文档库 最新最全的文档下载
当前位置:文档库 › 时间序列模型和神经网络模型在股票预测中的分析_刘海玥

时间序列模型和神经网络模型在股票预测中的分析_刘海玥

时间序列模型和神经网络模型在股票预测中的分析_刘海玥
时间序列模型和神经网络模型在股票预测中的分析_刘海玥

小波神经网络的时间序列预测短时交通流量预测.doc

%% 清空环境变量 clc clear %% 网络参数配置 load traffic_flux input output input_test output_test M=size(input,2); %输入节点个数 N=size(output,2); %输出节点个数 n=6; %隐形节点个数 lr1=0.01; %学习概率 lr2=0.001; %学习概率 maxgen=100; %迭代次数 %权值初始化 Wjk=randn(n,M);Wjk_1=Wjk;Wjk_2=Wjk_1; Wij=randn(N,n);Wij_1=Wij;Wij_2=Wij_1; a=randn(1,n);a_1=a;a_2=a_1; b=randn(1,n);b_1=b;b_2=b_1; %节点初始化 y=zeros(1,N); net=zeros(1,n); net_ab=zeros(1,n); %权值学习增量初始化 d_Wjk=zeros(n,M); d_Wij=zeros(N,n); d_a=zeros(1,n);

d_b=zeros(1,n); %% 输入输出数据归一化 [inputn,inputps]=mapminmax(input'); [outputn,outputps]=mapminmax(output'); inputn=inputn'; outputn=outputn'; %% 网络训练 for i=1:maxgen %误差累计 error(i)=0; % 循环训练 for kk=1:size(input,1) x=inputn(kk,:); yqw=outputn(kk,:); for j=1:n for k=1:M net(j)=net(j)+Wjk(j,k)*x(k); net_ab(j)=(net(j)-b(j))/a(j); end temp=mymorlet(net_ab(j)); for k=1:N y=y+Wij(k,j)*temp; %小波函数 end end

多元时间序列建模分析

应用时间序列分析实验报告

单位根检验输出结果如下:序列x的单位根检验结果:

1967 58.8 53.4 1968 57.6 50.9 1969 59.8 47.2 1970 56.8 56.1 1971 68.5 52.4 1972 82.9 64.0 1973 116.9 103.6 1974 139.4 152.8 1975 143.0 147.4 1976 134.8 129.3 1977 139.7 132.8 1978 167.6 187.4 1979 211.7 242.9 1980 271.2 298.8 1981 367.6 367.7 1982 413.8 357.5 1983 438.3 421.8 1984 580.5 620.5 1985 808.9 1257.8 1986 1082.1 1498.3 1987 1470.0 1614.2 1988 1766.7 2055.1 1989 1956.0 2199.9 1990 2985.8 2574.3 1991 3827.1 3398.7 1992 4676.3 4443.3 1993 5284.8 5986.2 1994 10421.8 9960.1 1995 12451.8 11048.1 1996 12576.4 11557.4 1997 15160.7 11806.5 1998 15223.6 11626.1 1999 16159.8 13736.5 2000 20634.4 18638.8 2001 22024.4 20159.2 2002 26947.9 24430.3 2003 36287.9 34195.6 2004 49103.3 46435.8 2005 62648.1 54273.7 2006 77594.6 63376.9 2007 93455.6 73284.6 2008 100394.9 79526.5 run; proc gplot; plot x*t=1 y*t=2/overlay; symbol1c=black i=join v=none; symbol2c=red i=join v=none w=2l=2; run; proc arima data=example6_4; identify var=x stationarity=(adf=1); identify var=y stationarity=(adf=1); run; proc arima; identify var=y crrosscorr=x; estimate methed=ml input=x plot; forecast lead=0id=t out=out; proc aima data=out; identify varresidual stationarity=(adf=2); run;

时间序列预测模型

时间序列预测模型时间序列是指把某一变量在不同时间上的数值按时间先后顺序排列起来所形成的序列,它的时间单位可以是分、时、日、周、旬、月、季、年等。时间序列模型就是利用时间序列建立的数学模型,它主要被用来对未来进行短期预测,属于趋势预测法。一、简单一次移动平均预测法例1.某企业1月~11月的销售收入时间序列如下表所示.取n 4,试用简单一次移动平均法预测第12月的销售收入,并计算预测的标准误差. 二、加权一次移动平均预测法简单一次移动平均预测法,是把参与平均的数据在预测中所起的作用同等对待,但参与平均的各期数据所起的作用往往是不同的。为此,需要采用加权移动平均法进行预测,加权一次移动平均预测法是其中比较简单的一种。三、指数平滑预测法 1、一次指数平滑预测法一元线性回归模型 * 项数n的数值,要根据时间序列的特点而定,不宜过大或过小.n过大会降低移动平均数的敏感性,影响预测的准确性;n过小,移动平均数易受随机变动的影响,难以反映实际趋势.一般取n的大小能包含季节变动和周期变动的时期为好,这样可消除它们的影响.对于没有季节变动和周期变动的时间序列,项数n的取值可取较大的数;如果历史数据的类型呈上升或下降型的发展趋势,则项数n的数值应取较小的数,这样能取得较好的预测效果. 1102.7 1015.1 963.9 892.7 816.4 772.0 705.1 649.8 606.9 574.6 533.8 销售收入 11 10 9 8 7 6 5 4 3 2 1 月份 t 158542.7 993.6 12 12950.4 19016.4 17662.4 24617.6 27989.3

