≥; 解不等式②,得1

2

x <-. 在同一条数轴上表

示不等式①②的解集,如答图9-1:

所以,原不等式组的解集是1

22

x -<-≤.

23.解析:由题意可得31025x x +--≥,解不等式x ≥17

3-. 24.解析:解关于x 的方程m x m x =--+2123,得344

m

x -=,因为方程解为非正数,所以有344m -≤0,解之得,m ≥3

4

四、

25.解析:设该宾馆一楼有x 间房,则二楼有(x +5)间房,由题意可得不等式组

448

5483(5)484(5)48

x x x x

?

+?,解这个不等式组可得9.6<x <11,因为x 为正整数,所以x =10 即该宾馆一楼有10间房间.

26.解析:(1)设商店购进电视机x 台,则购进洗衣机(100-x )台,根据题意,得

答图9-1

1(100),218001500(100)161800.

x x x x ?≥-?

?

?+-≤? ,解不等式组,得 1333≤x ≤1393.即购进电视机最少34台,最多39台,商店有6种进货方案.

(2)设商店销售完毕后获利为y 元,根据题意,得y =(2000-1800)x +(1600-1500)(100-x )=100x +10000. ∵ 100>0,

∴ 当x 最大时,y 的值最大.即 当x =39时,商店获利最多为13900元. 27.解析:(1)设安排甲种货车x 辆,则安排乙种货车(8-x )辆,依题意,得 4x + 2(8-x )≥20,且x + 2(8-x )≥12,解此不等式组,得 x ≥2,且 x ≤4, 即 2≤x ≤4.

∵ x 是正整数, ∴ x 可取的值为2,3,4.因此安排甲、乙两种货车有三种方案:

(2)方案一所需运费 300×2 + 240×6 = 2040元;方案二所需运费 300×3 + 240×5 = 2100元;方案三所需运费 300×4 + 240×4 = 2160元. 所以王灿应选择方案一运费最少,最少运费是2040元.

均值不等式测试题(含详解)

均值不等式测试题 一、选择题 1.已知a 、b ∈(0,1)且a ≠b ,下列各式中最大的是( ) A.a 2+b 2 B.2ab C.2a b D.a +b 2.x ∈R ,下列不等式恒成立的是( ) A .x 2+1≥x B .11 2+x <1 C .lg(x 2+1)≥lg(2x) D .x 2+4>4x 3.已知x+3y-1=0,则关于y x 82+的说法正确的是( ) A.有最大值8 B.有最小值22 C.有最小值8 D.有最大值22 4.A设实数x ,y ,m ,n 满足x 2+y 2=1,m 2+n 2=3那么mx+ny 的最大值是( ) A.3 B.2 C.5 D.2 10 5.设a>0,b>0,则以下不等式中不恒成立的是( ) A.(a+b )(b a 1 1+)≥4 B.a 3+b 3≥2ab 2 C.a 2+b 2+2≥2a+2b D.b a b a -≥- 6.下列结论正确的是( ) A .当x>0且x ≠1时,lgx+x lg 1≥2 B .当x>0时,x +x 1≥2 C .当x ≥2时,x + x 1 ≥2 D .当00且a(a+b+c)+bc=324-,则2a+b+c 的最小值为( ) A .13- B .13+ C .223+ D .223- 二.填空题: 8.设x>0,则函数y=2- x 4 -x 的最大值为 ;此时x 的值是 。 9.若x>1,则log x 2+log 2x 的最小值为 ;此时x 的值是 。 10.函数y=1 4 2-+-x x x 在x>1的条件下的最小值为 ;此时x=_________. 11.函数f(x)=2 42 +x x (x ≠0)的最大值是 ;此时的x 值为 _______________.

精选一元一次不等式组练习题及答案

八下2.6一元一次不等式组 一、选择题 1、下列不等式组中,解集是2<x <3的不等式组是( ) A 、???>>23x x B 、???<>23x x C 、? ??><23x x D 、???<<23x x 2、在数轴上从左至右的三个数为a ,1+a ,-a ,则a 的取值范围是( ) A 、a <12 B 、a <0 C 、a >0 D 、a <-12 3、不等式组10235x x +??+??,②4x >,③2x <,④21x ->-,从这四个不等式中取两个,构成正整数解是2的不等式组是( )A 、①与② B 、②与③ C 、③与④ D 、①与④ 7、如果不等式组x a x b >?? B. 109m > C. 1910m > D. 1019 m > 二、填空题 9、若y 同时满足y +1>0与y -2<0,则y 的取值范围是______________. 10、不等式组3010x x -+<121m x m x 无解,则m 的取值范围是 . A B C D

