文档库 最新最全的文档下载
当前位置:文档库 › 用TA8427K代换TDA3654

用TA8427K代换TDA3654

用TA8427K代换TDA3654
用TA8427K代换TDA3654

用TA8427K代换TDA3654

用TA8427K代换TDA3654的方法(参考长虹彩电NC-3/NC-6/NC-7,NC-9) TA8403和TDA3653适合21寸以下,TA8427K 和TDA3654使用25寸以上

A. 将TA8427K①脚通过引线接入原TDA3654的②脚或④脚;

B. 将TA8427K②脚通过引线接入原TDA3654的⑤脚;

C. 将TA8427K③脚通过引线接入原TDA3654的⑥脚;

D.将TA8427K④脚通过引线接入原TDA3654的①脚或③脚;

E. 将TA8427K⑤脚通过1000PF瓷片电容接场输出电路的地;

F.将TA8427K⑥脚通过引线接入原TDA3654的⑨脚;

G.将TA8427K⑦脚通过引线接入原TDA3654的⑧脚;

将C304(输入滤波电容)由原来的470PF或1000PF改为330PF;

将C313(升压电容)由原来的100UF改为220UF

将R305(偏转阻尼电阻)由原来的1W/390Ω改为1W/270Ω

有的彩电场供电为30V(如长虹2965A)。使用TA8427K的时候需要改为27V供电

直接用原TDA3654的散热片的孔固定TA8427K;通电试机,并微调场幅电位器RP310,或进总线调整。使场幅达到最佳即可

等量代换法习题

等量代换法习题 练习一: 1、如果1个梨的重量等于2个苹果的重量,1个苹果的重量等于3个桃的重量。问一个梨的重量等于几个桃的重量? 2、如果1个菠萝的重量等于6个苹果的重量,同时又等2根香蕉的重量。问一根香蕉的重量等于几个苹果的重量? 3、如果1个足球相当于2个排球的重量,一个排球相当于20个乒乓球的重量,假设一个乒乓球重8克,那么一个足球重多少克? 4、1只猴子等于2只兔子的重量,1只兔子的重量等于3只小鸡的重量。已知每只小鸡重200克。1只猴子重多少克? 练习二: 1、1只兔子的重量+1只猴子的重量=8只鸡的重量 3只兔子的重量=9只鸡的重量 1只猴子的重量=()只鸡的重量 2、1只松鼠的重量+1只兔子的重量=5只鸭的重量

2只松鼠的重量=6只鸭的重量 1只兔子的重量=()只鸭的重量 3、用3个鹅蛋可换9个鸡蛋,2个鸡蛋可换4个鸽子蛋,用5个鹅蛋能换多少个鸽子蛋? 4、20只桃子可换2只香瓜,9只香瓜可换3只西瓜,8只西瓜可换多少只桃子? 5、2头小猪可换4只羊,3只羊可换6只兔子,3头猪可换几只兔子? 练习三: 1、1个苹果的重量+1个桃子的重量+1个菠萝的重量=630克 1个桃子的重量+1个菠萝的重量+1个梨的重量=730克 1个苹果的重量+1个桃子的重量+1个梨的重量=330克 1个苹果的重量+1个菠萝的重量+1个梨的重量=800克 求这四种水果各多少克? 2、1只鸡的重量+1只猴的重量=15千克 1只鸭的重量+1只猴的重量=18千克 1只鸡的重量+1只鸭的重量=13千克 求这三种动物各多少千克? 3、1筐苹果的重量+1筐橘子的重量=90千克 1筐香蕉的重量+1筐橘子的重量=140千克 1筐苹果的重量+1筐香蕉的重量=150千克 求这三种水果各多少千克/ 4、红气球的个数+蓝气球的个数+绿气球的个数=35只 白气球的个数+蓝气球的个数+绿气球的个数=43只 红气球的个数+白气球的个数+绿气球的个数=33只 红气球的个数+蓝气球的个数+白气球的个数=48只 求这四种气球各有多少只? 1、3包巧克力的价钱等于两袋糖的价钱,12袋牛肉干的价钱等于3包巧克力的价钱,一袋糖的价钱等于几 袋牛肉干的价钱? 2、一只小猪的重量等于8只鸡的重量,4只鸡的重量等于6只鸭的重量。2只鸭的重量等于6条鱼的重量。 问两只小猪的重量等于几条鱼的重量? 3、一只菠萝的重量等于4根香蕉的重量,两只梨子的重量等于一只菠萝的重量,一只梨子的重量等于几根 香蕉的重量?

(完整版)天体运动总结

天体运动 总结 一、处理天体运动的基本思路 1.利用天体做圆周运动的向心力由万有引力提供,天体的运动遵循牛顿第二定律求解,即G Mm r 2=ma ,其中a =v 2r =ω2r =(2π T )2r ,该组公式可称为“天上”公式. 2.利用天体表面的物体的重力约等于万有引力来求解,即G Mm R 2=m g ,gR2=GM ,该公式通常被称为黄金代 换式.该式可称为“人间”公式. 合起来称为“天上人间”公式. 二、对开普勒三定律的理解 开普勒行星运动定律 1.所有行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上。 2.对任意一个行星来说,它与太阳的连线在相等的时间内扫过相等的面积。 3.所有行星的轨道的半长轴的三次方跟它的公转周期的二次方的比值都相等.此比值的大小只与有关,在不 同的星系中,此比值是不同的.(R 3 T 2=k ) 1.开普勒第一定律说明了不同行星绕太阳运动时的椭圆轨道是不同的,但有一个共同的焦点. 2.行星靠近太阳的过程中都是向心运动,速度增加,在近日点速度最大;行星远离太阳的时候都是离心运动,速度减小,在远日点速度最小. 3.开普勒第三定律的表达式为a 3 T 2=k ,其中a 是椭圆轨道的半长轴,T 是行星绕太阳公转的周期,k 是一个常量,与行星无关但与中心天体的质量有关. 三、开普勒三定律的应用 1.开普勒定律不仅适用于行星绕太阳的运转,也适用于卫星绕地球的运转. 2.表达式a 3 T 2=k 中的常数k 只与中心天体的质量有关.如研究行星绕太阳运动时, 常数k 只与太 阳的质量有关,研究卫星绕地球运动时,常数k 只与地球的质量有关. 四、太阳与行星间的引力 1.模型简化:行星以太阳为圆心做匀速圆周运动,太阳对行星的引力提供了行星做匀速圆周运一、太阳与行星间的引力 2.万有引力的三个特性 (1)普遍性:万有引力不仅存在于太阳与行星、地球与月球之间,宇宙间任何两个有质量的物体之间都存在着这种相互吸引的力. (2)相互性:两个有质量的物体之间的万有引力是一对作用力和反作用力,总是满足牛顿第三定律. (3)宏观性:地面上的一般物体之间的万有引力很小,与其他力比较可忽略不计,但在质量巨大的天体之间或天体与其附近的物体之间,万有引力起着决定性作用.

