文档库 最新最全的文档下载
当前位置:文档库 › 05 数理方程定解问题

05 数理方程定解问题

数理方程期末试题B答案

北 京 交 通 大 学 2007-2008学年第二学期《数理方程与特殊函数》期末考试试卷(B ) (参考答案) 学院_ ____________ 专业___________________ 班级________ ____ 学号_______________ 姓名___________ __ 一、 计算题(共80分,每题16分) 1. 求下列定解问题(15分) 2. 用积分变换法及性质,求解半无界弦的自由振动问题:(15分) 3. 设弦的两端固定于0x =及x l =,弦的出示位移如下图所示。初速度为零,又没有外力 作用。求弦做横向振动时的位移(,)u x t 。 [ 解 ] 问题的定解条件是 由初始条件可得 4. 证明在变换, x at x at ξη=-=+下,波动方程xx tt u a u 2=具有形式解0=n u ξ,并由此求 出波动方程的通解。 5. 用分离变量法解下列定解问题 [ 提示:1) 可以直接给出问题的固有函数,不必推导;2) 利用参数变易法。] [ 解 ] 对应齐次方程的定解问题的固有函数是x l n π sin ,其解可以表示成 把原问题中非齐次项t x t x f l a l π π22sin sin ),(=按照固有函数展开成级数 因此有 利用参数变易法,有 于是 6. 用Bessel 函数法求解下面定解问题 [ 解 ] 用分离变量法求解。令)()(),(t T R t u ρρ=,则可得

以及 设0ρβλn n = 为Bessel 函数)(0x J 的正零点,则问题(II )的特征值和特征函数分别为 问题(I )的解为 于是原问题的解是 由初始条件 得到 故 于是最后得到原问题的解是 二、 证明题(共2分,每题10分) 7. 证明平面上的Green 公式 其中C 是区域D 的边界曲线,ds 是弧长微分。 [证明] 设),(),,(y x Q y x p 在D+C 上有一阶连续偏导数,n 为C 的外法线方向,其方向余弦为βαcos ,cos ,则有 再设u,v 在D 内有二阶连续偏导数,在D+C 上有一阶连续偏导数,令 得到 交换u,v ,得到 上面第二式减去第一式,得到 证毕。 8. 证明关于Bessel 函数的等式:

数理方程练习题(1)

一、填空题 1.二阶线性偏微分方程xx xy yy x y Au Bu C u D u Eu Fu G +++++=(其中各系数均为x 和y 的函数)在某一区域的性质由式子:24B AC -的取值情况决定,取值为正对应的是( 双曲 )型,取值为负对应的是( 椭圆)型,取值为零对应的是( 抛物 )型。 2.在实际中广泛应用的三个典型的数学物理方程: 第一个叫( 弦自由横振动 ),表达式为(2tt xx u a B u =),属于(双曲)型; 第二个叫( 热传导 ),表达式为( 2t xx u a B u =),属于( 椭圆 )型; 第三个叫(拉普拉斯方程和泊松方程),表达式为(0 x x y y u u +=, (,)xx yy u u x y ρ+=-),属于(椭圆)型; 二、选择题 1.下列泛定方程中,属于非线性方程的是[ B ] (A) 260t xx u u xt u ++=; (B) sin i t tt xx u u u e ω-+=; (C) ( )22 0y xx xxy u x y u u +++=; (D) 340t x xx u u u ++=; 2. 下列泛定方程中,肯定属于椭圆型的是[ D ] (A)0xx yy u xyu +=; (B) 22x xx xy yy x u xyu y u e -+=; (C)0xx xy yy u u xu +-=; (D)()()()22sin sin 2cos xx xy yy x u x u x u x ++=; 3. 定解问题 ()()( )()()()2,0,00,,0 ,0,,0tt xx x x t u a u t x l u t u l t u x x u x x ?φ?=><

教师职业道德模拟考试试题参考答案

2017年高校教师任职资格培训 教师职业道德考试模拟试题参考答案 一、单选题(1分×20) 1.教师职业道德区别于其他职业道德的显著标志就是(A) A.为人师表 B.清正廉洁 C.敬业爱业 D.团结协作 2.教师( A )是指教师对教育劳动中客观存在的道德关系以及处理这些关系的原则、规范的认识。 A.职业道德认识 B.职业道德情感 C. 职业道德意志 D. 职业道德行为 3.托尔斯泰说:“如果一个教师把热爱事业和热爱学生结合起来,他就是一个完美的教师”。这意味着教师要(A) A.关心学生、了解学生 B.尊重学生、信任学生 C.严格要求学生,对学生一视同仁 D.把热爱事业与热爱学生结合起来 4.孔夫子所说的的"其身正,不令而行;其身不正,虽令不从",从教师的角度来说可以理解为(D) A.走路身体一定要端正 B.自己做好了,不要教育学生,学生自然会学好 C.对学生下命令一定要正确 D.教师自己以身作则,一言一行都会对学生产生巨大的影响 5.( B )是社会主义道德的根本原则。 A. 人道主义 B. 集体主义 C. 爱国主义 D. 民主、平等 6.师德的灵魂是(A)

