文档库 最新最全的文档下载
当前位置:文档库 › IEEE519谐波电流计算方法

IEEE519谐波电流计算方法

IEEE519谐波电流计算方法

根据《IEEE 519-1992 IEEE Recommended Practices and Requirements for Harmonic Control in Electrical Power Systems》标准要求,一般输电系统电流畸变限值见表9。

表9:IEEE519 规定的电流畸变限值

注:上述电流畸变限制值是对于奇次谐波,偶次谐波的限制值是奇次谐波限制值的25%。I SC是公共连接点的最大短路电流,I L是公共连接点的15~30min最大基频负荷电流。THD是总畸变率(THD通过规格化)。

参考建议:注释中对偶次谐波电流的限值规定过于严格,有时很难做到,建议偶次谐波的限值是奇次谐波限值的50%。

题目短路电流及其计算

题目:短路电流及其计算 讲授内容提要:三相短路、两相短路及单相短路的计算 短路电流的效应及短路校验条件 教学目的:掌握三相短路、两相短路及单相短路电流的计算,会根据短路条件进行设备校验。 教学重点:欧姆法和标幺值法计算短路电流的方法,掌握短路热稳定和动稳定校验的方法。 教学难点:欧姆法和标幺值法计算短路电流的方法 采用教具和教学手段:多媒体及板书 授课时间:年月日授课地点:新教学楼教室 注:此页为每次课首页,教学过程后附;以每次(两节)课为单元编写教案。

第三章 短路电流及其计算 本次课主要内容:三相短路、两相短路及单相短路的计算 短路电流的效应及短路校验条件 第三节 无限大容量电力系统中短路电流的计算 计算过程:绘出计算电路图、元件编号、绘等效电路、计算阻抗和总阻抗、计算短路电流和短路容量。 一、欧姆法进行三相短路计算 22 ) 3(3∑ ∑ += X R U I C K 计算高压短路时电阻较小,一般可忽略。 、电力系统的阻抗计算 OC C S S U X 2= 、电力变压器的阻抗计算 2)(N C K T S U P R ?≈ N C K T S U U X 2 100%? ≈ 、电力线路的阻抗计算 l R R WL 0= l X X WL 0= 、阻抗换算 2'' )(C C U U R R = 2'' )(C C U U X X = 三、标幺制法三相短路电流计算 、基准值 基准容量 MVA S d 100= (可以任意选取) 基准电压 c d U U = (通常取短路计算电压) 基准电流 C d d d d U S U S I 33==

基准电抗 d C d d d S U I U X 2 3= = 、元件标幺值: 电力系统电抗标幺值: OC d d C OC C d S S S S S U S U X X X ===*//22 电力变压器电抗标幺值: N d K d C N C K d T T S S U S U S U U X X X ?=?==*100%/100%2 2 电力线路电抗标幺值: 22/C d O d C O d WL WL U S l X S U l X X X X ?===* 、短路电流标幺值及短路电流计算 *)* 3()3(2) 3()3(1 3/3/∑ * ∑ ∑∑* = =====X I I I I X X S U U S X U I I I d d K K d C C d C d K K 、三相短路容量 ** ) 3()3(33∑ ∑== =X S X U I U I S d c d C K K 四、两相短路电流的计算 ∑ =Z U I C K 2) 2( 866.02/3/) 3()2(==K K I I 五、单相短路电流的计算 ∑ ∑∑++=321)1(3Z Z Z U I K ? 工程计算 0 )1(-= ??Z U I K 第四节 短路电流的效应和稳定度校验 一、短路电流的电动效应和动稳定度 动稳定度校验 一般电器: )3(max ) 3(max sh sh I I i i ≥≥

短路电流计算方法

供电网络中发生短路时,很大的短路电流会使电器设备过热或受电动力作用而遭到损坏,同时使网络内的电压大大降低,因而破坏了网络内用电设备的正常工作.为了消除或减轻短路的后果,就需要计算短路电流,以正确地选择电器设备、设计继电保护和选用限制短路电流的元件。 二.计算条件 1.假设系统有无限大的容量.用户处短路后,系统母线电压能维持不变.即计算阻抗比系统阻抗要大得多。 具体规定: 对于3~35KV级电网中短路电流的计算,可以认为110KV及以上的系统的容量为无限大.只要计算35KV及以下网络元件的阻抗。 2.在计算高压电器中的短路电流时,只需考虑发电机、变压器、电抗器的电抗,而忽略其电阻;对于架空线和电缆,只有当其电阻大于电抗1/3时才需计入电阻,一般也只计电抗而忽略电阻。 3. 短路电流计算公式或计算图表,都以三相短路为计算条件.因为单相短路或二相短路时的短路电流都小于三相短路电流.能够分断三相短路电流的电器,一定能够分断单相短路电流或二相短路电流。 三.简化计算法 即使设定了一些假设条件,要正确计算短路电流还是十分困难,对于一般用户也没有必要.一些设计手册提供了简化计算的图表.省去了计算的麻烦.用起来比较方便.但要是手边一时没有设计手册怎么办?下面介绍一种“口诀式”的计算方法,只要记牢7句口诀,就可掌握短路电流计算方法. 在介绍简化计算法之前必须先了解一些基本概念. 1.主要参数 Sd三相短路容量 (MVA)简称短路容量校核开关分断容量 Id三相短路电流周期分量有效值(KA)简称短路电流校核开关分断电流 和热稳定 IC三相短路第一周期全电流有效值(KA) 简称冲击电流有效值校核动稳定 ic三相短路第一周期全电流峰值(KA) 简称冲击电流峰值校核动稳定 x电抗(Ω) 其中系统短路容量Sd和计算点电抗x 是关键. 2.标么值