重点高中物理天体运动知识

重点高中物理天体运动 知识 文件编码(GHTU-UITID-GGBKT-POIU-WUUI-8968)

“万有引力定律”习题归类例析 万有引力定律部分内容比较抽象,习题类型较多,不少学生做这部分习题有一种惧怕感,找不着切入点.实际上,只要掌握了每一类习题的解题技巧,困难就迎刃而解了.下面就本章的不同类型习题的解法作以归类分析. 一、求天体的质量(或密度) 1.根据天体表面上物体的重力近似等于物体所受的万有引力,由天体表面上的重力加速度和天体的半径求天体的质量 由mg=G得.(式中M、g、R分别表示天体的质量、天体表面的重力加速度和天体的半径.) [例1]宇航员站在一星球表面上的某高处,沿水平方向抛出一小球,经过时间t,小球落在星球表面,测得抛出点与落地点之间的距离为L,若抛出时的初速度增大到2倍,则抛出点与落地点间的距离为L,已知两落地点在同一水平面上,该星球的半径为R,引力常量为G,求该星球的质量M和密度ρ. [解析]此题的关键就是要根据在星球表面物体的运动情况求出星球表面的重力加速度,再根据星球表面物体的重力等于物体受到的万有引力求出星球的质量和星球的密度. 根据平抛运动的特点得抛出物体竖直方向上的位移为 设初始平抛小球的初速度为v,则水平位移为x=vt.有○1 当以2v的速度平抛小球时,水平位移为x'=2vt.所以有② 在星球表面上物体的重力近似等于万有引力,有mg=G③ 联立以上三个方程解得 而天体的体积为,由密度公式得天体的密度为。 2.根据绕中心天体运动的卫星的运行周期和轨道半径,求中心天体的质量

卫星绕中心天体运动的向心力由中心天体对卫星的万有引力提供,利用牛顿第二定律得若已知卫星的轨道半径r和卫星的运行周期T、角速度或线速度v,可求得中心天体的质量为 [例2]下列几组数据中能算出地球质量的是(万有引力常量G是已知的)() A.地球绕太阳运行的周期T和地球中心离太阳中心的距离r B.月球绕地球运行的周期T和地球的半径r C.月球绕地球运动的角速度和月球中心离地球中心的距离r D.月球绕地球运动的周期T和轨道半径r [解析]解此题关键是要把式中各字母的含义弄清楚,要区分天体半径和天体圆周运动的轨道半径.已知地球绕太阳运行的周期和地球的轨道半径只能求出太阳的质量,而不能求出地球的质量,所以A项不对.已知月球绕地球运行的周期和地球的半径,不知道月球绕地球的轨道半径,所以不能求地球的质量,所以B项不对.已知月球绕地球运动的角速度和轨道半径,由可以求出中心天体地球的质量,所以C项正确.由求得地球质量为,所以D 项正确. 二、人造地球卫星的运动参量与轨道半径的关系问题 根据人造卫星的动力学关系 可得 由此可得线速度v与轨道半径的平方根成反比;角速度与轨道半径的立方的平方根成反比,周期T与轨道半径的立方的平方根成正比;加速度a与轨道半径的平方成反比.[例3两颗人造卫星A、B绕地球做圆周运动,周期之比为,则轨道半径之比和运动速率之比分别为() A. B.

(完整版)活用割补法求面积1

在组合图形中,除了多边形外,还有由圆、扇形、弓形与三角形、矩形、平行四边形、梯形等图形组合而成的不规则图形,为了计算它们的面积,常常需要变动图形的位置或对图形进行分割、旋转、拼补,使它变成可以计算出面积的规则图形。就是在多边形的组合图形中,为了计算面积,有时也要用到割补的方法。 例1求下列各图中阴影部分的面积: 分析与解:(1)如左下图所示,将左下角的阴影部分分为两部分,然后按照右下图所示,将这两部分分别拼补在阴影位置。可以看出,原题图的阴影部分等于右下图中AB 弧所形成的弓形,其面积等于扇形OAB与三角形OAB的面积之差。 π×4×4÷4-4×4÷2=4.56。 (2)在题图虚线分割的两个正方形中,右边正方形的阴影部分是半径为5的四分之一个圆,在左边正方形中空白部分是半径为5的四分之一个圆。 如下图所示,将右边的阴影部分平移到左边正方形中。可以看出,原题图的阴影部分正好等于一个正方形的面积,为5×5=25。

例2在一个等腰三角形中,两条与底边平行的线段将三角形的两条边等分成三段(见右图),求图中阴影部分的面积占整个图形面积的几分之几。 分析与解:阴影部分是一个梯形。我们用三种方法解答。 (1)割补法 从顶点作底边上的高,得到两个相同的直角三角形。将这两个直角三角 (2)拼补法 将两个这样的三角形拼成一个平行四边形(下页左上图)。 积和平行四边行面积同时除以2,商不变。所以原题阴影部分占整个图形面

(3)等分法 将原图等分成9个小三角形(见右上图),阴影部分占3个小三角形, 注意,后两种方法对任意三角形都适用。也就是说,将例题中的等腰三角形换成任意三角形,其它条件不变,结论仍然成立。 例3如左下图所示,在一个等腰直角三角形中,削去一个三角形后,剩下一个上底长5厘米、下底长9厘米的等腰梯形(阴影部分)。求这个梯形的面积。 分析与解:因为不知道梯形的高,所以不能直接求出梯形的面积。可以从等腰直角三角形与正方形之间的联系上考虑。将四个同样的等腰直角三角形拼成一个正方形(上页右下图),图中阴影部分是边长9厘米与边长5厘米的两个正方形面积之差,也是所求梯形面积的4倍。所以所求梯形面积是(9×9-5×5)÷4=14(厘米2)。 例4在左下图的直角三角形中有一个矩形,求矩形的面积。