时间序列分析资料报告——ARMA模型实验

基于ARMA模型的社会融资规模增长分析 ————ARMA模型实验

第一部分实验分析目的及方法 一般说来,若时间序列满足平稳随机过程的性质,则可用经典的ARMA模型进行建模和预则。但是, 由于金融时间序列随机波动较大,很少满足ARMA模型的适用条件,无法直接采用该模型进行处理。通过对数化及差分处理后,将原本非平稳的序列处理为近似平稳的序列,可以采用ARMA模型进行建模和分析。 第二部分实验数据 2.1数据来源 数据来源于中经网统计数据库。具体数据见附录表5.1 。 2.2所选数据变量 社会融资规模指一定时期(每月、每季或每年)实体经济从金融体系获得的全部资金总额,为一增量概念,即期末余额减去期初余额的差额,或当期发行或发生额扣除当期兑付或偿还额的差额。社会融资规模作为重要的宏观监测指标,由实体经济需求所决定,反映金融体系对实体经济的资金量支持。 本实验拟选取2005年11月到2014年9月我国以月为单位的社会融资规模的数据来构建ARMA模型,并利用该模型进行分析预测。 第三部分 ARMA模型构建 3.1判断序列的平稳性 首先绘制出M的折线图,结果如下图:

图3.1 社会融资规模M曲线图 从图中可以看出,社会融资规模M序列具有一定的趋势性,由此可以初步判断该序列是非平稳的。此外,m在每年同时期出现相同的变动趋势,表明m还存在季节特征。下面对m的平稳性和季节性·进行进一步检验。 为了减少m的变动趋势以及异方差性,先对m进行对数化处理,记为lm,其时序图如下: 图3.2 lm曲线图

对数化后的趋势性减弱,但仍存在一定的趋势性,下面观察lm的自相关图 表3.1 lm的自相关图 上表可以看出,该lm序列的PACF只在滞后一期、二期和三期是显著的,ACF随着滞后结束的增加慢慢衰减至0,由此可以看出该序列表现出一定的平稳性。进一步进行单位根检验,由于存在较弱的趋势性且均值不为零,选择存在趋势项的形式,并根据AIC自动选择之后结束,单位根检验结果如下: 表3.2 单位根输出结果 Null Hypothesis: LM has a unit root Exogenous: Constant, Linear Trend Lag Length: 0 (Automatic - based on SIC, maxlag=12) t-Statistic Prob.*

典型时间序列模型分析

实验1 典型时间序列模型分析 1、实验目的 熟悉三种典型的时间序列模型:AR 模型,MA 模型与ARMA 模型,学会运用Matlab 工具对对上述三种模型进行统计特性分析,通过对2 阶模型的仿真分析,探讨几种模型的适用范围,并且通过实验分析理论分析与实验结果之间的差异。 2、实验原理 AR 模型分析: 设有 AR(2)模型, X(n)=-0.3X(n-1)-0.5X(n-2)+W(n) 其中:W(n)是零均值正态白噪声,方差为4。 (1)用MA TLAB 模拟产生X(n)的500 观测点的样本函数,并绘出波形 (2)用产生的500 个观测点估计X(n)的均值和方差 (3)画出理论的功率谱 (4)估计X(n)的相关函数和功率谱 【分析】给定二阶的AR 过程,可以用递推公式得出最终的输出序列。或者按照一个白噪声 通过线性系统的方式得到,这个系统的传递函数为: 1 2 1 ()10.30.5H z z z --= ++ 这是一个全极点的滤波器,具有无限长的冲激响应。 对于功率谱,可以这样得到, ()() 2 2 12 12exp 11x w z jw P w a z a z σ--==++ 可以看出, () x P w 完全由两个极点位置决定。 对于 AR 模型的自相关函数,有下面的公式: 这称为 Yule-Walker 方程,当相关长度大于p 时,由递推式求出: 这样,就可以求出理论的 AR 模型的自相关序列。