谐波含量等计算公式

谐拨含量: 借助傅立叶级数分解法求出每周波内各次谐拨含量。 ........ 按公式( 2),计算每周波电压有效值u j。 u j 1 n u i2 n i1 a) 总谐波含量: (u j )2(u j (1) )2 总谐波含量的百分数 =100% ,u j (1)——波形 u j (1) 中的基波含量。 u b)单次谐波含量 = u j ( k)100%,(k 2 ~ 50) j (1) 偏离系数: 求出每周波的基波电压u j (1),并在其周波各采样点上将采样点上,将采样点上采样电压与 其对应点的基波电压进行比较,取其最大偏差值,则偏差系数=u j 100% 。 u j (1) uj ——每周波各采样点上采样电压与其对应点的基波电压之间的最大偏差值 u jp (1)——每周波基波电压的峰值 对数个周波的偏离系数进行比较,取其最大值。 电压调制: 测取稳态时各周波的正负半波连续最大的三点电压采样值,按抛物线插值法求出其峰值,至少采集一秒钟,共采集N 个周波。 按下述规定求取调制参数值: 电压调制参数的测试,应在电压波形的正负半波中进行,取其最大值。 电压调制量为至少一秒钟(N 个周波)同向峰值的最大与最小之差。 电压调制量 = [u jp]max[u jp ] min [ u jp ]max——N周波中同向峰值电压最大值 [ u jp ]min——N周波中同向峰值电压最小值

波峰系数: 每波电压有效值 u ,以同一周波内连续最大的三个电压采样值,按抛物线插值法求出其 ...... 峰值电压 u jp,按公式(6)计算其波峰系数: F u jp , u jp——每周波的峰值电压。u j u 1 m u j2 m j 1 u j 1n u2 n i1i u——平均电压有效值 j ——采样周波数(j 1 ~ m, m100 )u j——每周波电压有效值 i ——每周波采样点数(i 1 ~ n,n50 )u i——每点电压瞬时值

短路电流及其计算

短路电流及其计算 第一节短路电流概述 本节将了解短路的原因及危害,掌握短路的种类,并知道短路电流计算的基本方法。 一、短路的概念 短路时至三相电力供电系统中,相与相或相与地的导体之间非正常连接。 在电力系统设计和运行中,不仅要考虑正常工作状态,而且还必须考虑到发生事故障碍时所照成的不正常工作状态。实际运行表明,在三相供电系统中,破坏供电系统正常运新的故障最为常见而且危害最大的就是各种短路。当发生短路时,电源电压被短接,短路回路阻抗很小,于是在回路中流通很大的短路电流。 对中性点不接地的系统又相遇相之间的短路;对于中性点接地的系统又相遇相之间的短路,一项于几项与大地相连接以及三相四线制系统中相与零项的连接等,其中两相接地的短路实际上是两相短路。常见的短路形式如图3—1所示 2.短路的基本种类 在三相供电系统中,短路的类型主要有: (1)三相电路 三相短路是指供电系统中,三相在同一点发生短接。用“d(3)”表示,如图3-1a所示。(2)两相电路 两相短路是指三相供电系统中,任意两项在同一地点发生短接。用“d(2)”表示,如图3-1b 所示。 (3)单相电路 单相短路是指在中性点直接接地的电力系统中,任一项与地发生短接。用“d(1)”表示,如图3-1c所示。 (4)两相接地电路 两相接地的短路是指在中性点直接接地的电力系统中,不同的两项同时接地所形成的两相短路,用“d(1-1)”表示,如图3-1d所示。 按短路电流的对称性来说,发生三相短路时,三项阻抗相等,系统中的各处电压和电流仍保持对称,属于对称性短路,其他形式的短路三相阻抗都不相等,三相电压和电流不对称,均为不对称短路。

(完整版)短路电流的计算方法

第七章短路电流计算 Short Circuit Current Calculation §7-1 概述General Description 一、短路的原因、类型及后果 The cause, type and sequence of short circuit 1、短路:是指一切不正常的相与相之间或相与地(对于中性点接地 的系统)发生通路的情况。 2、短路的原因: ⑴元件损坏 如绝缘材料的自然老化,设计、安装及维护不良等所造成的设备缺陷发展成短路. ⑵气象条件恶化 如雷击造成的闪络放电或避雷器动作;大风造成架空线断线或导线覆冰引起电杆倒塌等. ⑶违规操作 如运行人员带负荷拉刀闸;线路或设备检修后未拆除接地线就加电压. ⑷其他原因 如挖沟损伤电缆,鸟兽跨接在裸露的载流部分等. 3、三相系统中短路的类型: ⑴基本形式: )3(k—三相短路;)2(k—两相短路; )1( k—单相接地短路;)1,1(k—两相接地短路; ⑵对称短路:短路后,各相电流、电压仍对称,如三相短路; 不对称短路:短路后,各相电流、电压不对称; 如两相短路、单相短路和两相接地短路. 注:单相短路占绝大多数;三相短路的机会较少,但后果较严重。4、短路的危害后果 随着短路类型、发生地点和持续时间的不同,短路的后果可能只破坏局部地区的正常供电,也可能威胁整个系统的安全运行。短路的危险后果一般有以下几个方面。 (1)电动力效应 短路点附近支路中出现比正常值大许多倍的电流,在导 体间产生很大的机械应力,可能使导体和它们的支架遭 到破坏。 (2)发热 短路电流使设备发热增加,短路持续时间较长时,设备 可能过热以致损坏。 (3)故障点往往有电弧产生,可能烧坏故障元件,也可能殃