天体运动_规律

确定研究对象解题 -----高中物理必修2第六章万有引力与航天的题型归纳 高中物理必修2第六章万有引力与航天是第五章曲线运动在天体运动学的运用与升华,本章知识点较多,研究对象多,导致学生掌握困难。在教学中,笔者发现只要指导好学生认清楚题目的研究对象,就能突破学生在学习,解题中无从下手或者下手就错的现象。 本章按照研究对象分类可以分为以下几类:a,放在极地的物体;b,赤道上的物体;c,近地卫星(过赤道的,过极地的,一般的);d,同步卫星;e,一般卫星(月亮);f,双星a,放在极地的物体 放在极地的物体只受万有引力和地面的支持力,它的受力如图所示,它的运动状态相对于地球来说是静止的,所以受力平衡。有因为物体所受的重力就 是物体对地面的压力所有又有 即 把本公式化简就可以得到万能代换公式 b,放在赤道的物体 放在赤道的物体,跟地面保持相对静止,但是它随地球一起自转,所以它做匀速圆周运动,受力如图所示,它受到的合外力应该提供向心力。 有 其中,所以 说重力只是万有引力的一个分力,另外一个分力就是用来提供向心力了。在不是赤道和极地的位置,万有引力是指向球心的,而所需要的向心力指向圆心(并不重合),所以我们说重力是竖直向下的,而不能说重力也是指向球心的。考虑实际情况,在地球上,因为向心加速度过小只有a=0.034m/s2,所以有时候可以忽略不计。但是在有些自转比较快的星球上,这个向心加速度就不可以忽略了。 c,近地卫星 近地卫星首先是一个卫星,那么它肯定在做匀速圆周运动, 而且万有引力提供向心力。 有公式 这个公式最重要的一点,因为近地卫星它的高度很低所以可以忽略,那么近地卫星的轨道半径就等于地球的半径。它的运动轨迹的圆心是地球的球心,所以它可能好几种情况,一是在赤道上空,二是过极地,三是一般的情况。又因为万能公式,所以又可以得到

_用等量代换求面积的方法

用等量代换求面积的方法 一个量可以用它的等量来代替;被减数和减数都增加(或减少)同一个数,它们的差不变。前者是等量公理,后者是减法的差不变性质。这两个性质在解几何题时有很重要的作用,它能将求一个图形的面积转化为求另一个图形的面积,或将两个图形的面积差转化为另两个图形的面积差,从而使隐蔽的关系明朗化,找到解题思路。 例1两个相同的直角三角形如下图所示(单位:厘米)重叠在一起,求阴影部分的面积。 分析与解:阴影部分是一个高为3厘米的直角梯形,然而它的上底与下底都不知道,因而不能直接求出它的面积。因为三角形ABC与三角形DEF完全相同,都减去三角形DOC后,根据差不变性质,差应相等,即阴影部分与直角梯形OEFC面积相等,所以求阴影部分的面积就转化为求直角梯形OEFC的面积。直角梯形OEFC的上底为10-3=7(厘米),面积为(7+10)×2÷2=17(厘米2)。 所以,阴影部分的面积是17厘米2。 例2在右图中,平行四边形ABCD的边BC长10厘米,直角三角形ECB的直角边EC 长8厘米。已知阴影部分的总面积比三角形EFG的面积大10厘米2,求平行四边形ABCD 的面积。 分析与解:因为阴影部分比三角形EFG的面积大10厘米2,都加上梯形FGCB后,根据差不变性质,所得的两个新图形的面积差不变,即平行四边行ABCD比直角三角形ECB的面积大10厘米2,所以平行四边形ABCD的面积等于 10×8÷2+10=50(厘米2)。 例3在右图中,AB=8厘米,CD=4厘米,BC=6厘米,三角形AFB比三角形EFD的面积大18厘米2。求ED的长。

分析与解:求ED的长,需求出EC的长;求EC的长,需求出直角三角形ECB的面积。因为三角形AFB比三角形EFD的面积大18厘米2,这两个三角形都加上四边形FDCB后,其差不变,所以梯形ABCD比三角形ECB的面积大18厘米2。也就是说,只要求出梯形ABCD 的面积,就能依次求出三角形ECB的面积和EC的长,从而求出ED的长。 梯形ABCD面积=(8+4)×6÷2=36(厘米2), 三角形ECB面积=36-18=18(厘米2), EC=18÷6×2=6(厘米), ED=6-4=2(厘米)。 例4 下页上图中,ABCD是7×4的长方形,DEFG是10×2的长方形,求三角形BCO 与三角形EFO的面积之差。 分析:直接求出三角形BCO与三角形EFO的面积之差,不太容易做到。如果利用差不变性质,将所求面积之差转化为另外两个图形的面积之差,而这两个图形的面积之差容易求出,那么问题就解决了。 解法一:连结B,E(见左下图)。三角形BCO与三角形EFO都加上三角形BEO,则原来的问题转化为求三角形BEC与三角形BEF的面积之差。所求为4×(10-7)÷2-2×(10-7)÷2=3。 解法二:连结C,F(见右上图)。三角形BCO与三角形EFO都加上三角形CFO,则原来的问题转化为求三角形BCF与三角形ECF的面积之差。所求为4×(10-7)÷2-2×(10-7)÷2=3。

