文档库 最新最全的文档下载
当前位置:文档库 › 解析机器视觉系统设计的五大难点

解析机器视觉系统设计的五大难点

解析机器视觉系统设计的五大难点
解析机器视觉系统设计的五大难点

解析机器视觉系统设计的五大难点

文章出处:David 发布时间:2014/08/20 | 498 次阅读

每天新产品时刻新体验一站式电子数码采购中心专业PCB打样工厂,24小时加急出货工业视觉应用一般分成四大类:定位、测量、检测和识别,其中测量对光照的稳定性要求最高。

机器视觉系统的组成

机器视觉系统是指用计算机来实现人的视觉功能,也就是用计算机来实现对客观的三维世界的识别。按现在的理解,人类视觉系统的感受部分是视网膜,它是一个三维采样系统。三维物体的可见部分投影到网膜上,人们按照投影到视网膜上的二维的像来对该物体进行三维理解。所谓三维理解是指对被观察对象的形状、尺寸、离开观察点的距离、质地和运动特征(方向和速度)等的理解。

机器视觉系统的输入装置可以是摄像机、转鼓等,它们都把三维的影像作为输入源,即输入计算机的就是三维管观世界的二维投影。如果把三维客观世界到二维投影像看作是一种正变换的话,则机器视觉系统所要做的是从这种二维投影图像到三维客观世界的逆变换,也就是根据这种二维投影图像去重建三维的客观世界。

机器视觉系统主要由三部分组成:图像的获取、图像的处理和分析、输出或显示。

将近80%的工业视觉系统主要用在检测方面,包括用于提高生产效率、控制生产过程中的产品质量、采集产品数据等。产品的分类和选择也集成于检测功能中。下面通过一个用于生产线上的单摄像机视觉系统,说明系统的组成及功能。

视觉系统检测生产线上的产品,决定产品是否符合质量要求,并根据结果,产生相应的信号输入上位机。图像获取设备包括光源、摄像机等;图像处理设备包括相应的软件和硬件系统;输出设备是与制造过程相连的有关系统,包括过程控制器和报警装置等。数据传输到计算机,进行分析和产品控制,若发现不合格品,则报警器告警,并将其排除出生产线。机器视觉的结果是CAQ系统的质量信息来源,也可以和CIMS其它系统集成。

图像的获取

图像的获取实际上是将被测物体的可视化图像和内在特征转换成能被计算机处理的一系列数据,它主要由三部分组成:

* 照明

* 图像聚焦形成

* 图像确定和形成摄像机输出信号

1、照明

照明和影响机器视觉系统输入的重要因素,因为它直接影响输入数据的质量和至少30%的应用效果。由于没有通用的机器视觉照明设备,所以针对每个特定的应用实例,要选择相应的照明装置,以达到最佳效果。

过去,许多工业用的机器视觉系统用可见光作为光源,这主要是因为可见光容易获得,价格低,并且便于操作。常用的几种可见光源是白帜灯、日光灯、水银灯和钠光灯。但是,这些光源的一个最大缺点是光能不能保持稳定。以日光灯为例,在使用的第一个100小时内,光能将下降15%,随着使用时间的增加,光能将不断下降。因此,如何使光能在一定的程度上保持稳定,是实用化过程中急需要解决的问题。

另一个方面,环境光将改变这些光源照射到物体上的总光能,使输出的图像数据存在噪声,一般采用加防护屏的方法,减少环境光的影响。

由于存在上述问题,在现今的工业应用中,对于某些要求高的检测任务,常采用X射线、超声波等不可见光作为光源。但是不可见光不利于检测系统的操作,且价格较高,所以,目前在实际应用中,仍多用可见光作为光源。

照明系统按其照射方法可分为:背向照明、前向照明、结构光和频闪光照明等。其中,背向照明是被测物放在光源和摄像机之间,它的优点是能获得高对比度的图像。前向照明是光源和摄像机位于被测物的同侧,这种方式便于安装。结构光照明是将光栅或线光源等投射到被测物上,根据它们产生的畸变,解调出被测物的三维信息。频闪光照明是将高频率的光脉冲照射到物体上,照像机拍摄要求与光源同步。

2、图像聚焦形成

被测物的图像通过一个透镜聚焦在敏感元件上,如同照像机拍照一样。所不同的是照像机使用胶卷,而机器视觉系统使用传感器来捕捉图像,传感器将可视图像转化为电信号,便于计算机处理。

选取机器视觉系统中的摄像机应根据实际应用的要求,其中摄像机的透镜参数是一项重要指标。透镜参数分为四个部分:放大倍率、焦距、景深和透镜安装。

3、图像确定和形成摄像机输出信号

机器视觉系统实际上是一个光电转换装置,即将传感器所接收到的透镜成像,转化为计算机能处理的电信号、摄像机可以是电子管的,也可是固体状态传感单元。

电子管摄像机发展较早,20世纪30年代就已应用于商业电视,它采用包含光感元件

的真空管进行图像传感,将所接收到的图像转换成模拟电压信号输出。具有RS-170输出

制式的摄像机可直接与商用电视显示器相连。

固体状态摄像机是在20世纪60年代后期,美国贝尔电话实验室发明了电荷耦合装置(CCD),而发展起来的。它上分布于各个像元的光敏二极管的线性阵列或矩形阵列构成,通过按一定顺序输出每个二极管的电压脉冲,实现将图像光信号转换成电信号的目的。输出的电压脉冲序列可以直接以RS-170制式输入标准电视显示器,或者输入计算机的内存,进行数值化处理。CCD是现在最常用的机器视觉传感器。

图像处理技术

机器视觉系统中,视觉信息的处理技术主要依赖于图像处理方法,它包括图像增强、数据编码和传输、平滑、边缘锐化、分割、特征抽取、图像识别与理解等内容。经过这些处理后,输出图像的质量得到相当程度的改善,既改善了图像的视觉效果,又便于计算机对图像进行分析、处理和识别。

1、图像的增强

图像的增强用于调整图像的对比度,突出图像中的重要细节,改善视觉质量。通常采用灰度直方图修改技术进行图像增强。

图像的灰度直方图是表示一幅图像灰度分布情况的统计特性图表,与对比度紧密相连。

通常,在计算机中表示的一幅二维数字图像可表示为一个矩阵,其矩阵中的元素是位于相应坐标位置的图像灰度值,是离散化的整数,一般取0,1,……,255.这主要是因为计算机中的一个字节所表示的数值范围是0~255.另外,人眼也只能分辨32个左右的灰度级。所以,用一个字节表示灰度即可。

但是,直方图仅能统计某级灰度像素出现的概率,反映不出该像素在图像中的二维坐标。因此,不同的图像有可能具有相同的直方图。通过灰度直方图的形状,能判断该图像的清晰度和黑白对比度。

如果获得一幅图像的直方图效果不理想,可以通过直方图均衡化处理技术作适当修改,即把一幅已知灰度概率分布图像中的像素灰度作某种映射变换,使它变成一幅具有均匀灰度概率分布的新图像,实现使图象清晰的目的。

