文档库 最新最全的文档下载
当前位置:文档库 › 一种基于模糊神经网络的故障诊断方法的研究_金林

一种基于模糊神经网络的故障诊断方法的研究_金林

一种基于模糊神经网络的故障诊断方法的研究_金林
一种基于模糊神经网络的故障诊断方法的研究_金林

(完整word版)模糊神经网络的预测算法在嘉陵江水质评测中的应用2

模糊神经网络的预测算法 ——嘉陵江水质评价 一、案例背景 1、模糊数学简介 模糊数学是用来描述、研究和处理事物所具有的模糊特征的数学,“模糊”是指他的研究对象,而“数学”是指他的研究方法。 模糊数学中最基本的概念是隶属度和模糊隶属度函数。其中,隶属度是指元素μ属于模糊子集f的隶属程度,用μf(u)表示,他是一个在[0,1]之间的数。μf(u)越接近于0,表示μ属于模糊子集f的程度越小;越接近于1,表示μ属于f的程度越大。 模糊隶属度函数是用于定量计算元素隶属度的函数,模糊隶属度函数一般包括三角函数、梯形函数和正态函数。 2、T-S模糊模型 T-S模糊系统是一种自适应能力很强的模糊系统,该模型不仅能自动更新,还能不断修正模糊子集的隶属函数。T-S模糊系统用如下的“if-then”规则形式来定义,在规则为R i 的情况下,模糊推理如下: R i:If x i isA1i,x2isA2i,…x k isA k i then y i =p0i+p1i x+…+p k i x k 其中,A i j为模糊系统的模糊集;P i j(j=1,2,…,k)为模糊参数;y i为根据模糊规则得到的输出,输出部分(即if部分)是模糊的,输出部分(即then部分)是确定的,该模糊推理表示输出为输入的线性组合。 假设对于输入量x=[x1,x2,…,x k],首先根据模糊规则计算各输入变量Xj的隶属度。 μA i j=exp(-(x j-c i j)/b i j)j=1,2,…,k;i=1,2,…,n式中,C i j,b i j分别为隶属度函数的中心和宽度;k为输入参数数;n为模糊子集数。 将各隶属度进行模糊计算,采用模糊算子为连乘算子。 ωi=μA1j(x1)*μA2j(x2)*…*μA k j i=1,2,…,n 根据模糊计算结果计算模糊型的输出值y i。 Y I=∑n i=1ωi(P i0+P i1x1+…+P i k xk)/ ∑n i=1ωi 3、T-S模糊神经网络模型 T-S模糊神经网络分为输入层、模糊化层、模糊规则计划层和输出层四层。输入层与输入向量X I连接,节点数与输入向量的维数相同。模糊化层采用隶属度函数对输入值进行模

基于神经网络的故障诊断

神经网络工具箱应用于故障诊断 1.问题描述 电力系统的安全运行具有十分重要的意义。当高压变压器或其他类似设备在运行中出现局部过热、不完全放电或电弧放电等故障时,其内部绝缘油、绝缘纸等绝缘材料将分解产生多种气体,包括短链烃类气体(C2H2、CH4等)和H2、CO2等,这些气体称作特征气体。而特征气体的含量与故障的严重程度有着很密切的关系,如下图1所示。将BP神经网络应用于变压器故障诊断对大型变压器的运行有着非常重要的意义。 2.神经网络设计 (1)输入特征向量的确定 变压器的故障主要与甲烷(CH4)、氢气(H2)、总烃(C1+C2)以及乙炔(C2H2)4 种气体的浓度有关,据此可以设定特征向量由这 4 种气体的浓度组成,即CH4、H2、C1+C2(总烃)和C2H2,同时也设定了网络输入层的节点数为4个。 (2) 输出特征向量的确定 输出量代表系统要实现的功能目标,其选择确定相对容易一些。只要问题确定了,一般输出量也就确定了。在故障诊断问题中,输出量就代表可能的故障类型。变压器的典型故障类型有:一般过热故障、严重过热故障、局部放电故障、火花放电故障以及电弧放电故障等5种类型,因此这里选择 5 个向量作为网络的输出向量,即网络输出节点确定为 5 个。根据Sigmoid 函数输出值在0 到1 之间的特点,这里设定以0 到1 之间的数值大小表示对应的故障程度,也可以理解为发生此类故障的概率,数值越接近 1 表示发生此类故障的几率越大或说对应的故障程度越大。针对本系统,

设定输出值大于等于0.5 时认为有此类故障,小于0.5 时认为无此类故障。 (3)样本的收集 输入、输出向量确定好以后就可以进行样本的收集。 数据归一化处理时,注意:在归一化处理的时候,因考虑到各气体浓度值相差较大,如总烃的浓度比H2的浓度值高出几个数量级,因此在归一化处理的时候,分别对各个气体浓度值进行处理,即最大值和最小值取的是各气体的最值,而不是所有样本值中的最值。 在本实例中采用:MATLAB利用归一化公式 u=(x-min(min(x)))./(max(max(x))-min(min(x))) (1) 在公式1中x表示所需归一化处理的数据,u表示归一化后的结果 处理结果如下:

模糊神经网络讲义

模糊神经网络(备课笔记) 参考书: 杨纶标,高英仪。《模糊数学原理及应用》(第三版),广 州:华南理工大学出版社 彭祖赠。模糊数学及其应用。武汉:武汉科技大学 胡宝清。模糊理论基础。武汉:武汉大学出版社 王士同。模糊系统、模糊神经网络及应用程序设计。 《模糊系统、模糊神经网络及应用程序设计》 本书全面介绍了模糊系统、模糊神经网络的基本要领概念与原理,并以此为基础,介绍了大量的应用实例及编程实现实例。 顾名思义,模糊神经网络就是模糊系统和神经网络的结合,本质上就是将常规的神经网络(如前向反馈神经网络,Hopfield神经网络)赋予模糊输入信号和模糊权值。 选自【模糊神经网络P17】 预备知识 复杂的东西是难以精确化的,这使得人们所需要的精确性和问题的复杂性间形成了尖锐的矛盾。 正如模糊数学的创始人L.A.Zadeh(查德)教授(美国加利福尼亚大学)所说:“当系统的复杂性增加时,我们使它精确化的能力将减小。直到达到一个阈值,一旦超越它,复杂性和精确性将相互排斥。”这就是著名的“互克性原理”。 该原理告诉我们,复杂性越高,有意义的精确化能力就越低;而复杂性意味着因素众多,以致人们往往不可能同时考察所有因素,只能把研究对象适当简化或抽象成模型,即抓住其中的主要部分而忽略掉次要部分。当在一个被压缩了的低维因素空间考虑问题时,即使本来是明确的概念,也会变得模糊起来。或者某些抽象简化模型本身就带有概念的不清晰,如“光滑铰链”这个力学模型,什么叫“光滑”、什么叫“粗糙”就没有一个明确的定义,客观上两者之间没有绝对分明的界限;主观上,决策者对此类非程序化决策做出判断时,主要是根据他的经验、能力和直观感觉等模糊概念进行决策的。 或者判断一个人的好坏,本来有很多因素,比如人品、性格、相貌

神经网络与模糊控制考试题及答案

一、填空题 1、模糊控制器由模糊化接口、解模糊接口、知识库和模糊推理机组成 2、一个单神经元的输入是 1.0 ,其权值是 1.5,阀值是-2,则其激活函数的净输入是-0.5 ,当激活函数是阶跃函数,则神经元的输出是 1 3、神经网络的学习方式有导师监督学习、无导师监督学习 和灌输式学习 4、清晰化化的方法有三种:平均最大隶属度法、最大隶属度取最小/最大值法和中位数法,加权平均法 5、模糊控制规则的建立有多种方法,是:基于专家经验和控制知识、基于操作人员的实际控制过程和基于过程的模糊模型,基于学习 6、神经网络控制的结构归结为神经网络监督控制、神经网络直接逆动态控制、神网自适应控制、神网自适应评判控制、神网内模控制、神网预测控制六类 7.傅京逊首次提出智能控制的概念,并归纳出的3种类型智能控制系统是、和。 7、人作为控制器的控制系统、人机结合作为控制器的控制系统、无人参与的自主控 制系统 8、智能控制主要解决传统控制难以解决的复杂系统的控制问题,其研究的对象具备的3个特点为、和。 8、不确定性、高度的非线性、复杂的任务要求 9.智能控制系统的主要类型有、、、 、和。 9、分级递阶控制系统,专家控制系统,神经控制系统,模糊控制系统,学习控制系统,集成或者(复合)混合控制系统 10.智能控制的不确定性的模型包括两类:(1); (2)。 10、(1)模型未知或知之甚少;(2)模型的结构和参数可能在很大范围内变化。11.控制论的三要素是:信息、反馈和控制。 12.建立一个实用的专家系统的步骤包括三个方面的设计,它们分别是、 和。知识库的设计推理机的设计人机接口的设计 13.专家系统的核心组成部分为和。知识库、推理机 14.专家系统中的知识库包括了3类知识,它们分别为、、 和。判断性规则控制性规则数据

模糊神经网络技术研究的现状及展望

模糊神经网络技术研究的现状及展望 摘要:本文对模糊神经网络技术研究的现状进行了综述,首先介绍了模糊控制技术和神经网络技术的发展,然后结合各自的特点讨论了模糊神经网络协作体的产生以及优越性,接着对模糊神经网络的常见算法、结构确定、规则的提取等进行了阐述,指出了目前模糊神经网络的研究发展中还存在的一些问题,并对模糊神经网络的发展进行了展望。 关键字:模糊控制;神经网络;模糊神经网络 引言 系统的复杂性与所要求的精确性之间存在尖锐的矛盾。为此,通过模拟人类学习和自适应能力,人们提出了智能控制的思想。控制理论专家Austrom(1991)在IFAC大会上指出:模糊逻辑控制、神经网络与专家控制是三种典型的智能控制方法。通常专家系统建立在专家经验上,并非建立在工业过程所产生的操作数据上,且一般复杂系统所具有的不精确性、不确定性就算领域专家也很难把握,这使建立专家系统非常困难。而模糊逻辑和神经网络作为两种典型的智能控制方法,各有优缺点。模糊逻辑与神经网络的融合——模糊神经网络由于吸取了模糊逻辑和神经网络的优点,避免了两者的缺点,已成为当今智能控制研究的热点之一了。 1 模糊神经网络的提出 模糊集理论由美国著名控制论专家L.A.Zadeh于1965年创立[1]。1974年,英国著名学者E.H.Mamdani将模糊逻辑和模糊语言用于工业控制,提出了模糊控制论。至今,模糊控制已成功应用在被控对象缺乏精确数学描述及系统时滞、非线性严重的场合。 人工神经网络理论萌芽于上世纪40年代并于80年代中后期重掀热潮,其基本思想是从仿生学的角度对人脑的神经系统进行功能化模拟。人工神经网络可实现联想记忆,分类和优化计算等功能,在解决高度非线性和严重不确定系统的控制问题方面,显示了巨大的优势和潜力 模糊控制系统与神经网络系统具有整体功能的等效性[2],两者都是无模型的估计器,都不需要建立任何的数学模型,只需要根据输入的采样数据去估计其需要的决策:神经网络根据学习算法,而模糊控制系统则根据专家提出的一些语言规则来进行推理决策。实际上,两者具有相同的正规数学特性,且共享同一状态空间[3]。 另一方面,模糊控制系统与神经网络系统具有各自特性的互补性[。神经网络系统完成的是从输入到输出的“黑箱式”非线性映射,但不具备像模糊控制那样的因果规律以及模糊逻辑推理的将强的知识表达能力。将两者结合,后者正好弥补前者的这点不足,而神经网络的强大自学习能力则可避免模糊控制规则和隶属函数的主观性,从而提高模糊控制的置信度。 因此,模糊逻辑和神经网络虽然有着本质上的不同,但由于两者都是用于处理不确定性问题,不精确性问题,两者又有着天然的联系。Hornik和White(1989)证明了神经网络的函数映射能力[4];Kosko(1992)证明了可加性模糊系统的模糊逼近定理(FAT,Fuzzy Approximation Theorem)[5];Wang和Mendel(1992)、Buckley和Hayashi(1993)、Dubots 和Grabish(1993)、Watkins(1994)证明了各种可加性和非可加性模糊系统的模糊逼近定理[6]。这说明模糊逻辑和神经网络有着密切联系,正是由于这类理论上的共性,才使模糊逻辑