1.产生样本函数,并画出波形 2.题目中的AR 过程相当于一个零均值正态白噪声通过线性系统后的输出,可以按照上面的方法进行描述。 clear all; b=[1]; a=[1 0.3 0.5]; % 由描述的差分方程,得到系统传递函数 h=impz(b,a,20); % 得到系统的单位冲激函数,在20 点处已经可以认为值是0 randn('state',0); w=normrnd(0,2,1,500); % 产生题设的白噪声随机序列,标准差为2 x=filter(b,a,w); % 通过线形系统,得到输出就是题目中要求的2 阶AR 过程 plot(x,'r'); ylabel('x(n)'); title('邹先雄——产生的AR 随机序列'); grid on; 得到的输出序列波形为: 2.估计均值和方差 可以首先计算出理论输出的均值和方差,得到 x m ,对于方差可以先求出理论自相 关输出,然后取零点的值。

时间序列分析及VAR模型

Lecture 6 6. Time series analysis: Multivariate models 6.1Learning outcomes ?Vector autoregression (VAR) ?Cointegration ?Vector error correction model (VECM) ?Application: pairs trading 6.2Vector autoregression (VAR)向量自回归 The classical linear regression model assumes strict exogeneity; hence, there is no serial correlation between error terms and any realisation of any independent variable (lead or lag). As we discovered, serial correlation (or autocorrelation) is very common in financial time series and panel data. Furthermore, we assumed a pre-defined relation of causality: explanatory variable affect the dependent variable? 传统的线性回归模型假设严格的外主性,误差项与可实现的独立变量之间没有序列相关性。金融时间序列及面板数据往往都有很强的自相关性,假定解释变量影响因变量。 We now relax bo什]assumptions using a VAR model. VAR models can be regarded as a generalisation of AR(p) processes by adding additional time series. Hence, we enter the field of multivariate time series analysis. VAR模型可以'"l作是在一般的自回归过程中加入时间序列。 Lefs look at a standard AR(p) process for hvo variables (y( and xj? (1)%= Ql + 琅]仇『一 +仏 (2)x t = a2 + - + £2t The next step is to allow that lagged values of xt can affect y( and vice versa. This means that we obtain a system of equations for two dependent variables(y(and xj?Both dependent variables are influenced by past realisations of y(and x t. By doing that, we violate strict exogeneity (see Lecture 2); however, we can use a more relaxed concept, namely weak exogeneity?As we use lagged values of bodi dependent variables, we can argue that these lagged values are known to us, as we observed them in the previous period? We call these variables predetermined? Predetermined (lagged) variables fulfil weak exogeneity in the sense that they have to be uncorrelated with the contemporaneoiis error term in t? We can still use OLS to estimate the following system of equations, which is called a VAR in reduced form. (3)+y 仇1化_丫+sr=i ^12 +£it (4)X t = a2+2X1021”—, + _i + f2t

基于BP神经网络的时序预测及其应用

目录 摘要 (1) 前言 (2) 第一章时间序列的预测函数及其评价指标 (4) 第一节预测函数 (5) 第二节评价预测的数量指标 (5) 第二章 BP神经网络 (6) 第一节 BP神经网络的结构 (6) 第二节 BP神经网络算法及公式推导 (7) 第三节 BP神经网络算法的步骤 (9) 第三章基于BP神经网络的时间序列预测及其应用 (11) 第四章结论 (14) 总结与体会 (15) 致谢词 (15) 参考文献 (15) 附录 (16)

摘要 首先,本文介绍了时间序列的含义和时间序列预测在国内外的研究情况,列举了两个时间序列预测的实际例子。文中阐述了时间序列预测及其评价指标,比较了各评价指标之间的长处和短处。其次, 本文阐述了BP神经网络算法及其公式推导。给出了BP神经网络算法的流程图。最后,本文从实用出发,列出了1993年至2006年我国GDP的数据,此组数据呈现出增长趋势,这种增长趋势反映了近十几年我国经济的快速增长。用BP神经网络预测出我国2007年的GDP是200790亿元, 这表明今后我国经济有减缓的迹象,这也说明我国近几年宏观经济调控获得了一定的成果。 【关键词】时间序列神经网络预测 GDP Abstract This grade paper, times series, and the development of times series forecast are introduced at first, and then the practical examples of times series forecast are enumerated. The function of times series forecast and its evaluative index are given. We compare the advantage and disadvantage of these evaluative indexes. Secondly, The principles of BP neural network and BP neural network’s algorithm are presented. Finally, we particularize our country GDP statistics, which it increases, which it indicates economy’s fast increasing, year by year, from 1993 to 2006. We also study BP neural network’s forecast algorithm. Our country GDP in 2007,wiche it is about 200790 hundred millions is forecasted by BP neural network, and it shows that the Chinese macro-economy policy in ten years are succeed. Keywords time series neural network prediction GDP