2、图像的平滑

图像的平滑处理技术即图像的去噪声处理,主要是为了去除实际成像过程中,因成像设备和环境所造成的图像失真,提取有用信息。众所周知,实际获得的图像在形成、传输、接收和处理的过程中,不可避免地存在着外部干扰和内部干扰,如光电转换过程敏感元件灵敏度的不均匀性、数字化过程的量化噪声、传输过程中的误差以及人为因素等,均会使图像变质。因此,去除噪声,恢复原始图像是图像处理中的一个重要内容。

3、图像的数据编码和传输

数字图像的数据量是相当庞大的,一幅512*512个像素的数字图像的数据量为256 K 字节,若假设每秒传输25帧图像,则传输的信道速率为52.4M比特/秒。高信道速率意味着高投资,也意味着普及难度的增加。因此,传输过程中,对图像数据进行压缩显得非常重要。数据的压缩主要通过图像数据的编码和变换压缩完成。

图像数据编码一般采用预测编码,即将图像数据的空间变化规律和序列变化规律用一个预测公式表示,如果知道了某一像素的前面各相邻像素值之后,可以用公式预测该像素值。采用预测编码,一般只需传输图像数据的起始值和预测误差,因此可将8比特/像素压缩到2比特/像素。

变换压缩方法是将整幅图像分成一个个小的(一秀取8*8或16*16)数据块,再将这些数据块分类、变换、量化,从而构成自适应的变换压缩系统。该方法可将一幅图像的数据压缩到为数不多的几十个特传输,在接收端再变换回去即可。

4、边缘锐化

图像边缘锐化处理主要是加强图像中的轮廓边缘和细节,形成完整的物体边界,达到将物体从图像中分离出来或将表示同一物体表面的区域检测出来的目的。它是早期视觉理论和算法中的基本问题,也是中期和后期视觉成败的重要因素之一。

5、图像的分割

图像分割是将图像分成若干部分,每一部分对应于某一物体表面,在进行分割时,每一部分的灰度或纹理符合某一种均匀测度度量。某本质是将像素进行分类。分类的依据是像素的灰度值、颜色、频谱特性、空间特性或纹理特性等。图像分割是图像处理技术的基本方法之一,应用于诸如染色体分类、景物理解系统、机器视觉等方面。

图像分割主要有两种方法:一是鉴于度量空间的灰度阈值分割法。它是根据图像灰度直方图来决定图像空间域像素聚类。但它只利用了图像灰度特征,并没有利用图像中的其它有用信息,使得分割结果对噪声十分敏感;二是空间域区域增长分割方法。它是对在某种意义上(如灰度级、组织、梯度等)具有相似性质的像素连通集构成分割区域,该方法有很好的分割效果,但缺点是运算复杂,处理速度慢。其它的方法如边缘追踪法,主要着眼于保持边缘性质,跟踪边缘并形成闭合轮廓,将目标分割出来;锥体图像数据结构法和标记松弛迭代法同样是利用像素空间分布关系,将边邻的像素作合理的归并。而基于知识的分割方法则是利用景物的先验信息和统计特性,首先对图像进行初始分割,抽取区域特征,然后利用领域知识推导区域的解释,最后根据解释对区域进行合并。

6、图像的识别

图像的识别过程实际上可以看作是一个标记过程,即利用识别算法来辨别景物中已分割好的各个物体,给这些物体赋予特定的标记,它是机器视觉系统必须完成的一个任务。

按照图像识别从易到难,可分为三类问题。第一类识别问题中,图像中的像素表达了某一物体的某种特定信息。如遥感图像中的某一像素代表地面某一位置地物的一定光谱波段的反射特性,通过它即可判别出该地物的种类。第二类问题中,待识别物是有形的整体,二维图像信息已经足够识别该物体,如文字识别、某些具有稳定可视表面的三维体识别等。但这类问题不像第一类问题容易表示成特征矢量,在识别过程中,应先将待识别物体正确地从图像的背景中分割出来,再设法将建立起来的图像中物体的属性图与假定模型库的属性图之间匹配。第三类问题是由输入的二维图、要素图、2·5维图等,得出被测物体的三维表示。这里存着如何将隐含的三维信息提取出来的问题,当是今研究的热点。

目前用于图像识别的方法主要分为决策理论和结构方法。决策理论方法的基础是决策函数,利用它对模式向量进行分类识别,是以定时描述(如统计纹理)为基础的;结构方法的核心是将物体分解成了模式或模式基元,而不同的物体结构有不同的基元串(或称字符串),通过对未知物体利用给定的模式基元求出编码边界,得到字符串,再根据字符串判断它的属类。这是一种依赖于符号描述被测物体之间关系的方法。

那么,机器视觉系统设计的难点都有哪些?本文主要总结了一下五点,

第一:打光的稳定性

工业视觉应用一般分成四大类:定位、测量、检测和识别,其中测量对光照的稳定性要求最高,因为光照只要发生10-20%的变化,测量结果将可能偏差出1-2个像素,这不是软件的问题,这是光照变化,导致了图像上边缘位置发生了变化,即使再厉害的软件也解决不了问题,必须从系统设计的角度,排除环境光的干扰,同时要保证主动照明光源的发光稳定性。当然通过硬件相机分辨率的提升也是提高精度,抗环境干扰的一种办法了。比如之前的相机对应物空间尺寸是1个像素10um,而通过提升分辨率后变成1个像素5um,精度近似可以认为提升1倍,对环境的干扰自然增强了。

第二:工件位置的不一致性

一般做测量的项目,无论是离线检测,还是在线检测,只要是全自动化的检测设备,首先做的第一步工作都是要能找到待测目标物。每次待测目标物出现在拍摄视场中时,要能精确知道待测目标物在哪里,即使你使用一些机械夹具等,也不能特别高精度保证待测目标物每次都出现在同一位置的,这就需要用到定位功能,如果定位不准确,可能测量工具出现的位置就不准确,测量结果有时会有较大偏差

第三:标定

一般在高精度测量时需要做以下几个标定,一光学畸变标定(如果您不是用的软件镜头,一般都必须标定),二投影畸变的标定,也就是因为您安装位置误差代表的图像畸变校正,三物像空间的标定,也就是具体算出每个像素对应物空间的尺寸。

不过目前的标定算法都是基于平面的标定,如果待测量的物理不是平面的,标定就会需要作一些特种算法来处理,通常的标定算法是解决不了的。

此外有些标定,因为不方面使用标定板,也必须设计特殊的标定方法,因此标定不一定能通过软件中已有的标定算法全部解决。

第四:物体的运动速度

如果被测量的物体不是静止的,而是在运动状态,那么一定要考虑运动模糊对图像精度(模糊像素=物体运动速度*相机曝光时间),这也不是软件能够解决的。

第五:软件的测量精度

在测量应用中软件的精度只能按照1/2-1/4个像素考虑,最好按照1/2,而不能向定位应用一样达到1/10-1/30个像素精度,因为测量应用中软件能够从图像上提取的特征点非常少。

