文档库 最新最全的文档下载
当前位置:文档库 › 连续时间信号卷积运算的MATLAB实现

连续时间信号卷积运算的MATLAB实现

连续时间信号卷积运算的MATLAB实现
连续时间信号卷积运算的MATLAB实现

9.2 连续时间信号卷积运算的MATLAB 实现

一、实验目的

(1)理解掌握卷积的概念及物理意义。 (2)理解单位冲激响应的概念及物理意义。

二、实验原理

连续信号卷积运算定义为

1212()()*()()()f t f t f t f f t d τττ

-∞==

-?

卷积计算可以通过信号分段求和来实现,即

1212120

()()*()()()lim

()()k f t f t f t f f t d f k f t k τττ∞

?→=-∞

-∞

==

-=?-??∑

?

如果只求当t n =?(n 为整数)时()f t 的值()f n ?,则由上式可得

1212()()()()[()]k k f n f k f n k f k f n k ∞

=-∞

=-∞

?=

??-?=??-?∑

式中的

12()[()]k f k f n k ∞

=-∞

?-?∑

实际上就是连续信号1()f t 和2()f t 经等时间间隔?均

匀抽样的离散序列1()f k ?和2()f k ?的卷积和。当?足够小时,()f n ?就是卷积积分的结果——连续时间信号()f t 的较好的数值近似。

三、实验内容

1、用MATLAB 实现连续信号)(1t f 和)(2t f 卷积的过程如下: (1)

将连续信号)(1t f 和)(2t f 以时间间隔?进行抽样,得到离散序列1()f k ?和

2()

f k ?;

(2)

构造与1()f k ?和2()

f k ?相对应的时间向量

1

k 和

2

k (注意,此时时间序号向量

1

k 和

2

k 的元素不再是整数,而是抽样时间间隔

?的整数倍的时间间隔点

);

(3) 调用conv ()函数计算卷积积分)

(t f 的近似向量

)

(?n f ;

(4)

构造

)

(?n f 对应的时间向量k 。

2、实验参考程序

以下是MATLAB 实现连续信号卷积的通用函数sconv():

>> p=0.5;

k1=0:p:2;

f1=0.5*k1;

k2=k1;

f2=f1;

[f,k]=sconv(f1,f2,k1,k2,p) f=conv(f1,f2);

f=f*p;

k0=k1(1)+k2(1);

k3=length(f1)+length(f2)-2; k=0:p:k3*p;

subplot(2,2,1)

plot(k1,f1)

title('f1(t)')

xlabel('t')

ylabel('f1(t)')

subplot(2,2,2)

plot(k2,f2)

title('f2(t)')

xlabel('t')

ylabel('f2(t)')

subplot(2,2,3)

plot(k,f);

h=get(gca,'position')

h(3)=2.5*h(3);

set(gca,'position',h)

title('f(t)=f1(t)*f2(t)') xlabel('t')

ylabel('f(t)')

已知两连续时间信号如图所示,使用MATLAB求

()()()

12

f t f t f t

=*

,并绘出

()

f t

的时

域波形图。

实现上述过程的MATLAB命令如下:

p=0.5;

k1=0:p:2;

f1=0.5*k1;

k2=k1;

f2=f1;

[f,k]=sconv(f1,f2,k1,k2,p)

运行得出结果。上述命令绘制的波形图在图1中示出:

图1

以上给出了时间间隔为p=0.5时的处理效果。而图1.2给出了抽样时间间隔p=0.05时的处理结果。可见,当抽样时间p 足够小时,如图2函数sconv()的计算结果就是连续时间卷积

()()()

12f t f t f t =*的较好数值近似。

图2

3、仿真实例

执行程序:t COS t f 5)(1=,)

1()(2-=t t f δ )(1t f 和)(2t f 求卷积运算)

(*)(21t f t f f =

>> p=0.01; k1=0:p:3; f1=cos(5*k1);

k2=0:p:2; f2=(k2==1);

f=conv(f1,f2); %计算序列f1与f2的卷积和f f=f*p;

k0=k1(1)+k2(1); %计算序列f 非零样值的起点位置 k3=length(f1)+length(f2)-2; %计算卷积和f 的非零样值的宽度 k=k0:p:k3*p; %确定卷积和f 非零样值的时间向量 subplot(2,2,1)

plot(k1,f1) %在子图1绘f1(t)时域波形图 title('f1(t)') xlabel('t') ylabel('f1(t)') subplot(2,2,2)

plot(k2,f2) %在子图2绘f2(t)时波形图 title('f2(t)') xlabel('t') ylabel('f2(t)') subplot(2,2,3)

plot(k,f); %画卷积f(t)的时域波形 h=get(gca,'position');

h(3)=2.5*h(3);

set(gca,'position',h) %将第三个子图的横坐标范围扩为原来的2.5倍 axis([1,3,-0.01,0.01]); title('f(t)=f1(t)*f2(t)') xlabel('t') ylabel('f(t)')

程序执行结果:如图3所示

图3

四、实验小结

实验结果表明,用Matlab计算出的结果与理论分析结果一致。通过实验,我更深刻的理解了卷积的概念及其物理意义。并且学习了Matlab在卷积运算中的用法,熟悉了Matlab 的有关知识,受益匪浅。