(精)解决天体运动问题的方法

解决天体运动问题的方法 一、基本模型 计算天体间的万有引力时,将天体视为质点,天体的全部质量集中于天体的中心;一天体绕另一天体的稳定运行视为匀速圆周运动;研究天体的自转运动时,将天体视为均匀球体。 二、基本规律 1.天体在轨道稳定运行时,做匀速圆周运动,具有向心加速度,需要向心力。所需向心力由中心天体对它的万有引力提供。设质量为m的天体绕质量为M的天体,在半径为r的轨道上以速度v匀速圆周运动,由 牛顿第二定律及万有引力定律有:。这就是分析与求解天体运行问题的基本关系式,由 于有线速度与角速度关系、角速度与周期关系,这一基本关系式还可表示 为:或。 2.在天体表面,物体所受万有引力近似等于所受重力。设天体质量为M,半径为R,其表面的重力加速度 为g,由这一近似关系有:,即。这一关系式的应用,可实现天体表面重力加 速度g与的相互替代,因此称为“黄金代换”。 3.天体自转时,表面各物体随天体自转的角速度相同,等于天体自转角速度,由于赤道上物体轨道半径最 大,所需向心力最大。对于赤道上的物体,由万有引力定律及牛顿第二定律 有:,式中N为天体表面对物体的支持力。如果天体自转角速度过大,赤道上的 物体将最先被“甩”出,“甩”出的临界条件是:N=0,此时有:,由此式可以计算天 体不瓦解所对应的最大自转角速度;如果已知天体自转的角速度,由 及可计算出天体不瓦解的最小密度。 三、常见题型 1.估算天体质量问题

由关系式可以看出,对于一个天体,只要知道了另一天体绕它运行的轨道半径及周 期,可估算出被绕天体的质量。 例1.据媒体报道,嫦娥一号卫星环月工作轨道为圆轨道,轨道高200km,运行周期为127分钟。若还知道引力常量和月球半径,仅利用以上条件不能求出的是 A.月球表面的重力加速度B.月球对卫星的吸引力 C.卫星绕月运行的速度D.卫星绕月运行的加速度 解析:设月球质量为M,半径为R,月面重力加速度为g,卫星高度为h,运行周期为T,线速度为v,加速度为a,月球对卫星的吸引力为F。 对于卫星的绕月运行,由万有引力定律及牛顿第二定律有:,由此式可 求知月球的质量M。由“黄金代换”有:,由这两式可求知月面重力加速度g。由线速度 的定义式有:,由此式可求知卫星绕月运行的速度。由万有引力定律及牛顿第二定律 有:,由此式可求知绕月运行的加速度。由万有引力定律有:,由于不知也不可求知卫星质量m,因此,不能求出月球对卫星的吸引力。故,本题选B。 2.估算天体密度问题 若已知天体的近“地”卫星(卫星轨道半径等于天体半径)的运行周期,可以估算出天体的密度。 例2.天文学家新发现了太阳系外的一颗行星。这颗行星的体积是地球的4.7倍,质量是地球的25倍。已知某一近地卫星绕地球运动的周期约为1.4小时,引力常量G=6.67×10-11N·m2/kg2,由此估算该行星的平均密度约为 A.1.8×103kg/m3 B.5.6×103kg/m3 C.1.1×104kg/m3 D.2.9×104kg/m3 解析:对于近地卫星饶地球的运动有:,而,代入已知数据解得: ρ=2.9×104kg/m3。本题选D 3.运行轨道参数问题 对于做圆周运动的天体,若已知它的轨道半径,可以计算它的运行线速度、角速度、周期等运行参数,并且可以看出,这些参数取决于轨道半径。 例3.最近,科学家在望远镜中看到太阳系外某一恒星有一行星,并测得它围绕该恒星运动一周所用的时间为1200年,它与该恒星的距离为地球到太阳距离的100陪。假定该行星绕恒星运行的轨道和地球绕太阳运行的轨道都是圆周,仅利用以上两个数据可以求出的量有 A.恒星质量与太阳质量之比 B.恒星密度与太阳密度之比 C.行星质量与地球质量之比 D.行星运行速度与地球公转速度之比

高考物理天体运动公式归纳

高考物理天体运动公式归纳 高考物理天体运动公式 1.开普勒第三定律:T2/R3=K(=4π2/GM){R:轨道半径,T:周期,K:常量(与行星质量无关,取决于中心天体的质量)} 2.万有引力定律:F=Gm1m2/r2 (G=6.67×10-11Nm2/kg2,方向在它们的连线上) 3.天体上的重力和重力加速度:GMm/R2=mg;g=GM/R2 {R:天体半径(m),M:天体质量(kg)} 4.卫星绕行速度、角速度、周期:V=(GM/r)1/2; ω=(GM/r3)1/2;T=2π(r3/GM)1/2{M:中心天体质量} 5.第一(二、三)宇宙速度V1=(g地r地)1/2=(GM/r 地)1/2=7.9km/s;V2=11.2km/s;V3=16.7km/s 6.地球同步卫星GMm/(r地+h)2=m4π2(r地 +h)/T2{h≈36000km,h:距地球表面的高度,r地:地球的半径} 强调:(1)天体运动所需的向心力由万有引力提供,F向=F 万;(2)应用万有引力定律可估算天体的质量密度等; (3)地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同; (4)卫星轨道半径变小时,势能变小、动能变大、速度变大、周期变小;(5)地球卫星的最大环绕速度和最小发射速度均为7.9km/s。

高考物理分子动理论、能量守恒定律公式 1.阿伏加德罗常数NA=6.02×1023/mol;分子直径数量级10-10米 2.油膜法测分子直径d=V/s{V:单分子油膜的体积(m3),S:油膜表面积(m)2} 3.分子动理论内容:物质是由大量分子组成的;大量分子做无规则的热运动;分子间存在相互作用力。 4.分子间的引力和斥力(1)r (2)r=r0,f引=f斥,F分子力=0,E分子势能=Emin(最小值) (3)r>r0,f引>f斥,F分子力表现为引力 (4)r>10r0,f引=f斥≈0,F分子力≈0,E分子势能≈0 5.热力学第一定律W+Q=ΔU{(做功和热传递,这两种改变物体内能的方式,在效果上是等效的), W:外界对物体做的正功(J),Q:物体吸收的热量(J),ΔU:增加的内能(J),涉及到第一类永动机不可造出〔见第二册 P40〕} 6.热力学第二定律 克氏表述:不可能使热量由低温物体传递到高温物体,而不引起其它变化(热传导的方向性); 开氏表述:不可能从单一热源吸收热量并把它全部用来