A.关爱学生 B.提高修养 C.加强反思 D.提高业务水平 7.尊重学生的个别差异,教师应努力做到( B ) A.对学生一视同仁,一样要求 B.辨证地看待学生的优缺点,不绝对化 C.引导学生相互间进行横向的比较与学习 D.不同的学生犯了同样的错误,不考虑动机与原因就进行处理 8.教师在履行教育义务的活动中,最主要、最基本的道德责任是( B )A. 依法执教 B. 教书育人 C. 爱岗敬业 D. 团结协作 9.思考教师职业道德的逻辑起点是( D ) A.时代变化与变革 B.西方发达国家的师德规范 C.中华民族的优秀师德 D.人的发展与社会发展之间的矛盾 10.提升教师职业道德修养的根本途径是(A) A.理论联系实际,知行统一 B.加强学习,提高理论素质 C.注重内省慎独 D.确立可行目标 11.教师职业道德评价的根据是( A ) A.动机和效果和统一 B.社会舆论 C.职业良心 D.善恶观念 12.下列不属于教师与同事关系的类型的一项是( D ) A.自重型 B.亲和型 C.排斥型 D.顺从型

数理方程版课后习题答案

第一章曲线论 §1 向量函数 1. 证明本节命题3、命题5中未加证明的结论。 略 2. 求证常向量的微商等于零向量。 证:设,为常向量,因为 所以。证毕3. 证明 证: 证毕4. 利用向量函数的泰勒公式证明:如果向量在某一区间内所有的点其微商为零,则此向量在该区间上是常向量。

证:设,为定义在区间上的向量函数,因为在区间上可导当且仅当数量函数,和在区间上可导。所以,,根据数量函数的Lagrange中值定理,有 其中,,介于与之间。从而 上式为向量函数的0阶Taylor公式,其中。如果在区间上处处有,则在区间上处处有 ,从而,于是。证毕 5. 证明具有固定方向的充要条件是。 证:必要性:设具有固定方向,则可表示为,其中为某个数量函数,为单位常向量,于是。 充分性:如果,可设,令,其中为某个数量函数,为单位向量,因为,于是

因为,故,从而 为常向量,于是,,即具有固定方向。证毕 6. 证明平行于固定平面的充要条件是。 证:必要性:设平行于固定平面,则存在一个常向量,使得,对此式连续求导,依次可得和,从而,,和共面,因此。 充分性:设,即,其中,如果,根据第5题的结论知,具有固定方向,则可表示为,其中为某个数量函数,为单位常向量,任取一个与垂直的单位常向量,于是作以为法向量过原点的平面,则平行于。如果,则与不共线,又由可知,,,和共面,于是, 其中,为数量函数,令,那么,这说明与共线,从而,根据第5题的结论知,具有固定方向,则可表示为,其中为某个数量函数,为单位常向量,作以为法向量,过原点的平面,则平行于。证毕 §2曲线的概念

1. 求圆柱螺线在点的切线与法平面的方程。 解:,点对应于参数,于是当时,,,于是切线的方程为: 法平面的方程为 2. 求三次曲线在点处的切线和法平面的方程。 解:,当时,,, 于是切线的方程为: 法平面的方程为 3. 证明圆柱螺线的切线和轴成固定角。 证: 令为切线与轴之间的夹角,因为切线的方向向量为,轴的方向向量为,则

数学物理方程谷超豪版第二章课后答案

第 二 章 热 传 导 方 程 §1 热传导方程及其定解问题的提 1. 一均匀细杆直径为l ,假设它在同一截面上的温度是相同的,杆的表面和周围介质发生热交换,服从于规律 dsdt u u k dQ )(11-= 又假设杆的密度为ρ,比热为c ,热传导系数为k ,试导出此时温度u 满足的方程。 解:引坐标系:以杆的对称轴为x 轴,此时杆为温度),(t x u u =。记杆的截面面积4 2 l π为S 。 由假设,在任意时刻t 到t t ?+内流入截面坐标为x 到x x ?+一小段细杆的热量为 t x s x u k t s x u k t s x u k dQ x x x x ????=???-???=?+221 杆表面和周围介质发生热交换,可看作一个“被动”的热源。由假设,在时刻t 到t t ?+在截面为 x 到x x ?+一小段中产生的热量为 ()()t x s u u l k t x l u u k dQ ??-- =??--=11 1124π 又在时刻t 到t t ?+在截面为x 到x x ?+这一小段内由于温度变化所需的热量为 ()()[]t x s t u c x s t x u t t x u c dQ t ????=?-?+=ρρ,,3 由热量守恒原理得: ()t x s u u l k t x s x u k t x s t u c x t ??-- ????=????11 2 24ρ 消去t x s ??,再令0→?x ,0→?t 得精确的关系: ()11 224u u l k x u k t u c -- ??=??ρ 或 ()()11 22 2112244u u l c k x u a u u l c k x u c k t u --??=--??=??ρρρ 其中 ρ c k a =2 2. 试直接推导扩散过程所满足的微分方程。 解:在扩散介质中任取一闭曲面s ,其包围的区域 为Ω,则从时刻1t 到2t 流入此闭曲面的溶质,由dsdt n u D dM ??-=,其中D 为扩散系数,得 ?????= 2 1 t t s dsdt n u D M 浓度由u 变到2u 所需之溶质为 ()()[]???????????ΩΩΩ ??=??=-=2 12 1121,,,,,,t t t t dvdt t u C dtdv t u C dxdydz t z y x u t z y x u C M 两者应该相等,由奥、高公式得: ????????Ω Ω??==????????? ??????+???? ??????+??? ??????=2 12 11t t t t dvdt t u C M dvdt z u D z y u D y x u D x M 其中C 叫做孔积系数=孔隙体积。一般情形1=C 。由于21,,t t Ω的任意性即得方程: ?? ? ??????+???? ??????+??? ??????=??z u D z y u D y x u D x t u C 3. 砼(混凝土)内部储藏着热量,称为水化热,在它浇筑后逐渐放出,放热速度和它所储藏的 水化热成正比。以()t Q 表示它在单位体积中所储的热量,0Q 为初始时刻所储的热量,则 Q dt dQ β-=,其中β为常数。又假设砼的比热为c ,密度为ρ,热传导系数为k ,求它在浇后温度u 满足的方程。 解: 可将水化热视为一热源。由Q dt dQ β-=及00Q Q t ==得()t e Q t Q β-=0。由假设,放 热速度为 t e Q ββ-0 它就是单位时间所产生的热量,因此,由原书71页,(1.7)式得 ??? ? ??-=+??? ? ????+??+??=??-ρρββc k a e c Q z u y u x u a t u t 20222222 2 4. 设一均匀的导线处在周围为常数温度0u 的介质中,试证:在常电流作用下导线的温度满足微分方程 ()2201224.0ρω ρωρc r i u u c P k x u c k t u +--??=?? 其中i 及r 分别表示导体的电流强度及电阻系数,表示横截面的周长,ω表示横截面面积,而k 表示导线对于介质的热交换系数。 解:问题可视为有热源的杆的热传导问题。因此由原71页(1.7)及(1.8)式知方程取形式为