人工神经网络在设备故障诊断中的应用

人工神经网络在设备故障诊断中的应用 程瑞琪 (西南交通大学 成都 610031) 摘 要 介绍了神经网络技术在设备故障诊断中应用的2个主要方向———故障模式识别和诊断专家系统,对应用的方法、特点及存在的问题也 作了概略分析。 关键词 神经网络 故障诊断 模式识别 专家系统中图分类号 TP 18 近年来人工神经网络(Artificial neural network -ANN )的研究发展迅速,ANN 以其诸多优点在设备状态监测与故障诊断中受到了愈来愈广泛的重视,为设备故障诊断的研究开辟了一条新途径。 ANN 具有以下主要特征:①实现了并行处理机制,可提供高速的信息处理能力;②分布式信息存储,可提供联想与全息记忆的能力;③网络的拓扑结构具有非常大的可塑性,使系统有很高的自适应和自学习能力;④具有超巨量的联接关系,形成高度冗余,使系统具有很强的容错能力;⑤是一类大规模非线性系统,提供了系统自组织与协同的潜力。本文作者仅就ANN 用于故障模式识别及诊断专家系统这两个方面应用的主要方法、特点及存在的问题作概括介绍。 1 神经网络与故障模式识别 模式识别是ANN 应用的一个较成功的领域,诊断问题实质上就是一种模式分类,是将系统的状态区分为正常状态或某一种故障状态的问题。通常故障模式的分布是非常不规则的,故要求所用模式分类方法能在模式空间里形成各种非线性分割平面,ANN 的特性使其可以作为一类性能良好的非线性分类器。1.1 方法及特点 ANN 故障模式识别可用图1所示BP 模型来说明 。 图1 BP 网模型 其中网络输入节点对应故障征兆,输出节点对应故障原因。进行故障模式识别时,先用一批故障样本 对模型进行训练,以确定网络结构(隐层及其节点数)和参数(节点间的联接权);网络训练好后,故障的模式分类就是根据给定的一组征兆,实现征兆集到故障集之间非线性映射的过程。 用ANN 作故障模式识别的特点有:①可用于系统模型未知或系统模型较复杂及非线性系统的故障模式识别;②兼有故障信号的模式变换与特征提取功能;③对系统含有不确定因素、噪声及输入模式不完备的情况不太敏感;④可用于复杂多模式的故障诊断;⑤可用于离线诊断,也能适应实时监测的要求。1.2 模型 用于故障模式识别的ANN 模型按学习方式可分有监督学习模型和无监督学习模型两大类,前者主要包括B P 网和径向基函数(RB F )网;后者主要包括自适应共振(ART )网和自组织特征映射(SOM )网。1.2.1 有监督学习模型 BP 网是目前故障诊断中应用最多且较成熟的一种模型,其神经元的非线性映射函数采用Sigmoid 函数,网络训练采用误差反向传播(Back pr opagation )学习算法。BP 网的结构及学习算法简单,但应用中还存在2个问题:一是关于网络的学习,因BP 算法是自适应最小均方(LMS )算法的推广,故网络的学习速度较慢,且可能陷入局部极小值点,针对这一问题已有许多改进的BP 算法;二是关于网络的结构设计,即如何选取隐层及隐层节点数,目前尚无确定的理论和方法。根据Hecht -Nilson 的映射定理:对任何闭区间上的一个连续函数,总可以用含一层隐单元的感知器网来映射;目前应用中多采用含一层隐单元的BP 网。关于隐层节点下限的确定已有一些研究结果,鉴于问题的复杂性,此处不作说明。选择较多的隐层及隐层节点虽可加快学习速度,但使网络的结构变得复杂,网络的推广能力也会变差。实际应用中,通常用对测试样本与学习样本的误差进行交叉评价的试错 法来选择隐层及隐层节点数。 RB F 网是一种较新颖的ANN 模型,只有一层隐含层,输出节点是线性的,隐单元采用对称的高斯基 · 13·第12卷第1期 《机械研究与应用》 ME CHANICAL RESE ARCH &APPLICATION Vol 12No .1 1999