万有引力与天体运动--最全讲义

万有引力与天体运动讲义 [本章要点综述] 1.开普勒第三定律:行星轨道半长轴的三次方与公转周期的二次方的比值是一个常量。 3 2r k T = (K 值只与中心天体的质量有关) 2.万有引力定律: 12 2m r F G m =? 万 (1)赤道上万有引力:F mg F mg ma =+=+引向向 (g a 向和是两个不同的物理量,) (2)两极上的万有引力:F mg =引 3.忽略地球自转,地球上的物体受到的重力等于万有引力。 2 2 GMm mg GM gR R =?=(黄金代换) 4.距离地球表面高为h 的重力加速度: () ()() 2 2 2 GMm GM mg GM g R h g R h R h '''=?=+?= ++ 5.卫星绕地球做匀速圆周运动:万有引力提供向心力 2 G M m F F r ==万向 (1) 22 GMm GM ma a r r =?= (轨道处的向心加速度a 等于轨道处的重力加速度g 轨) (2)22Mm v G m r r =得 ∴r 越大,v 22 GMm v GM m v r r r =?= (3)由22Mm G m r r ω=得 ∴r 越大,ω 2 23 GMm GM m r r r ωω=?= (4)由 2224Mm G m r r T π=得 ∴r 越大,T 2 23224GMm r m r T r T GM ππ?? =?= ??? 6.中心天体质量的计算: 方法1:2 2gR GM gR M G =?= (已知R 和g ) 方法2:2GM v r v M r G =?= (已知卫星的V 与r ) 方法3:233GM r M r G ωω=?= (已知卫星的ω与r )

小学奥数割补法、差不变原理求面积

分割法 在组合图形中,除了多边形外,还有由圆、扇形、弓形与三角形、矩形、平行四边形、梯形等图形组合而成的不规则图形,为了计算它们的面积,常常需要变动图形的位置或对图形进行分割、旋转、拼补,使它变成可以计算出面积的规则图形。就是在多边形的组合图形中,为了计算面积,有时也要用到分割、拼补的方法。 例题2、五边形的三条边的长和四个角的度数,如下图所示,那么它的面积是多少? 例题3、下图中,甲、乙两个正方形的边长的和是20厘米,甲正方形比乙正方形的 面积大40厘米2。求乙正方形的面积。

例题4、如左下图所示,在一个等腰直角三角形中,削去一个三角形后,剩下一个上底长 5厘米、下底长9厘米的等腰梯形(阴影部分)。求这个梯形的面积。 例题 5、在一个等腰三角形中,两条与底边平行的线段将三角形的两条边等分成三段 (见右图),求图中阴影部分的面积占整个图形面积的几分之几?

练习2.求下图(单位:厘米)中四边形ABCD的面积。 练习3.下图是甲、乙两个正方形,甲的边长比乙的边长长3厘米,甲的面积比乙的面积大45厘米2。求甲、乙的面积之和。 练习4.在左下图所示的等腰直角三角形中,剪去一个三角形后,剩下的部分是一个直角梯形(阴影部分)。已知梯形的面积为36厘米2,上底为3厘米,求下底和高。 练习5、如图,三个正方形的边长分别为5厘米、6厘米、4厘米拼在一起,求阴影部分的面积?

练习6、下左图是一块长方形草地,长方形的长是16,宽是10.中间有两条道路,一条是长方形,一条是平行四边形,那么有草部分的面积(阴影部分)有多大?

等差法 解题关键:找出组合图形的公共部分 解题技巧:利用差不变原理进行等量代换: 例题1、如图ABCG是的长方形,AB=7,AG=4,DEFG是的长方形,GF=2,FE=10。那么,三角形BCM的面积与三角形DCM面积之差是多少? 练习1如图ABCG是的长方形,AB=5,AG=3,DEFG是的长方形,GF=1,FE=9。那么,三角形BCM的面积与三角形DCM面积之差是多少?

高考物理天体运动公式归纳2

高考物理天体运动公式归纳2 1.两种电荷、电荷守恒定律、元电荷:e=1.60×10-19C;带电体电荷量等于元电荷的 整数倍 2.库仑定律:F=kQ1Q2/r2在真空中{F:点电荷间的作用力N,k:静电力常量 k=9.0×109N?m2/C2,Q1、Q2:两点电荷的电量C, r:两点电荷间的距离m,方向在它们的连线上,作用力与反作用力,同种电荷互相排斥,异种电荷互相吸引} 3.电场强度:E=F/q定义式、计算式{E:电场强度N/C,是矢量电场的叠加原理,q: 检验电荷的电量C} 4.真空点源电荷形成的电场E=kQ/r2{r:源电荷到该位置的距离m,Q:源电荷的电量} 5.匀强电场的场强E=UAB/d{UAB:AB两点间的电压V,d:AB两点在场强方向的距离m} 6.电场力:F=qE{F:电场力N,q:受到电场力的电荷的电量C,E:电场强度N/C} 7.电势与电势差:UAB=φA-φB,UAB=WAB/q=-ΔEAB/q 8.电场力做功:WAB=qUAB=Eqd{WAB:带电体由A到B时电场力所做的功J,q:带电量C, UAB:电场中A、B两点间的电势差V电场力做功与路径无关,E:匀强电场强度,d: 两点沿场强方向的距离m} 9.电势能:EA=qφA{EA:带电体在A点的电势能J,q:电量C,φA:A点的电势V} 10.电势能的变化ΔEAB=EB-EA{带电体在电场中从A位置到B位置时电势能的差值} 11.电场力做功与电势能变化ΔEAB=-WAB=-qUAB电势能的增量等于电场力做功的负值 12.电容C=Q/U定义式,计算式{C:电容F,Q:电量C,U:电压两极板电势差V} 13.平行板电容器的电容C=εS/4πkdS:两极板正对面积,d:两极板间的垂直距离,ω:介电常数 常见电容器 14.带电粒子在电场中的加速Vo=0:W=ΔEK或qU=mVt2/2,Vt=2qU/m1/2 15.带电粒子沿垂直电场方向以速度Vo进入匀强电场时的偏转不考虑重力作用的情况 下