初一不等式组典型应用题及答案

一、某水产品市场管理部门规划建造面积为2400平方米的大棚,大棚内设A种类型和B种类型的店面共80间,每间A种类型的店面的平均面积为28平方米,月租费为400元,每间B种类型的店面的平均面积为20平方米,,月租费为360元,全部店面的建造面积不低于大棚总面积的85%。 (1)试确定A种类型店面的数量(2)该大棚管理部门通过了解,A种类型店面的出租率为75%,B种类型店面的出租率为90%,为使店面的月租费最高,应建造A种类型的店面多少间 二、水产养殖户李大爷准备进行大闸蟹与河虾的混合养殖,他了解到情况: 1、每亩地水面组建为500元,。 2、每亩水面可在年初混合投放4公斤蟹苗和20公斤虾苗; 3、每公斤蟹苗的价格为75元,其饲养费用为525元,当年可或1400元收益; 4、每公斤虾苗的价格为15元,其饲养费用为85元,当年可获160元收益; 问题: 1、水产养殖的成本包括水面年租金,苗种费用和饲养费用,求每亩水面虾蟹混合养殖的年利润(利润=收益—成本); 2、李大爷现有资金25000元,他准备再向银行贷款不超过25000元,用于蟹虾混合养殖,已知银行贷款的年利率为10%,试问李大爷应租多少亩水面,并向银行贷款多少元,可使年利润达到36600元 三、某物流公司,要将300吨物资运往某地,现有A、B两种型号的车可供调用,已知A型车每辆可装20吨,B型车每辆可装15吨,在每辆车不超载的条件下,把300吨物资装运完,问:在已确定调用5辆A型车的前提下至少还需调用B型车多少辆 四、某城市平均每天产生生活垃圾700吨,全部由甲,乙两个垃圾厂处理,已知甲厂每小时处理垃圾55吨,需费用550元;乙厂每小时处理垃圾45吨,需费用495元。如果规定该城市处理垃圾的费用每天不超过7370元,甲厂每天至少需要处理垃圾多少小时 五、学校将若干间宿舍分配给七年级一班的女生住宿,已知该班女生少于35人,若每个房间住5人,则剩下5人没处可住;若每个房间住8人,则空出一间房,并且还有一间房也不满。有多少间宿舍,多少名女生 六、某手机生产厂家根据其产品在市场上的销售情况,决定对原来以每部2000元出售的一款彩屏手机进行调价,并按新单价的八折优惠出售,结果每部手机仍可获得实际销售价的20%的利润(利润=销售价—成本价).已知该款手机每部成本价是原销售单价的60%。 (1)求调整后这款彩屏手机的新单价是每部多少元让利后的实际销售价是每部多少元 (2)为使今年按新单价让利销售的利润不低于20万元,今年至少应销售这款彩屏手机多少部 七、我市某村计划建造A,B两种型号的沼气池共20个,以解决该村所有农户的燃料问题.两种型号的沼气池的占地面积,使用农户数以及造价如下表: 型号占地面积(平方米/个)使用农户数(户/个)造价(万元/个) A 15 18 2 B 20 30 3 已知可供建造的沼气池占地面积不超过365平方米,该村共有492户. (1).满足条件的方法有几种写出解答过程. (2).通过计算判断哪种建造方案最省钱 八、把一些书分给几个学生,如果每人分3本,那么余8本;如果前面的每个学生分5本,那么最后一人就分不到3本.这些书有多少本学生有多少个 九、某水产品市场管理部门规划建造面积为2400m2的集贸大棚。大棚内设A种类型和B种类型的店面

均值不等式的应用(习题+答案)

均值不等式应用 一.均值不等式 1.(1)若R b a ∈,,则ab b a 222≥+ (2)若R b a ∈,,则2 2 2b a ab +≤(当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则 ab b a ≥+2 (2)若* ,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=” ) (3)若* ,R b a ∈,则2 2?? ? ??+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x + ≥ (当且仅当1x =时取“=”);若0x <,则1 2x x +≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 3.若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) 若0ab ≠,则 22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=” ) 4.若R b a ∈,,则2 )2(2 22b a b a +≤ +(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的 积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值 例1:求下列函数的值域 (1)y =3x 2+12x 2 (2)y =x +1 x 解:(1)y =3x 2+1 2x 2 ≥2 3x 2·1 2x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2; 当x <0时, y =x +1x = -(- x -1 x )≤-2 x ·1 x =-2 ∴值域为(-∞,-2]∪[2,+∞) 解题技巧: 技巧一:凑项 例1:已知5 4x < ,求函数14245 y x x =-+-的最大值。 解:因450x -<,所以首先要“调整”符号,又1 (42)45 x x -- 不是常数,所以对42x -要进行拆、凑项, 5,5404x x <∴-> ,11425434554y x x x x ??∴=-+=--++ ?--??231≤-+= 当且仅当1 5454x x -= -,即1x =时,上式等号成立,故当1x =时,max 1y =。 评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。 技巧二:凑系数

不等式与不等式组经典习题3(含答案)