自适应神经网络模糊推理系统最优参数的研究

第22卷 第8期计 算 机 仿 真2005年8月 文章编号:1006-9348(2005)08-0140-04 自适应神经网络模糊推理系统最优参数的研究 翁玉麟,邓长虹 (武汉大学电气工程学院,湖北武汉,430072) 摘要:模糊规则的提取和隶属度函数的学习是模糊系统设计中重要而困难的问题。自适应神经网络模糊推理系统(ANF IS) 能基于数据建模,无须专家经验,自动产生模糊规则和调整隶属度函数。在建立一个初始系统进行训练时,其隶属度函数的 类型、隶属度函数的数目以及训练次数都是待定的,这三个参数的选择直接影响系统训练后的效果,它们的确定方法有待研 究。该文应用自适应神经网络模糊推理系统的方法对一个典型系统进行建模仿真,并阐述这三个参数的寻优方法。 关键词:自适应神经网络;模糊系统;隶属度函数 中图分类号:TP3 文献标识码:A Research on Best Param eters i n Adaptive Neura l-Fuzzy I nference System W EN G Yu-lin,D EN G Chang-hong (Electrical Engineering School,W uhan University,W uhan Hubei430072,China) ABSTRACT:Extraction of fuzzy rules and learning of parameters of membership functions are vital but difficult when designing a fuzzy system.App lying Adap tive Neural-Fuzzy Inference System(ANF IS)can p roduce fuzzy rules and adjust membership functions automatically based on data w ithout experience of experts.W hen setting up an initialized system to train,the type of membership functions,the number of membership functions and the ti m e of training are all variables,and the choice of these parameters w ill directly affect the result of modeling, but the method for ensuring these parameters still needs research.This paper gives the si mulation examp le for modeling a typ ical system w ith Adap tive Neural-Fuzzy Inference System and expatiates the method for choosing these three parameters. KEYWO RD S:Adap tive neural net work;Fuzzy system;M embership functions 1 引言 自从M amdani和A ssilian利用模糊控制理论为一简单动力过程构造模糊控制器以来,模糊控制在实际问题中的应用日益广泛。但是,模糊理论在实际应用中也存在一些问题,如隶属度函数的确立目前还没有一套成熟有效的方法,在很难或无法获得专家经验的情况下,隶属度函数的确定是十分困难的[1]。自适应神经网络模糊推理系统(ANF IS)能基于数据建模,自动产生模糊规则和隶属度函数,而不是基于经验或直觉给定。这对于那些特性还不被人们所完全了解或者特性非常复杂的系统是十分有效的。许多学者在应用自适应神经网络模糊推理系统建模方面已经进行了探索并获得很多有益的成果,但在建立一个初始系统进行训练时,其隶属度函数的类型、隶属度函数的数目以及训练次数都是待定的,这三个参数的选择直接影响系统训练后的效果,可是选择怎样的参数可以使建立的模型最佳,至今没有学者进行深入的研究。本文应用ANF IS的方法对一个典型系统进行建模仿真,并阐述这三个参数的选择方法。 2 自适应神经网络模糊系统 学者Roger Jang提出了与一阶Sugeno模型模糊推理系统功能相同的自适应神经模糊推理系统(Adap tive Net work-based Fuzzy Inference System,ANF IS)[2][3],它是模糊逻辑和神经网络的结合产物。ANF IS结构的构造见图1,其同一层的每个节点具有相似的功能(这里用O 1,i 表示第一层的第i个节点的输出)。 第一层:该层每个节点i是以节点函数表示的方形节点(该层参数是可变的): 收稿日期:2004-03-17

模糊神经网络的预测算法在嘉陵江水质评测中的应用

题目:模糊神经网络的预测算法在嘉陵江水质评测中的应用 院(系):物联网工程学院 专业: 计算机科学与技术 班级:计科0802 姓名:刘伟 学号: 0304080230 设计时间: 10-11 学年 2 学期 2011年5月

一、模糊数学简介 模糊数学是用来描述、研究和处理事物所具有的模糊特征的数学,“模糊”是指他的研究对象,而“数学”是指他的研究方法。 模糊数学中最基本的概念是隶属度和模糊隶属度函数。其中,隶属度是指元素μ属于模糊子集f的隶属程度,用μf(u)表示,他是一个在[0,1]之间的数。μf(u)越接近于0,表示μ属于模糊子集f的程度越小;越接近于1,表示μ属于f的程度越大。 模糊隶属度函数是用于定量计算元素隶属度的函数,模糊隶属度函数一般包括三角函数、梯形函数和正态函数。 二、T-S模糊模型 T-S模糊系统是一种自适应能力很强的模糊系统,该模型不仅能自动更新,还能不断修正模糊子集的隶属函数。T-S模糊系统用如下的“if-then”规则形式来定义,在规则为R i 的情况下,模糊推理如下: R i:If x i isA1i,x2isA2i,…x k isA k i then y i =p0i+p1i x+…+p k i x k 其中,A i j为模糊系统的模糊集;P i j(j=1,2,…,k)为模糊参数;y i为根据模糊规则得到的输出,输出部分(即if部分)是模糊的,输出部分(即then部分)是确定的,该模糊推理表示输出为输入的线性组合。 假设对于输入量x=[x1,x2,…,x k],首先根据模糊规则计算各输入变量Xj的隶属度。 μA i j=exp(-(x j-c i j)/b i j)j=1,2,…,k;i=1,2,…,n式中,C i j,b i j 分别为隶属度函数的中心和宽度;k为输入参数数;n为模糊子集数。 将各隶属度进行模糊计算,采用模糊算子为连乘算子。 ωi=μA1j(x1)*μA2j(x2)*…*μA k j i=1,2,…,n 根据模糊计算结果计算模糊型的输出值y i。 Y I=∑n i=1ωi(P i0+P i1x1+…+P i k xk)/ ∑n i=1ωi 三、T-S模糊神经网络模型 T-S模糊神经网络分为输入层、模糊化层、模糊规则计划层和输出层四层。输入层与输入向量X I连接,节点数与输入向量的维数相同。模糊化层采用隶属度函数对输入值进行模糊化得到模糊隶属度值μ。模糊规则计算层采用模糊连乘公式计算得到ω。输出层采用公式计算模糊神经网络的输出。 四、嘉陵江水质评测 水质评测是根据水质评测标准和采样水样本各项指标值,通过一定的数学模型计算确定采样水样本的水质等级。水质评测的目的是能够准确判断出采样水样本的污染等级,为污染防治和水源保护提供依据。 水体水质的分析主要包括氨氮、溶解氧、化学需氧量、高锰酸盐指数、总磷和总氮六项