实验四-使用matlab实现卷积的运算

一 实验目的 1、 学习MATLAB 语言的编程方法及熟悉MATLAB 指令; 2、 深刻理解卷积运算,利用离散卷积实现连续卷积运算; 二 实验内容 1、 完成)(1t f 与)(2t f 两函数的卷积运算 其中:)4()()(), ()(221--==-t u t u t f t u e t f t 在一个图形窗口中,画出)(1t f 、)(2t f 以 及卷积结果。要求每个坐标系有标题、坐标轴名称。 p = ; %定义时间间隔 t= 0:p:10; %定义时间向量 f1=exp(-2*t).*u(t); %将f (t )表示出来 f2=u(t)-u(t-4); f=conv(f1,f2); subplot(1,2,1); plot(t,f1,t,f2); title('f1=e^-2t*u(t)'' / ''f2=u(t)-u(t-4)'); xlabel('t(sec)'); % 这行代码是给出x 坐标的标签 ylabel('f(t)'); grid on ; subplot(1,2,2); plot(f); title('f=f1*f2'); xlabel('t(sec)'); % 这行代码是给出x 坐标的标签 ylabel('f') grid on

2、 若系统模型为: )(3)()(4)(4)(' ' ' 't f t f t y t y t y +=++ 其中 )()(t u e t f t -= 求零状态响应,画出波形(函数本身画出一幅图,自己再画出一幅输入波形图)。 零状态响应: a= [1 4 4]; %将y (t )各阶导数的系数放在向量a 中 b= [1 3]; %将f (t )各阶导数的系数放在向量b 中 sys = tf(b, a); %求系统函数sys td = ; %定义时间间隔 t = 0 : td : 10; %定义时间向量 f = exp(-t).*u(t); %将f (t )表示出来 y = lsim(sys, f, t); %求系统的零状态响应y plot(t, y); %绘出零状态响应的波形 xlabel('t(sec)'); % 这行代码是给出x 坐标的标签 ylabel('y(t)'); % 这行代码是给出y 坐标的标签 grid on

matlab频谱分析

设计出一套完整的系统,对信号进行频谱分析和滤波处理; 1.产生一个连续信号,包含低频,中频,高频分量,对其进行采样,进行频谱分析,分别设计三种高通,低通,带通滤波器对信号进行滤波处理,观察滤波后信号的频谱。 2.采集一段含有噪音的语音信号(可以录制含有噪音的信号,或者录制语音后再加进噪音信号),对其进行采样和频谱分析,根据分析结果设计出一合适的滤波器滤除噪音信号。 %写上标题 %设计低通滤波器: [N,Wc]=buttord() %估算得到Butterworth低通滤波器的最小阶数N和3dB截止频率Wc [a,b]=butter(N,Wc); %设计Butterworth低通滤波器 [h,f]=freqz(); %求数字低通滤波器的频率响应 figure(2); % 打开窗口2 subplot(221); %图形显示分割窗口 plot(f,abs(h)); %绘制Butterworth低通滤波器的幅频响应图 title(巴氏低通滤波器''); grid; %绘制带网格的图像 sf=filter(a,b,s); %叠加函数S经过低通滤波器以后的新函数 subplot(222); plot(t,sf); %绘制叠加函数S经过低通滤波器以后的时域图形 xlabel('时间(seconds)'); ylabel('时间按幅度'); SF=fft(sf,256); %对叠加函数S经过低通滤波器以后的新函数进行256点的基—2快速傅立叶变换 w= %新信号角频率 subplot(223); plot()); %绘制叠加函数S经过低通滤波器以后的频谱图 title('低通滤波后的频谱图'); %设计高通滤波器 [N,Wc]=buttord() %估算得到Butterworth高通滤波器的最小阶数N和3dB截止频率Wc [a,b]=butter(N,Wc,'high'); %设计Butterworth高通滤波器 [h,f]=freqz(); %求数字高通滤波器的频率响应 figure(3); subplot(221); plot()); %绘制Butterworth高通滤波器的幅频响应图 title('巴氏高通滤波器'); grid; %绘制带网格的图像 sf=filter(); %叠加函数S经过高通滤波器以后的新函数 subplot(222); plot(t,sf); ;%绘制叠加函数S经过高通滤波器以后的时域图形 xlabel('Time(seconds)'); ylabel('Time waveform'); w; %新信号角频率 subplot(223);

matlab实现卷积运算

2、试求下列图片的卷积波形12()()f t f t * 2() f t t 1 -1 1() f t t 1 -1 列出编程步骤: p=0.01; k1=0:p:1; f1=ones(1,length(k1)); k2=-1:p:1; f2= (k2+1).*(k2<0)+(-k2+1).*(k2>=0); [f,k]=sconv(f1,f2,k1,k2,p) function [f,k]=sconv(f1,f2,k1,k2,p) 3、试求下列图片的卷积波形12()()f t f t *

1() f t t 1 0.5- 2() f t t 12 1 p=0.01; k1=-0.5:p:1; f1=ones(1,length(k1)); k2=0:p:2; f2= 0.5*k2; [f,k]=sconv(f1,f2,k1,k2,p) 4、试求下列图片的卷积波形12()()f t f t *