一元一次不等式和一元一次不等式组(三) 一.选择题 1.下列各式,是一元一次不等式的为() A.x+2y+2020>0 B.-x>2009 C.2009/y-5<0 D.(x-2008)(x+2009)>0 2.下列说法中错误的是() A.10不是x≥11的解 B.0是x<1的解 C.x>1是不等式x+2008>2008 D.x=-2009是x+2008<0 3.下列几种说法中正确的是() A.如果a>b,则ac2>bc2(c≠0) B.如果ax>-a,则x C.如果a0 4.下列数值:-20,-15,-10,0,15,20中,能使不等式x+30>20成立的数有() A.2个 B.3个 C.4个 D.5个 5.不等式4(2x+m)>1的解集是x>3,则m的值为() A.-2 B.-1/2 C.2 D.1/2 6.a为有理数且a≠0,那么下列各式一定成立的是() A.a2+1>1 B.1-a2<0 C.1+1/a>1 D.1-1/a>1 7.已知关于x的不等式组 x<2 ,无解,则m的 x>m 取值范围是() A.m<2 B.m≤2 C.m>2 D.m≥2 8.若a2009b-2009a的解集为() A.x>-1 B.x>1 C.x<-1 D.x<1 9.若方程3m(x+1)+1=m(3-x)-5x的解是负数,则m得取值范围是() A.m>-1.25 B.m<-1.25 C.m>1.25 D.m<1.25 10.若a≠0,则下列不等式成立的是() A.-2a<2a B.-2a<2(-a) C.-2-a<2-a D.-2/a<2/a 11.下列不等式中,对任何有理数都成立的是() A.x-3>0 B.|x+1|>0 C.(x+5)2>0 D.-(x-5)2≤0 12.如果两个不等式的解集相同,那么这两个不等式叫做同解不等式。下列两个不等式是同解不 等式的是() A.-3x<36与x>-12 B.1/3·x≤1与x≥3 C.2x-2009<6x与-2009≤4x D.-1/2 x+3<0与1/3·x>-2 13.不等式1/4(2x+m)>1=m(3-x)-5x的解是负数,则m得取值范围是() A.-2 B.-1/2 C.2 D.1/2 14.不等式组-x≤1 的解集是() x-2<3 A.x≥-1 B.x<5 C.-1≤x<5 D.x≤-1或x>5 15.若a<0,则关于x的不等式|a|x1 C.x<-1 D.x>-1 16.关于x的方程5x-2m=-4-x的解在2与10之间,则m得取值范围是() A.m>8 B.m<32 C.832

均值不等式含答案

课时作业15均值不等式 时间:45分钟满分:100分 课堂训练 5 3 1.已知-+-=l(.r>0,)>0),则小的最小值是( ) A V 【答案】 当且仅当3x=5y时取等号. 4 2?函数f(x)=x+~+3在(一8,一2]上( ) x A.无最大值,有最小值7 B.无最大值,有最小值一1 C.有最大值7,有最小值一1 D.有最大值一1,无最小值 【答案】D 4 【解析】Vx^-2, :.f(x)=x+~+3 ?V = __(r)+(—羽+3W_2 寸(-弓+3 4 =—1,当且仅当一x=—即x=—2时,取等号,

有最大值一1,无最小值.

1 4 3?己知两个正实数小y 满足x+y=4,则使不等式三+^上加恒 兀y 成立的实数m 的取值范围是 _____________ . 【答案】(-8,計 【分析】 对于本题中的函数,可把x+1看成一个整体,然后 将函数用x+1来表示,这样转化一下表达形式,可以暴露其内在的 形式特点,从而能用均值定理来处理. 【解析】因为x>—1, 所以x+ l>0. “ r ?+7x+10 (X +1)2+5(X +1)+4 所以尸x+1 = 吊 4 / f+D+吊+5N2 屮 +1)?苗+5=9 4 当且仅当x+l= 勒,即X=1时,等号成立. mx+n = t,那么/(X )与g(x)都可以转化为关于t 的函数? 课后作业 一、选择题(每小题5分,共40分)???当x=\时, 工+7x+l° 灯仆-1 — $ 函数〉'一 丫+1 (x>—1),取侍取:小值为9. 【规律方法】 形如 f(x) — mx _^n (加工°, dHO)或者 g(x) — 【解析】 斤胃字E+芥沁+树+2胡畔 4. 求函数y= 以+7卄10 ~x+1 (Q-1)的最小值. mx+n

精选一元一次不等式组练习题及答案

八下一元一次不等式组 一、选择题 1、下列不等式组中,解集是2<x <3的不等式组是( ) A 、???>>23x x B 、???<>23x x C 、? ??><23x x D 、???<<23x x 2、在数轴上从左至右的三个数为a ,1+a ,-a ,则a 的取值范围是() A 、a <12 B 、a <0 C 、a >0 D 、a <-12 3、不等式组10235x x +??+??,②4x >,③2x <,④21x ->-,从这四个不等式中取两个,构成正整数解是2的不等式组是()A 、①与② B 、②与③ C 、③与④ D 、① 与④ 7、如果不等式组x a x b >??109 m >1910m >1019m >二、填空题 9、若y 同时满足y +1>0与y -2<0,则y 的取值范围是______________. 10、不等式组3010x x -

均值不等式应用全面总结+题型总结(含详细解析)