基于神经网络的模糊控制

基于神经网络的仿真实验 一、实验目的 1.熟悉神经网络的结构、特征及学习算法 2.通过实验掌握利用神经网络进行样本学习与训练的方法。 3.通过实验了解神经网络的结构、权值、学习速率、动量因子对控制效果的影响。 4.通过实验掌握用Matlab 实现神经网络控制系统仿真的方法 二、实验内容 1.给出仿真系统的设计过程和程序清单。 2.记录实验数据和曲线 三、实验步骤 1.在Matlab 下依据原理编写仿真程序并调试。 2.给定输入信号,或训练样本,运行程序,记录实验数据和控制曲线 3.修改神经网络结构参数,如权值、学习速率、动量因子、隐含层神经元个数等,重复步骤(2) 四、实验要求 1. 使用BP 网络逼近对象: 采样时间取2ms,输入信号为u(k)=2sin(10πt),神经网络为3-10-2结构,权值W1,W2的初始取值取[-1,+1]之间的随机值,取η=0.80,α=0.06。 2.取标准样本为3 神经网络为3-12-2结构,权值的初始取值取[-1,+1]之间的随机值,取η =0.70,α=0.05,训练最终目标为 。 3.被控对象为 输入指令为一方波信号:))4sgn(sin(8.0)(t k rin π=,采样时间为1ms ,η=0.60,采用有监督Hebb 学习实现权值的学习,初始权值取 [][]2.0,15.015.015.0321===K w w w W 五、实验程序 1.clear all; 清除所有文件; close all; 关闭所有已开文件; xite=0.80; 惯性系数为0.8; alfa=0.06; 学习速率为0.06; w2=rands(6,1); 初始化隐含层与输出层6行1列的权值矩阵; s t k y k y k u k yout 5.0) 1(1)1()()(2 3 ≤-+-+=) 2(632.0)1(10.0)2(26.0)1(368.0)(-+-+-+-=k u k u k y k y k y 1010-=E

神经网络的电网故障诊断资料

基于新型神经网络的电网故障诊断方法 1引言 快速事故后恢复系统正常运行是减少电能中断时间和增强供电可靠性的必要条件。作为事故恢复的第一步,应实现快速、准确的故障诊断以隔离故障元件并采取相应措施以恢复电能供应。然而在线快速、准确地故障诊断仍是一个悬而未决的难题,尤其在保护和断路器不正常动作或多重故障的情况下,故障诊断更为困难。 故障诊断一般基于SCADA系统所提供的保护和断路器信息来判别电力系统中的故障元件。多种人工智能技术已用于解决此问题,如专家系统[1~4],随机优化技术[5~10]和人工神经网络[11~14]等等。其中基于专家系统的方法得到了广泛的注意和研究。这种方法能够提供强有力的推理并具解释能力,然而专家系统中知识的获取、组织、校核和维护等都非常困难,并成为其应用的瓶颈。而且,专家系统必须搜索庞大的知识库以得到最终的诊断结论,这使得它不能满足故障诊断实时的要求。另外,当系统中存在保护和断路器不正常动作时,专家系统可能会因缺乏识别错误信息的能力而导致错误的诊断结论。 用于故障诊断的另一种较有潜力的方法是基于工程随机优化的方法。这种方法的主要原则是将故障诊断表述为一个整数优化问题,随后使用全局优化方法,如波尔兹曼机[5]、遗传算法[6~8]、仿蚂蚁系统[9]或tabu搜索[10]等,去求解该优化问题。这种方法在实际应用过程中也出现了一些问题:如何确定这些随机优化方法的参数以实现快速正确的故障诊断;如何使这些方法适用于保护和断路器不正常动作的情况等等。 近年来,人工神经网络[11~14]引起了研究工作者的兴趣,因为它具有学习、泛化和容错能力。并且神经元的计算是并行的,这有利于实现实时应用。在神经网络的各种模型中,应用得最为广泛的模型就是BP(Back-Propagation)神经网络。标准的BP模型使用梯度下降算法训练,因此BP神经网络的结构必须是事先已知的,而且该学习算法收敛速度很慢,并有可能收敛于局部最小点。这些不利因素限制了BP模型在故障诊断中的应用。 本文提出使用径向基函数(Radial basis function,RBF)神经网络[15~16]解决电力系统中的故障诊断问题。理论上讲RBF神经网络具有任意函数逼近能力[17]。