数理方程习题集综合

例 1.1.1 设v=v(线x,y),二阶性偏微分方程v xy =xy 的通解。 解 原方程可以写成 e/ex(ev/ey) =xy 两边对x 积分,得 v y =¢(y )+1/2 x 2 Y, 其中¢(y )是任意一阶可微函数。进一步地,两边对y 积分,得方程得通解为 v (x,y )=∫v y dy+f (x )=∫¢(y )dy+f (x )+1/4 x 2y 2 =f (x )+g (y )+1/4 x 2y 2 其中f (x ),g (y )是任意两个二阶可微函数。 例1.1.2 即 u(ξ,η) = F(ξ) + G(η), 其中F(ξ),G(η)是任意两个可微函数。 例1.2.1设有一根长为L 的均匀柔软富有弹性的细弦,平衡时沿直线拉紧,在受到初始小扰动下,作微小横振动。试确定该弦的运动方程。 取定弦的运动平面坐标系是O XU ,弦的平衡位置为x 轴,弦的长度为L ,两端固定在O,L 两点。用u(x,t)表示弦上横坐标为x 点在时刻t 的位移。由于弦做微小横振动,故u x ≈0.因此α≈0,cos α≈1,sin α≈tan α=u x ≈0,其中α表示在x 处切线方向同x 轴的夹角。下面用微元法建立u 所满足的偏微分方程。 在弦上任取一段弧'MM ,考虑作用在这段弧上的力。作用在这段弧上的力有力和外力。可以证明,力T 是一个常数,即T 与位置x 和时间t 的变化无关。 事实上,因为弧振动微小,则弧段'MM 的弧长 dx u x x x x ? ?++=?2 1s ≈x ?。 这说明该段弧在整个振动过程中始终未发生伸长变化。于是由Hooke 定律,力T 与时间 t 无关。 因为弦只作横振动,在x 轴方向没有位移,故合力在x 方向上的分量为零,即 T(x+x ?)cos α’-T(x)cos α=0. 由于co's α’≈1,cos α≈1,所以T(X+?x)=T(x),故力T 与x 无关。于是,力是一个

数学物理方法习题解答(完整版)

数学物理方法习题解答 一、复变函数部分习题解答 第一章习题解答 1、证明Re z 在z 平面上处处不可导。 证明:令Re z u iv =+。Re z x =,,0u x v ∴==。 1u x ?=?,0v y ?=?, u v x y ??≠??。 于是u 与v 在z 平面上处处不满足C -R 条件, 所以Re z 在z 平面上处处不可导。 2、试证()2 f z z = 仅在原点有导数。 证明:令()f z u iv =+。()2 2222,0f z z x y u x y v ==+ ∴ =+=。 2,2u u x y x y ??= =??。v v x y ?? ==0 ??。 所以除原点以外,,u v 不满足C -R 条件。而 ,,u u v v x y x y ???? , ????在原点连续,且满足C -R 条件,所以()f z 在原点可微。 ()00 00x x y y u v v u f i i x x y y ====???????? '=+=-= ? ?????????。 或:()()()2 * 00 0lim lim lim 0z z x y z f z x i y z ?→?→?=?=?'==?=?-?=?。 2 2 ***0* 00lim lim lim()0z z z z z z z zz z z z z z z z z =?→?→?→+?+?+??==+??→???。 【当0,i z z re θ≠?=,*2i z e z θ-?=?与趋向有关,则上式中**1z z z z ??==??】

3、设333322 ()z 0 ()z=0 0x y i x y f z x y ?+++≠? =+??? ,证明()z f 在原点满足C -R 条件,但不可微。 证明:令()()(),,f z u x y iv x y =+,则 ()332222 22 ,=0 0x y x y u x y x y x y ?-+≠? =+?+??, 332222 22 (,)=0 0x y x y v x y x y x y ?++≠? =+?+?? 。 3 300(,0)(0,0)(0,0)lim lim 1x x x u x u x u x x →→-===, 3300(0,)(0,0)(0,0)lim lim 1y y x u y u y u y y →→--===-; 3300(,0)(0,0)(0,0)lim lim 1x x x v x v x v x x →→-===, 3300(0,)(0,0)(0,0)lim lim 1y y x v y v y v y y →→-===。 (0,0)(0,0),(0,0)(0,0)x y y x u v u v ∴ = =- ()f z ∴ 在原点上满足C -R 条件。 但33332200()(0)() lim lim ()()z z f z f x y i x y z x y x iy →→--++=++。 令y 沿y kx =趋于0,则 333333434322222 0()1(1)1(1) lim ()()(1)(1)(1)z x y i x y k i k k k k i k k k x y x iy k ik k →-++-++-++++-+==+++++ 依赖于k ,()f z ∴在原点不可导。 4、若复变函数()z f 在区域D 上解析并满足下列条件之一,证明其在区域D 上