五年级奥数基础教程-用等量代换求面积小学

用等量代换求面积 一个量可以用它的等量来代替;被减数和减数都增加(或减少)同一个数,它们的差不变。前者是等量公理,后者是减法的差不变性质。这两个性质在解几何题时有很重要的作用,它能将求一个图形的面积转化为求另一个图形的面积,或将两个图形的面积差转化为另两个图形的面积差,从而使隐蔽的关系明朗化,找到解题思路。 例1两个相同的直角三角形如下图所示(单位:厘米)重叠在一起,求阴影部分的面积。 分析与解:阴影部分是一个高为3厘米的直角梯形,然而它的上底与下底都不知道,因而不能直接求出它的面积。因为三角形ABC与三角形DEF完全相同,都减去三角形DOC后,根据差不变性质,差应相等,即阴影部分与直角梯形OEFC面积相等,所以求阴影部分的面积就转化为求直角梯形OEFC的面积。直角梯形OEFC的上底为10-3=7(厘米),面积为(7+10)×2÷2=17(厘米2)。 所以,阴影部分的面积是17厘米2。 例2在右图中,平行四边形ABCD的边BC长10厘米,直角三角形ECB的直角边EC长8厘米。已知阴影部分的总面积比三角形EFG的面积大10厘米2,求平行四边形ABCD的面积。 分析与解:因为阴影部分比三角形EFG的面积大10厘米2,都加上梯形FGCB后,根据差不变性质,所得的两个新图形的面积差不变,即平行四边行ABCD比直角三角形ECB的面积大10厘米2,所以平行四边形ABCD的面积等于 10×8÷2+10=50(厘米2)。 例3在右图中,AB=8厘米,CD=4厘米,BC=6厘米,三角形AFB比三角形EFD的面积大18厘米2。求ED的长。 分析与解:求ED的长,需求出EC的长;求EC的长,需求出直角三角形ECB的面积。因为三角形AFB 比三角形EFD的面积大18厘米2,这两个三角形都加上四边形FDCB后,其差不变,所以梯形ABCD比三角形ECB的面积大18厘米2。也就是说,只要求出梯形ABCD的面积,就能依次求出三角形ECB的面积和EC 的长,从而求出ED的长。 梯形ABCD面积=(8+4)×6÷2=36(厘米2), 三角形ECB面积=36-18=18(厘米2), EC=18÷6×2=6(厘米), ED=6-4=2(厘米)。

高中物理天体运动知识

“万有引力定律”习题归类例析. 一、求天体的质量(或密度) 1.根据天体表面上物体的重力近似等于物体所受的万有引力,由天体表面上的重力加速度和天体的半径求天体的质量 由mg=G 得 .(式中M、g、R分别表示天体的质量、天体表面的重力加速度和天体的半径.) [例1]宇航员站在一星球表面上的某高处,沿水平方向抛出一小球,经过时间t,小球落在星球表面,测得抛出点与落地点之间的距离为L,若抛出时的初速度增大到2倍,则抛出点与落地点间的距离为L,已知两落地点在同一水平面上,该星球的半径为R,引力常量为G,求该星球的质量M和密度ρ. [解析]此题的关键就是要根据在星球表面物体的运动情况求出星球表面的重力加速度,再根据星球表面物体的重力等于物体受到的万有引力求出星球的质量和星球的密度. 根据平抛运动的特点得抛出物体竖直方向上的位移为 设初始平抛小球的初速度为v,则水平位移为x=vt.有○1 当以2v的速度平抛小球时,水平位移为x'= 2vt.所以有② 在星球表面上物体的重力近似等于万有引力,有mg=G ③ 联立以上三个方程解得 而天体的体积为,由密度公式得天体的密度为。 2.根据绕中心天体运动的卫星的运行周期和轨道半径,求中心天体的质量 卫星绕中心天体运动的向心力由中心天体对卫星的万有引力提供,利用牛顿第二定律得 若已知卫星的轨道半径r和卫星的运行周期T、角速度或线速度v,可求得中心天体的质量为 [例2]下列几组数据中能算出地球质量的是(万有引力常量G是已知的)() A.地球绕太阳运行的周期T和地球中心离太阳中心的距离r B.月球绕地球运行的周期T和地球的半径r C.月球绕地球运动的角速度和月球中心离地球中心的距离r D.月球绕地球运动的周期T和轨道半径r [解析]解此题关键是要把式中各字母的含义弄清楚,要区分天体半径和天体圆周运动的轨道半径.已知地球绕太阳运行的周期和地球的轨道半径只能求出太阳的质量,而不能求出地球的质量,所以A项不对.已知月球绕地球运行的周期和地球的半径,不知道月球绕地球的轨道半径,所以不能求地球的质量,所以B 项不对.已知月球绕地球运动的角速度和轨道半径,由可以求出中心天体地球的质量,所以C项正确.由求得地球质量为,所以D项正确. 二、人造地球卫星的运动参量与轨道半径的关系问题 根据人造卫星的动力学关系 可得 由此可得线速度v与轨道半径的平方根成反比;角速度与轨道半径的立方的平方根成反比,周期T与轨道半径的立方的平方根成正比;加速度a与轨道半径的平方成反比.

高考物理天体运动知识点梳理

高考物理天体运动知识点梳理 万有引力 1.开普勒第三定律:T2/R3=K=4π2/GM{R:轨道半径,T:周期,K:常量与行星质量无关,取决于中心天体的质量} 2.万有引力定律:F=Gm1m2/r2 G=6.67×10-11N?m2/kg2,方向在它们的连线上 3.天体上的重力和重力加速度:GMm/R2=mg;g=GM/R2 {R:天体半径m,M:天体质量kg} 4.卫星绕行速度、角速度、周期:V=GM/r1/2;ω=GM/r31/2;T=2πr3/GM1/2{M:中心天体质量} 5.第一二、三宇宙速度V1=g地r地1/2=GM/r地1/2=7.9km/s;V2=11.2km/s;V3 =16.7km/s 6.地球同步卫星GMm/r地+h2=m4π2r地+h/T2{h≈36000km,h:距地球表面的高度,r 地:地球的半径} 摩擦力 1、定义:当一个物体在另一个物体的表面上相对运动或有相对运动的趋势时,受到的阻碍相对运动或阻碍相对运动趋势的力,叫摩擦力,可分为静摩擦力和滑动摩擦力。 2、产生条件:①接触面粗糙;②相互接触的物体间有弹力;③接触面间有相对运动或相对运动趋势。 说明:三个条件缺一不可,特别要注意“相对”的理解。 3、摩擦力的方向: ①静摩擦力的方向总跟接触面相切,并与相对运动趋势方向相反。 ②滑动摩擦力的方向总跟接触面相切,并与相对运动方向相反。