MATLAB动态神经网络在时间序列预测中的应用

MATLAB动态神经网络在时间序列预测中的应用 摘要:本文在介绍了Matlab神经网络工具箱的基础上,主要对时间序列预测工具箱的使用作了说明,并用实例仿真说明如何进行时间序列预测的调用实现,通过不断的调整参数,最后使训练的模型比较理想,满足实际的需求,表明了直接使用时间序列预测的有效性,并为Matlab神经网络工具箱的使用提供了新的方法。 关键词:Matlab;神经网络;时间序列;预测 引言 时间序列是根据时间顺序得到跟时间相关的变量或者参数的观测数据[1]。对时间序列的研究主要是挖掘其中有价值的信息,找到其中变化的内在规律[2]。时间序列预测是时间序列分析研究的主要内容,是指根据现有的和历史的时间序列的数据,建立能反映时间序列中所包含的动态依存关系的数学模型[3],从而能对序列未来的趋势做出合理的预测。简单的说,时间序列预测就是用已有的数据预测下一个时间段的值。目前,时间序列预测已经广泛应用在自然界、经济、化学、科学工程等各个领域。 随着Matlab版本的不断更新,神经网络工具箱不断的完善,使得仿真的实现日益简单,R2010b后的版本对时间序列预测的实现不需要手动写代码,网络训练完毕,从Simple Script可看到网络代码,并可对代码进行编辑、改编,因此,只要调用就可应用在各个领域。本文结合时间序列预测的特点,将Matlab神经网络工具箱中的时间序列预测应用到温度预测的实例中,通过快速的仿真及不断的调整参数,从而形成较理想的数学模型,为后期进行温度的预测奠定了基础。 1Matlab神经网络工具箱简介 神经网络分为静态和动态两类。静态神经网络是无反馈、无记忆的,输出仅依赖于当前的输入,例如BP神经网络和RBF神经网络。动态神经网络是有记忆的神经网络,其输出依赖于当前和以前的输入。动态神经网络又分为有反馈和无反馈,有反馈指输出依赖于当前输入和前一个输入输出,无反馈指输出依赖于当前和之前的输入。因此,动态神经网络比静态神经网络功能强,本文选择动态神经网络进行时间序列预测。 Matlab神经网络工具箱提供了一系列用于模型训练的工具,包括曲线拟合工具箱、模式识别工具箱、聚类工具箱和时间序列工具箱,利用这些工具箱可进行快速的调整参数,通过仿真得到直观的结果。另外,Matlab神经网络工具箱还提供人机交互界面,可根据提示一步一步的完成模型的训练,并对仿真的结果进行分析,直到满足要求为止。 选择时间序列工具箱或者直接在命令窗口中输入ntstool,可打开时间序列预测工具箱界面,根据数据选择符合哪种情况,根据人机交互界面的提示,将数据

基于神经网络的Mackey-Glass时间序列预测

目录 1引言 (1) 2MG时间序列 (1) 2.1MG时间序列简介 (1) 2.2利用dde23函数求解MG时间序列 (1) 3BP神经网络 (3) 3.1神经网络总体思路 (3) 3.2MATLAB中的newff函数 (3) 3.3BP神经网络的训练 (4) 3.4构建输入输出矩阵 (6) 3.5对MG时间序列未来值预测 (6) 4参考文献 (7) 5附录 (8)

1 引言 本文选用的神经网络的是BP 神经网络,利用MATLAB 编程实现。首先通过求解Mackey-Glass 方程得到具有513个数据的Mackey-Glass 时间序列,其中一半用于训练神经网络,一半用于检测预测值。BP 神经网络输入层神经元个数为4,隐含层为8,输出层为1。利用BP 神经网络工具箱构建神经网络并对其进行训练,然后利用训练好的神经网络对未来值进行预测,画出比较图。 2 MG 时间序列 2.1 MG 时间序列简介 Mackey-Glass 混沌系统一类非常典型的混沌系统,混沌系统模型由以下的时滞微分方程来描述: )() (1) ()(t x t x t x dt t dx βτταγ--+-= 其中 α =0.2,β =0.1,γ =10,τ是可调参数,x(t)是在t 时刻的时间序列的值。MG 方程表现出了某种周期性与混沌特性,在τ<16.8时,表现出周期性,在 τ>16.8时,则表现出混沌特性。 2.2 利用dde23函数求解MG 时间序列 本课程设计中取τ=10,也就是说MG 时间序列会表现为周期性。可以利用MATLAB 求解MG 方程,MG 方程是一个时滞微分方程,其中一种求解方法是利用MATLAB 的dde23函数。具体求解方法是:首先建立MG .m 函数文件,代码如下 function y = MG(t,x,z) %UNTITLED Summary of this function goes here % Detailed explanation goes here