1() f t t 2 2 - 2() f t t 3-2 -3 21 p=0.01; k1=-2:p:2; f1= (k1==-2)+(k1==2); k2=-3:p:3; f2=(k2+3).*(k2<-2)+(-k2-1).*(k2>=-2).*(k2<=-1)+(k2-1).*(k2>=1).*(k2<=2)+(-k2+3).*(k2>2); [f,k]=sconv(f1,f2,k1,k2,p); 5、试求下列图片的卷积波形12()()f t f t *

1() f t t 5 -5 33 -2() f t t 3 -2 -3 21 p=0.01; k1=-10:p:10; f1=(k1>=-5).*(k1<=-3)+(k1>=3).*(k1<=5); k2=-3:p:3; f2=(k2+3).*(k2<-2)+(-k2-1).*(k2>=-2).*(k2<=-1)+(k2-1).*(k2>=1).*(k2<=2)+(-k2+3).*(k2>2); [f,k]=sconv(f1,f2,k1,k2,p);

利用MATLAB实现循环卷积.doc

一、实验目的 1.利用MATLAB 实现循环卷积。 2.比较循环卷积与线性卷积的区别。 二、实验条件 PC 机,MATLAB7.0 三、实验内容 1)循环卷积的定义:两个序列的N 点循环卷积定义为: )0()()()]()([1 0N n m n x m h n x n h N k N N <≤-=?∑-= 利用MATLAB 实现两个序列的循环卷积可以分三个步骤完成: (1)初始化:确定循环点数N ,测量输入2个序列的长度。 (2)循环右移函数:将序列x(n)循环右移,一共移N 次(N 为循环卷积的循环次数),最后将每次循环成的新序列组成一个矩阵V 。 (3)相乘:将x(n)移位后组成的矩阵V 与第二个序列h(n)对应相乘,即得循环卷积结果。程序如下: 程序一: clear;close all ; N=10; x1=[6 15 -6 3 5 7 0 1]; x2=[7 1 2 9 4 3 20 6]; xn1=length(x1); xxn1=0:xn1-1; xn2=length(x2); xxn2=0:xn2-1; subplot(3,1,1); stem(xxn1,x1); subplot(3,1,2); stem(xxn2,x2); x11=fft(x1,N);

x12=fft(x2,N); y11=x11.*x12; y1=ifft(y11,N); subplot(3,1,3); n=0:length(y1)-1; stem(n,y1,'.'); title('循环卷积的结果'); xlabel('n');ylabel('y1(n)'); 运行后所得图形如下: 观察所得的循环卷积结果发现并没有呈现周期性的序列,因此将程序做下列改变。程序二: clear;close all; N=40; x1=[6 15 -6 3 5 7 0 1]; x2=[7 1 2 9 4 3 20 6]; x2=[x2,x2,x2,x2]; xn1=length(x1); xxn1=0:xn1-1; xn2=length(x2); xxn2=0:xn2-1; subplot(3,1,1);

信号的频谱分析及MATLAB实现

第23卷第3期湖南理工学院学报(自然科学版)Vol.23 No.3 2010年9月 Journal of Hunan Institute of Science and Technology (Natural Sciences) Sep. 2010信号的频谱分析及MATLAB实现 张登奇, 杨慧银 (湖南理工学院信息与通信工程学院, 湖南岳阳 414006) 摘 要: DFT是在时域和频域上都已离散的傅里叶变换, 适于数值计算且有快速算法, 是利用计算机实现信号频谱分析的常用数学工具. 文章介绍了利用DFT分析信号频谱的基本流程, 重点阐述了频谱分析过程中误差形成的原因及减小分析误差的主要措施, 实例列举了MATLAB环境下频谱分析的实现程序. 通过与理论分析的对比, 解释了利用DFT分析信号频谱时存在的频谱混叠、频谱泄漏及栅栏效应, 并提出了相应的改进方法. 关键词: MA TLAB; 频谱分析; 离散傅里叶变换; 频谱混叠; 频谱泄漏; 栅栏效应 中图分类号: TN911.6 文献标识码: A 文章编号: 1672-5298(2010)03-0029-05 Analysis of Signal Spectrum and Realization Based on MATLAB ZHANG Deng-qi, YANG Hui-yin (College of Information and Communication Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China) Abstract:DFT is a Fourier Transform which is discrete both in time-domain and frequency-domain, it fits numerical calculation and has fast algorithm, so it is a common mathematical tool which can realize signal spectrum analysis with computer. This paper introduces the basic process of signal spectrum analysis with DFT, emphasizes the causes of error producing in spectrum analysis process and the main ways to decrease the analysis error, and lists the programs of spectrum analysis based on MATLAB. Through the comparison with the theory analysis, the problems of spectrum aliasing, spectrum leakage and picket fence effect are explained when using DFT to analyze signal spectrum, and the corresponding solution is presented. Key words:MATLAB; spectrum analysis; DFT; spectrum aliasing; spectrum leakage; picket fence effect 引言 信号的频谱分析就是利用傅里叶分析的方法, 求出与时域描述相对应的频域描述, 从中找出信号频谱的变化规律, 以达到特征提取的目的[1]. 不同信号的傅里叶分析理论与方法, 在有关专业书中都有介绍, 但实际的待分析信号一般没有解析式, 直接利用公式进行傅里叶分析非常困难. DFT是一种时域和频域均离散化的傅里叶变换, 适合数值计算且有快速算法, 是分析信号的有力工具. 本文以连续时间信号为例, 介绍利用DFT分析信号频谱的基本流程, 重点阐述频谱分析过程中可能存在的误差, 实例列出MATLAB 环境下频谱分析的实现程序. 1 分析流程 实际信号一般没有解析表达式, 不能直接利用傅里叶分析公式计算频谱, 虽然可以采用数值积分方法进行频谱分析, 但因数据量大、速度慢而无应用价值. DFT在时域和频域均实现了离散化, 适合数值计算且有快速算法, 是利用计算机分析信号频谱的首选工具. 由于DFT要求信号时域离散且数量有限, 如果是时域连续信号则必须先进行时域采样, 即使是离散信号, 如果序列很长或采样点数太多, 计算机存储和DFT计算都很困难, 通常采用加窗方法截取部分数据进行DFT运算. 对于有限长序列, 因其频谱是连续的, DFT只能描述其有限个频点数据, 故存在所谓栅栏效应. 总之, 用DFT分析实际信号的频谱, 其结果必然是近似的. 即使是对所有离散信号进行DFT变换, 也只能用有限个频谱数据近似表示连续频 收稿日期: 2010-06-09 作者简介: 张登奇(1968? ), 男, 湖南临湘人, 硕士, 湖南理工学院信息与通信工程学院副教授. 主要研究方向: 信号与信息处理