模糊推理神经网络诊断模型案例

模糊推理神经网络诊断模型案例 [摘要]本文基于通用神经网络的自适应性和诊断的建模方法,建立了一种新的故障诊断模型一模糊神经网络诊断模型,并对它的智能诊断机理和突出特点进行了深入分析。最后,将该诊断模型应用于某大型汽轮发电机组故障诊断中,分析得出它具有明显的提高诊断精确度的优越性。 [关键词]神经网络故障诊断智能诊断 1模糊推理神经网络诊断模型建立 1.1通用网络模型自适应动态特性 比较两类典型的神经网络一前向BP网络与反馈Hopfied网络,可以发现其核心是单层神经网络,则两类网络可以用一个通用神经网络模型来描述。根据点集拓扑理论和人工神经网络空间概念,对这个通用神经网络模型的特征进行分析得出以下两个结论,证明从略。 定理1神经网络空间在紧集上的连续函数空间C上以及按L2范数在平方可积函数空间I上都是稠密的。 推论1由通用神经网络模型所生成的任何开集可以一致逼近紧集上的连续映射函数f∈C(Rn。Rm)。 由推论1表明,通用网络模型所概括的任何开集(如BP网络、Hopfied网络、BAM网络)通过自学习都能一致逼近紧集上的连续映射函数f∈(Rn,Rm),因而具有良好的自学习、自适应动态特性。 1.2诊断建模方法 设xjn(j=1,2,...,k)对应反映设备运行状态第n个观测样本的k个特征参数,yin,(i=1,2,...l)对应第n个样本的1种故障模式,共有N个样本xjn∈RN,yin∈RN,[n=1,2,...,N),则故障模式向量Y={yin,i=1,2,...,l}与特征参数向量x={xin,i=1,2,...,k}间的内在关系用函数P表示,有:X=P(Y)。当N→∞时,函数P的逆函数存在,以函数S表示,有:Y=S(X) 诊断问题建模的实质就是根据有限的样本集,确定函数S(X)的一等价映射关系SS(X),使得对于任意的ε>0,满足:

基于BP神经网络的故障诊断方法

基于BP神经网络的故障诊断方法

《智能控制基础》 研究生课程设计报告 题目基于BP神经网络的故障诊断方法学院机械与汽车工程学院 专业班级车辆工程 学号221601852020 学生姓名李跃轩 指导教师武晓莉 完成日期2016年12月10日

目录 1 设计概述 (2) 1.1研究对象介绍 (2) 1.2设计内容及目标 (2) 2 设计原理、方法及步骤 (3) 2.1基于BP算法的神经网络模型 (3) 2.2 神经网络信息融合故障诊断步骤 (4) 3 结果及分析 (6) 3.1数据仿真 (6) 3.2 结果分析 (9) 4 设计小结 (10) 参考文献 (10) 附录程序 (11)

1 设计概述 1.1研究对象介绍 信息融合是多源信息综合处理的一项新技术,是将来自某一目标(或状态)的多源信息加以智能化合成,产生比单一信息源更精确、更完全的估计和判决。信息融合所处理的多传感器信息具有更为复杂的形式,可以在不同的信息层次上出现。多传感器信息融合的优点突出地表现在信息的冗余性、容错性、互补性、实时性和低成本性。 神经网络是由大量互联的处理单元连接而成,它是基于现代神经生物学以及认知科学在信息处理领域应用的研究成果。它具有大规模并行模拟处理、连续时间动力学和网络全局作用等特点,有很强的自适应学习和非线性拟合能力,从而可以替代复杂耗时的传统算法,使信号处理过程更接近人类思维活动。 柴油机故障具有相似性,故障与征兆的关系不明确,具有较强的模糊性,故障特征相互交织,柴油机故障诊断是一个复杂的问题。综合柴油机故障的特点以及神经网络的优势,采用基于BP神经网络的多传感器信息融合技术对柴油机机械故障进行诊断。 1.2设计内容及目标 设计内容:针对传统故障诊断方法存在的诊断准确性不高的问题,提出了BP神经网络信息融合的方法,实现对柴油机的机械故障诊断。由多个传感器采

智能控制导论报告BP神经网络模糊控制

智能控制导论实验报告 2012-01-09 姓名:_______________ 常青_________ 学号:0815321002 班级:____________ 08自动化 指导老师:___________ 方慧娟________

实验一:模糊控制器设计与实现 一、实验目的 1. 模糊控制的特征、结构以及学习算法 2. 通过实验掌握模糊自整定PID 的工作原理 二、实验内容 已知系统的传递函数为:1/(10s+1)*e(-0.5s) 。假设系统给定为阶跃值r=30 ,系统初始值r0=0. 试分别设计 (1) 常规的PID 控制器; (2) 常规的模糊控制器; (3) 比较两种控制器的效果; (4) 当通过改变模糊控制器的比例因子时,系统响应有什么变化? 三、实验设备 Matlab 7.0 软件/SIMULINK 四、实验原理 1.模糊控制 模糊逻辑控制又称模糊控制,是以模糊集合论,模糊语言变量和模糊逻辑推理为基础的一类计算机控制策略,模糊控制是一种非线性控制。图1-1 是模糊控制系统基本结构,由图可知模糊控制器由模糊化,知识库,模糊推理和清晰化(或去模糊化)四个功能模块组成。

控制的。其传递函数的形式是: G(s) k p(1 T I S T D S),PID控制原理 针对模糊控制器每个输入,输出,各自定义一个语言变量。因为对控制输出的判断,往往不仅根据误差的变化,而且还根据误差的变化率来进行综合评判。所以在模糊控制器的设计中,通常取系统的误差值e和误差变化率ec为模糊控制器的两个输入,则在e的论域上定义语言变量“误差 E ” ,在ec的论域上定义语言变量“误差变化EC ” ;在控制量u的论域上定义语言变量“控制量U”。 通过检测获取被控制量的精确值,然后将此量与给定值比较得到误差信号e,对误差取微分得到误差变化率ec,再经过模糊化处理把分明集输入量转换为模糊集输入量,模糊输入变量根据预先设定的模糊规则,通过模糊逻辑推理获得模糊控制输出量,该模糊输出变量再经过去模糊化处理转换为分明集控制输出量。 2.PID控制 在模拟控制系统中,控制器最常用的控制规律是PID控制。PID 控制器是一种线性控制器。它根据给定值与实际输出值之间的偏差来 框图如图1-2所示。