均值不等式应用全面总结+题型总结(含详细解析) 一.均值不等式 1.(1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则 2 2 2b a ab +≤(当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则ab b a ≥+2 (2)若* ,R b a ∈ ,则ab b a 2≥+(当且仅当b a =时取“=” ) (3)若* ,R b a ∈,则2 2?? ? ??+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x + ≥ (当且仅当1x =时取“=”);若0x <,则12x x +≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 3.若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) 若0ab ≠,则 22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=” ) 4.若R b a ∈,,则2 )2( 2 22b a b a +≤ +(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正 所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值 例1:求下列函数的值域 (1)y =3x 2+12x 2 (2)y =x +1 x 解:(1)y =3x 2+1 2x 2 ≥2 3x 2·1 2x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2; 当x <0时, y =x +1x = -(- x -1 x )≤-2 x ·1 x =-2 ∴值域为(-∞,-2]∪[2,+∞) 解题技巧: 技巧一:凑项 例1:已知5 4x < ,求函数14245 y x x =-+-的最大值。 解:因450x -<,所以首先要“调整”符号,又1 (42)45 x x -- 不是常数,所以对42x -要进行拆、凑项, 5,5404x x <∴-> ,11425434554y x x x x ??∴=-+=--++ ?--??231≤-+= 当且仅当1 5454x x -= -,即1x =时,上式等号成立,故当1x =时,max 1y =。 评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。 技巧二:凑系数 例1. 当时,求(82)y x x =-的最大值。 解析:由知,,利用均值不等式求最值,必须和为定值或积为定值,此题为两个式子积的形式,但其和不是定值。注意到2(82)8x x +-=为定值,故只需将(82)y x x =-凑上一个系数即可。 当,即x =2时取等号 当x =2时,(82)y x x =-的最大值为8。 评注:本题无法直接运用均值不等式求解,但凑系数后可得到和为定值,从而可利用均值不等式求最大值。 变式:设2 3 0< -x ∴2922322)23(22)23(42 =?? ? ??-+≤-?=-=x x x x x x y 当且仅当,232x x -=即?? ? ??∈= 23,043x 时等号成立。 技巧三: 分离 例3. 求2710 (1)1 x x y x x ++= >-+的值域。 解析一:本题看似无法运用均值不等式,不妨将分子配方凑出含有(x +1)的项,再将其分离。 当 ,即 时,4 21)591 y x x ≥+? =+((当且仅当x =1时取“=”号)。 技巧四:换元 解析二:本题看似无法运用均值不等式,可先换元,令t=x +1,化简原式在分离求最值。 22(1)7(1+10544=5t t t t y t t t t -+-++==++) 当,即t=时,4 259y t t ≥?=(当t=2即x =1时取“=”号)。 评注:分式函数求最值,通常直接将分子配凑后将式子分开或将分母换元后将式子分开再利用不等式求最值。即化为 ()(0,0)() A y mg x B A B g x =+ +>>,g(x)恒正或恒负的形式,然后运用均值不等式来求最值。 技巧五:注意:在应用最值定理求最值时,若遇等号取不到的情况,应结合函数()a f x x x =+的单调性。 例:求函数22 4 y x = +的值域。 24(2)x t t +=≥,则2 24 y x = +221 4(2)4 x t t t x =+=+≥+

一元一次不等式组应用题及答案(汇编)

一元一次不等式应用题一.分配问题: 1.把若干颗花生分给若干只猴子。如果每只猴子分3颗,就剩下8颗;如果每只猴子分5颗,那么最后一只猴子虽分到了花生,但不足5颗。问猴子有多少只, 花生有多少颗? 2 .把一些书分给几个学生,如果每人分3本,那么余8本;如果前面的每个学生分5本,那么最后一人就分不到3本。问这些书有多少本?学生有多少人? 3.某中学为八年级寄宿学生安排宿舍,如果每间4人,那么有20人无法安排,如果每间 8人,那么有一间不空也不满,求宿舍间数和寄宿学生人数。 4.将不足40只鸡放入若干个笼中,若每个笼里放4只,则有一只鸡无笼可放;若每个笼里放5只,则有一笼无鸡可放,且最后一笼不足3只。问有笼多少个?有鸡多少只? 5. 用若干辆载重量为8吨的汽车运一批货物,若每辆汽车只装4吨,则剩下20吨货物;若每辆汽车装满8吨,则最后一辆汽车不满也不空。请问:有多少辆汽车? 6.一群女生住若干家间宿舍,每间住4人,剩下19 人无房住;每间住6人,有一间宿舍住不满。 (1)如果有x间宿舍,那么可以列出关于x的不等式组: (2)可能有多少间宿舍、多少名学生?你得到几个解?它符合题意吗? 二、其他问题 1.有一个两位数,其十位上的数比个位上的数小2,已知这个两位数大于20且小于40,求这个两位数 2.一次知识竞赛共有15道题。竞赛规则是:答对1题记8分,答错1题扣4分,不答记0分。结果神箭队有2道题没答,飞艇队答了所有的题,两队的成绩都超过了90分,两队分别至少答对了几道题? 3.某公司需刻录一批光盘(总数不超过100张),若请专业公司刻录,每张需10元(包括空白光盘费);若公司自刻,除设备租用费200元以外,每张还需成本5元(空白光盘费)。问刻录这批光盘,是请专家公司刻录费用省,还是自刻费用省?