神经网络预测时间序列

神经网络预测时间序列 如何作预测?理想方法是利用已知数据建立一系列准则,用于一般条件下预测,实际上由于系统的复杂性而不太可能,如股票市场预测。另一种途径是假设一次观测中过去、未来值之间存在联系。其中一种选择是发现一个函数,当过去观测值作为输入时,给出未来值作为输出。这个模型是由神经网络来实现的。 1.2 神经网络预测时间序列 (1) 简单描述 在时间序列预测中,前馈网络是最常使用的网络。在这种情形下,从数学角度看,网络成为输入输出的非线性函数。记一个时间序列为}{n x ,进行其预测可用下式描述: ),,(1+-1-+=m n n n k n x x x f x (1) 时间序列预测方法即是用神经网络来拟合函数)(?f ,然后预测未来值。 (2) 网络参数和网络大小 用于预测的神经网络性质与网络参数和大小均有关。网络结构包括神经元数目、隐含层数目与连接方式等,对一个给定结构来说, 训练过程就是调整参数以获得近似基本联系,误差定义为均方根误差,训练过程可视为一个优化问题。 在大多数的神经网络研究中,决定多少输入与隐层单元数的定量规则问题目前尚未有好的进展,近有的是一些通用指导:首先, 为使网络成为一个完全通用的映射,必须至少有一个隐层。1989年证明一个隐层的网可逼近闭区间内任意一个连续函数。其次,网络结构要尽可能紧致,即满足要求的最小网络最好。实际上,通常从小网络开始。逐步增加隐层数目。同样输入元数目也是类似处理。 (3) 数据和预测精度 通常把可用的时间序列数据分为两部分:训练数据和检验数据。训练数据一般多于检验数据两倍。检验过程有三种方式: 短期预测精度的检验。用检验数据作为输入,输出与下一个时间序列点作比较,误差统计估计了其精度。 长期预测中迭代一步预测。以一个矢量作为输入,输出作为下一个输入矢量的一部分,递归向前传播。 直接多步预测。即用1+-1-m n n n x x x ,,直接进行预测,输出k n x +的预测值,其中 1>k 。

时间序列分析法原理及步骤

时间序列分析法原理及步骤 ----目标变量随决策变量随时间序列变化系统 一、认识时间序列变动特征 认识时间序列所具有的变动特征, 以便在系统预测时选择采用不同的方法 1》随机性:均匀分布、无规则分布,可能符合某统计分布(用因变量的散点图和直方图及其包含的正态分布检验随机性, 大多服从正态分布 2》平稳性:样本序列的自相关函数在某一固定水平线附近摆动, 即方差和数学期望稳定为常数 识别序列特征可利用函数 ACF :其中是的 k 阶自 协方差,且 平稳过程的自相关系数和偏自相关系数都会以某种方式衰减趋于 0, 前者测度当前序列与先前序列之间简单和常规的相关程度, 后者是在控制其它先前序列的影响后,测度当前序列与某一先前序列之间的相关程度。实际上, 预测模型大都难以满足这些条件, 现实的经济、金融、商业等序列都是非稳定的,但通过数据处理可以变换为平稳的。 二、选择模型形式和参数检验 1》自回归 AR(p模型

模型意义仅通过时间序列变量的自身历史观测值来反映有关因素对预测目标的影响和作用,不受模型变量互相独立的假设条件约束,所构成的模型可以消除普通回归预测方法中由于自变量选择、多重共线性的比你更造成的困难用 PACF 函数判别 (从 p 阶开始的所有偏自相关系数均为 0 2》移动平均 MA(q模型 识别条件

平稳时间序列的偏相关系数和自相关系数均不截尾,但较快收敛到 0, 则该时间序列可能是 ARMA(p,q模型。实际问题中,多数要用此模型。因此建模解模的主要工作时求解 p,q 和φ、θ的值,检验和的值。 模型阶数 实际应用中 p,q 一般不超过 2. 3》自回归综合移动平均 ARIMA(p,d,q模型 模型含义 模型形式类似 ARMA(p,q模型, 但数据必须经过特殊处理。特别当线性时间序列非平稳时,不能直接利用 ARMA(p,q模型,但可以利用有限阶差分使非平稳时间序列平稳化,实际应用中 d (差分次数一般不超过 2. 模型识别 平稳时间序列的偏相关系数和自相关系数均不截尾,且缓慢衰减收敛,则该时间序列可能是 ARIMA(p,d,q模型。若时间序列存在周期性波动, 则可按时间周期进

Eviews时间序列分析实例.