数理方程总结完整终极版

00 |()()t t u x u x t ?ψ===????=?? ?k z j y i x ?????+??+??= ?u u ?=grad 拉普拉斯算子:2222222 z y x ??+??+??=???=?2 2 22 2y u x u u ??+??=? 四种方法: 分离变量法、 行波法、 积分变换法、 格林函数法 定解问题: 初始条件.边界条件.其他 波动方程的初始条

波动方程的边界条件:

(3) 弹性支承端:在x=a端受到弹性系数为k 的弹簧的支承。 定解问题的分类和检验:(1) 初始 问题:只有初始条件,没有边界条 件的定解问题; (2) 边值问题:没有初始条件,只 有边界条件的定解问题; (3) 混合问题:既有初始条件,也 有边界条件的定解问题。 ?解的存在性:定解问题是 否有解; ?解的唯一性:是否只有一 解; ?解的稳定性:定解条件有 微小变动时,解是否有相应的微小变动。 分离变量法:基本思想:首先求出具有变量分离形式且满足边界条件的特解,然后由叠加原理作出这些解的线性组合,最后由其余的定解条件确定叠加系数。把偏微分方程化为常微分方程来处理,使问题简单化。适用范围:波动问题、热传导问题、稳定场问题等

分离变量法步骤:一有界弦的自由振动二有限长杆上的热传导三拉普拉斯方程的定解问题 常用本征方程齐次边界条件 2''0 (0)()0,/,1,2,sin k k X X X X l k l k X x λλββπβ+=?? ==? ====0,1,2,0,1,2,λ0,1,2,λ

非齐次方程的求解思路用分解原理得出对应的齐次问题。解出齐次问题。求出任意非齐次特解。叠加成非齐次解。 行波法:1.基本思想:先求出偏微分方程的通解,然后用定解条件确定特解。这一思想与常微分方程的解法是一样的。2.关键步骤:通过变量变换,将波动方程化为便于积分的齐次二阶偏微分方程。3.适用范围:无界域内波动方程,等…

招教考试试卷和答案分析

教师招聘考试考前演练试卷 (附答案解析) 单选 1.社会主义道德建设的核心是(C) A爱国主义B集体主义C为人民服务D社会主义荣辱观 2.( B )是我们党的思想路线,也是马列主义、毛泽东思想和邓小平理论的精髓。A.一个中心,两个基本点B.解放思想、实事求是 C.坚持四项基本原则D.发展生产力 3.“要尽量多的要求一个人,也要尽可能多地尊重一个人”是下列哪位教育家提出的() A.赞可夫 B.马卡连柯 C.苏霍姆林斯基 D.加里宁 4.少年期学生所处的年龄阶段是( C ) A.6~11岁 B.7~12岁 C. 11、12~14、15岁 D.12、13~15岁 5.学生是人,是教育的对象,因而他们( D ) A.消极被动的接受教育 B.对外界的教育影响有选择性 C.毫无顾忌地接受教育 D.能动地接受教育 6.与“天宫一号”两度完成“太空之吻”的“神舟八号”飞船,于2011年11月17日顺利回“家”,天宫一号与神舟八号空间交会对接任务获得圆满成功,这标志着我国(D )A载人航天技术已经完全成熟B实现了由航天大国向航天强国的转变 C实现了载人航天工程“三步走”的发展战略D为今后建造载人空间站奠定了坚实的技术基础 7.教师根据学科课程标准要求,指导学生运用所学知识从事一定的工作或操作,将书本知识运用于实践这种方法是指( b ) A.试验法 B.实习作业法 C.参观法 D.实践活动法 8.2012年1月14日,中共中央、国务院在北京举行国家科学技术奖励大会。获得2011年度国家最高科学技术奖的是、两位院士。( B) A.孙家栋谷超豪 B.谢家麟吴良鏞 C.师昌绪王振义 D.闵恩泽吴征镒 9.通过介绍学习内容要点和有关背景材料,说明学习的意义,从而使学生产生学习情趣,进入学习情境的教学行为方式是( C ) A.尝试导入 B.演示导入 C.序言导入 D.故事导入 10.说课是一种科研活动,它的本质是(b )

数理方程练习题.

数理方程练习题一(2009研 1. 设(,u u x y =,求二阶线性方程 20u x y ?=?? 的一般解。 解先把所给方程改写为 (0u x y ??=?? 2分两边对x 积分,得 (0((u u dx dx y y y x y ?????==+=????? 4分这里, (y ?是任意函数。再两边对y 积分,得方程的一般解为y ((((u u dy y dy f x f x g y y ??==+=+?? ? 6分这里,(,(f x g y 是任意两个一次可微函数。 2. 设 u f = 满足Laplace 方程

222 2 0u u x y ????+ = 求函数u. 解 : ,.r x r y r x r x r ??===?? ''(,(.u x u y f r f r x r y r ???==?? 3分因此有 222''' 223222 ''' 223 ((((u x y f r f r x r r u y x f r f r y r r ?=+??=+? 3分原方程化为:'''1((0f r f r r += 2分故有 :1212(ln r u f r c c c c ==+= 2分 例1 求Cauchy 问题

2 20 00(,(0,cos tt xx t t t u a u x t u x u x x ==?-=∈?∞??==∈??R R 的解. 解由定理3.1得 22222((1u(x, tcos 221 cos sin x at x at x at x at d a x a t x at a ξξ+-++-=+=++? 例2 求解Cauchy 问题 200cos (,(0,cos 010tt xx t t t u a u t x x t x x u x u x ==?-=∈?∞?≥?? ==??