基于Matlab实现线性卷积等

线性卷积与循环卷积 一、作品目的 通过matlab的强大功能展示线性卷积和循环卷积过程中方方面面的计算和变化,让大家对这两种卷积有一个更加完美的认识。 二、概念简介 卷积是一种典型的乘累加运算。 1.线性卷积 线性卷积是对线性移不变(LSI)系统的输入输出关系的描述,体现系统的特性。 线性卷积的表达式为 一般情况,现实的系统为因果系统,有k<0时,恒有h(k)=0,则 若x(n)是一个N点序列,h(n)是一个m点序列,则卷积的结果y(n)将是L=N+M-1点的序列。 2.循环卷积

设x1(n) 和x2(n) 是两个长度为L、M的有限长序列,它们的N 点循环卷积x3(n) 定义为: 注意:其中N>=Max{L,M}如果其中一个序列(或者两个序列)的长度没有所求N点循环卷积的长度长,那在该序列后面补零,直到长度达到N。 三、设计思路及程序 1. 线性卷积: (1)以输入序列x(n)=[5,4,3,2,1],脉冲响应h(n)=[1,1,1,1]为列进行演示。 (2)计算输入序列和脉冲响应的长度。 (3)画出补零后的输入序列和脉冲响应 (4)设计一个循环,在循环中实现反转、位移和计算。并画出反转后的图像变化和卷积图像,将每一次移位结果保存为fig图。(5)最后将上一步所生成的所有fig图合起来生成一张gif图 程序展示: clear; clc; close all; (1)(2)

xn=[5,4,3,2,1]; M=length(xn);%输入任意序列并计算长度M hn=[1,1,1,1]; N=length(hn);%输入任意脉冲响应并计算长度N m=[-(M-1):M+N-2];%设置代换变量的范围以便x(m)翻转和移位(3) xm=[zeros(1,M-1),xn,zeros(1,N-1)];%补零以便与m对应绘图 subplot(2,2,1);stem(m,xm,'r.');%%绘输入序列x(m) ylabel('x(m)'); grid on; title('(a)输入序列x(m)'); hm=[zeros(1,M-1),hn,zeros(1,M-1)];%补零以便与m对应绘图 subplot(2,2,2);stem(m,hm,'r.');%绘脉冲响应 ylabel('h(m)'),grid,title('(b)脉冲响应h(m)');%%加标签网格和标题 yn=zeros(1,2*M+N-2);%卷积输出初始化 (4) for n=0:M+N-2;%逐个计算卷积输出 if n==0; xmfy=[fliplr(xn),zeros(1,M+N-2)];%实现翻转 else for k=M:-1:1;

基于matlab的信号分析与处理

基于m a t l a b的信号分 析与处理 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

山东建筑大学 课程设计说明书题目:基于MATLAB的信号分析与处理课程:数字信号处理课程设计 院(部):信息与电气工程学院 专业:通信工程 班级:通信111班 学生姓名: 学号: 指导教师: 完成日期: 2014年1月

目录4

摘要 这次是基于MATLAB的信号分析与处理。所谓数字滤波器,就是输入、输出都是数字信号的,通过数值计算处理改变输入信号所含频率成分的相对比例,或者滤除某些频率成分的数字器件或程序。常用的经典滤波器有低通、高通、带通、带阻。 首先产生一个连续信号,包含低频、中频、高频分量;对其进行采样,得到数字信号;对数字信号进行FFT频谱分析,绘制其频谱图;根据信号频谱分析的结果,分别设计高通、低通、带通滤波器,绘制滤波器的幅频及相频特性;用所设计的滤波器对信号滤波,并绘制出滤波后的频谱图。 关键词:MATLAB; FFT;滤波器;信号产生;频谱分析