Eviews时间序列分析实例 时间序列是市场预测中经常涉及的一类数据形式,本书第七章对它进行了比较详细的介绍。通过第七章的学习,读者了解了什么是时间序列,并接触到有关时间序列分析方法的原理和一些分析实例。本节的主要内容是说明如何使用Eviews软件进行分析。 一、指数平滑法实例 所谓指数平滑实际就是对历史数据的加权平均。它可以用于任何一种没有明显函数规律,但确实存在某种前后关联的时间序列的短期预测。由于其他很多分析方法都不具有这种特点,指数平滑法在时间序列预测中仍然占据着相当重要的位置。 (-)一次指数平滑 一次指数平滑又称单指数平滑。它最突出的优点是方法非常简单,甚至只要样本末期的平滑值,就可以得到预测结果。 一次指数平滑的特点是:能够跟踪数据变化。这一特点所有指数都具有。预测过程中添加最新的样本数据后,新数据应取代老数据的地位,老数据会逐渐居于次要的地位,直至被淘汰。这样,预测值总是反映最新的数据结构。 一次指数平滑有局限性。第一,预测值不能反映趋势变动、季节波动等有规律的变动;第二,这种方法多适用于短期预测,而不适合作中长期的预测;第三,由于预测值是历史数据的均值,因此与实际序列的变化相比有滞后现象。 指数平滑预测是否理想,很大程度上取决于平滑系数。Eviews提供两种确定指数平滑系数的方法:自动给定和人工确定。选择自动给定,系统将按照预测误差平方和最小原则自动确定系数。如果系数接近1,说明该序列近似纯随机序列,这时最新的观测值就是最理想的预测值。 出于预测的考虑,有时系统给定的系数不是很理想,用户需要自己指定平滑系数值。平滑系数取什么值比较合适呢?一般来说,如果序列变化比较平缓,平滑系数值应该比较小,比如小于0.l;如果序列变化比较剧烈,平滑系数值可以取得大一些,如0.3~0.5。若平滑系数值大于0.5才能跟上序列的变化,表明序列有很强的趋势,不能采用一次指数平滑进行预测。 [例1]某企业食盐销售量预测。现在拥有最近连续30个月份的历史资料(见表l),试预测下一月份销售量。 表1 某企业食盐销售量单位:吨 解:使用Eviews对数据进行分析,第一步是建立工作文件和录入数据。有关操作在本

现代时间序列分析模型

现代时间序列分析模型§1 时间序列平稳性和单位根检验§2 协整与误差修正模型经典时间序列分析模型: MA、AR、ARMA 平稳时间序列模型分析时间序列自身的变化规律现代时间序列分析模型:分析时间序列之间的关系单位根检验、协整检验现代宏观计量经济学§1 时间序列平稳性和单位根检验一、时间序列的平稳性二、单整序列三、单位根检验一、时间序列的平稳性 Stationary Time Series ⒈问题的提出经典计量经济模型常用到的数据有:时间序列数据(time-series data ;截面数据cross-sectional data 平行/面板数据(panel data/time-series cross-section data 时间序列数据是最常见,也是最常用到的数据。经典回归分析暗含着一个重要假设:数据是平稳的。数据非平稳,大样本下的统计推断基础――“一致性”要求――被破怀。数据非平稳,往往导致出现“虚假回归”(Spurious Regression)问题。表现为两个本来没有任何因果关系的变量,却有很高的相关性。例如:如果有两列时间序列数据表现出一致的变化趋势(非平稳的),即使它们没有任何有意义的关系,但进行回归也可表现出较高的可决系数。 2、平稳性的定义假定某个时间序列是由某一随机过程(stochastic process)生成的,即假定时间序列 Xt (t 1, 2, …)的每一个数值都是从一个概率分布中随机得到,如果满足下列条件:均值E Xt ?是与时间t 无关的常数;方差Var Xt ?2是与时间t 无关的常数;协方差Cov Xt,Xt+k ?k 是只与时期间隔k有关,与时间t 无关的常数;则称该随机时间序列是平稳的(stationary ,

神经网络对时间序列的处理(1)