说明:1“与相对运动方向相反”不能等同于“与运动方向相反”。 滑动摩擦力方向可能与运动方向相同,可能与运动方向相反,可能与运动方向成一夹角。 2滑动摩擦力可能起动力作用,也可能起阻力作用。 4、摩擦力的大小: 1静摩擦力的大小: ①与相对运动趋势的强弱有关,趋势越强,静摩擦力越大,但不能超过最大静摩擦力,即0≤f≤fm 但跟接触面相互挤压力FN无直接关系。具体大小可由物体的运动状态结合动力学规律求解。 ②最大静摩擦力略大于滑动摩擦力,在中学阶段讨论问题时,如无特殊说明,可认为 它们数值相等。 ③效果:阻碍物体的相对运动趋势,但不一定阻碍物体的运动,可以是动力,也可以 是阻力。 1.模型归类 做过一定量的物理题目之后,会发现很多题目其实思考方法是一样的,我们需要按物 理模型进行分类,用一套方法解一类题目。例如宏观的行星运动和微观的电荷在磁场中的 偏转都属于匀速圆周运动,关键都是找出什么力提供了向心力;此外还有杠杆类的题目, 要想象出力矩平衡的特殊情况,还有关于汽车启动问题的考虑方法其实同样适用于起重机 吊重物等等。物理不需要做很多题目,能够判断出物理模型,将方法对号入座,就已经成 功了一半。 2.解题规范 高考越来越重视解题规范,体现在物理学科中就是文字说明。解一道题不是列出公式,得出答案就可以的,必须标明步骤,说明用的是什么定理,为什么能用这个定理,有时还 需要说明物体在特殊时刻的特殊状态。这样既让老师一目了然,又有利于理清自己的思路,还方便检查,最重要的是能帮助我们在分步骤评分的评分标准中少丢几分。 3.大胆猜想 物理题目常常是假想出的理想情况,几乎都可以用我们学过的知识来解释,所以当看 到一道题目的背景很陌生时,就像今年高考物理的压轴题,不要慌了手脚。在最后的20 分钟左右的时间里要保持沉着冷静,根据给出的物理量和物理关系,把有关的公式都列出来,大胆地猜想磁场的势能与重力场的势能是怎样复合的,取最值的情况是怎样的,充分 利用图像提供的变化规律和数据,在没有完全理解题目的情况下多得几分是完全有可能的。

五年级奥数第21讲 用等量代换求面积

第21讲用等量代换求面积 一个量可以用它的等量来代替;被减数和减数都增加(或减少)同一个数,它们的差不变。前者是等量公理,后者是减法的差不变性质。这两个性质在解几何题时有很重要的作用,它能将求一个图形的面积转化为求另一个图形的面积,或将两个图形的面积差转化为另两个图形的面积差,从而使隐蔽的关系明朗化,找到解题思路。 例1两个相同的直角三角形如下图所示(单位:厘米)重叠在一起,求阴影部分的面积。 分析与解:阴影部分是一个高为3厘米的直角梯形,然而它的上底与下底都不知道,因而不能直接求出它的面积。因为三角形ABC与三角形DEF完全相同,都减去三角形DOC后,根据差不变性质,差应相等,即阴影部分与直角梯形OEFC面积相等,所以求阴影部分的面积就转化为求直角梯形OEFC的面积。直角梯形OEFC的上底为10-3=7(厘米),面积为(7+10)×2÷2=17(厘米2)。 所以,阴影部分的面积是17厘米2。 例2在右图中,平行四边形ABCD的边BC长10厘米,直角三角形ECB的直角边EC 长8厘米。已知阴影部分的总面积比三角形EFG的面积大10厘米2,求平行四边形ABCD 的面积。 分析与解:因为阴影部分比三角形EFG的面积大10厘米2,都加上梯形FGCB后,根据差不变性质,所得的两个新图形的面积差不变,即平行四边行ABCD比直角三角形ECB的面积大10厘米2,所以平行四边形ABCD的面积等于 10×8÷2+10=50(厘米2)。 例3在右图中,AB=8厘米,CD=4厘米,BC=6厘米,三角形AFB比三角形EFD的面积大18厘米2。求ED的长。

分析与解:求ED的长,需求出EC的长;求EC的长,需求出直角三角形ECB的面积。因为三角形AFB比三角形EFD的面积大18厘米2,这两个三角形都加上四边形FDCB后,其差不变,所以梯形ABCD比三角形ECB的面积大18厘米2。也就是说,只要求出梯形ABCD 的面积,就能依次求出三角形ECB的面积和EC的长,从而求出ED的长。 梯形ABCD面积=(8+4)×6÷2=36(厘米2), 三角形ECB面积=36-18=18(厘米2), EC=18÷6×2=6(厘米), ED=6-4=2(厘米)。 例4 下页上图中,ABCD是7×4的长方形,DEFG是10×2的长方形,求三角形BCO 与三角形EFO的面积之差。 分析:直接求出三角形BCO与三角形EFO的面积之差,不太容易做到。如果利用差不变性质,将所求面积之差转化为另外两个图形的面积之差,而这两个图形的面积之差容易求出,那么问题就解决了。 解法一:连结B,E(见左下图)。三角形BCO与三角形EFO都加上三角形BEO,则原来的问题转化为求三角形BEC与三角形BEF的面积之差。所求为4×(10-7)÷2-2×(10-7)÷2=3。 解法二:连结C,F(见右上图)。三角形BCO与三角形EFO都加上三角形CFO,则原来的问题转化为求三角形BCF与三角形ECF的面积之差。所求为4×(10-7)÷2-2×(10-7)÷2=3。