1设计目的和要求 产生一个连续信号,包含低频,中频,高频分量,对其进行采样,进行频谱分析,分别设计三种高通,低通,带通滤波器对信号进行滤波处理,观察滤波后信号的频谱。 2设计原理 信号的采样要符合奈奎斯特采样定律,一般为被采信号最高频率的2倍,只有这样,才能保证频域不混叠,也就是采样出来数字信号中包含了被采信号的所有信息,而且没有引入干扰。这就是信号的时域采样。 频谱分析是指对信号进行频域谱的分析,观察其频域的各个分量的功率大小,其理论基础是傅立叶变换,现在一般采用数字的方法,也就是将时域信号数字化后做FFT,可以得到频域的波形。 数字滤波器是一种用来过滤时间离散信号的数字系统,通过对抽样数据进行数学处理来达到频域滤波的目的。可以设计系统的频率响应,让它满足一定的要求,从而对通过该系统的信号的某些特定的频率成分进行过滤,这就是滤波器的基本原理。 IIR滤波器的设计原理: IIR数字滤波器的设计一般是利用目前已经很成熟的模拟滤波器的设计方法来进行设计,通常采用模拟滤波器原型有butterworth函数、chebyshev函数、bessel函数、椭圆滤波器函数等。 IIR数字滤波器的设计步骤: (1)按照一定规则把给定的滤波器技术指标转换为模拟低通滤波器的技术指标; (2)根据模拟滤波器技术指标设计为响应的模拟低通滤波器; (3)很据脉冲响应不变法和双线性不变法把模拟滤波器转换为数字滤波器; (4)如果要设计的滤波器是高通、带通或带阻滤波器,则首先把它们的技术指标转化为模拟低通滤波器的技术指标,设计为数字低通滤波器,最后通过频率转换的方法来得到所要的滤波器。 本课程设计设计思想:首先利用MATLAB分别产生低频、中频、高频信号,然后进行叠加得到连续时间信号;对所产生的连续时间信号进行采样,得到数字信号;对信

用matlab实现两个离散序列的卷积(不使用conv函数)

作业2.用matlab实现离散序列的卷积. N=14; n=[1:N-1]; f=1/16; signal1=5*sin(2*pi*n/8); figure(1); subplot(3,1,1) stem(n,signal1);title( ' 信号1' );xlabel( 'n' );ylabel( axis([0 15 -6 6]) long_M=5; signal2=ones(1,long_M); subplot(3,1,2) stem(signal2);title( ' 信号2' );xlabel( 'n' );ylabel( axis([0 6 -2 2]); grid on; long_N=length(signal1); fk=zeros(0,long_N+long_M+10); if (long_N>long_M) for k=1:1:long_N+long_M-1 a=0; if (k<=long_N) for i=1:1:k if (i>long_M) fk(k)=a; else fk(k)=a+signal2(i)*signal1(k-i+1); a=fk(k); end end else for i=1:1:k if (k-long_N+i>long_M) fk(k)=a; else fk(k)=a+signal2(k-long_N+i)*signal1(long_N-i+1); a=fk(k); end end end end end subplot(3,1,3) stem(fk);title( ' 卷积函数的实现' );xlabel( 'n' );ylabel( 'y(n)' ); 'y(n)' ); 幅度' );

实验三用FFT对信号进行频谱分析和MATLAB程序

实验三 用FFT 对信号进行频谱分析 一 实验目的 1 能够熟练掌握快速离散傅立叶变换的原理及应用FFT 进行频谱分析的基本方法; 2了解用FFT 进行频谱分析可能出现的分析误差及其原因; 二 实验原理 1.用DFT 对非周期序列进行谱分析 单位圆上的Z 变换就是序列的傅里叶变换,即 ()()j j z e X e X z ωω== (3-1) ()j X e ω是ω的连续周期函数。对序列()x n 进行N 点DFT 得到()X k ,则()X k 是在区间[]0,2π上对()j X e ω的N 点等间隔采样,频谱分辨率就是采样间隔 2N π。因此序列的傅里叶变换可利用DFT (即FFT )来计算。 用FFT 对序列进行谱分析的误差主要来自于用FFT 作频谱分析时,得到的是离散谱,而非周期序列的频谱是连续谱,只有当N 较大时,离散谱的包络才能逼近连续谱,因此N 要适当选择大一些。 2.用DFT 对周期序列进行谱分析 已知周期为N 的离散序列)(n x ,它的离散傅里叶级数DFS 分别由式(3-2)和(3-3) 给出: DFS : ∑-=-=1 2)(1N n kn N j k e n x N a π , n =0,1,2,…,N -1 (3-2) IDFS : ∑-==1 02)(N k kn N j k e a n x π , n =0,1,2,…,N -1 (3-3) 对于长度为N 的有限长序列x (n )的DFT 对表达式分别由式(3-4)和(3-5)给出: DFT : ∑-=-=1 02)()(N n kn N j e n x k X π , n =0,1,2,…,N -1 (3-4) IDFT : ∑-==1 02)(1)(N k kn N j e k X N n x π , n =0,1,2,…,N -1 (3-5) FFT 为离散傅里叶变换DFT 的快速算法,对于周期为N 的离散序列x (n )的频谱分析便可由式(3-6)和(3-7)给出:

卷积码matlab程序

卷积编码程序: function [output, len_tal] = cnv_encd(secrettext, encodetext) g = [0 0 1 0 0 1 0 0; 0 0 0 0 0 0 0 1; 1 0 0 0 0 0 0 1; 0 1 0 0 1 1 0 1]; k0 = 1; % 读入文本文件并计算文件长度 frr = fopen(secrettext, 'r'); [msg, len] = fread(frr, 'ubit1'); msg = msg'; % check to see if extra zero padding is necessary if rem(length(msg), k0) > 0 msg = [msg, zeros(size(1:k0-rem(length(msg),k0)))]; end n = length(msg)/k0; % 把输入比特按k0分组,n为所得的组数。 % check the size of matrix g if rem(size(g, 2), k0) > 0 error('Error, g is not of the right size.'); end % determine L and n0 L = size(g, 2)/k0; n0 = size(g, 1); % add extra zeros,以保证编码器是从全0开始,并回到全0状态。 u = [zeros(size(1:(L-1)*k0)), msg, zeros(size(1:(L-1)*k0))]; % generate uu, a matrix whose columns are the contents of conv. encoder at % various clock cycles. u1 = u(L*k0: -1 :1); for i = 1:n+L-2 u1 = [u1, u((i+L)*k0:-1:i*k0+1)]; end uu = reshape(u1, L*k0, n+L-1); % determine the output output = reshape(rem(g*uu, 2), 1, n0*(L+n-1)); len_tal = n0*(L + n - 1);

MATLAB实现卷积码编译码-

本科生毕业论文(设计) 题目:MATLAB实现卷积码编译码 专业代码: 作者姓名: 学号: 单位: 指导教师: 年月日

目录 前言----------------------------------------------------- 1 1. 纠错码基本理论---------------------------------------- 2 1.1纠错码基本理论 ----------------------------------------------- 2 1.1.1纠错码概念 ------------------------------------------------- 2 1.1.2基本原理和性能参数 ----------------------------------------- 2 1.2几种常用的纠错码 --------------------------------------------- 6 2. 卷积码的基本理论-------------------------------------- 8 2.1卷积码介绍 --------------------------------------------------- 8 2.1.1卷积码的差错控制原理----------------------------------- 8 2.2卷积码编码原理 ---------------------------------------------- 10 2.2.1卷积码解析表示法-------------------------------------- 10 2.2.2卷积码图形表示法-------------------------------------- 11 2.3卷积码译码原理---------------------------------------------- 15 2.3.1卷积码三种译码方式------------------------------------ 15 2.3.2V ITERBI译码原理---------------------------------------- 16 3. 卷积码编译码及MATLAB仿真---------------------------- 18 3.1M ATLAB概述-------------------------------------------------- 18 3.1.1M ATLAB的特点------------------------------------------ 19 3.1.2M ATLAB工具箱和内容------------------------------------ 19 3.2卷积码编码及仿真 -------------------------------------------- 20 3.2.1编码程序 ---------------------------------------------- 20 3.3信道传输过程仿真-------------------------------------------- 21 3.4维特比译码程序及仿真 ---------------------------------------- 22 3.4.1维特比译码算法解析------------------------------------ 23 3.4.2V ITERBI译码程序--------------------------------------- 25 3.4.3 VITERBI译码MATLAB仿真----------------------------------- 28 3.4.4信噪比对卷积码译码性能的影响 -------------------------- 28

应用MATLAB对信号进行频谱分析

数字信号处理课程设计报告书 2011年7 月 1日 课题名称 应用MATLAB 对信号进行频谱分析 姓 名 张炜玮 学 号 20086377 院、系、部 电气系 专 业 电子信息工程 指导教师 刘鑫淼 ※※※※※※※※※ ※※ ※※ ※※ ※※ ※※※※※ ※※ 2008级数字信号处理课程设计

应用MATLAB对信号进行频谱分析 20086377 张炜玮 一、设计目的 用MATLAB语言进行编程,绘出所求波形,并且运用FFT求对连续信号进行分析。 二、设计要求 1、用Matlab产生正弦波,矩形波,并显示各自的时域波形图; 2、进行FFT变换,显示各自频谱图,其中采样率、频率、数据长度自选,要求注明; 3、绘制三种信号的均方根图谱; 4、用IFFT回复信号,并显示恢复的正弦信号时域波形图。 三、系统原理 用FFT对信号作频谱分析是学习数字信号处理的重要内容。经常需要进行频谱分析的信号是模拟信号和时域离散信号。频谱分辨率直接和FFT的变换区间N 有关,因为FFT能够实现频率分辨率是2π/N。 x(n)是一个长度为M的有限长序列,则x(n)的N点离散傅立叶变换为: X(k)=DFT[x(n)]= kn N W N n n x ∑ - = 1 ) ( ,k=0,1,...,N-1 N j e N Wπ2- = 逆变换:x(n) =IDFT[X(k)]= kn N W k X N n N - ∑ - = 1 ) ( 1 ,k=0,1,...,N-1 但FFT是一种比DFT更加快速的一种算法,提高了DFT的运算速率,为数字信号处理技术应用于各种信号处理创造了条件,大大提高了数字信号处理技术的发展。本实验就是采用FFT,IFFT对信号进行谱分析。 四、程序设计 fs=input('please input the fs:');%设定采样频率 N=input('please input the N:');%设定数据长度 t=0:0.001:1; f=100;%设定正弦信号频率 %生成正弦信号 x=sin(2*pi*f*t);