精选一元一次不等式组练习题及答案.docx

八下一元一次不等式组 一、选择题 1、下列不等式组中,解集是 2< x < 3 的不等式组是 ( ) x 3 B x 3 x 3 x 3 A 、 2 、 2 C 、 2 D 、 2 x x x x 2、在数轴上从左至右的三个数为 a ,1+a ,- a ,则 a 的取值范围是( ) A 、a < 1 B 、a <0 C 、 a > 0D 、 a <- 1 2 2 3、不等式组 x 1 ≤ , ) 3 0 的解集在数轴上表示为( 2x 5 1 1 x 11 x 1 1 x 1 1 x A B C D 3x 1 0 ) A 、 1 个 B 、2 个 C 、3 个 D 、4 个 4、不等式组 5 的整数解的个数是( 2x 5、在平面直角坐标系内, P (2x - 6,x -5)在第四象限,则 x 的取值范围为( ) A 、3<x <5 B 、- 3<x <5 C 、- 5<x < 3 D 、- 5<x <- 3 6、已知不等式:① x 1 ,② x 4 ,③ x 2,④ 2 x 1 ,从这四个不等式中取两个,构成正整 数解是 2 的不等式组是( ) A 、①与② B 、②与③ C 、③与④ D 、①与④ 7、如果不等式组 x a 无解,那么不等式组的解集是( ) x b - b < x < 2- a -2<x < a - 2 C.2 -a <x < 2-b D. 无解 8、方程组 4x 3m 2 的解 x 、y 满足 x >y ,则 m 的取值范围是( ) 8x 3y m A. m 9 B. m 10 C. m 19 D. m 10 10 9 10 19 二、填空题 9、若 y 同时满足 y +1>0 与 y - 2< 0,则 y 的取值范围是 ______________. x 3 0 ≥ 0.5 10、不等式组 .11、不等式组 2x 的解集是. ≥ 的解集是 ≥ x 0 2.5x 2 1 3x 12、若不等式组 x m 1 无解,则 m 的取值范围是 . x 2m 1

(完整版)高中数学不等式习题及详细答案

第三章 不等式 一、选择题 1.已知x ≥2 5 ,则f (x )=4-25+4-2x x x 有( ). A .最大值45 B .最小值4 5 C .最大值1 D .最小值1 2.若x >0,y >0,则221+)(y x +221 +)(x y 的最小值是( ). A .3 B . 2 7 C .4 D . 2 9 3.设a >0,b >0 则下列不等式中不成立的是( ). A .a +b + ab 1≥22 B .(a +b )( a 1+b 1 )≥4 C 22 ≥a +b D . b a ab +2≥ab 4.已知奇函数f (x )在(0,+∞)上是增函数,且f (1)=0,则不等式x x f x f ) ()(--<0 的解集为( ). A .(-1,0)∪(1,+∞) B .(-∞,-1)∪(0,1) C .(-∞,-1)∪(1,+∞) D .(-1,0)∪(0,1) 5.当0<x <2 π时,函数f (x )=x x x 2sin sin 8+2cos +12的最小值为( ). A .2 B .32 C .4 D .34 6.若实数a ,b 满足a +b =2,则3a +3b 的最小值是( ). A .18 B .6 C .23 D .243 7.若不等式组?? ? ??4≤ 34 ≥ 30 ≥ y x y x x ++,所表示的平面区域被直线y =k x +34分为面积相等的两部分,则k 的值是( ). A . 7 3 B . 37 C . 43 D . 34 8.直线x +2y +3=0上的点P 在x -y =1的上方,且P 到直线2x +y -6=0的距离为

不等式(组)应用题常见类型(综合测试一)(人教版)含答案

不等式(组)应用题常见类型(综合测试一)(人教版)含答案

不等式(组)应用题常见类型(综合测试一)(人 教版) 一、单选题(共6道,每道16分) 1.某校班级篮球联赛中,每场比赛都要胜负,每队胜一场得3分,负一场得1分,如果某班在第一轮的25场比赛中至少得42分,那么这个班至少要胜( ) A.10场 B.9场 C.8场 D.7场 答案:B 解题思路: 试题难度:三颗星知识点:不等式(组)应用题 2.为执行中央“节能减排,美化环境,建设美丽新农村”的国策,我市某村计划建造A,B两种

型号的沼气池共20个,以解决该村所有农户的燃料问题.两种型号沼气池的占地面积、使用农户数见下表: 已知可供建造沼气池的占地面积不超过365 m2,该村农户共有492户.设建造A型沼气池个数为x个,结合题意可列不等式组是( ) A. B. C. D. 答案:C 解题思路: 试题难度:三颗星知识点:不等式(组)应用题

3.六一儿童节到了,要把一些苹果分给几个小朋友,如果每人分3个,那么剩8个;如果每人分5个,那么最后一个小朋友就分不到3个,则有( )个小朋友. A.4 B.5 C.6 D.7 答案:C 解题思路: 试题难度:三颗星知识点:不等式(组)应用题 4.用若干辆载重量为8吨的汽车运一批货物,若每辆汽车只装4吨,则剩下20吨货物;若每辆汽车装满8吨,则最后一辆汽车不满也不空.那