变压器短路电流的实用计算方法

变压器短路电流的实用计算方法 胡浩,杨斌文,李晓峰 (湖南文理学院,湖南常德415000) 基金项目:湖南省科技厅计划项目(2007FJ3046) 1前言 在电力系统中,对于电气设备的选用、电气接线方案的选择、继电保护装置的设计与整定以及有关设备热稳定与动稳定的校验等工作,都需要对变压器的短路电流进行计算。短路电流的计算,一般采用有名制或标幺值算法,再者是应用曲线法。然而,无论哪种方法应用起来都比较繁琐,尤其是对于企业的技术人员与农村的电工,因缺乏相应的技术资料,又不能从变压器铭牌上查到所有计算短路电流的数据,所以想快速算出短路电流值是相当困难的。笔者在多年的实际工作中,依据变压器的基本原理与基本关系式,总结出快速计算短路电流值的实用方法,以满足现场与工程上的需要。 2变压器低压三相短路时高压侧短路电流的计算 变压器的阻抗电压是在额定频率下,变压器低压绕组短接,高压绕组施加逐步增大的电压,当高压绕组中的电流达到额定电流时,所施加的电压为阻抗电压Ud,一般以高压侧额定电压U1N为基础来表示: Ud%=Ud/U1N×100% (1) 由变压器的等值电路可知,低压侧短路后的阻抗折算到高压侧,与高压侧阻抗相加后得总的阻抗Zd,在阻抗电压Ud时,高压绕组电流为额定值I1N, 即: I1N=Ud/Zd (2) 如果高压绕组的电压为U1,则此时高压绕组的电流I1为: I1=U1/Zd (3) 由式(2)和式(3)可得: I1=U1/Ud*I1N (4) 对于单个变压器,其容量远小于电力系统的容量,故可以认为当变压器低压侧出现短路时,高压侧电压不变,即为U1N,代入式(4)就可得到变压器低压侧短路时,高压侧的短路电流I1d: I1d=U1N/Ud*I1N (5) 将式(1)中的Ud代入式(5)得: I1d=I1N/Ud%×100 (6) 而变压器高压绕组的额定电流I1N可表示为: I1N=SN/√3U1N (7) 式中SN———变压器的额定容量 将式(7)代入式(6)可得: I1d=100SN/√3U1NUd% (8) 由式(6)或式(8)可计算出变压器低压三相短路时,高压侧的短路电流值。 3变压器低压三相短路时低压侧短路电流的计算 由于变压器的励磁电流仅为I1N的1%~3%,忽略励磁电流,则高、低压绕组的电流I1、I2与电压U1、 U2的关系为: I1/I2=U2/U1=U2N/U1N 式中

谐波电流计算公式是什么

谐波电流计算公式是什么? 谐波含量计算: 测试时最好测出设备较长时期运行时最大的谐波电流,其和产生谐波电流的负载投入有关,若产生谐波电流的负载全部投入,测试的数据是比较准的。 A、咨询现场工程人员,此时产生谐波的负载是否全部满负荷运行,产生谐波的负载就是非线性负载,变频器,整流设备,中频炉等。测试时现场工程人员应该知道同类的非线性负载投入了多少,所以一定问清楚,自己也可以通过配电盘看一下同类的设备投入了多少,最终目的就是能够知道我们此次测试的谐波电流含量是否为其真正的谐波含量,否则按比例推算。譬如我们测试时同类设备只有一半运行,毫无疑问我们的测试报告要对其进行说明,并且推算出其真实的谐波含量应该乘以2。 B、数据测试完后,若测试数据已经完全反映了实际现场可能出现的最大谐波含量,如下图: 将测试的0min----30min的数据计算出来,如上图是0min----2min,其THDA (平均畸变率)为9.4%,Arms为1.119KA,那么其计算的谐波含量为105.186A,0min----30min的数据全部计算完后,取出最大值既是我们需要的最大谐波含量,那么选取1台100A的设备即可满足谐波补偿要求。 无功功率补偿计算: A、咨询现场工程人员,或者调用其原始功率因数数据,因为功率因数是考核指标,主要咨询两个问题,一是功率因数长期基本上是多少,二是在此功率因数时长期负载电流I多大,通过公式计算出P的值,然后计算出需要补偿的无功功率,无功功率计算公式为,——对应cosφ前的正切值,——对应cosφ后的正切值。 B、数据测试完后,若测试数据已经完全反映了实际现场可能出现的最大无功补偿量,如下图所示: 将测试的0min----30min的数据计算出来,如上图是0min----2min,其平均功率为P=140KW,补偿前功率因数cosφ前=0.554,若补偿后要求功率因数不低于cosφ后=0.90,那么根据公式其计算的无功补偿容量为142.66KVAR,0min----30min的数据全部计算完后,取出最大值既是我们需要的最大无功补偿容量,那么选取3台100A的设备即可满足谐波补偿要求。