机器视觉检测的分析简答作业及答案要点学习资料

2012研究生机器视觉课程检测及课程设计内容 一、回答下列问题: 1、什么是机器视觉,它的目标是什么?能否画出机器视觉检测系统的结构方 块图,并说出它们的工作过程原理和与人类视觉的关系? 机器视觉是机器(通常指计算机)对图像进行自动处理并报告“图像中有什么”的过程,也就是说它识别图像中的内容。图像中的内容往往是某些机器零件,而处理的目标不仅要能对机器零件定位,还要能对其进行检验。 原始数据特征向量类别标识 特征度量模式分类器 机器视觉系统的组成框图 2、在机器视觉检测技术中:什么是点视觉技术、一维视觉技术、二维视觉技 术、三维视觉技术、运动视觉技术、彩色视觉技术、非可见光视觉技术等? 能否说出他们的应用领域病句、案例?能否描述它们的技术特点? 答:点视觉:用一个独立变量表示的视觉称之为点视觉。如应用位移传感器测量物体的移动速度。 一维视觉:普通的CCD。 两维视觉:用两个独立变量表示的视觉称之为两维视觉。比如普通的CCD。 三维视觉:用三个独立变量表示的视觉称之为三维视觉。比如用两个相机拍摄(双目视觉);或者使用一个相机和一个辅助光源。 彩色视觉:用颜色作为变量的视觉称之为彩色视觉。物体的颜色是由照 射光源的光谱成分、光线在物体上反射和吸收的情况决定的。比如,一 个蓝色物体在日光下观察呈现蓝色,是由于这个物体将日光中的蓝光 反射出来,而吸收了光谱中的其他部分的光谱,而同样的蓝色物体, 在红色的光源照射下,则呈现红紫色, 非可见光视觉技术:用非可见光作为光源的视觉技术。比如非可见光成像技术。

3、机器视觉检测技术中:光源的种类有哪些?不同光源的特点是什么?光照 方式有几种?不同光照方式的用途是什么?又和技术特点和要求? 机器视觉检测技术中光源有以下几种:荧光灯,卤素灯+光纤导管,LED 光源,激光,紫外光等。几种光源的特点如下: 成本亮度稳定度使用寿命复杂设计温度影响种类名 称 荧光灯低差差一般低一般 卤素灯+光纤导管高好一般差一般差LED光源一般一般好好高低光照方式有以下几种: 背景光法(背光照射)是将被测物置于相机和光源之间。这种照明方式的优点是可将被测物的边缘轮廓清晰地勾勒出来。由于在图像中,被测物所遮挡的部分为黑色,而未遮挡的部分为白色,因此形成“黑白分明”的易于系统分析的图像。此方法被应用于90%的测量系统中。 前景光法(正面照射)是将灯源置于被测物和相机之前。又可分为明场照射和暗场照射。明场照射是为了获得物体的几乎全部信息,照射物体的光在视野范围之内几乎全部反射回去;暗场照射是为了获取物体表面的凹凸,照射物体的光在视野范围之外有部分光反射回去。 同轴光法是将灯源置于被测物和相机之间。 4、机器视觉检测系统中,光学系统的作用是什么?光学器件有哪几种,它们 各自的作用是什么?光学镜头有几种类型,它们各自有何用途?光学镜头有哪些技术参数,各自对测量有什么影响? 答:机器视觉检测系统中,光学系统用来采集物体的轮廓、色彩等信息。 光学器件主要有:镜头、成像器件(CCD和CMOS)、光圈、快门等。 镜头的作用是对成像光线进行调焦等处理,使成像更清晰;成像器件的作用是将光学图像转换成模拟电信号;光圈的作用如同人得瞳孔, 控制入射光的入射量,实现曝光平衡;快门的作用是将想要获取的光学

机器视觉系统设计五大难点

机器视觉系统设计五大难点 机器视觉系统的组成 机器视觉系统是指用计算机来实现人的视觉功能,也就是用计算机来实现对客观的三维世界的识别。按现在的理解,人类视觉系统的感受部分是视网膜,它是一个三维采样系统。三维物体的可见部分投影到网膜上,人们按照投影到视网膜上的二维的像来对该物体进行三维理解。所谓三维理解是指对被观察对象的形状、尺寸、离开观察点的距离、质地和运动特征(方向和速度)等的理解。 机器视觉系统的输入装置可以是摄像机、转鼓等,它们都把三维的影像作为输入源,即输入计算机的就是三维管观世界的二维投影。如果把三维客观世界到二维投影像看作是一种正变换的话,则机器视觉系统所要做的是从这种二维投影图像到三维客观世界的逆变换,也就是根据这种二维投影图像去重建三维的客观世界。 机器视觉系统主要由三部分组成:图像的获取、图像的处理和分析、输出或显示。 将近80%的工业视觉系统主要用在检测方面,包括用于提高生产效率、控制生产过程中的产品质量、采集产品数据等。产品的分类和选择也集成于检测功能中。下面通过一个用于生产线上的单摄像机视觉系统,说明系统的组成及功能。 视觉系统检测生产线上的产品,决定产品是否符合质量要求,并根据结果,产生相应的信号输入上位机。图像获取设备包括光源、摄像机等;图像处理设备包括相应的软件和硬件系统;输出设备是与制造过程相连的有关系统,包括过程控制器和报警装置等。数据传输到计算机,进行分析和产品控制,若发现不合格品,则报警器告警,并将其排除出生产线。机器视觉的结果是CAQ系统的质量信息来源,也可以和CIMS其它系统集成。 图像的获取 图像的获取实际上是将被测物体的可视化图像和内在特征转换成能被计算机处理的一系列数据,它主要由三部分组成: *照明

机器视觉基础知识详解模板

机器视觉基础知识详解 随着工业4.0时代的到来,机器视觉在智能制造业领域的作用越来越重要,为了能让更多用户获取机器视觉的相关基础知识,包括机器视觉技术是如何工作的、它为什么是实现流程自动化和质量改进的正确选择等。小编为你准备了这篇机器视觉入门学习资料。 机器视觉是一门学科技术,广泛应用于生产制造检测等工业领域,用来保证产品质量,控制生产流程,感知环境等。机器视觉系统是将被摄取目标转换成图像信号,传送给专用的图像处理系统,根据像素分布和亮度、颜色等信息,转变成数字化信号;图像系统对这些信号进行各种运算来抽取目标的特征,进而根据判别的结果来控制现场的设备动作。 机器视觉优势:机器视觉系统具有高效率、高度自动化的特点,可以实现很高的分辨率精度与速度。机器视觉系统与被检测对象无接触,安全可靠。人工检测与机器视觉自动检测的主要区别有:

为了更好地理解机器视觉,下面,我们来介绍在具体应用中的几种案例。 案例一:机器人+视觉自动上下料定位的应用: 现场有两个振动盘,振动盘1作用是把玩偶振动到振动盘2中,振动盘2作用是把玩偶从反面振动为正面。该应用采用了深圳视觉龙公司VD200视觉定位系统,该系统通过判断玩偶正反面,把玩偶处于正面的坐标值通过串口发送给机器人,机器人收到坐标后运动抓取产品,当振动盘中有很多玩偶处于反面时,VD200视觉定位系统需判断反面玩偶数量,当反面玩偶数量过多时,VD200视觉系统发送指令给振动盘2把反面玩偶振成正面。 该定位系统通过玩偶表面的小孔来判断玩偶是否处于正面,计算出玩偶中心点坐标,发送给机器人。通过VD200视觉定位系统实现自动上料,大大减少人工成本,大幅提高生产效率。 案例二:视觉检测在电子元件的应用: 此产品为电子产品的按钮部件,产品来料为料带模式,料带上面为双排产品。通过对每个元器件定位后,使用斑点工具检测产品固定区域的灰度值,来判断此区域有无缺胶情况。 该应用采用了深圳视觉龙公司的DragonVision视觉系统方案,使用两个相机及光源配合机械设备,达到每次检测双面8个产品,每分钟检测大约1500个。当出现产品不良时,立刻报警停机,保证了产品的合格率和设备的正常运行,提高生产效率。

注塑成型试卷及答案13

中级注塑测试题部分答案仅共掺考 2009-04-24 11:49:54| 分类:注塑成形| 标签:|字号大中小订阅 1.注塑机按塑料的塑化和注射方式可以分为那几种? 分:柱塞式、螺杆往复式 2.注塑机按外型分可以分为那几种? 立式、卧式、角式、多工位 3.ABS中的A代表了什么?B代表什么?S代表什么?(指的是性能) A-丙烯腈,赋予ABS耐化学腐蚀性好B-丁二烯,赋予ABS高弹性、韧性好(或抗冲击强度高)S-苯乙烯,赋予ABS成型加工型好 4.怎样才能设定最佳的工艺? 这个很麻烦。 5.注塑机的油温对工艺有着什么样的影响? 油温太高,油的粘度下降,压力和速度传递精度差、漏油加剧;容易氧化变质。50度左右正常,80度以上报警 6.公认的四大工程塑料是那几中? 工程塑料不止四种吧,这个很难回答什么是“公认”,呵呵。 PC、POM、PA、PMMA、PPO、PSU、PPS都是工程塑料,但是那四个是公认不确定呃,可能前四种是吧。 7.注塑机的八大部分是那些? 合模系统、注射系统、加热冷却系统、液压系统、润滑系统、电控系统、安全保护与监测系统 8.ABS一般可分为那8种型号? 通用级、抗冲级、高抗冲级、耐寒级、耐热级、阻燃级、增强级、电镀级 9.电磁伐的工作原理是什么? 通过通电、断电控制液压阀体的移动,从而控制不同通道的通、断。(可能不一定准确) 10.注射座移动不稳有那些原因? 11.温度不稳定的原因是什么? 料筒加热片、热电偶等故障; 背压低,止逆环磨损严重 混料不均 (可能不全) 12.螺杆工作时声音异常有那些原因/ 螺杆与料筒内壁磨损,可能是不匹配或重新安装螺杆后间隙不均匀(磨损严重) 材料中填料过多 材料干燥不充分或回收料含量多 二.填空题 1. 高密度聚乙烯可通过()或()合成。(不知道怎么回答,可以填:乙烯和烷基铝和四氯化钛为主的催化剂合成,也可以填乙烯在10个大气压和60—80℃条件下合成) 2. 闪燃温度是指塑料材料(),这时试样周围空气的()叫做该材?? ??料的闪燃温度,简称闪点。 3. ABS是(丙烯腈-丁二烯-苯乙烯)的三元共聚物。 4. ABS可以在(80℃)下干燥2~4个小时。

机器视觉系统模块的原理分析及设计

机器视觉系统模块的原理分析及设计 一、概述 视觉技术是近几十年来发展的一门新兴技术。机器视觉可以代替人类的视觉从事检验、目标跟踪、机器人导向等方面的工作,特别是在那些需要重复、迅速的从图象中获取精确信息的场合。尽管在目前硬件和软件技术条件下,机器视觉功能还处于初级水平,但其潜在的应用价值引起了世界各国的高度重视,发达国家如美国、日本、德国、法国等都投入了大量的人力物力进行研究,近年来已经在机器视觉的某些方面获得了突破性的进展,机器视觉在车辆安全技术、自动化技术等应用中也越来越显示出其重要价值。本文根据最新的CMOS 图像采集芯片设计了一种通用的视觉系统模块,经过编制不同的图像处理、模式识别算法程序本模块可以应用到足球机器人,无人车辆等各种场合。 二、设计原理 系统原理框图如图1所示。 系统包含5个主要芯片:图像采集芯片OV7620,高速微处理器SH4,大规模可编程阵列FPGA,和串口通讯控制芯片MAX232。FPGA内部编程设立两个双口RAM,产生图像传感器所需的点频,行场同步等信号,以及控制双口RAM的存储时序。SH4负责对OV7620通过I2C进行配置,读取双口RAM的图像数据,进行处理,并通过串口实现图像资料的上传或控制步进电机等其他设备。 三、图像采集模块 系统模块以CMOS图像传感器OV7620为核心,还包括一个聚光镜头和其他一些辅助

元器件比如27MHZ的晶振,电阻电容等。 COMS图像传感器是近几年发展较快的新型图像传感器,由于采用了相同COMS技术,因此可以将像素阵列与外围支持电路集成在同一块芯片上,是一个完整的图像系统(Camera on Chip)。本系统采用的是Ommnvision公司推出的一块CMOS彩色图像传感器OV7620,分辨率为640x480。它能工作在逐行扫描方式下,也能工作在隔行扫描方式下。它不仅能输出彩色图像,也可用作黑白图像传感器。这块芯片支持的图像输出格式有很多种: 1)YCrCb4:2:2 16 bit/8 bit格式;2)ZV端口输出格式;3)RGB原始数据16 bit/8 bit; 4)CCIR601/CCIR656格式。其功能包括有对比度、亮度、饱和度、白平衡及自动曝光、同步信号位置及极性输出,帧速率和输出格式等都可以通过I2C 总线进行编程配置片内寄存器控制。 聚光镜头选用桑来斯公司生产的DSL103镜头。此镜头体积小,适合嵌入式视觉传感器的应用场合。 四、FPGA接口模块 FPGA采用Xilinx公司的XC2S100,这款芯片内部集成了10000个逻辑门。接口程序采用VHDL(Very High Speed Integrated Circuit Hardware Description Language)书写。为了提高数据的传输速率,在XC2S100 内部分配了2个双口RAM缓冲区,其大小为127KB,每个双口RAM存储1行的图像数据。两组双口RAM进行奇偶行计数器进行切换。当一行存储完毕后,立即向SH4传生一个读取该行数据的中断的申请信号。FPGA内部结构如图2所示。 这里主要问题在于FPGA内部的双口RAM读写操作共用同一数据总线和地址总线,当同时进行读写操作的时候就会产生时序问题导致写入或读出的数据错误。在这两个过程中为了防止数据和地址总线冲突,在FPGA内部设计了一个中央总线仲裁器。根据公共数据传输的先后顺序,中央仲裁器先接受图像传感器的总线请求,当图像存储到RAM之中后,中央仲裁器才响应单片机系统的读信号请求。