数学物理方程 答案 谷超豪

第一章. 波动方程 §1 方程的导出。定解条件 1.细杆(或弹簧)受某种外界原因而产生纵向振动,以u(x,t)表示静止时在x 点处的点在时刻t 离开原来位置的偏移,假设振动过程发生的张力服从虎克定律,试证明),(t x u 满足方程 其中ρ为杆的密度,E 为杨氏模量。 证:在杆上任取一段,其中两端于静止时的坐标分别为 x 与+x x ?。现在计算这段杆在时刻t 的相对伸长。在时刻t 这段杆两端的坐标分别为: 其相对伸长等于 ),()],([)],([t x x u x x t x u x t x x u x x x ?+=??-+-?++?+θ 令 0→?x ,取极限得在点x 的相对伸长为x u ),(t x 。由虎克定律,张力),(t x T 等于 其中)(x E 是在点x 的杨氏模量。 设杆的横截面面积为),(x S 则作用在杆段),(x x x ?+两端的力分别为 于是得运动方程 tt u x x s x ???)()(ρx ESu t x =),(x x x x x ESu x x |)(|)(-?+?+ 利用微分中值定理,消去x ?,再令0→?x 得 若=)(x s 常量,则得 22)(t u x ??ρ=))((x u x E x ???? 即得所证。 2.在杆纵向振动时,假设(1)端点固定,(2)端点自由,(3)端点固定在弹性支承上,试分别导出这三种情况下所对应的边界条件。 解:(1)杆的两端被固定在l x x ==,0两点则相应的边界条件为 (2)若l x =为自由端,则杆在l x =的张力x u x E t l T ??=) (),(|l x =等于零,因此相应的边界条件为 x u ??|l x ==0 同理,若0=x 为自由端,则相应的边界条件为 x u ??∣00==x (3)若l x =端固定在弹性支承上,而弹性支承固定于某点,且该点离开原来位置的 偏移由函数)(t v 给出,则在l x =端支承的伸长为)(),(t v t l u -。由虎克定律有 x u E ??∣)](),([t v t l u k l x --==

高一语文试题模拟卷及答案

2016年秀山高级中学2019级高一上期12月月考 语文试题卷2016.12 第Ⅰ卷表达题 一、现代文阅读(9分,毎小题 3分) (一)阅读下面的文字,完成1~3题。 春秋战国上下五百余载,是中国历史上充满活力的黄金时代,是个“礼崩乐坏,瓦釜雷鸣”的剧烈变化时代,是个大毁灭、大创造、大沉沦、大崛起,从而社会整体上大转型的时代。这使得那个时代的人——不管是政治家、思想家,还是军事家、教育家,是侠、是士,其生命状态都是饱满昂扬的,充溢着一种不可遏止的进取精神和非凡的创造力。 那是个讲究谋略的阴谋时代,所以智慧丛生色彩斑斓;那是个本色人生的时代,所以仕学争鸣侠隐飘逸,摇唇鼓舌皆成风流;那是个实力竞争的时代,所以以强国富民为本,虚伪的文过饰非的理论无法泛滥;那是个深刻思索、产生思想、研究学问、铸造精神的时代,是中国文化的原生代,所以出现了各种学术思想百家争鸣的灿烂辉煌的景象。 在我们耳熟能详的中国伟人中,有一半多的伟人属于那个辉煌的时代,政治、经济、哲学、文学艺术、科学、神秘文化……几乎所有基本领域,都在那个时代开山立宗并创造了我们民族的最高经典,不仅成为我们中华民族文明文化的源头,而且当之无愧地进入了人类文化的殿堂。 春秋战国时代是我国历史上政治变革最为活跃的时代,五霸迭兴,三家分晋,田氏代齐,七雄兴衰,此起彼伏。在那个波澜壮阔的时代里,教育从戎与祀中挣脱出来,孔子私学,稷下学官,最终实现“以法为教”“以吏为师”的学吏教育制度。文学形成了中国古典文学史上第一个黄金时代,诗歌、辞赋、小说、散文皆为后世之滥觞;艺术更见洋洋大观,青铜器绚烂多彩,金玉精琢叹为观止,铭文风韵为篆刻艺术之典范;宋音楚舞,边磬编钟,宫殿廓城,无一不在世界艺术史上熠熠生辉。科学技术可谓灿烂辉煌。阴阳五行、染色麻织、灌溉堤防、经络学说,可以说当时的“科技成就绝对领先于世界;当时的争霸战已经是车步兵联合作战,水陆军协同争先的大规模战争,在战争中诞生了伟大的军事家孙武、司马穰苴、吴起、孙膑,等等,他们的集古代兵家大成之作,奠定了中国古代军事科学的理论基础,对世界各国军事理论产生了巨大影响。 原生文化是一个民族的根基。是这个民族精神生命的源泉。当我们被各种复杂的问题困惑时,当我们在浮华喧嚣的历史泡沫面前迷失或不知所措时,我们应该去向我们民族的原生文化宝库寻求再生的动力。 两千多年过去了,那个民族文化原生代所创造的瑰宝,风采依旧! 梳理春秋战国风云变幻及国家强弱兴袁之演变轨迹,窥探中国文化原生代的恢弘博大与灿烂辉煌,能使我们在新的民族竞争面前,在国家民族的转型期把握住富民强国、团结奋斗的主调。 (选自安然《原生文化是民族精神生命之源》) 1.下列对“原生文化”的理解,不符合原文意思的一项是()(3分) A.“原生文化”主要产生于春秋战国时期那个既有大毁灭又有大创造、既有大沉沦又有大崛起的时代,这个时代在社会整体上是大转型的时代。 B.“原生文化”由于时代的剧烈变化,体现了饱满昂扬、奋进向上的生命状态,充溢着一种不可遏止的进取精神和非凡的创造力。 C.“原生文化”涉及政治、经济、军事、哲学、教育、文学艺术、科学、神秘文化等几乎所有基本领域,成为中华民族文化的源头。