谐波的基础知识谐波谐波的种类及谐波频率计算

谐波的基础知识,什么是基波、谐波、谐波的种类及谐波频率计算 ———谐波的基础知识,什么是基波、谐波、谐波的种类及谐波频率计算 本文介绍谐波的基础知识,什么是基波、谐波、谐波的种类及谐波频率如何计算,哪些设备或电路容 易产生谐波,谐波的影响是什么 1 谐波的基础知识 2 (1)什么是基波? 3 电力网络中呈周期性变化的电压或电流的频率即为基波(又称一次波),我国电网规定频率是50 Hz 4 基波是50 Hz。 5 (2)什么是谐波? 6 电力网络中除基波(50 Hz)外,任一周期性的电压或电流信号,其频率高于基波(50 Hz)的,称为 7 电网或电路中,电压产生的谐波为电压谐波; 8 电流产生的谐波为电流谐波。 9 (3)谐波有几种? 10 整数谐波:指频率为整数(跃1)倍基波频率的谐波,即2、3、4、5、6、7、8、9、10 等次谐波 11 偶次谐波:指频率为圆、源、6、8、10 等偶数倍基波频率的谐波。 12 奇次谐波:指频率为3、5、7、9、11 等奇数倍基波频率的谐波。 13 正序谐波:谐波次数为3k+1(k 为正整数)即4、7、10等次谐波。 14 负序谐波:谐波次数为3k-1(k 为正整数)即2、5、8等次谐波。 15 零序谐波:指频率为3的整数倍基波频率的谐波,例如3、6、9、12、15 次谐次。 16 高频谐波:指频率为圆耀怨kHz的谐波。 17 (4)谐波频率如何计算? 18 谐波频率越谐波次数伊基波频率例:缘次谐波频率为缘伊缘园Hz越圆缘园Hz,苑次谐波频率为7伊越猿 19 缘园Hz等。 20 (5)哪些设备或电路容易产生谐波? 21 1)非线性负载,例二极管整流电路(AC/DC)。 22 2)三相电压或电流不对称性负载。 23 3)逆变电路(DC/AC)。 24 4)UPS 电源(PC 机用),EPS 电源(大功率动力用),即不间断电源。

短路电流计算公式

变压器短路容量-短路电流计算公式-短路冲击电流的计算供电网络中发生短路时,很大的短路电流会使电器设备过热或受电动力作用而遭到损坏,同时使网络内的电压大大降低,因而破坏了网络内用电设备的正常工作。为了消除或减轻短路的后果,就需要计算短路电流,以正确地选择电器设备、设计继电保护和选用限制短路电流的元件。 二.计算条件 1.假设系统有无限大的容量.用户处短路后,系统母线电压能维持不变.即计算阻抗比系统阻抗要大得多。 具体规定: 对于3~35KV级电网中短路电流的计算,可以认为110KV及以上的系统的容量为无限。只要计算35KV及以下网络元件的阻抗。 2.在计算高压电器中的短路电流时,只需考虑发电机、变压器、电抗器的电抗,而忽略其电阻;对于架空线和电缆,只有当其电阻大于电抗1/3时才需计入电阻,一般也只计电抗而忽略电阻。 3. 短路电流计算公式或计算图表,都以三相短路为计算条件。因为单相短路或二相短路时的短路电流都小于三相短路电流。能够分断三相短路电流的电器,一定能够分断单相短路电流或二相短路电流。 三.简化计算法 即使设定了一些假设条件,要正确计算短路电流还是十分困难,对于一般用户也没有必要。一些设计手册提供了简化计算的图表.省去了计算的麻烦.用起来比较方便.但要是手边一时没有设计手册怎么办?下面介绍一种“口诀式”的计算方法,只要记牢7句口诀,就可掌握短路电流计算方法。 在介绍简化计算法之前必须先了解一些基本概念。 1.主要参数 Sd三相短路容量(MV A)简称短路容量校核开关分断容量 Id三相短路电流周期分量有效值(KA)简称短路电流校核开关分断电流和热稳定 IC三相短路第一周期全电流有效值(KA) 简称冲击电流有效值校核动稳定 ic三相短路第一周期全电流峰值(KA) 简称冲击电流峰值校核动稳定 x电抗(W) 其中系统短路容量Sd和计算点电抗x 是关键. 2.标么值 计算时选定一个基准容量(Sjz)和基准电压(Ujz).将短路计算中各个参数都转化为和该参数的基准量的比值(相对于基准量的比值),称为标么值(这是短路电流计算最特别的地方,目的是要简化计算). (1)基准 基准容量Sjz =100 MV A 基准电压UJZ规定为8级. 230, 115, 37, 10.5, 6.3, 3.15 ,0.4, 0.23 KV 有了以上两项,各级电压的基准电流即可计算出,例: UJZ (KV)3710.56.30.4 因为S=1.73*U*I 所以IJZ (KA)1.565.59.16144

3短路电流及其计算课后习题解析(精选、)

习题和思考题 3-1.什么叫短路?短路的类型有哪些?造成短路故障的原因有哪些?短路有哪些危害?短路电流计算的目的是什么? 答:所谓短路,就是指供电系统中不等电位的导体在电气上被短接,如相与相之间、相与地之间的短接等。其特征就是短接前后两点的电位差会发生显著的变化。 在三相供电系统中可能发生的主要短路类型有三相短路、两相短路、两相接地短路及单相接地短路。三相短路称为对称短路,其余均称为不对称短路。在供电系统实际运行中,发生单相接地短路的几率最大,发生三相对称短路的几率最小,但通常三相短路的短路电流最大,危害也最严重,所以短路电流计算的重点是三相短路电流计算。 供电系统发生短路的原因有: (1)电力系统中电气设备载流导体的绝缘损坏。造成绝缘损坏的原因主要有设备长期运行绝缘自然老化、设备缺陷、设计安装有误、操作过电压以及绝缘受到机械损伤等。 (2)运行人员不遵守操作规程发生的误操作。如带负荷拉、合隔离开关(内部仅有简单的灭弧装置或不含灭弧装置),检修后忘拆除地线合闸等; (3)自然灾害。如雷电过电压击穿设备绝缘,大风、冰雪、地震造成线路倒杆以及鸟兽跨越在裸导体上引起短路等。 发生短路故障时,由于短路回路中的阻抗大大减小,短路电流与正常工作电流相比增加很大(通常是正常工作电流的十几倍到几十倍)。同时,系统电压降低,离短路点越近电压降低越大,三相短路时,短路点的电压可能降低到零。因此,短路将会造成严重危害。 (1)短路产生很大的热量,造成导体温度升高,将绝缘损坏; (2)短路产生巨大的电动力,使电气设备受到变形或机械损坏; (3)短路使系统电压严重降低,电器设备正常工作受到破坏,例如,异步电动机的转矩与外施电压的平方成正比,当电压降低时,其转矩降低使转速减慢,造成电动机过热而烧坏; (4)短路造成停电,给国民经济带来损失,给人民生活带来不便; (5)严重的短路影响电力系统运行稳定性,使并列的同步发电机失步,造成系统解列,甚至崩溃; (6)单相对地短路时,电流产生较强的不平衡磁场,对附近通信线路和弱电设备产生严重电磁干扰,影响其正常工作。 计算短路电流的目的是: (1)选择电气设备和载流导体,必须用短路电流校验其热稳定性和动稳定性。