嵌入式机器视觉系统设计

嵌入式机器视觉系统设计 熊 超 田小芳 陆起涌 (复旦大学电子工程系 上海 200433) 摘要 机器视觉系统是智能机器人的一个重要标志,也是近年来的一个研究热点,现有研究成果在系统复杂度、价格和性能之间很难达到平衡。针对此问题,设计了一个CM O S摄像头为图像采集设备、DM CU为核心处理器的嵌入式机器视觉系统,并实现了实时双目测距。该系统简单、实时性好。 关键词 嵌入式系统 DM CU 机器视觉 双目测距 The Design of Embedded Machine Vision System Xiong Chao Tian Xiaofang Lu Qiyo ng (E.E.D ep ar tment,F udan U niv er sity,Shanghai200433,China) Abstract M achine vision is an act ive research area in recent years,which is an import ant symbol of intelligent robot,but t he present research product ion has not f ound a balance among the system complexit y,cost and per-formance.T o solve the problem,a new embedded machine vision system is proposed,which t akes t he CM OS sense as the image acquisit ion unit and DM CU as cent ral processor,and real-time depth measurement is realized. T he system is simple and st able,and has a good perf ormance in real-time operation. Key words Embedded syst em DM CU M achine vision Binocular dept h measurement 1 引 言 机器视觉系统是智能机器人的一个重要标志,其模拟了人的感知功能,具有探测范围宽、目标信息完整等优势,因此越来越受到人们的关注。其中,机器视觉测量障碍物距离是近年来的研究热点,并取得了一定的效果[1~3]。但这些视觉测距系统往往比较复杂、价格高,或者实时性差。在此设计了一个以CM OS摄像模块为图像采集设备、DM CU为核心处理器的嵌入式机器视觉系统,并实现了双目视觉实时测距。该系统集成度高、功耗低、实时性好,还有丰富的外围接口,可以广泛应用于智能机器人导航、目标定位等领域。 2 嵌入式系统设计 系统采用的摄像模块为台湾原相公司的CM OS 图像传感器PAS109B,工作电压2.4~3.6V,分辨率164×124,像素大小7.25 m×7.25 m,图像帧率最高60fps(frame per second),支持I2C接口。处理器采用台湾俊亿公司提供的DM CU处理器KBD0001B。DM-CU是为了适应现代便携设备发展而出现的一种全新体系结构,整合了DSP高效的运算能力和M CU强大的控制能力。K BD0001B字长16位,内部有RO M 32kW,有两种RA M:XRA M(16kW)和YRA M (8kW),可在一个时钟周期内分别从这两个RA M中得到两个操作数。K BD0001B运算速度最高可达25M IPS,采用了4级流水线结构,每条指令执行时间均为一个时钟周期。K BD0001B提供48个通用I/O接口,支持SPI、I2C、U A RT、PWM,内嵌了LCD控制器。 这里设计的机器视觉系统以K BD0001B为核心处理器,CM OS摄像模块为图像采集设备,大大降低该系统的复杂度。将该系统安装于一个移动小车上,通过双目视觉的方法测量障碍物的距离,实现了小车自主行驶和避障,如图1所示。 嵌入式机器视觉系统框图如图2所示。 为实时地测量障碍物距离,系统利用外极线约束[4]重整图像,这样每次只需分别从两图像传感器中 第26卷第8期增刊 仪 器 仪 表 学 报 2005年8月

机器视觉及工程应用matlab实例分析

clear all; clc; %RGB分量显示(如图1所示) I=imread('C:\Users\bjut\Desktop\机器视觉\北工大.jpg');%读取图片R=I(:,:,1);%图片中的红色元素存在R中 G=I(:,:,2);%图片中的绿色元素存在G中 B=I(:,:,3);%图片中的蓝色元素存在H中 figure(1) subplot(2,2,1);%生成2*2个子图,当前激活第1个子图 imshow(I);%显示图片 title('原始图像');%图片标题 subplot(2,2,2);%生成2*2个子图,当前激活第2个子图 imshow(R);%显示图片 title('R分量图像');%图片标题 subplot(2,2,3);%生成2*2个子图,当前激活第3个子图 imshow(G);%显示图片 title('G分量图像');%图片标题 subplot(2,2,4);%生成2*2个子图,当前激活第4个子图 imshow(B);%显示图片 title('B分量图像');%图片标题 图1 RGB分量显示

%彩色直方图均衡化(如图2) R1=histeq(R);%对各分量直方图均衡化,得到各分量均衡化图像 G1=histeq(G); B1=histeq(B); I1=cat(3,R,G,B);%创建三维矩阵,R为第一页,G为第二页,B为第三页HSV=rgb2hsv(I);%RGB转换成HSV V=HSV(:,:,3); V=histeq(V);%直方图均衡化 HSV(:,:,3)=V;%明亮度调节 I2=hsv2rgb(HSV); %HSV转换成RGB figure(2);%显示图像 subplot(1,2,1); imshow(I1); title('RGB各分量均衡化'); subplot(1,2,2); imshow(I2); title('V分量均衡化'); 图2 彩色直方图均衡化 %灰度图像伪彩色处理(如图3(a)) I=imread('C:\Users\bjut\Desktop\机器视觉\北工大灰度.jpg'); figure(3); imshow(I); title('灰度图像'); I=im2double(I);%图像数据转换成double型 [W,H]=size(I); R=zeros(W,H); G=zeros(W,H); B=zeros(W,H); L=1; %设置色彩变换函数

机器视觉基本介绍

机器视觉基本概念 2018.1.29 机器视觉系统 作用:利用机器代替人眼来做各种测量和判断。 它是计算机学科的一个重要分支,它综合了光学、机械、电子、计算机软硬件等方面的技术,涉及到计算机、图像处理、模式识别、人工智能、信号处理、光机电一体化等多个领域。 机器视觉系统的特点:是提高生产的柔性和自动化程度。在一些不适合于人工作业的危险工作环境或人工视觉难以满足要求的场合,常用机器视觉来替代人工视觉;同时在大批量工业生产过程中,用人工视觉检查产品质量效率低且精度不高,用机器视觉检测方法可以大大提高生产效率和生产的自动化程度。而且机器视觉易于实现信息集成,是实现计算机集成制造的基础技术。可以在最快的生产线上对产品进行测量、引导、检测、和识别,并能保质保量的完成生产任务 视觉检测:指通过机器视觉产品(即图像摄取装置,分CMOS 和CCD 两种)将被摄取目标转换成图像信号,传送给专用的图像处理系统,根据像素分布和亮度、颜色等信息,转变成数字化信号;图像系统对这些信号进行各种运算来抽取目标的特征,进而根据判别的结果来控制现场的设备动作。是用于生产、装配或包装的有价值的机制。它在检测缺陷和防止缺陷产品被配送到消费者的功能方面具有不可估量的价值。 照明 照明是影响机器视觉系统输入的重要因素,它直接影响输入数据的质量和应用效果。由于没有通用的机器视觉照明设备,所以针对每个特定的应用实例,要选择相应的照明装置,以达到最佳效果。 光源可分为可见光和不可见光。常用的几种可见光源是白帜灯、日光灯、水银灯和钠光灯。可见光的缺点是光能不能保持稳定。如何使光能在一定的程度上保持稳定,是实用化过程中急需要解决的问题。另一方面,环境光有可能影响图像的质量,所以可采用加防护屏的方法来减少环境光的影响。 照明系统按其照射方法可分为:背向照明、前向照明、结构光和频闪光照明等。其中,背向照明是被测物放在光源和摄像机之间,它的优点是能获得高对比度的图像。前向照明是光源和摄像机位于被测物的同侧,这种方式便于安装。结构光照明是将光栅或线光源等投射到被测物上,根据它们产生的畸变,解调出被测物的三维信息。频闪光照明是将高频率的光脉冲照射到物体上,摄像机拍摄要求与光源同步。 镜头 FOV(Field of Vision)=所需分辨率*亚象素*相机尺寸/PRTM(零件测量公差比) 镜头选择应注意: ①焦距②目标高度③影像高度④放大倍数⑤影像至目标的距离⑥中心点/节点⑦畸变