自适应神经模糊推理系统及其仿真应用

自适应神经模糊推理系统及其仿真应用 刘雨刚,耿立明,杨威 辽宁工程技术大学电气与控制工程学院,辽宁葫芦岛(125105) 摘 要:本文介绍了自适应神经模糊推理系统的结构,以及如何用MATLAB 模糊工具箱提供的ANFIS 应用工具仿真,完成训练模糊神经网络。 关键词:自适应神经模糊推理系统,MATLAB ,模糊神经网络 0 引言 由Jyh-Shing R.Jang 提出的自适应神经模糊推理系统[1],是一种基于Takagi -Sugeno 模型的模糊推理系统(简称ANFIS )。研究表明,当输入模糊集采用非梯形/非三角形的隶属函数时,Sugeno 型模糊系统需要的模糊规则及输入的模糊集的个数较少。 1 基于Takagi -Sugeno 模型的自适应神经模糊推理系统 所考虑的模糊推理系统有两输入和,单输出f 。 1x 2x 对于零阶T-S 模糊模型,模糊规则的第i 条规则有如下形式: ⑴ 后件为恒值:Ri : ),...,2,1( , 221121n i f y Then A x A x If i i i ==是和是 ⑵ 后件为一阶线性方程:Ri : 0,1,2)(j ),( ,...,2,1 ),( , 221102*********是常数是和是=++===ij i i i i i i i a x a x a a x x f n i x x f y Then A x A x If 式中,Ri 表示第i 条规则,Ai 表示模糊子集,即{NL ,NM ,NS ,ZO ,PS ,PM ,PL}={“负 大”,“负中”,“负小”,“零”,“正小”,“正中”,“正大”}。 在T-S 模型中,每条规则的结论部分是个线性方程,表示系统局部的线性输入/输出关系,而系统的总输入是所有线性子系统输出的加权平均,可以表示全局的非线性输入输出关系,所以,T-S 模型是一种对非线性系统局部线性化的描述方法,它具有非常重要的研究意义和广泛的应用范围[2]。 典型的单交叉路口东、南、西、北四个方向,每个方向均有右行、直行和左行三股车流。依据各个车道的车流信息,以路口流通能力最大或排队候车的时间最短为目标,通过设计自适应神经模糊推理系统,对交叉路口交通信号进行控制,实时确定各个相位的配时,具体地 说每一相交通信号的配时e i (i=1,2,3,4) 由该相位的主队列w1、后继相的主队列w2两者确定,当前相的主队列起决定作用,后继相的主队列起调节作用。所谓主队列是一个相位两个方向中车辆等待数较大的等待队列。 2 ANFIS 的结构 根据给出的模糊系统模型,输入为w1和w2,模糊标记取{负大,负中,负小,零,正小,正中,正大},由此可构造出一个具有模糊功能的神经网络,如图1所示的ANFIS 结构

模糊神经网络综述

1.模糊神经网络的提出 模糊逻辑(FL)、神经网络理论(NN)、遗传算法(GA)、随机推理(PR),以及置信网络、混沌理论和部分学习理论相融合,形成了一种协作体,这种融合并非杂乱无章地将模糊逻辑、神经网络和遗传算法等进行拼凑,而是通过各种方法解决本领域的问题并相互取长补短,从而形成了各种方法的协作。从这个意义上讲,各种方法是互补的,而不是竞争的。在协作体中,各种方法起着不同的作用。通过这种协作,产生了混合智能系统。模糊逻辑和神经网络都是重要的智能控制方法,将模糊逻辑和神经网络这两种软计算方法相结合,取长补短,形成一种协作体—模糊神经网络。 2.模糊神经网络的研究进展 模糊神经网络的发展经历了一个漫长的过程。MacCulloch-Pitta模型便是早期将模糊集应用到神经网络中的一例。此后,人们对模糊神经网络研究得很少。直到1990年Takagi才综述性地讨论了神经网络与模糊逻辑的结合。Kosko(1992)出版了该领域的第一本专著《Neural Network and Fuzzy Systems》,并在这本专著中提出了模糊联想记忆、模糊认知图等重要概念,促进了模糊神经网络的研究向着多元化深入发展。 (1)引入模糊运算的神经网络———狭义模糊神经网络 狭义模糊神经网络通过调整参数进行学习。其学习算法可以采用通用学习算法,也可以通过对原有神经网络的学习算法进行拓展得到。反向传播学习算法、随机搜索法、遗传算法等是几种与具体神经网络结构无关的通用学习算法。(2)用模糊逻辑增强网络功能的神经网络 这类模糊神经网络不是对神经网络与模糊逻辑直接进行融合,而是通过模糊逻辑改进神经网络的学习算法。首先通过分析网络性能得到启发式知识,然后再将启发式知识用于调整学习参数,从而加快了学习收敛速度。 (3)基于神经网络的模糊系统—神经模糊系统 于神经网络的模糊系统,也被称为神经模糊系统(NFS,Neural-Fuzzy Systems),是利用神经网络学习算法的模糊系统。这类模糊神经网络按照模糊逻辑的运算步骤分层构造,不改变模糊系统的基本功能(如模糊化、模糊推理和解模糊化)。 3.糊神经网络的应用 在基于模糊神经网络的控制器方面,Berenji和Khedker(1992)采用增强式学习方法提出了GARIC控制器结构,该系统通过三个神经网络完成了控制的功能:ASN进行普通模糊控制,AEN评价控制效果,SAM随机综合ASN和AEN的过程,然后产生控制信号;Lin和Lee(1994)提出了一种自动构造模糊系统的方法,该方