数学教案几何面积(割补法与等量代换法

教学内容概要 教学内容

【知识精要--等量代换法】 一个量可以用它的等量来代替;被减数和减数都增加(或减少)同一个数,它们的差不变。前者是等量公理,后者是减法的差不变性质。这两个性质在解几何题时有很重要的作用,它能将求一个图形的面积转化为求另一个图形的面积,或将两个图形的面积差转化为另两个图形的面积差,从而使隐蔽的关系明朗化,找到解题思路。 【经典例题】 例1两个相同的直角三角形如下图所示(单位:厘米)重叠在一起,求阴影部分的面积。 例2在右图中,平行四边形ABCD的边BC长10厘米,直角三角形ECB的直角边EC 长8厘米。已知阴影部分的总面积比三角形EFG的面积大10厘米2,求平行四边形ABCD 的面积。 例3在右图中,AB=8厘米,CD=4厘米,BC=6厘米,三角形AFB比三角形EFD的面积大18厘米2。求ED的长。 例4 下页上图中,ABCD是7×4的长方形,DEFG是10×2的长方形,求三角形BCO 与三角形EFO的面积之差。(有几种做法?)

例5左下图是由大、小两个正方形组成的,小正方形的边长是4厘米,求三角形ABC的面积。 【巩固练习】 1、下图是两个相同的直角梯形重叠在一起,求阴影部分的面积。 2、左下图中,矩形ABCD的边AB为4厘米,BC为6厘米,三角形ABF比三角形EDF 的面积大9厘米2,求ED的长。

3、右上图中,CA=AB=4厘米,三角形ABE比三角形CDE的面积大2厘米2,求CD 的长。 【知识精要--割补法】 在组合图形中,除了多边形外,还有由圆、扇形、弓形(这一部分我们将在初中阶段学习)与三角形、矩形、平行四边形、梯形等图形组合而成的不规则图形,为了计算它们的面积,常常需要变动图形的位置或对图形进行分割、旋转、拼补,使它变成可以计算出面积的规则图形。就是在多边形的组合图形中,为了计算面积,有时也要用到割补的方法。 【经典例题】 例1在一个等腰三角形中,两条与底边平行的线段将三角形的两条边等分成三段(见右图),求图中阴影部分的面积占整个图形面积的几分之几。 例2如左下图所示,在一个等腰直角三角形中,削去一个三角形后,剩下一个上底长5厘米、下底长9厘米的等腰梯形(阴影部分)。求这个梯形的面积。

天体运动精要点总结

天体运动归纳 Ⅰ、重力类:(重力近似等于万有引力) 1.主要解决天体表面重力加速度问题 基本关系式:2R GMm mg = 例1、某星球质量是地球的1/5,半径为地球的1/4,则该星球的表面重力加速度与地球表面重力加速度的比值是多少? 设天体表面重力加速度为g ,天体半径为R ,则: GR ρπ342==R GM g (33 4R M πρ=) 由此推得两个不同天体表面重力加速度的关系为: 2.行星表面重力加速度、轨道重力加速度问题: 例2、设地球表面的重力加速度为g,物体在距地心4R (R 是地球半径)处,由于地球的引力作用而产生的重力加速度g ,则g //g 为 A 、1; B 、1/9; C 、1/4; D 、1/16。 表面重力加速度:22R GM g mg R Mm G =?= 轨道重力加速度:g h R R h R M G g 2 2 2)()(+=+=' Ⅱ、天体运动类: 行星(卫星)模型:F =G Mm r 2=m v 2r =mrω2=m 4π2T 2r 一、周期类:主要解决天体的质量(或密度)与同步卫星问题 基本关系式:r T m r GMm 2 22?? ? ??=π 设恒星质量为M ,行星质量为m(或行星质量为M ,卫星质量为m),它们之间的间距为r ,行星绕恒星(或卫星绕行星)的线速度、角速度、周期分别为v 、ω、T . 可以推得开普勒第三定律:K T r ==4πGM 23(常量) 1.天体质量(或密度)问题 2324GT r M π= 323 GT 3ρR r V M π== 当r=R 时,则天体密度简化为:2GT 3ρπ= R 、T 分别代表天体的半径和表面环绕周期,由上式可以看出,天体密度只与表面环绕周期有关. 2 1212221M M R R g g ?=

数学教案几何面积(割补法与等量代换法

教学内容概要 学生: 初中数学备课组教师:王老师年级:小五 日期上课时间 学生上课情况: 主课题:《组合图形求面积--割补法与等量代换法》 教学目标: 1、通过平行四边形,三角形,梯形面积计算公式,能正确求几何图形的面积。 2、让学生经历常见的几何面积公式的推导过程,通过操作、观察、比较,发展学生的空间观念,渗透转化的思想方法。 3、培养学生使用割补法,等量代换的思想解决实际面积问题的能力。 4、使学生感受数学与生活的联系,培养学生的数学应用意识,体验数学的价值。 教学重点: 1、针对不规则图形能够找到其所包含的规则图形 2、熟练使用三个常见图形的面积的公式。 3、使用割补法求不规则图形以及阴影部分面积。 4、学会等量代换的思想。 教学难点: 1、能够求解复杂的面积。 2、学会和掌握面积求解的主要技巧--割补法与等量代换法 家庭作业 1、回家练习部分(所有题目) 考点及考试要求: 1、理解和掌握求几何面积的主要思路与步骤

教学内容 【知识精要--等量代换法】 一个量可以用它的等量来代替;被减数和减数都增加(或减少)同一个数,它们的差不变。前者是等量公理,后者是减法的差不变性质。这两个性质在解几何题时有很重要的作用,它能将求一个图形的面积转化为求另一个图形的面积,或将两个图形的面积差转化为另两个图形的面积差,从而使隐蔽的关系明朗化,找到解题思路。 【经典例题】 例1两个相同的直角三角形如下图所示(单位:厘米)重叠在一起,求阴影部分的面积。 例2在右图中,平行四边形ABCD的边BC长10厘米,直角三角形ECB的直角边EC 长8厘米。已知阴影部分的总面积比三角形EFG的面积大10厘米2,求平行四边形ABCD 的面积。 例3在右图中,AB=8厘米,CD=4厘米,BC=6厘米,三角形AFB比三角形EFD的面积大18厘米2。求ED的长。

相关文档
相关文档 最新文档