短路电流计算计算方法.docx

短路电流计算 > 计算方法 短路电流计算 > 计算方法短路电流计算方法一、高压短 路电流计算(标幺值法) 1、基准值 选择功率、电压、电流电抗的基准值分别为、、、时,其对应关系为: 为了便于计算通常选为线路各级平均电压;基准容量 通常选为 100MVA 。由基准值确定的标幺值分别如下: 式中各量右上标的“ * “用来表示标幺值右,下标的“ d”表示在基准值下的标幺值。 2、元件的标幺值计算 (1)电源系统电抗标幺值 —电源母线的短路容量 (2)变压器的电抗标幺值 由于变压器绕组电阻比电抗小得多,高压短路计算时 忽略变压器的绕组电阻,以变压器的阻抗电压百分数(% )

作为变压器的额定电抗,故变压器的电抗标幺值为: —变压器的额定容量,MVA (3)限流电抗器的电抗标幺值 % —电抗器的额定百分电抗—电抗器额定电压, kV —电抗器的额定电流, A (4)输电线路的电抗标幺值 已知线路电抗,当=时 —输电线路单位长度电抗值,Ω/km 3、短路电流计算 计算短路电流周期分量标幺值为 —计算回路的总标幺电抗值 —电源电压标幺值,在=时, =1 = 短路电流周期分量实际值为 = 对于电阻较小,电抗较大(<1/3 )的高压供电系统,三相短路电流冲击值=2.55三相短路电流最大有效值

=1.52 常用基准值 (=100MVA) 电网额定电压(kV ) 3.0 6.0 10.0 35.0 60.0 110 基准电压( kV ) 3.15 6.3 10.5 37 63 115 基准电流( kA ) 18.3 9.16

5.5 1.56 0.92 0.502 二、低压短路电流计算(有名值法) 1. 三相短路电流 2.两相短路电流 3.三相短路电流和两相短路电流之间的换算关系 4.总电阻和总电抗 5.系统电抗 6.高压电缆的阻抗 7.变压器的阻抗

谐波含量等计算公式

谐拨含量: 借助傅立叶级数分解法........ 求出每周波内各次谐拨含量。 按公式(2),计算每周波电压有效值j u 。 ∑== n i i j u n u 121 a) 总谐波含量: 总谐波含量的百分数= %100)()()1(2)1(2?-j j j u u u ,)1(j u ——波形中的基波含量。 b) 单次谐波含量=)50~2(%,100)1() (=?k u u j k j 偏离系数: 求出每周波的基波电压)1(j u ,并在其周波各采样点上将采样点上,将采样点上采样电压与其对应点的基波电压进行比较,取其最大偏差值,则偏差系数=%100)1(??j j u u 。 uj ?——每周波各采样点上采样电压与其对应点的基波电压之间的最大偏差值 )1(jp u ——每周波基波电压的峰值 对数个周波的偏离系数进行比较,取其最大值。 电压调制: 测取稳态时各周波的正负半波连续最大的三点电压采样值,按抛物线 插值法求出其峰值,至少采集一秒钟,共采集N 个周波。 按下述规定求取调制参数值: 电压调制参数的测试,应在电压波形的正负半波中进行,取其最大值。 电压调制量为至少一秒钟(N 个周波)同向峰值的最大与最小之差。 电压调制量=min max ][][jp jp u u - max ][jp u ——N 周波中同向峰值电压最大值 min ][jp u ——N 周波中同向峰值电压最小值

波峰系数: 每波电压有效值u ,以同一周波内连续最大的三个电压采样值,按抛物线插值法......求出其峰值电压jp u ,按公式(6)计算其波峰系数:j jp u u F = ,jp u ——每周波的峰值电压。 ∑==m j j u m u 1 21 ∑==n i i j u n u 1 21 u ——平均电压有效值 j ——采样周波数(100,~1≥=m m j ) j u ——每周波电压有效值 i ——每周波采样点数(50,~1≥=n n i ) i u ——每点电压瞬时值

电能公式和电能质量计算公式da全

电能公式和电能质量计算公式大全 电能公式 电能公式有W=Pt,W=UIt,(电能=电功率x时间) 有时也可用W=U^2t/R=I^2Rt 1度=1千瓦时=3.6*10^6焦P:电功率 W:电功 U:电压 I:电流 R:电阻 T:时间 电能质量计算公式大全 1.瞬时有效值: 刷新时间1s。