北京大学数学物理方法(下)课件_12数学物理方程和定解条件(精)

12.4 边界条件与初始条件初始条件研究质点的性质时嬬单由微分方程嬬并不能求出质点性质随时间的变化孼即任何时刻质点的性质嬮例如嬬根据孎孥孷孴孯孮定律并不能确定质点的运动孼它在任意时刻的位置和速度嬬我们还需要知道质点的初始位置和初始速度嬮对于描述介质运动的偏微分方程嬬同样需要给出介质的初始状态嬬才能决定介质以后任意时刻的物理状态嬮介质的初始状态即由初始条件给出嬮对于波动方程嬬它是关于时间的二阶偏微分方程嬬所以应该给出介质初始时刻各点的位移 u|t=0 嬽φ嬨x, y, z 嬩和初始时刻各点的速度嬬即对时间的一阶偏导数?u ?t 嬽ψ 嬨x, y, z 嬩 t=0 对于热传导方程嬬由于方程中只出现对 t 的一阶偏导数嬬所以初始条件只需给出初始时刻各点温度 u嬨x, y, z 嬩的值 u|t=0 嬽φ嬨x, y, z 嬩稳定问题与时间无关嬬则没有初始条件嬮边界条件对于介质嬬情况比质点还要复杂嬺除了初始条件嬬还需要有边界条件嬮这是因为介质有内部和表面嬮在推导介质满足的数理方程时嬬只考虑了介质内部的点嬮介质表面的点与介质内部的点不同嬺首先嬬它只在一侧与介质内其它点相互作用嬻其次嬬在另一侧与外界有相互作用嬮因此介质表面所满足的方程与介质内部所满足的方程不同嬬应另外推导嬮我们把介质表面各点满足的方程称为边界条

件嬮先以一维振动为例嬬其边界由两端点组成嬮 Example 12.4 Solution 弦的横振动如果弦的两端嬨由外界嬩固定嬬那么边界条件就是 u|x=0 嬽嬰 u|x=l 嬽嬰Example 12.5 Solution 杆的纵振动如果 x 嬽嬰端固定嬬而另一端 x 嬽 l 受嬨x 方向的嬩外力作用嬬设单位面积上的力是 F 嬨t嬩 P 嬨l ? 孤x嬩S O l ? 孤x u|x=0 嬽嬰 l F 嬨t嬩S x 嬽嬰端边界条件仍是嬨嬱嬳嬩 x 嬽 l 这一端的边界条件并不能直接看出嬮模仿推导方程的方法嬬在端点 x 嬽 l 处截取一小段杆嬬长度为孤x嬮根据孎孥孷孴孯孮定律?2u ?2u F 嬨t嬩S ? P 嬨l ? 孤x, t嬩S 嬽孤m 2 嬽ρS 孤x 2 ?t ?t 因为孤x → 嬰 F 嬨t嬩嬽 P 嬨l, t嬩嬶 根据孈孯孯孫孥定律 P 嬽E 所以?u ?x 如果 x 嬽 l 端是自由的嬬 F 嬨t嬩嬽嬰嬬则?u ?x 如果外力为弹簧提供的弹性力嬬 F 嬨t嬩嬽?k 孛u嬨l, t嬩? u0 孝u0 为端点的平衡位移嬬则?u k 嬫u ?x E 再举一个三维例子嬬其边界为一闭合曲面嬮 Example 12.6 Solution 热传导问题嬽x=l ?u ?x 嬱 F 嬨t嬩 E 嬨嬱嬴嬩嬽 x=l 嬽嬰 x=l 嬨嬱嬵嬩 k u0 E 嬨嬱嬶嬩第一种类型是边界上各点的温度已知嬨由外界给定嬩u|Σ 嬽φ嬨嬆, t嬩嬨嬱嬷嬩这里嬬我们用嬆表示边界上的各点嬬同时也表示相应点的坐标嬮第二种类型是介质与外界通过表面嬨边界嬩有热量的交换嬬单位时间内嬬通过单位面积的边界面流入的热量已知嬬为ψ 嬨嬆, t嬩嬬由外界给定?qn |Σ 嬽ψ 嬨嬆, t嬩 n 为表面的法向嬬负号表示方向与法向相反嬮qn Σ? n ?qn Σ 嬆?嬆这时嬬我们可在边界嬆的内侧截取一小薄层的介质嬬它的另一个底面在介质内部嬬其上的点用嬆?表示嬮当介质薄层的厚度d → 嬰时嬬则两底面的面积相等嬬而侧面面积可忽略嬮所以流入介质薄层的热量为两底面流入热量之和嬮根据能量守恒定律嬬应该等于这一块介质薄层温度升高所需要的热量嬮假设薄层的底面积为单位面积qn |Σ? ? qn |Σ 嬽热容量 ×温度升高但介质薄层的厚度→ 嬰时嬬显然其热容量→ 嬰嬬所以qn |Σ? ? qn |Σ 嬽嬰嬷 即通过介质表面流入的热量嬬应当全部通过薄层的另一底面流向介质内部嬮由孆孯孵孲孩孥孲定律嬬热流密度矢量 q 嬽?k ? u 而 qn 嬽 q · n 嬽?k n ·嬨?u 嬩嬽?k 其中法向导数定义为? ≡n·? ?n 所以?k ?k 嬆?→ 嬆嬬故?u ?n 如果边界