注塑成型五大要素解析

第四章:注塑成型五大要素解析 章节前言:对于学习注塑成型技术的基础知识,单纯地效仿前辈的作业方式或一味地看书面的理论知识未必能够快速提升自身的技能。应首先理解注塑成型的各工艺要素,说到工艺要素可能大家都能说出来,如:压力、速度、位置、时间、温度、环境等,但要做到真正理解并合理的运用并非易事,有的甚至十年、二十年都不一定能完全理解其相互关系,因为本行业的从业者每天都需要跟这几大要素打交道,所以理解每个要素至关重要,下面就各大要素来作重点 1. 2., 。 1 。 较好,在填充时其型腔阻力小,一般情况下可使用较低的射胶速度来填充型腔。如ABS、HIPS、GPPS、POM、PMMA、PC+ABS、Q胶、K胶、HDPE、等常用的中粘度塑料其流动性稍差,在产品外观光泽度要求不高或产品肉厚适中(产品壁厚或骨位厚度达1.5MM以上)的情况下射胶速度可用中速来填充,反之需依照产品结构或外观要求来适当提高填充速度。如PC、PA+GF、PBT+GF,LCP等工程塑料流动性较差,在填充时一般需要高速射胶,尤其是增加GF(玻璃纤维)的材料,若射胶速度过慢则造成产品表面浮纤(表面银纹状)严重。

2.熔胶速度的控制;此参数在日常工作中是最容易被忽略的工艺之一,因大多数同仁认为该工艺对成型影响不大,参数随便调整都能做出产品来,但在注塑成型中熔胶参数是同射胶速度一样重要的,熔胶速度可直接影响到熔体混炼效果,成型周期等重要环节,在后面的章节中会作详细的介绍。 3.开锁模速度的控制;主要针对不同的模具结构来设置不同的参数,如两板平面模具在启动锁模低压前调整高速锁模及在产品脱离模具型腔后调整至快速开模可有效提高生产效率。但有行位的模具在调整开锁模的速度时需根据行位的 4. 然; 3. 1. 在考50G130MM, 算不来),至于如何用射胶位置控制各种成型制品的不良现象,在后面的章节将会详细讲解。 2.熔胶位置的控制; 概括地理解为应对成型制品的所需射胶量来设置熔胶距离,多数同仁无视熔胶的三段切换位置,只会关注熔胶终点位置,当然;一般难度的成型制品在调整熔胶位置时不必对其进行快慢速或高低背压的切换,照样可以达到所需

(完整版)机器视觉思考题及其答案

什么是机器视觉技术?试论述其基本概念和目的。 答:机器视觉技术是是一门涉及人工智能、神经生物学、心理物理学、计算机科学、图像处理、模式识别等诸多领域的交叉学科。机器视觉主要用计算机来模拟人的视觉功能,从客观事物的图像中提取信息,进行处理并加以理解,最终用于实际检测、测量和控制。机器视觉技术最大的特点是速度快、信息量大、功能多。 机器视觉是用机器代替人眼来完成观测和判断,常用于大批量生产过程汇总的产品质量检测,不适合人的危险环境和人眼视觉难以满足的场合。机器视觉可以大大提高检测精度和速度,从而提高生产效率,并且可以避免人眼视觉检测所带来的偏差和误差。 机器视觉系统一般由哪几部分组成?试详细论述之。 答:机器视觉系统主要包括三大部分:图像获取、图像处理和识别、输出显示或控制。 图像获取:是将被检测物体的可视化图像和内在特征转换成能被计算机处理的一系列数据。该部分主要包括,照明系统、图像聚焦光学系统、图像敏感元件(主要是CCD和CMOS)采集物体影像。 图像处理和识别:视觉信息的处理主要包括滤波去噪、图像增强、平滑、边缘锐化、分割、图像识别与理解等内容。经过图像处理后,图像的质量得到提高,既改善了图像的视觉效果又便于计算机对图像进行分析、处理和识别。 输出显示或控制:主要是将分析结果输出到显示器或控制机构等输出设备。 试论述机器视觉技术的现状和发展前景。 答:。机器视觉技术的现状:机器视觉是近20~30年出现的新技术,由于其固有的柔性好、非接触、快速等特点,在各个领域得到很广泛的应用,如航空航天、工业、军事、民用等等领域。 发展前景:随着光学传感器、信息技术、信号处理、人工智能、模式识别研究的不断深入和计算机性价比的不断提高,机器视觉技术越来越成熟,特别是市面上已经有针对机器视觉系统开发的企业提供配套的软硬件服务,相信越来越多的客户会选择机器视觉系统代替人力进行工作,既便于管理又节省了成本。价格持续下降、功能逐渐增多、成品小型化、集成产品增多。 机器视觉技术在很多领域已得到广泛的应用。请给出机器视觉技术应用的三个实例并叙述之。答:一、在激光焊接中的应用。通过机器视觉系统,实时跟踪焊缝位置,实现实时控制,防止偏离焊缝,造成产品报废。 二、在火车轮对检测中的应用,通过机器视觉系统抓拍轮对图像,找出轮对中有缺陷的轮对,提高检测精度和速度,提高效率。 三、大批量生产过程中的质量检查,通过机器视觉系统,对生产过程中的产品进行质量检查跟踪,提高生产效率和准确度。 什么是傅里叶变换,分别绘出一维和二维的连续及离散傅里叶变换的数学表达式。论述图像傅立叶变换的基本概念、作用和目的。 答:傅里叶变换是将时域信号分解为不同频率的正弦信号或余弦函数叠加之和。 一维连续函数的傅里叶变换为: 一维离散傅里叶变换为: 二维连续函数的傅里叶变换为: 二维离散傅里叶变换为: 图像傅立叶变换的基本概念:傅立叶变换是数字图像处理技术的基础,其通过在时空域和频率域来回切换图像,对图像的信息特征进行提取和分析,简化了计算工作量,被喻为描述图