(1)分相电压、电流、频率的有效值 获得电压有效值的基本测量时间窗口应为10周波。 ①电压计算公式: 相电压有效值,式中的是电压离散采样的序列值(为A、B、C相)。 ②电流计算公式: 相电流有效值,式中的是电流离散采样的序列值(为A、B、C相)。 ③频率计算: 测量电网基波频率,每次取1s、3s或10s间隔内计到得整数周期与整数周期累计时间之比(和1s、3s或10s时钟重叠的单个周期应丢弃)。测量时间间隔不能重叠,每1s、3s或10s间隔应在1s、3s或10s时钟开始时计。 (2)有功功率、无功功率、视在功率(分相及合相)

有功功率:功率在一个周期内的平均值叫做有功功率,它是指在电路中电阻部分所消耗的功率,以字母P表示,单位瓦特(W)。 计算公式: 相平均有功功率记为,式中和分别是电压电流离散采样的序列值(为A、B、C相)。 多相电路中的有功功率:各单相电路中有功功率之和。 相视在功率 单相电路的视在功率:电压有效值与电流有效值的乘积,单位伏安(VA)或千伏安(kVA)。 多相电路中的视在功率:各单相电路中视在功率之和。 相功率因数 电压与电流之间的相位差(Φ)的余弦叫做功率因数,用符号cosΦ表示,在数值上,功率因数是有功功率和视在功率的比值,即cosΦ=P/S

短路电流计算的方法

短路电流计算的方法 一、 网络的等值变换与化简 为计算不同短路点的短路电流值,需将等值网络分别化简为以短路点为衷心的辐射性等值网络,并求出个电源与短路点之间的转移电抗md X 。 1、 网络等值变换 在工程计算中,常用等值变换法进行化简,其原则是网络变换前后,应使未变换部分的电话和电流分布保持不变,常用的如星三角变换(查相关手册)。 2、 并联电源支路的合并(图) 112212121n n z n n n E y E y E y E y y y X y y y +++?=?+++???=?+++? 二、 三相短路电流周期分量的计算 1、 求计算电抗js X 计算电抗js X 是将各电源与短路点之间的转移阻抗md X 归算到以各供电电源(等值发电机)容量为基准值的电抗标幺值。 ..e m js m md j S X X S = 2、 无限大容量电源的短路电流计算 由无限大容量电源供给的短路电流,或者计算电抗3js X ≥时的短路电流,可以认为周期分量不衰减。短路电流标幺值: ** ''*1z X I X ∑= 或 *1z js X X = 其有名值:*''0.2z z j I I I I I I ∞====(kA ) ;j S I =式中:

*X ∑:无穷大容量电源到短路点之间的总阻抗(标幺值) ; ''I :0秒的短路电流(kA ) ; I ∞:稳态的短路电流(kA ) ; 3、 有限容量电源的电路电流计算 通常采用使用运算曲线法,查表,注意折算电抗。 4、 短路点短路电流周期分量 将2、3中所求得的所有短路电流相加。 三、 三相短路电流非周期分量的计算 1、 单支路的短路电流费周期分量计算 按下述公式计算: 起始值:''0fz i = t 秒值:''0a a t T T fzt fz i i e e ω--== 其中:a X T R ∑ ∑= (衰减时间常数) 2、 多支路的短路电流非周期分量计算 复杂网络中个独立支路的衰减时间常数相差较大时,可采用多支路叠加法。衰减时间常数相近的分支可以归并简化,复杂的常仅近似化简为3~4个独立分支的等值网络,多数情况下化简为两个等值网络:系统支路(15a T ≤)和发电机支路(1580a T ≤≤)。对n 支路的系统: 起始值:''''''012)fz n i I I I =+++ t 秒值:12''''''12)a a an t t t T T T fzt n i I e I e I e ωωω---=+++ 3、 等效衰减时间常数 查表 四、 冲击电流和全电流计算 1、冲击电流 三相短路发生后的半个周期(0.01s ),短路电流瞬时值达到最大,称

电路分析基础谐波分析法

电路分析基础谐波分析法 本章实训谐波分析法的验证 实训任务引入和介绍 在电路分析的应用过程中~遇到非正弦周期电流电路的情况并不少见。有时候~电流波形非常简单,如矩形波、三角波等,~可以通过简单的计算得出其有效值、平均值及平均功率,但有时候非正弦周期电流的波形非常复杂~那么通过谐波分析法来进行电路分析就显得尤为重要。本次实训我们就以一个简单的电路为基础~通过简单的理论计算和实际测量的结合来验证谐波分析法。 实训目的 1.掌握非正弦周期电流电路的测量方法, 2.理解谐波分析法的基本原理, 3.学会用谐波分析法进行简单的电路分析。 实训条件 100V直流电源、150V/50Hz交流电源、100V/100Hz交流电源、功率计、 R=10Ω、L=1H、 3C=1.11*10uF、电压表、电流表。 操作步骤 (1)连接电路。 如图5-12所示,将在直流、交流电源串联,根据叠加定理,可以知道电路中的电流为非正弦周期电流,且该信号可以分解为100V直流、150V/50Hz交流、100V/100Hz电源给出的信号。

图5-12 实训电路 (2)理论计算。 已知: U,100,150sin,t,100sin(2,t,90:)V s R,10, 1X,,90,, c,C X,,L,10, L ? 直流分量作用于电路时,电感相当于短路,电容相当于开路。故有: I,0,U,0,P,0000 ? 一次谐波作用于电路时,有: 150 U,,0:Vs12 150,0:U2s1 I,,,1.32,82.9:A1R,j(X,X)10,j(10,90)L1C1 U,1.31,82.9:(10,j10),18.5,127.9:V1 ? 二次谐波作用于电路时,有: 100,,90:U2s2 I,,,2.63,,21.8:A2R,j(X,X)10,j(20,45)L2C2 U,2.63,,21.8:(10,j20),58.8,41.6:V2