数理方程期末试题B答案

数理方程期末试题B答 案 集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

北 京 交 通 大 学 2007-2008学年第二学期《数理方程与特殊函数》期末考试试卷 (B ) (参考答案) 学院_ ____________ 专业___________________ 班级________ ____ 学号_______________ 姓名___________ __ 一、 计算题(共80分,每题16分) 1. 求下列定解问题(15分) 2. 用积分变换法及性质,求解半无界弦的自由振动问题:(15分) 3.设弦的两端固定于0x =及x l =,弦的出示位移如下图所示。初速度为 零,又没有外力作用。求弦做横向振动时的位移(,)u x t 。 [ 解 ] 问题的定解条件是 由初始条件可得 4. 证明在变换, x at x at ξη=-=+下,波动方程xx tt u a u 2=具有形式解0=n u ξ, 并由此求出波动方程的通解。 5. 用分离变量法解下列定解问题

[ 提示:1) 可以直接给出问题的固有函数,不必推导;2) 利用参数变易法。] [ 解 ] 对应齐次方程的定解问题的固有函数是x l n πsin ,其解可以表示成 把原问题中非齐次项t x t x f l a l π π22sin sin ),(=按照固有函数展开成级数 因此有 利用参数变易法,有 于是 6. 用Bessel 函数法求解下面定解问题 [ 解 ] 用分离变量法求解。令)()(),(t T R t u ρρ=,则可得 以及 设0ρβλn n =为Bessel 函数)(0x J 的正零点,则问题(II )的特征值和特征函数分别为 问题(I )的解为 于是原问题的解是 由初始条件 得到 故 于是最后得到原问题的解是 二、 证明题(共2分,每题10分) 7.证明平面上的Green 公式 其中C 是区域D 的边界曲线,ds 是弧长微分。

数理方程题库

第一部分分离变量法 一、(1) 求解特征值问题 (2) 验证函数系关于内积 正交,并求范数 二、用分离变量法求解定解问题 的解的表达式,写出具体的分离变量过程. 进一步,当时,求和时的 值. 三、(方程非齐次的情形)求定解问题 四、(边界非齐次的情形)求定解问题 五、(Possion方程)求定解问题 六、求定解问题: 注意: 1、考试只考四种边界条件,即还有以下三种:

2) 3) 4) 2、以上均为抛物型方程,还可以考双曲型方程(相应的初值条件变为两个)和椭圆型方程(无初值条件); 3、考试中除特别要求(如以上的第二题)外,不要求必须用分离变量法、特征函数法等方法求解,你可以自己选择方法(如上面的第三题)可以用Laplace 变换求解。 第二部分 积分变换法 一、请用下面三种方法求解无穷限波动问题 ()()22222 00 ,, 0, ,t t u u a x t t x u x x u x x t ?ψ==???=-∞<<∞>????? =-∞<<∞????=-∞<<∞??? (1) 用积分变换法推导达朗贝尔公式 (2) 用特征线法推导达朗贝尔公式 (3) 用降维法推导达朗贝尔公式 二、用积分变换法求解定解问题 22 3 01,1, 0, 1cos ,0y x u x y x y x y u x x u y y ==??=>>?????=≥?? =>??? 注意:只考应用Fourier 变换和Laplace 变换求解方程的问题 第三部分 特征线问题 一、判断方程 的类型. 二、从达朗贝尔公式出发,证明在无界弦问题中 (1) 若初始位移()x ?和初始速度()x ψ为奇函数,则(),00u t = (2) 若初始位移()x ?和初始速度()x ψ为偶函数,则(),00x u t = 三、请用下列方法求解定解问题

数理方程例题I

数学物理方程例题和习题 (2009-10-31) 一、二阶常微分方程常数变易法 二阶常微分方程初值问题 ?? ?='=>=+''β αω)0(,)0(0 ),()()(2y y x x f x y x y 先考虑对应齐次方程:02=+''y y ω。利用辅助方程 022=+ωm , ωi m ±= 得齐次方程通解 )sin()cos()(21x C x C x y ωω+= 将常数替换为待定的函数,即 )sin()()cos()()(x x v x x u x y ωω+= 有两个未知函数待定。代入微分方程得恒等式,由一个等式不能唯一确定两个函数。如果人 为增加一个等式,就可以构造出二元线性方程组,朗斯基行列式方法是成功的确定两个待定函数的方法,方法如下,对假设的函数求一阶导数,得 在上面表达式中,令第一个方栝号为零,得第一个等式 0)sin()cos(='+'x v x u ωω 同时,由 )cos()sin(x v x u y ωωωω+-=' 继续求导数,得 )]sin()cos([)]cos()sin([22x v x u x v x u y ωωωωωωωω+-'+'-='' 代入方程,得第二个等式 f x v x u ='+'-)cos()sin(ωωωω 将两个等式联立,得线性代数方程组 ?? ?='+'-=+'f x v x u x v x u )cos()sin(0 )sin()cos(ωωωωωω 或写成矩阵形式 ?? ????=??????''??????-f v u x x x x 0)cos()sin()sin() cos(ωωωωωω 上式的系数矩阵行列式称为朗斯基行列式,由于 ωωωωωωω=-= ) cos()sin() sin()cos(x x x x ? 利用克莱姆法则解方程组,有 )sin()()cos()sin(01x x f x f x ωωωω-==?,)cos()() sin(0 )cos(2x x f f x x ωωωω=-= ? )sin()(1 /1x x f u ωω - =='??,)cos()(1 /2x x f v ωω = ='?? )]cos()sin([)]sin()cos([x v x u x v x u y ωωωωωω+-+'+'='

数学物理方程第三版第一章答案(全)