么货物共有( ) A.6吨 B.48吨 C.44吨 D.7吨 答案:C 解题思路: 试题难度:三颗星知识点:不等式(组)应用题 5.一玩具厂生产甲、乙两种玩具,已知造一件甲种玩具需金属80克,塑料140克,造一件乙种玩具需金属100克,塑料120克.若工厂有金属4600克,塑料6400克,计划用两种材料生产甲、乙两种玩具共50件,设生产甲种玩具件,则应满足的不等式组为( )

一元一次不等式组应用题及答案

一元一次不等式应用题 用一元一次不等式组解决实际问题的步骤: ⑴审题,找出不等关系; ⑵设未知数; ⑶列出不等式; ⑷求出不等式的解集; ⑸找出符合题意的值; ⑹作答。 一.分配问题: 1.把若干颗花生分给若干只猴子。如果每只猴子分3颗,就剩下8颗;如果每只猴子分5颗,那么最后一只猴子虽分到了花生,但不足5颗。问猴子有多少只,花生有多少颗? 2 .把一些书分给几个学生,如果每人分3本,那么余8本;如果前面的每个学生分5本,那么最后一人就分不到3本。问这些书有多少本?学生有多少人? 3.某中学为八年级寄宿学生安排宿舍,如果每间4人,那么有20人无法安排,如果每间8人,那么有一间不空也不满,求宿舍间数和寄宿学生人数。 4.将不足40只鸡放入若干个笼中,若每个笼里放4只,则有一只鸡无笼可放;若每个笼里放5只,则有一笼无鸡可放,且最后一笼不足3只。问有笼多少个?有鸡多少只?

5. 用若干辆载重量为8吨的汽车运一批货物,若每辆汽车只装4吨,则剩下20吨货物;若每辆汽车装满8吨,则最后一辆汽车不满也不空。请问:有多少辆汽车? 6.一群女生住若干家间宿舍,每间住4人,剩下19人无房住;每间住6人,有一间宿舍住不满。 (1)如果有x间宿舍,那么可以列出关于x的不等式组: (2)可能有多少间宿舍、多少名学生?你得到几个解?它符合题意吗? 二速度、时间问题 1爆破施工时,导火索燃烧的速度是0.8cm/s,人跑开的速度是5m/s,为了使点火的战士在施工时能跑到100m以外的安全地区,导火索至少需要多长? 2.王凯家到学校2.1千米,现在需要在18分钟内走完这段路。已知王凯步行速度为90米/ 分,跑步速度为210米/分,问王凯至少需要跑几分钟? 3.抗洪抢险,向险段运送物资,共有120公里原路程,需要1小时送到,前半小时已经走了50公里后,后半小时速度多大才能保证及时送到?

均值不等式 含答案(训练习题)

课时作业15 均值不等式 时间:45分钟 满分:100分 课堂训练 1.已知5x +3 y =1(x >0,y >0),则xy 的最小值是( ) A .15 B .6 C .60 D .1 【答案】 C 【解析】 ∵5x +3 y =1≥215xy , ∴xy ≥60, 当且仅当3x =5y 时取等号. 2.函数f (x )=x +4 x +3在(-∞,-2]上( ) A .无最大值,有最小值7 B .无最大值,有最小值-1 C .有最大值7,有最小值-1 D .有最大值-1,无最小值 【答案】 D 【解析】 ∵x ≤-2,∴f (x )=x +4 x +3 =-???? ??(-x )+? ????-4x +3≤-2(-x )? ?? ?? -4x +3 =-1,当且仅当-x =-4 x ,即x =-2时,取等号, ∴f (x )有最大值-1,无最小值.

3.已知两个正实数x ,y 满足x +y =4,则使不等式1x +4 y ≥m 恒成立的实数m 的取值范围是____________. 【答案】 ? ? ? ??-∞,94 【解析】 1x +4y =? ????x +y 4? ????1x +4y =54+y 4x +x y ≥5 4+214=94. 4.求函数y =x 2+7x +10 x +1 (x >-1)的最小值. 【分析】 对于本题中的函数,可把x +1看成一个整体,然后将函数用x +1来表示,这样转化一下表达形式,可以暴露其内在的形式特点,从而能用均值定理来处理. 【解析】 因为x >-1, 所以x +1>0. 所以y =x 2+7x +10x +1=(x +1)2+5(x +1)+4 x +1 =(x +1)+ 4 x +1 +5≥2(x +1)·4 x +1 +5=9 当且仅当x +1=4 x +1 ,即x =1时,等号成立. ∴当x =1时,函数y =x 2+7x +10 x +1(x >-1),取得最小值为9. 【规律方法】 形如f (x )=ax 2+bx +c mx +n (m ≠0,a ≠0)或者g (x )= mx +n ax 2+bx +c (m ≠0,a ≠0)的函数,可以把mx +n 看成一个整体,设 mx +n =t ,那么f (x )与g (x )都可以转化为关于t 的函数. 课后作业