机器视觉系统设计五大难点【详解】

机器视觉系统设计五大难点 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理! 更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、数控系统、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. 机器视觉系统的组成 机器视觉系统是指用计算机来实现人的视觉功能,也就是用计算机来实现对客观的三维世界的识别。按现在的理解,人类视觉系统的感受部分是视网膜,它是一个三维采样系统。三维物体的可见部分投影到网膜上,人们按照投影到视网膜上的二维的像来对该物体进行三维理解。所谓三维理解是指对被观察对象的形状、尺寸、离开观察点的距离、质地和运动特征(方向和速度)等的理解。 机器视觉系统的输入装置可以是摄像机、转鼓等,它们都把三维的影像作为输入源,即输入计算机的就是三维管观世界的二维投影。如果把三维客观世界到二维投影像看作是一种正变换的话,则机器视觉系统所要做的是从这种二维投影图像到三维客观世界的逆变换,也就是根据这种二维投影图像去重建三维的客观世界。 机器视觉系统主要由三部分组成:图像的获取、图像的处理和分析、输出或显示。 近80%的工业视觉系统主要用在检测方面,包括用于提高生产效率、控制生产过程中的产品质量、采集产品数据等。产品的分类和选择也集成于检测功能中。下面通过一个用于生产线上的单摄像机视觉系统,说明系统的组成及功能。 视觉系统检测生产线上的产品,决定产品是否符合质量要求,并根据结果,产生相应的信号输入上位机。图像获取设备包括光源、摄像机等;图像处理设备包括相应的

软件和硬件系统;输出设备是与制造过程相连的有关系统,包括过程控制器和报警装置等。数据传输到计算机,进行分析和产品控制,若发现不合格品,则报警器告警,并将其排除出生产线。机器视觉的结果是CAQ系统的质量信息来源,也可以和CIMS 其它系统集成。 图像的获取 图像的获取实际上是将被测物体的可视化图像和内在特征转换成能被计算机处理的一系列数据,它主要由三部分组成: *照明 *图像聚焦形成 *图像确定和形成摄像机输出信号 1、照明 照明和影响机器视觉系统输入的重要因素,因为它直接影响输入数据的质量和至少30%的应用效果。由于没有通用的机器视觉照明设备,所以针对每个特定的应用实例,要选择相应的照明装置,以达到最佳效果。 过去,许多工业用的机器视觉系统用可见光作为光源,这主要是因为可见光容易获得,价格低,并且便于操作。常用的几种可见光源是白帜灯、日光灯、水银灯和钠光灯。但是,这些光源的一个最大缺点是光能不能保持稳定。以日光灯为例,在使用的第一个100小时内,光能将下降15%,随着使用时间的增加,光能将不断下降。因此,如何使光能在一定的程度上保持稳定,是实用化过程中急需要解决的问题。 另一个方面,环境光将改变这些光源照射到物体上的总光能,使输出的图像数据存在噪声,一般采用加防护屏的方法,减少环境光的影响。

机器视觉应用案例分析

机器视觉应用案例简析 机器视觉的应用在近年来越加广泛,其中机器视觉检测、机器人视觉两方面的技术成为目前主要的两大技术应用领域,维视图像在此为你介绍机器视觉的部分应用实例,为大家学习提供参考。 一、机器视觉两大主要应用领域 1. 机器视觉检测:机器视觉检测又可分为高精度定量检测(例如显微照片的细胞分类、机械零部件的尺寸和位置测量)和不用量器的定性或半定量检测(例如产品的外观检查、装配线上的零部件识别定位、缺陷性检测与装配完全性检测)。 基于通用视觉系统的角度检测 2. 机器人视觉:用于指引机器人在大范围内的操作和行动,如从料斗送出的杂乱工件堆中拣取工件并按一定的方位放在传输带或其他设备上(即料斗拣取问题)。至于小范围内的操作和行动,还需要借助于触觉传感技术。

基于视觉技术的机器人定位 二、机器视觉10大应用实例分析 1. 基于机器视觉的仪表板总成智能集成测试系统 EQ140-II汽车仪表板总成是我国某汽车公司生产的仪表产品,仪表板上安装有速度里程表、水温表、汽油表、电流表、信号报警灯等,其生产批量大,出厂前需要进行一次质量终检。检测项目包括:检测速度表等五个仪表指针的指示误差;检测24个信号报警灯和若干照明9灯是否损坏或漏装。一般采用人工目测方法检查,误差大、可靠性差,不能满足自动化生产的需要。基于机器视觉的智能集成测试系统,改变了这种现状,实现了对仪表板总成智能化、全自动、高精度、快速化的质量检测,克服了人工检测所造成的各种误差,大大提高了检测效率。 2. 金属板表面自动控伤系统 金属板如大型电力变压器线圈、扁平线收音机朦胧皮等的表面质量都有很高的要求,但原始的采用人工目视或用百分表加控针的检测方法,不仅易受主观因素的影响,而且可能会给被测表面带来新的划伤。金属板表面自动探伤系统利用机器视觉技术对金属表面缺陷进行自动检查,在生产过程中高速、准确地进行检测,同时由于采用非接角式测量,避免了产生新划伤的可能。 3. 汽车车身检测系统 英国ROVER汽车公司800系列汽车车身轮廓尺寸精度的100%在线检测,是机器视觉系

机器视觉的基本原理及应用

机器视觉的基本原理及应用 机器视觉是配备有传感视觉仪器(如自动对焦相机或传感器)的检测机器,主要研究计算机来模拟认得视觉功能从客观事物图像中提取信息,进行处理并加以理解,最终用于实际检测,测量和控制。其中光学检测仪器占有比重非常高,可用于检测出各种产品的缺陷,或者用与判断并选择出物体,或者用来测量尺寸等,应用在自动化生产线上对物料进行校准与定位。是计算机视觉中最具有产业化的部分,主要大量应用于工厂自动化检测及机器人产业等。 机器视觉的基本原理 机器视觉系统是指用电脑来实现人的视觉功能,也就是用电脑来实现对客观的三维世界的识别。按现在的理解,人类视觉系统的感受部分是视网膜,它是一个三维采样系统。三维物体的可见部分投影到网膜上,人们按照投影到视网膜上的二维的像来对该物体进行三维理解。所谓三维理解是指对被观察物件的形状、尺寸、离开观察点的距离、质地和运动特征(方向和速度)等的理解。 机器视觉的系统 机器视觉系统主要由三部分组成:图像的获取、图像的处理和分析、输出或显示。