谐波分析方法对比

谐波分析方法对比 随着用电设备的多样化和复杂化,线路中谐波的成分也变得越来越丰富,谐波污染的治理问题也变得越来越棘手,许多仪器也相应推出了谐波测量功能,我们该如何区分这些谐波的测量方法并正确地使用他们进行谐波测量呢?本文将进行“深究”。 在很多人认识里,只有使用同步采样才能进行精确的谐波分析,其实采用非同步采样同样能进行谐波分析,而且在许多情况下甚至比同步采样法更优秀。PA功率分析仪提供了常规谐波、谐波和IEC谐波三种谐波测量模式,支持同步和非同步的谐波分析,将两种分析方式互补使用可提高谐波的分析能力。下面通过其计算方法的简单,结合实例讨论三种谐波模式的使用。 谐波测量基本原理 目前最常用的谐波分析方法是使用傅里叶变换,将时域的离散信号进行傅里叶级数展开,得到离散的频谱,从离散的频谱中挑选出各次谐波对应的谱线,计算得出谐波各项参数。 在实际实现时,由于离散傅里叶变换存在“栅栏效应”,采样频率不为基波的整数倍时,部分谐波可能不在离散傅里叶变换后的离散频率点上,需要使用特殊的手段将栅栏空隙对准我们关心的谐波频率点。其中同步采样法和频率重心法使用最为广泛。 同步采样法 顾名思义,就是使采样频率与基波频率同步改变。该方法从源头上保证数据的采样频率为基波频率的整数倍,如IEC 61000-4-7标准就规定50Hz使用10倍基波采样率,采样数据经离散傅里叶变换即可得到各次谐波分量。同步采样常用硬件PLL实现,需要实时调整采样频率,频率的锁定需要时间,受限于滤波器及相关器件,很难做到很宽的频域,也很难保证频谱特别丰富时的准确性。 频率重心法 使用足够高的采样频率(一般大于4倍基波频率)即可满足直接对信号进行采样,将信号的频谱间隔拉开,并且使用更多周期的数据点做离散傅里叶变换,降低频谱泄露的影响。最后根据窗函数的功率谱分布特性,通过频谱的谱峰和次谱峰,找到真正的谱峰频点——即离散频谱的谱峰和次谱峰的重心。通过频率重心法消除了栅栏效应的影响,对各次谐波使用重心法,还得到一个偏离系数,使用该系数配合窗函数功率谱,可求解得到对应频点的相位和幅值等信息。至此,非同步采样法同样得到了各次谐波。受限于窗函数的频谱特性,该法

三相桥式整流电路中谐波电流的计算新方法

三相桥式整流电路中谐波电流的计算新方法 李槐树李朗如 摘要提出了一种实用的新方法来计算三相桥式整流器所产生的谐波电流。本方法考虑了交流侧电抗及电网中存在的谐波电压,导出了交直流两侧谐波电流的计算公式。计算与实测结果表明,本方法准确实用。 关键词:三相桥式整流器波形畸变谐波电流谐波电压计算 A New Method to Calculate Harmonic Currents in A Three-Phase Bridge Rectifier Li Huaishu Li Langru (Huazhong University of Science and Technology 430074 China) Abstract This paper presents a new method to calculate the harmonic currents on both DC and AC sides in a three-phase bridge rectifier operating under pre-existing voltage distortion.The proposed method,which takes into account the AC side reactances and harmonic voltages already existing in AC network,gives out the calculating equations of DC and AC sides harmonic currents.Some practical rectifier circuits are calculated and carefully tested.The calculated results show that the proposed method is more accurate and more practical. Keywords:Three-phase bridge rectifier Voltage distortion Harmonic current Harmonic voltage Calculation 1 引言 电力系统中三相桥式整流器的使用极为广泛,由此引起的谐波电流也成了人们日益关注的问题。安置滤波器是减小谐波电流的有效措施,然而多数滤波器的设计要求对整流器所产生的谐波电流进行计算。计算结果愈准确,所设计的滤波器的效果也就愈佳。 通过对整流电路的分析而精确地计算谐波电流往往比较困难,时间仿真有时可以获得较为准确的结果,但需要复杂的仿真程序。所以在一定的假设条件下,近似地估算谐波电流成了工程技术人员普遍采用的方法。文献[3]对几种近似方法所产生的误差作了比较性研究,文献[4,5]中所提出的近似方法,提高了计算的准确性,但仅与仿真结果作了比较。而且各种近似方法均假设交流电网中的电压波形为标准正弦的。然而实际电网中,由于非线性负载的大量使用,会含有不可忽视的高次谐波电压。 本文对接入电压波形畸变的电网中的三相桥式整流电路进行了分析,提出了一近似方法来计算其交直流两侧的谐波电流。对实际整流电路在接入电压波形畸变率不同的电网时所产生的谐波电流进行了计算,