数学物理方程第三版答案 第一章. 波动方程 §1 方程的导出。定解条件 1.细杆(或弹簧)受某种外界原因而产生纵向振动,以u(x,t)表示静止时在x 点处的点在时刻t 离开原来位置的偏移,假设振动过程发生的张力服从虎克定律,试证明),(t x u 满足方程 ()?? ? ??????=??? ??????x u E x t u x t ρ 其中ρ为杆的密度,E 为杨氏模量。 证:在杆上任取一段,其中两端于静止时的坐标分别为 x 与+x x ?。现在计算这段杆 在时刻t 的相对伸长。在时刻t 这段杆两端的坐标分别为: ),();,(t x x u x x t x u x ?++?++ 其相对伸长等于 ),()],([)],([t x x u x x t x u x t x x u x x x ?+=??-+-?++?+θ 令 0→?x ,取极限得在点x 的相对伸长为x u ),(t x 。由虎克定律,张力),(t x T 等于 ),()(),(t x u x E t x T x = 其中)(x E 是在点x 的杨氏模量。 设杆的横截面面积为),(x S 则作用在杆段),(x x x ?+两端的力分别为 x u x S x E )()(x u x x S x x E t x )()();,(?+?+).,(t x x ?+ 于是得运动方程 tt u x x s x ???)()(ρx ESu t x =),(x x x x x ESu x x |)(|)(-?+?+ 利用微分中值定理,消去x ?,再令0→?x 得 tt u x s x )()(ρx ?? = x ESu () 若=)(x s 常量,则得 22)(t u x ??ρ=))((x u x E x ???? 即得所证。 2.在杆纵向振动时,假设(1)端点固定,(2)端点自由,(3)端点固定在弹性支承上,试分别导出这三种情况下所对应的边界条件。

数学物理方程谷超豪版第二章课后规范标准答案

,. 第 二 章 热 传 导 方 程 §1 热传导方程及其定解问题的提 1. 一均匀细杆直径为l ,假设它在同一截面上的温度是相同的,杆的表面和周围介质发生热交换,服从于规律 dsdt u u k dQ )(11-= 又假设杆的密度为ρ,比热为c ,热传导系数为k ,试导出此时温度u 满足的方程。 解:引坐标系:以杆的对称轴为x 轴,此时杆为温度),(t x u u =。记杆的截面面积4 2 l π为S 。 由假设,在任意时刻t 到t t ?+内流入截面坐标为x 到x x ?+一小段细杆的热量为 t x s x u k t s x u k t s x u k dQ x x x x ????=???-???=?+221 杆表面和周围介质发生热交换,可看作一个“被动”的热源。由假设,在时刻t 到t t ?+在截面为 x 到x x ?+一小段中产生的热量为 ()()t x s u u l k t x l u u k dQ ??--=??--=111124π 又在时刻t 到t t ?+在截面为x 到x x ?+这一小段内由于温度变化所需的热量为 ()()[]t x s t u c x s t x u t t x u c dQ t ????=?-?+=ρρ,,3 由热量守恒原理得: ()t x s u u l k t x s x u k t x s t u c x t ??-- ????=????11 2 2 4ρ 消去t x s ??,再令0→?x ,0→?t 得精确的关系: ()11 224u u l k x u k t u c -- ??=??ρ 或 ()()11 22 2112244u u l c k x u a u u l c k x u c k t u --??=-- ??=??ρρρ 其中 ρ c k a =2 2. 试直接推导扩散过程所满足的微分方程。 解:在扩散介质中任取一闭曲面s ,其包围的区域 为Ω,则从时刻1t 到2t 流入此闭曲面的溶质,由dsdt n u D dM ??-=,其中D 为扩散系数,得 ?????= 2 1 t t s dsdt n u D M 浓度由u 变到2u 所需之溶质为 ()()[]???????????ΩΩΩ ??=??=-=2 12 1121,,,,,,t t t t dvdt t u C dtdv t u C dxdydz t z y x u t z y x u C M 两者应该相等,由奥、高公式得: ????????Ω Ω??==????????? ??????+???? ??????+??? ??????=2 12 11t t t t dvdt t u C M dvdt z u D z y u D y x u D x M 其中C 叫做孔积系数=孔隙体积。一般情形1=C 。由于21,,t t Ω的任意性即得方程: ?? ? ??????+???? ??????+??? ??????=??z u D z y u D y x u D x t u C 3. 砼(混凝土)内部储藏着热量,称为水化热,在它浇筑后逐渐放出,放热速度和它所储藏的 水化热成正比。以()t Q 表示它在单位体积中所储的热量,0Q 为初始时刻所储的热量,则 Q dt dQ β-=,其中β为常数。又假设砼的比热为c ,密度为ρ,热传导系数为k ,求它在浇后温度u 满足的方程。 解: 可将水化热视为一热源。由Q dt dQ β-=及00Q Q t ==得()t e Q t Q β-=0。由假设,放 热速度为 t e Q ββ-0 它就是单位时间所产生的热量,因此,由原书71页,(1.7)式得 ??? ? ??-=+??? ? ????+??+??=??-ρρββc k a e c Q z u y u x u a t u t 20222222 2 4. 设一均匀的导线处在周围为常数温度0u 的介质中,试证:在常电流作用下导线的温度满足微分方程 ()2201224.0ρω ρωρc r i u u c P k x u c k t u +--??=?? 其中i 及r 分别表示导体的电流强度及电阻系数,表示横截面的周长,ω表示横截面面积,而k 表示导线对于介质的热交换系数。 解:问题可视为有热源的杆的热传导问题。因此由原71页(1.7)及(1.8)式知方程取形式为

相关文档
相关文档 最新文档