模糊神经网络的基本原理与应用概述

模糊神经网络的基本原理与应用概述 摘要:模糊神经网络(FNN)是将人工神经网络与模糊逻辑系统相结合的一种具有强大的自学习和自整定功能的网络,是智能控制理论研究领域中一个十分活跃的分支,因此模糊神经网络控制的研究具有重要的意义。本文旨在分析模糊神经网络的基本原理及相关应用。 关键字:模糊神经网络,模糊控制,神经网络控制,BP算法。 Abstract:A fuzzy neural network is a neural network and fuzzy logic system with the combination of a powerful. The self-learning and self-tuning function of the network, is a very intelligent control theory research in the field of active branches. So the fuzzy neural network control research has the vital significance. The purpose of this paper is to analysis the basic principle of fuzzy neural networks and related applications. Key Words: Fuzzy Neural Network, Fuzzy Control, Neural Network Control, BP Algorithm.

1人工神经网络的基本原理与应用概述 人工神经网络的概念 人工神经网络(Artificial Neural Network,简称ANN)是由大量神经元通过极其丰富和完善的联接而构成的自适应非线性动态系统,它使用大量简单的相连的人工神经元来模仿生物神经网络的能力,从外界环境或其它神经元获得信息,同时加以简单的运算,将结果输出到外界或其它人工神经元。神经网络在输入信息的影响下进入一定状态,由于神经元之间相互联系以及神经元本身的动力学特性,这种外界刺激的兴奋模式会自动地迅速演变成新的平衡状态,这样具有特定结构的神经网络就可定义出一类模式变换即实现一种映射关系。由于人工神经元在网络中不同的联接方式,就形成了不同的人工神经网络模式,其中误差反向传播网络(Back-Propagation Network,简称BP网络)是目前人工神经网络模式中最具代表性,应用得最广泛的一种模型【1,2】。 人工神经网络研究的发展简史 人工神经网络的研究己有近半个世纪的历史但它的发展并不是一帆风顺的,神经网络的研究大体上可分为以下五个阶段[3]。 (1) 孕育期(1956年之前):1943年Mcculloch与Pitts共同合作发表了“A logical calculus of ideas immanent in Nervous Activity”一文,提出了神经元数学模型(即MP模型)。1949年Hebb提出Hebb学习法则,对神经网络的发展做出了重大贡献。可以说,MP模型与学习规则为神经科学与电脑科学之间架起了沟通的桥梁,也为后来人工神经网络的迅速发展奠定了坚实的基础。 (2)诞生期(1957年一1968年):1960年Widrow提出了自适应线性元件模型,Rossenbaltt在1957年提出了第一种人工神经网络模式一感知机模式,由二元值神经元组成,该模式的产生激起了人工神经网络研究的又一次新高潮。(3)挫折期(1969年一1981年):1969年Minsky等人写的《感知机》一书以数学方法证明了当时的人工神经网络模式的学习能力受到很大限制。之后,人工神经网络的研究一直处于低潮。

前馈神经网络(FFNN)和自适应神经网络模糊推理系统(ANFIS)模型评价地下水位的对比研究

FFNN)和自适应神经网络模糊推理系统(ANFIS)模型评价地下水位的对比研究 [印度]P. D. Sreekanth,P. D. Sreedevi,Shakeel Ahmed,N. Geethanjali 田芳译;冯翠娥、段琦校译 当水均衡呈持续负值时,水位预测成为地下水规划和管理的一项重要任务。在位于安德拉邦Ranga Reddy区的Maheshwaram流域,地 下水过量开采,管理地下水资源需要完全了解地下水流动态特征。然 而,地下水流动态特征由于人类和气候影响不断发生变化,且地下水 系统十分复杂,包括多种非线性和不确定因素。人工神经网络模型作 为一个有力的、灵活的统计建模技术被引入到地下水科学中以处理复 杂的模式认识问题。本次研究给出了两种模型的对比,即基于 Levenberg-Marquardt(LM)算法的前馈神经网络(FFNN)与模糊逻 辑自适应模糊推理系统(ANFIS)模型在评价Maheshwaram流域的地 下水位中的准确性的对比。用于分析的统计指标包括均方根误差 (RMSE),回归系数(R2)和误差变异(EV)。结果显示,FFNN-LM 和ANFIS模型对于评价上述地区的地下水位均具有较好的准确性 (RMSE分别为4.45和4.94,R2都为93%)。 1 引言 地下水是半干旱地区尤其是基岩地区一切生物不可缺少的资源。在很多地区,地表水资源匮乏,部分地区甚至没有地表水。近三十年来,为了满足农业和工业部门的需求,地下水过量开采。大范围的开凿深井导致印度部分地区尤其是基岩地区地下水位显著下降。本次研究的目的是应用两种适当的模拟方法评价现有含水层系统的地下水动态,并进行对比。 近期,软计算工具,例如人工神经网络(ANNs)和模糊逻辑被广泛应用于各种科技领域进行预测研究(Gail等,2002)。ANN是具有有限变量的通用模型,作为通用的函数近似解(Hornik等,1989)。与传统方法相比,它能够预测一些非线性时间序列事件(Guan等,2004;Hill等,1996;Tang和Fishwick,1993;Zhang,2003;French等,1992)。软计算技术是基于生物系统的信息处理原理。复杂的生物信息处理系统使得人类能够完成诸如认识周围环境,做出预测,并相应地计划和行动等而得以生存。人类信息处理的类型包括逻辑和直觉两种。 传统的计算机系统的逻辑性很好,但是它们的直觉却远不及人类。对于一个具有类似人类信息处理能力的计算系统,它应该足够灵活地支持以下三个特点:

相关文档
相关文档 最新文档