用MATLAB实现序列圆周卷积

数字信号处理实验报告 实验项目名称:用MATLAB实现序列的圆周卷积 实验日期: 2012-11-28 实验成绩: 实验评定标准: 一、实验目的 通过本实验,掌握一些基本而且重要的离散时间信号,熟悉基本离散时间信号的MATLAB实现方法。 二、实验器材 PC机,MATLAB软件。 三、实验内容 计算两序列x1(n)={1,2,3,4,5},x2(n)={1,2,3,4,5,4,3,2,1}的圆周卷积。 四、实验结果 实验代码: clear all close all clc x1=[1,2,3,4,5,6,7,8]; x2=[1,2,3,4,5,6,7,8,7,6,5,4,3,2, 1]; N=length(x1)+length(x2); n=0:N-1 n1=0:N-2; n2=0:N-3; y1=circonvt(x1,x2,N); y2=circonvt(x1,x2,N-1);

y3=circonvt(x1,x2,N-2); x1=[x1 zeros(1,N-length(x1))]; x2=[x2 zeros(1,N-length(x2))]; Xf1=dft(x1,N); Xf2=dft(x2,N); Xf=Xf1.*Xf2; x=idft(Xf,N); x=real(x); subplot(2,3,1) stem(n,x1); title('x1(n)'); subplot(2,3,2) stem(n,x2); title('x2(n)') subplot(2,3,3); stem(n,x); title('x(n)=IDFT(X(k))'); subplot(2,3,4); stem(n,y1); title('N点圆周卷积'); subplot(2,3,5); stem(n1,y2); title('N-1点圆周卷积'); subplot(2,3,6); stem(n2,y3); title('N-2点圆周卷积'); function y=circonvt(x1,x2,N) if length(x1)>N error('N 必须 >= x1的长度') end if length(x2)>N error('N 必须 >= x2的长度') end x1=[x1 zeros(1,N-length(x1))]; x2=[x2 zeros(1,N-length(x2))]; m=[0:1:N-1]; x2=x2(mod(-m,N)+1); H=zeros(N,N); for n=1:1:N H(n,:)=cirshift(x2,n-1,N); end y=x1*H; function y=cirshift(x,m,N) if length(x)>N error('N 必须 >= x的长度') end x=[x zeros(1,N-length(x))]; n=[0:1:N-1]; n=mod(n-m,N); y=x(n+1); function [Xk]=dft(xn,N) n=[0:1:N-1];k=[0:1:N-1]; WN=exp(-j*2*pi/N); nk=n'*k; WNnk=WN.^nk; Xk= xn * WNnk; function [xn]=idft(Xk,N) %计算逆离散傅里叶变换 %[xn]=idft(Xk,N) n=[0:1:N-1];

基于matlab的信号分析与处理

山东建筑大学 课程设计说明书题目:基于MATLAB的信号分析与处理课程:数字信号处理课程设计 院(部):信息与电气工程学院 专业:通信工程 班级:通信111班 学生姓名: 学号: 指导教师: 完成日期:2014年1月

目录 摘要 (Ⅰ) 1 设计目的和要求 (1) 2 设计原理 (2) 3 设计内容 (3) 3.1 程序源代码 (4) 3.2 调试分析与过程描述 (7) 3.3 结果分析 (12) 总结 (13) 致谢 (14) 参考文献 (15)

摘要 这次是基于MATLAB的信号分析与处理。所谓数字滤波器,就是输入、输出都是数字信号的,通过数值计算处理改变输入信号所含频率成分的相对比例,或者滤除某些频率成分的数字器件或程序。常用的经典滤波器有低通、高通、带通、带阻。 首先产生一个连续信号,包含低频、中频、高频分量;对其进行采样,得到数字信号;对数字信号进行FFT频谱分析,绘制其频谱图;根据信号频谱分析的结果,分别设计高通、低通、带通滤波器,绘制滤波器的幅频及相频特性;用所设计的滤波器对信号滤波,并绘制出滤波后的频谱图。 关键词:MATLAB; FFT;滤波器;信号产生;频谱分析