EMC电源谐波整改

LED电源总谐波失真(THD)分析及对策 1.总谐波失真 THD 与功率因数 PF 的关系 市面上很多的 LED 驱动电源,其输入电路采用简单的桥式整流器和电解电容器的整流滤波电路,见图 1. 图1 该电路只有在输入交流电压的峰值附近,整流二极管才出现导通,因此其导通角θ比较小,大约为 60°左右,致使输入电流波形为尖状脉冲,脉宽约为 3ms,是半个周期(10ms)的 1/3.输入电压及电流波形如图 2 所示。由此可见,造成 LED 电源输入电流畸变的根本原因是使用了直流滤波电解电容器的容性负载所致。 图2 对于 LED 驱动电源输入电流产生畸变的非正弦波,须用傅里叶(Fourier)级数描

述。根据傅里叶变换原理,瞬时输入电流可表为: 式中,n 是谐波次数,傅里叶系数 an 和 bn 分别表为: 每一个电流谐波,通常会有一个正弦或余弦周期,n 次谐波电流有效值 In 可用下式计算: 输入总电流有效值 上式根号中,I1 为基波电流有效值,其余的 I2,3,分别代表 2,3,… n 次谐波电流有效值。用基波电流百分比表示的电流总谐波含量叫总谐波失真(THD) ,总谐波含量反映了波形的畸变特性,因此也叫总谐波畸变率。定义为 根据功率因数 PF 的定义,功率因数 PF 是指交流输入的有功功率 P 与输入视在功率 S 之比值,即

其中,为输入电源电压; U cosΦ1 叫相移因数,它反映了基波电流 i1 与电压 u 的相位关系,Φ1 是基波相移角;输入基波电流有效值 I1 与输入总电流有效值Irms 的百分比即 K=I1 / Irms 叫输入电流失真系数。上式表明,在 LED 驱动电源等非线性的开关电源电路中,功率因数 PF 不仅与基波电流 i1 电压 u 之间的相位有关,而且还与输入电流失真系数 K 有关。将式(6)代入式(7) ,则功率因数 PF 与总谐波失真 THD 有如下关系: 上式说明,在相移因数 cosΦ1 不变时,降低总谐波失真 THD,可以提高功率因数 PF;反之也能说明, PF 越高则 THD 越小。例如,通过计算,当相移角Φ1=0 时,THD=30% @ PF=0.9578;THD=10% @ PF=0.9950. 2.谐波测量与分析 为了很好地分析如图 1 所示的 LED 驱动电源的谐波含量,介绍一种使用示波器测量输入电流的方法。先在电源输入回路串接一个 10-20W 或以上的大功率电阻如 R=10 OHM,通电后测量大功率电阻上两端的电压波形,由于纯功率电阻上两端的电压与电流始终是同相位,因此电阻上的脉冲电压波形亦即代表了输入电流的脉冲波形,但数值大小不同。由波形显示可知,其脉冲电流 i(t)与图 2 的电流波形是一致的,见图3. 图3 此电流脉冲波近似于余弦脉冲波,因此可用余弦脉冲函数表为:

电机常用计算公式和说明

电机电流计算: 对于交流电三相四线供电而言,线电压是380,相电压是220,线电压是根号3相电压 对于电动机而言一个绕组的电压就是相电压,导线的电压是线电压(指A相 B相 C相之间的电压,一个绕组的电流就是相电流,导线的电流是线电流 当电机星接时:线电流=相电流;线电压=根号3相电压。三个绕组的尾线相连接,电势为零,所以绕组的电压是220伏 当电机角接时:线电流=根号3相电流;线电压=相电压。绕组是直接接380的,导线的电流是两个绕组电流的矢量之和 功率计算公式 p=根号三UI乘功率因数是对的 用一个钳式电流表卡在A B C任意一个线上测到都是线电流 极对数与扭矩的关系 n=60f/p n: 电机转速 60: 60秒 f: 我国电流采用50Hz p: 电机极对数 1对极对数电机转速:3000转/分;2对极对数电机转速:60×50/2=1500转/分在输出功率不变的情况下,电机的极对数越多,电机的转速就越低,但它的扭矩就越大。所以在选用电机时,考虑负载需要多大的起动扭距。 异步电机的转速n=(60f/p)×(1-s),主要与频率和极数有关。 直流电机的转速与极数无关,他的转速主要与电枢的电压、磁通量、及电机的结构有关。n=(电机电压-电枢电流*电枢电阻)/(电机结构常数*磁通)。 扭矩公式 T=9550*P输出功率/N转速 导线电阻计算公式: 铜线的电阻率ρ=0.0172, R=ρ×L/S (L=导线长度,单位:米,S=导线截面,单位:m㎡) 磁通量的计算公式: B为磁感应强度,S为面积。已知高斯磁场定律为:Φ=BS 磁场强度的计算公式:H = N × I / Le 式中:H为磁场强度,单位为A/m;N为励磁线圈的匝数;I为励磁电流(测量值),单位位A;Le为测试样品的有效磁路长度,单位为m。 磁感应强度计算公式:B = Φ / (N × Ae)B=F/IL u磁导率 pi=3.14 B=uI/2R 式中:B为磁感应强度,单位为Wb/m^2;Φ为感应磁通(测量值),单位为Wb;N为感应线圈的匝数;Ae为测试样品的有效截面积,单位为m^2。 感应电动势 1)E=nΔΦ/Δt(普适公式){法拉第电磁感应定律,E:感应电动势(V),n:感应线圈匝数,ΔΦ/Δt:磁通量的变化率} 磁通量变化率=磁通量变化量/时间磁通量变化量=变化后的磁通量-变化前的磁通量 2)E=BLV垂(切割磁感线运动){L:有效长度(m)} 3)Em=nBSω(交流发电机最大的感应电动势){Em:感应电动势峰值} 4)E=BL2ω/2(导体一端固定以ω旋转切割){ω:角速度(rad/s),V:速度(m/s)}

相关文档