神经网络对时间序列的处理 Georg Dorffner 奥地利维也纳大学人工智能研究所医疗控制论和人工智能部门 摘要: 本文介绍了神经网络在时间序列处理的最常见类型,即模式识别和时空模式的预测。重视神经网络模型和更多经典时间序列的处理方法之间的关系,尤其是预测。文章首先通过介绍基本的时间序列加工、讨论了前馈以及递归神经网络,和他们非线性模型在时空模式的依赖能力方面。 1.介绍 世界是一直在变的。无论我们观察还是措施——个物理价值,诸如温度和自由交易的价格好—在不同的时间点。经典模式识别,并且与它的很大一部分神经网络应用中,主要涉及了检测系统模式以一个数组的形式返回(静态模式)。典型的应用包括输入向量的分类成多个类别之一(判别分析),或近似描述之间的可见的依赖关系(倒退)。当随时间变化而变化也被考虑进去,额外的,时间维就是补充。虽然在很大程度上这一问题仍然可以被经典模式识别,一些附加的重要方面仍然起作用。统计领域的时空数据分析这种关注(例如具有一定的时空维度的数据),通常是被称为时间序列处理。 本文旨在介绍利用神经网络的基本原理为时间序列处理。作为一个教程,它自然只能触及表面的这个行业,留下许多重要的细节都没动。不过,概述最相关方面的工作基础,形成了这个领域的佼佼者。这篇文章是很有参考价值的一个指南,并给出了更远、更详细的文学。关于神经网络学习算法的基本知识建筑已被假定。 2.时间序列处理 2.1.基本要素 在正式的条件,时间序列是一系列向量,根据t:~x(t):t =0;1;…… (1)。 向量的组成部分可以是任何可观察变量,诸如: 1)在一幢建筑里的空气温度 2)在给定的证券交易所的某些产品价格 3)在一个特定城市新出生的人数 4)在一个特定社区的水的总消费金额 从理论上讲,x ~可以被看作是时间变量t的连续函数。然而用于实际目的时,时间是通常被看作离散的时间间隔,这就导致在每个时间间隔的终点产生x的实体。这就是为什么一个人说话的时间顺序或系列。时间间隔的尺寸通常依手边问题,可以是任何东西,从几秒,几小时到几天,甚至几年。 在许多情况下,可观察量只有在离散的时间间隔(例如,在每一个小时,或天某一商品的价格)必然会形成时间序列。在其他情况下(例一个城市的新出生的人数),价值观必须累积或均一段时间间隔(如每月引起的出生人数)得到系列。在时间确实是连续的领域(例如当温度在某一地点是可见) 一个人必须点测量变量的藉所选择的时间间隔来获得一个系列(如每个小时的温度)。这就是所谓的抽样。取样频率就是所测量时段的点个数,在这种情况下是一个非常重要的参数,因为不同频率能从本质上改变所获得时间序列的主要特点。 值得注意的是,有另一个领域非常密切相关,即加工时间序列信号处理。例如语音识别,即异常模式心电图的发现(ECGs),或脑电图的自动分级(EEGs)。一个信号,当采样成一串值的离散的时间间隔时,构成上述定义的时间序列。因此和时间序列信号处理没有一个正式的区别。在普遍的应用程序中可以发现不同(例如单个信号的识别和滤波;时间序列处理的预测),自然的时间序列(一个采样间隔时间信号通常是一小段时间,而在时间序列处理区间常是小时)。但这只是一个从原型中的应用的观察,并没有明确的边界。因此,时间序列处理可借鉴对信号处理的方法探索,反之亦然。神经网络应用程序在信号处理的概述在文献【54,51】。 如果矢量~ x只含有一个组件,在许多应用场合情况中,有的说是一个单变量的时间序列,否则它就是一个多元。它非常仰赖棘手问题的单变量治疗是否会导致图案识别的结果。如果几个可观察量相互影响(例如空气温度和消耗的水量)一个多变量分析治疗(即基于几个可观察量的分析{~x超过一个变量})将被标明。在大多数讨论中,我们依然遵循单变量的事件序列处理。 2.2处理类型 根据时间序列分析的目的,时间序列分析的典型应用可以分为: 1.时间序列未来发展的预测 2.时间序列的分类或分成几类的一部分 3.根据参数模型对时间序列的描述

数学建模时间序列分析

基于Excel的时间序列预测与分析 1 时序分析方法简介 1.1时间序列相关概念 1.1.1 时间序列的内涵以及组成因素 所谓时间序列就是将某一指标在不同时间上的不同数值,按照时间的先后顺序排列而成的数列。如经济领域中每年的产值、国民收入、商品在市场上的销量、股票数据的变化情况等,社会领域中某一地区的人口数、医院患者人数、铁路客流量等,自然领域的太阳黑子数、月降水量、河流流量等等,都形成了一个时间序列。人们希望通过对这些时间序列的分析,从中发现和揭示现象的发展变化规律,或从动态的角度描述某一现象和其他现象之间的内在数量关系及其变化规律,从而尽可能多的从中提取出所需要的准确信息,并将这些知识和信息用于预测,以掌握和控制未来行为。 时间序列的变化受许多因素的影响 ,有些起着长期的、决定性的作用 ,使其呈现出某种趋势和一定的规律性;有些则起着短期的、非决定性的作用,使其呈现出某种不规则性。在分析时间序列的变动规律时,事实上不可能对每个影响因素都一一划分开来,分别去作精确分析。但我们能将众多影响因素,按照对现象变化影响的类型,划分成若干时间序列的构成因素,然后对这几类构成要素分别进行分析,以揭示时间序列的变动规律性。影响时间序列的构成因素可归纳为以下四种: (1)趋势性(Trend),指现象随时间推移朝着一定方向呈现出持续渐进地上升、下降或平稳的变化或移动。这一变化通常是许多长期因素的结果。 (2)周期性(Cyclic),指时间序列表现为循环于趋势线上方和下方的点序列并持续一年以上的有规则变动。这种因素是因经济多年的周期性变动产生的。比如,高速通货膨胀时期后面紧接的温和通货膨胀时期将会使许多时间序列表现为交替地出现于一条总体递增 地趋势线上下方。 (3)季节性变化(Seasonal variation),指现象受季节性影响 ,按一固定周期呈现出的周期波动变化。尽管我们通常将一个时间序列中的季节变化认为是以1年为期的,但是季节因素还可以被用于表示时间长度小于1年的有规则重复形态。比如,每日交通量数据表现出为期1天的“季节性”变化,即高峰期到达高峰水平,而一天的其他时期车流量较小,从午夜到次日清晨最小。