1设计目的和要求 产生一个连续信号,包含低频,中频,高频分量,对其进行采样,进行频谱分析,分别设计三种高通,低通,带通滤波器对信号进行滤波处理,观察滤波后信号的频谱。 2设计原理 信号的采样要符合奈奎斯特采样定律,一般为被采信号最高频率的2倍,只有这样,才能保证频域不混叠,也就是采样出来数字信号中包含了被采信号的所有信息,而且没有引入干扰。这就是信号的时域采样。 频谱分析是指对信号进行频域谱的分析,观察其频域的各个分量的功率大小,其理论基础是傅立叶变换,现在一般采用数字的方法,也就是将时域信号数字化后做FFT,可以得到频域的波形。 数字滤波器是一种用来过滤时间离散信号的数字系统,通过对抽样数据进行数学处理来达到频域滤波的目的。可以设计系统的频率响应,让它满足一定的要求,从而对通过该系统的信号的某些特定的频率成分进行过滤,这就是滤波器的基本原理。 IIR滤波器的设计原理: IIR数字滤波器的设计一般是利用目前已经很成熟的模拟滤波器的设计方法来进行设计,通常采用模拟滤波器原型有butterworth函数、chebyshev函数、bessel函数、椭圆滤波器函数等。 IIR数字滤波器的设计步骤: (1)按照一定规则把给定的滤波器技术指标转换为模拟低通滤波器的技术指标; (2)根据模拟滤波器技术指标设计为响应的模拟低通滤波器; (3)很据脉冲响应不变法和双线性不变法把模拟滤波器转换为数字滤波器; (4)如果要设计的滤波器是高通、带通或带阻滤波器,则首先把它们的技术指标转化为模拟低通滤波器的技术指标,设计为数字低通滤波器,最后通过频率转换的方法来得到所要的滤波器。 本课程设计设计思想:首先利用MATLAB分别产生低频、中频、高频信号,然后进行叠加得到连续时间信号;对所产生的连续时间信号进行采样,得到数字信号;对信号进行FFT频谱分析,绘制其频谱图;根据信号频谱分析的结果,分别设计高通,低通,带通滤波器,得到滤波器的幅频及相频特性。

用matlab计算序列卷积和并绘图

(一)实验目的:学会用MATLAB对信号与系统分析的方法,理解离散序列卷积和的计算对进行离散信号与系统分析的重要性。 (二)实验原理: 1、离散时间序列f1(k)和f2(k)的卷积和定义: f(k)=f1(k)*f2(k)=∑∞ -∞ = -? i i k f i f) ( 2 ) ( 1 2、在离散信号与系统分析中有两个与卷积和相关的重要结论: a、f(k)= ∑∞ -∞ = -? i i k i f) ( ) (δ=f(k)* δ(k)即离散序列可分解为一系列 幅度由f(k)决定的单位序列δ(k)及其平移序列之积。 b、对线性时不变系统,设其输入序列为f(k),单位响应为h(k),其零状 态响应为y(k),则有:y(k)= ∑∞ -∞ = -? i i k h i f) ( ) ( 3、上机:conv.m用来实现两个离散序列的线性卷积。 其调用格式是:y=conv(x,h) 若x的长度为N,h的长度为M,则y的长度L=N+M-1。 (三)实验内容 1、题一:令x(n)= {}5,4,3,2,1,h(n)={}246326, , , , ,,y(n)=x(n)*h(n),求y(n)。 要求用subplot和stem画出x(n),h(n),y(n)与n的离散序列图形。 源程序: N=5; M=6; L=N+M-1; x=[1,2,3,4,5]; h=[6,2,3,6,4,2]; y=conv(x,h); nx=0:N-1; nh=0:M-1; ny=0:L-1; subplot(131); stem(nx,x,'*k'); xlabel('n'); ylabel('x(n)'); grid on ; subplot(132); stem(nh,h,'*k'); xlabel('n'); ylabel('h(n)'); grid on ; subplot(133); stem(ny,y,'*k'); xlabel('n'); ylabel('y(n)'); grid on ; 实验结果:

基于MATLAB仿真的数字信号调制的性能比较和分析

2ASK、2FSK、2PSK数字调制系统的 Matlab实现及性能分析比较 指导教师: 班级: 学号: 姓名:

引言:数字信号有两种传输方式,分别是基带传输方式和调制传输方式,即带通,在实际应用中,因基带信号含有大量低频分量不利于传送,所以必须经过载波和调制形成带通信号,通过数字基带信号对载波某些参量进行控制,使之随机带信号的变化而变化,这这一过程即为数字调制。数字调制为信号长距离高效传输提供保障,现已广泛应用于生活和生产中。另外根据控制载波参量方式的不同,数字调制主要有调幅(ASK ),调频(FSK),调相(PSK) 三种基本形式。本次课题针对于二进制的2ASK 、2FSK 、2PSK 进行讨论,应用Matlab 矩阵实验室进行仿真,分析和修改,通过仿真系统生成一个人机交互界面,以利于仿真系统的操作。通过对系统的仿真,更加直观的了解数字调制系统的性能及影响其性能的各种因素,以便于比较,评论和改进。 关键词: 数字,载波,调制,2ASK ,2FSK ,2PSK ,Matlab ,仿真,性能,比较,分析 正文: 一 .数字调制与解调原理 1.1 2ASK (1)2ASK 2ASK 就是把频率、相位作为常量,而把振幅作为变量,信息比特是通过载波的幅度来传递的。由于调制信号只有0或1两个电平,相乘的结果相当于将载频或者关断,或者接通,它的实际意义是当调制的数字信号"1时,传输载波;当调制的数字信号为"0"时,不传输载波。 表达式为: ???===0 01,cos )(2k k c ASK a a t A t s 当, 当ω

1.2 2FSK 2FSK可以看做是2个不同频率的2ASK的叠加,其调制与解调方法与2ASK差不多,主要频率F1和F2,不同的组合产生所要求的2FSK调制信号。 公式如下: ? ? ? = = = cos 1 , cos )( 2 1 2 k k FSK a t A a t A t s 当 , 当 ω ω

相关文档