均值不等式常见题型整理

均值不等式 一、 基本知识梳理 1.算术平均值:如果a ﹑b ∈R +,那么 叫做这两个正数的算术平均值. 2.几何平均值:如果a ﹑b ∈R +,那么 叫做这两个正数的几何平均值 3.重要不等式:如果a ﹑b ∈R ,那么a 2+b 2≥ (当且仅当a=b 时,取“=”) 均值定理:如果a ﹑b ∈R +,那么 2 a b +≥ (当且仅当a=b 时,取“=”) 均值定理可叙述为: 4.变式变形: ()()() ()()() 22 2 2 1;2 2; 230;425a b ab a b b a ab a b a b +≤ +??≤ ??? +≥>+?? ≤ ??? ≤; 5.利用均值不等式求最值,“和定,积最大;积定,和最小”,即两个正数的和为定值,则可求其积的最大值;积为定值,则可求其和的最小值。 注意三个条件:“一正,二定,三相等”即:(1)各项或各因式非负;(2)和或积为定值; (3)各项或各因式都能取得相等的值。 6.若多次用均值不等式求最值,必须保持每次取“=”号的一致性。 有时为了达到利用均值不等式的条件,需要经过配凑﹑裂项﹑转化﹑分离常数等变形手段,创设一个应用均值不等式的情景。

二、 常见题型: 1、分式函数求最值,如果)(x f y =可表示为B x g A x mg y ++ =) ()(的形式,且)(x g 在定义域内恒正或恒负,,0,0>>m A 则可运用均值不等式来求最值。 例:求函数)01(11 2>->+++= a x x x ax y 且的最小值。 解:1 )1(11112++-+=++-+=+++=x a a ax x x ax ax x x ax y 1212211 )1(=-+≥-+++ +=a a a x a x a 当1 )1(+= +x a x a 即x=0时等号成立,1min =∴y 2、题在给出和为定值,求和的最值时,一般情况都要对所求式子进行变形,用已知条件进行代换,变形之后再利用均值不等式进行求最值。 例:已知19 1,0,0=+>>b a b a 且 ,求b a +的最小值。 解法一:169210991=+≥+++=+b a a b b a 思路二:由19 1=+b a 变形可得,9,1,9)9)(1(>>∴=-- b a b a 然后将b a +变形。 解法二:16109210)9)(1(210)9()1(=+=+--≥+-+-=+b a b a b a 可以验证:两种解法的等号成立的条件均为12,4==b a 。 此类题型可扩展为: 设321a a a 、、均为正数,且m a a a =++321,求3 21111a a a S ++= 的最小值。 )111)((13 21321a a a a a a m S ++++= )]()()(3[1 3 22331132112a a a a a a a a a a a a m ++++++= m m 9 )2223(1=+++≥ ,等号成立的条件是321a a a ==。

不等式(组)应用题类型及解答(包含各种题型)

一元一次不等式(组)应用题类型及解答 1.分配问题 1、一堆玩具分给若干个小朋友,若每人分3件,则剩余4件,若前面每人分4 件,则最后一人得到的玩具最多3件,问小朋友的人数至少有多少人?。 3、把若干颗花生分给若干只猴子。如果每只猴子分3颗,就剩下8颗;如果每只猴子分5颗,那么最后一只猴子虽分到了花生,但不足5颗。问猴子有多少只,有多少颗? 4、把一些书分给几个学生,如果每人分3本,那么余8本;如果前面的每个学生分5本,那么最后一人就分不到3本。问这些书有多少本?学生有多少人? 5、某中学为八年级寄宿学生安排宿舍,如果每间4人,那么有20人无法安排,如果每间 8人,那么有一间不空也不满,求宿舍间数和寄宿学生人数。 6、将不足40只鸡放入若干个笼中,若每个笼里放4只,则有一只鸡无笼可放;若每个笼里放5只,则有一笼无鸡可放,且最后一笼不足3只。问有笼多少个?有鸡多少只?

7、用若干辆载重量为8吨的汽车运一批货物,若每辆汽车只装4吨,则剩下20吨货物;若每辆汽车装满8吨,则最后一辆汽车不满也不空。请问:有多少辆汽车? 8、一群女生住若干家间宿舍,每间住4人,剩下19人无房住;每间住6人,有一间宿舍住不满。 (1)如果有x间宿舍,那么可以列出关于x的不等式组: (2)可能有多少间宿舍、多少名学生?你得到几个解?它符合题意吗? 二、比较问题 1、某校王校长暑假将带领该校市级三好学生去北京旅游。甲旅行社说如果校长 买全票一张,则其余学生可享受半价优惠,乙旅行社说包括校长在内全部按全票价的6折优惠(按全票价的60%收费,且全票价为1200元) ①学生数为x,甲旅行社收费为y甲,乙旅行社收费为y乙,分别计算两家 旅行社的收费(写出表达式) ②当学生数是多少时,两家旅行社的收费一样? 就学生数x讨论哪家旅 行社更优惠。 ③就学生数x讨论哪家旅行社更优惠。

均值不等式练习题及答案解析

均值不等式练习题及答案解析 一.均值不等式 1.若a,b?R,则a2?b2?2ab 若a,b?R,则ab 2. 若a,b?R*,则 a?b2 ? * ? a?b2 22 a?b时取“=”) ab 若a,b?R,则a?b?2 2 ab a?b?若a,b?R,则ab??) ?? ? 2 a?b2 注:当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”.求最值的条件“一正,二定,三取等”

均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用.应用一:求最值例1:求下列函数的值域 y=3x解:y=3x+ 11 y=x+xx 1 3x =∴值域为[,+∞) 2x 1 x· =2; x 1 x· =-2 x 1 ≥22x1 当x>0时,y=x+≥x 11 当x<0时, y=x+= -≤-2 xx ∴值域为 解题技巧:技巧一:凑项例1:已知x?