系统可再细分为 主端电脑(Host Computer) 影像撷取卡(Frame Grabber)与影像处理器 影像摄影机(CCTV镜头、显微镜头) 照明设备(高周波萤光灯源、LED光源、Halogen卤素灯光源、闪光灯源、其他特殊光源) 影像显示器(LCD) 机构及控制系统(PLC、精密桌台、PC-Base控制器、伺服运动机台) 机器视觉的特点 (1)机器视觉是一项综合技术,其中包括数字图像处理技术,机械工程技术,控制技术,电光源照明技术,光学成像技术,传感器技术,模拟与数字视频技术,计算机硬件技术,人机接口技术等这些技术在机器视觉中式并列关系,相互协调应用才能构成一个成功的工业机器视觉应用系统。 (2)机器视觉更强调实用性,要求能够适应工业生产中恶劣的环境,要有合理的性价比,要有通用的工业接口,能够由普通工作来操作,有较高的容错能力和安全性,不会破坏工业产品,必须有较强的通用性和可移植性。 (3)对机器视觉工程师来说,不仅要具有研究数学理论和编制

机器视觉检测台自动控制系统设计毕业设计

毕业设计题目:机器视觉检测台自动控制系统设计 姓名: 学号: 学院:机电学院 专业:机械工程及自动化 指导教师: 协助指导教师: 201 年月日

摘要 为了提高机器视觉检测系统中摄像头的定位精度和实现摄像头的全自动调节,本文结合实际工业生产需求详细叙述了怎样进行机械机构设计、硬件选型与硬件接线以及精度计算设计等工作。其中硬件设计包含怎么选择合适的控制器、控制工艺、驱动设备、上位监控软件及网络通信方式等机器视觉检测台自动控制系统中的重要组成部分;精度计算设计主是指通过计算步进电机步距角与其高速脉冲频率的关系来实现摄像头移动位置的精确定位。 关键词:自动检测系统、PLC、步进电机

Abstract Precision detection technology as the key to promoting industrial development and the efficiency of detection to some extent reflects the development of the manufacturing sector; for machine vision inspection system has the advantage of high precision, on-line, real-time, non-contact, etc., with industrial production field of automation requirements continue to increase, machine vision inspection applications in various fields more widely, such as assembly line parts recognition positioning, size and location of the measurement of mechanical components, parts flaw detection, mechanical parts assembly Appearance inspection and product testing completely. In order to improve the positioning accuracy of the machine vision inspection system in the camera and the camera's automatic adjustment realization, this paper actual industrial production requirements described in detail how mechanical structure design, hardware selection and the hardware wiring and accuracy of the calculation and design work. The hardware design includes how to choose the right controller to control the process, drives, PC and network monitoring software, communications and other machine vision inspection station automatic control system, an important part; precision computing design of the main means by calculating the stepper motor step Relationship angle from its high-speed pulse frequency to achieve precise positioning camera movement position. Keywords: Automatically Detecting System, PLC, Stepper Motor.

机器视觉系统设计的五大难点

上海嘉肯光电科技有限公司:机器视觉光源的研发https://www.wendangku.net/doc/9015655849.html, 机器视觉系统设计的五大难点 第一:打光的稳定性 工业视觉应用一般分成四大类:定位、测量、检测和识别,其中测量对光照的稳定性要求最高,因为光照只要发生10-20%的变化,测量结果将可能偏差出1-2个像素,这不是软件的问题,这是光照变化,导致了图像上边缘位置发生了变化,即使再厉害的软件也解决不了问题,必须从系统设计的角度,排除环境光的干扰,同时要保证主动照明光源的发光稳定性。 第二:工件位置的不一致性 一般做测量的项目,无论是离线检测,还是在线检测,只要是全自动化的检测设备,首先做的第一步工作都是要能找到待测目标物。每次待测目标物出现在拍摄视场中时,要能精确知道待测目标物在哪里,即使你使用一些机械夹具等,也不能特别高精度保证待测目标物每次都出现在同一位置的,这就需要用到定位功能,如果定位不准确,可能测量工具出现的位置就不准确,测量结果有时会有较大偏差。 第三:标定 一般在高精度测量时需要做以下几个标定,一光学畸变标定(如果您不是用的软件镜头,一般都必须标定),二投影畸变的标定,也就是因为您安装位置误差代表的图像畸变校正,三物像空间的标定,也就是具体算出每个像素对应物空间的尺寸。

上海嘉肯光电科技有限公司:机器视觉光源的研发https://www.wendangku.net/doc/9015655849.html, 第四:物体的运动速度 如果被测量的物体不是静止的,而是在运动状态,那么一定要考虑运动模糊对图像精度(模糊像素=物体运动速度*相机曝光时间),这也不是软件能够解决的。 第五:软件的测量精度 在测量应用中软件的精度只能按照1/2—1/4个像素考虑,最好按照1/2,而不能向定位应用一样达到1/10-1/30个像素精度,因为测量应用中软件能够从图像上提取的特征点非常少。 上海嘉肯光电科技有限公司是一家专业从事机器视觉光源的研发、生产和销售为一体的高新技术企业。以工业检测、机器视觉、图像处理、科学研究等领域为主要研发及经营方向。此外,公司还代理工业镜头、工业相机、图像采集卡、图像处理软件和各类视觉附件。??上海嘉肯光电科技有限公司?将坚持“用心,创造未来”的企业经营理念,并持续不断地把最优秀、性价比最高的视觉产品提供给广大用户,以不断满足客户日益增长的要求。

注塑成型的原理

一.注塑成型的原理: 1.注塑成型:指将注射用的置于能加热的料筒内,受热、塑化,再施加压力,使熔体塑料注入到所需形状的模具中,经过冷却定型后脱模,得到所需形状的制品。 2.注塑成型三要素:注塑机、模具、原料 3.注塑成型条件五大要素:压力-时间-速度-位置-温度。 二.注塑机: 1.注塑机的种类: a.按塑化方式分柱塞式和螺杆式 b.按传动方式分液压式、机械式、液压机械式 c.按外型分卧式、立式、角式 目前我们公司使用的注射机为卧式、螺杆塑化、液压传动式注射机。 2.注射机的结构: a.注射系统:主要使塑料塑化和使熔体塑料注入模具功能 b.合模系统:主要模具的开模、锁模、调模、顶出功能 c.传动系统:主要控制注射机的动作能力。如油压阀、电动机 d.电气控制系统:主要注射机内部电路、开关、电路板 3.注射机的操作: a.打开注射机总电源及各开关,旋开紧急停止键 b.按下操作板上马达启动键与电热键,开启马达与料筒温度(按1次左上角灯亮为开启,再按1次左上角灯灭为停止) c.选用操作方式 c-1点动:上下模时使用,又称调模使用 c-2手动:选用此方式时操作板上的相应开关,只在按下时作相应动作,手指放开即停止 c-3半自动:选用此方式时,只需开关安全门一次,机器即做关模射出储料(冷却)开模顶出顶退,循环动作,再开安全门一次,再做一次循环 c-4.全自动:选用此方式操作,关上安全门后,机器重复关模顶出顶退(制品取出确认)关模至打开安全门或选用其它方式操作,生产有斜顶/滑块模具禁止使用。 d.开关模动作设定:开模一般设定为慢快慢,关模一般设定为快速低压低速高压锁模。低压压力最大不可以大于15kg/cm2低压与高压之间位置不可大2mm,快速与低压间位置一般在50mm

相关文档
相关文档 最新文档