54 ,求函数y ?4x?2? 14x?5 的最大值。 1 解:因4x?5?0,所以首先要“调整”符号,又?x? 54 ,?5?4x?0,?y?4x?2? 1 4x?5 不是常数,所以对4x?2要进行拆、凑项, ???2?3?1 ??3? 1? ???5?4x? 4x?55?4x? 当且仅当5?4x? 15?4x ,即x?1时,上式等号成立,故当x?1时,ymax?1。 评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。 技巧二:凑系数

例1. 当时,求y?x的最大值。 解析:由知,,利用均值不等式求最值,必须和为定值或积为定值,此题为两个式子积的形式,但其和不是定值。注意到2x??8为定值,故只需将y?x凑上一个系数即可。 当 ,即x=2时取等号当x=2时,y?x的最大值为8。 32 评注:本题无法直接运用均值不等式求解,但凑系数后可得到和为定值,从而可利用均值不等式求最大值。变式:设0?x? ,求函数y?4x的最大值。 3 2 2x?3?2x?9 解:∵0?x?∴3?2x?0∴y?4x?2?2x?2???? 222?? 当且仅当2x?3?2x,即x? 3 ?3? ??0,?时等号成立。?2? 技巧三:分离 例3. 求y?

一元一次不等式组练习题及答案

一元一次不等式组 一、选择题 1、下列不等式组中,解集是2<x <3的不等式组是( ) A 、?? ?>>2 3 x x B 、???<>23x x C 、?? ?><2 3 x x D 、?? ?<<2 3 x x 2、在数轴上从左至右的三个数为a ,1+a ,-a ,则a 的取值范围是( ) A 、a < 12 B 、a <0 C 、a >0 D 、a <-12 3、(2007年湘潭市)不等式组10235 x x +?? +?? ,②4x >,③2x <,④21x ->-,从这四个不 等式中取两个,构成正整数解是2的不等式组是( ) A 、①与② B 、②与③ C 、③与④ D 、①与④ 7、如果不等式组x a x b >?? B. 109m > C. 1910m > D. 10 19 m > 二、填空题 9、若y 同时满足y +1>0与y -2<0,则y 的取值范围是______________. 10、(2007年遵义市)不等式组30 10x x -+<121 m x m x 无解,则m 的取值范围是 . 13、不等式组15x x x >-?? ????>? 的解集为x >2,则a 的取值范围是 _____________. A B C D

均值不等式 含答案之欧阳光明创编

课时作业15 均值不等式 欧阳光明(2021.03.07) 时间:45分钟 满分:100分 课堂训练 1.已知5x +3 y =1(x >0,y >0),则xy 的最小值是( ) A .15 B .6 C .60 D .1 【答案】C 【解析】∵5x +3 y =1≥215xy , ∴xy ≥60, 当且仅当3x =5y 时取等号. 2.函数f (x )=x +4 x +3在(-∞,-2]上( ) A .无最大值,有最小值7 B .无最大值,有最小值-1 C .有最大值7,有最小值-1 D .有最大值-1,无最小值 【答案】D 【解析】∵x ≤-2,∴f (x )=x +4 x +3 =-? ? ?? ?? -x +? ????-4x +3≤-2-x ? ?? ?? -4x +3

=-1,当且仅当-x =-4 x ,即x =-2时,取等号, ∴f (x )有最大值-1,无最小值. 3.已知两个正实数x ,y 满足x +y =4,则使不等式1x +4 y ≥m 恒成立的实数m 的取值范围是____________. 【答案】? ?? ?? -∞,94 【解析】1x +4y =? ????x +y 4? ????1x +4y =54+y 4x +x y ≥5 4+214=94. 4.求函数y =x2+7x +10 x +1 (x >-1)的最小值. 【分析】 对于本题中的函数,可把x +1看成一个整体,然后将函数用x +1来表示,这样转化一下表达形式,可以暴露其内在的形式特点,从而能用均值定理来处理. 【解析】因为x >-1, 所以x +1>0. 所以y =x2+7x +10 x +1= x +1 2 +5x +1+4 x +1 =(x +1)+4 x +1 +5≥2 x +1 ·4 x +1 +5=9 当且仅当x +1=4 x +1 ,即x =1时,等号成立. ∴当x =1时,函数y =x2+7x +10 x +1(x >-1),取得最小值为9. 【规律方法】 形如f (x )=ax2+bx +c mx +n (m ≠0,a ≠0)或者g (x )= mx +n ax2+bx +c (m ≠0,a ≠0)的函数,可以把mx +n 看成一个整体,设

相关文档 最新文档