时间序列模型的建立与预测

第六节时间序列模型的建立与预测 ARIMA过程y t用 Φ (L) (Δd y t)= α+Θ(L) u t 表示,其中Φ (L)和Θ (L)分别是p, q阶的以L为变数的多项式,它们的根都在单位圆之外。α为Δd y t过程的漂移项,Δd y t表示对y t 进行d次差分之后可以表达为一个平稳的可逆的ARMA 过程。这是随机过程的一般表达式。它既包括了AR,MA 和ARMA过程,也包括了单整的AR,MA和ARMA过程。 可取 图建立时间序列模型程序图 建立时间序列模型通常包括三个步骤。(1)模型的识别,(2)模型参数的估计,(3)诊断与检验。

模型的识别就是通过对相关图的分析,初步确定适合于给定样本的ARIMA模型形式,即确定d, p, q的取值。 模型参数估计就是待初步确定模型形式后对模型参数进行估计。样本容量应该50以上。 诊断与检验就是以样本为基础检验拟合的模型,以求发现某些不妥之处。如果模型的某些参数估计值不能通过显著性检验,或者残差序列不能近似为一个白噪声过程,应返回第一步再次对模型进行识别。如果上述两个问题都不存在,就可接受所建立的模型。建摸过程用上图表示。下面对建摸过程做详细论述。 1、模型的识别 模型的识别主要依赖于对相关图与偏相关图的分析。在对经济时间序列进行分析之前,首先应对样本数据取对数,目的是消除数据中可能存在的异方差,然后分析其相关图。 识别的第1步是判断随机过程是否平稳。由前面知识可知,如果一个随机过程是平稳的,其特征方程的根都应在单位圆之外;如果 (L) = 0的根接近单位圆,自相关函数将衰减的很慢。所以在分析相关图时,如果发现其衰减很慢,即可认为该时间序列是非平稳的。这时应对该时间序列进行差分,同时分析差分序列的相关图以判断差分序列的平稳性,直至得到一个平稳的序列。对于经济时间序列,差分次数d通常只取0,1或2。 实际中也要防止过度差分。一般来说平稳序列差分得到的仍然是平稳序列,但当差分次数过多时存在两个缺点,(1)序列的样本容量减小;(2)方差变大;所以建模过程中要防止差分过度。对于一个序列,差分后若数据的极差变大,说明差分过度。 第2步是在平稳时间序列基础上识别ARMA模型阶数p, q。表1给出了不同ARMA模型的自相关函数和偏自相关函数。当然一个过程的自相关函数和偏自相关函数通常是未知的。用样本得到的只是估计的自相关函数和偏自相关函数,即相关图和偏相关图。建立ARMA模型,时间序列的相关图与偏相关图可为识别模型参数p, q提供信息。相关图和偏相关图(估计的自相关系数和偏自相关系数)通常比真实的自相关系数和偏自相关系数的方差要大,并表现为更高的自相关。实际中相关图,偏相关图的特征不会像自相关函数与偏自相关函数那样“规范”,所以应该善于从相关图,偏相关图中识别出模型的真实参数p, q。另外,估计的模型形式不是唯一的,所以在模型识别阶段应多选择几种模型形式,以供进一步选择。

用小波神经网络来对时间序列进行预测

/* Note:Your choice is C IDE */ #include"stdio.h" void main() { }/*用小波神经网络来对时间序列进行预测 */ /*%File name : nprogram.m %Description : This file reads the data from %its source into their respective matrices prior to % performing wavelet decomposition. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %Clear command screen and variables */ clc; clear; /*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % user desired resolution level (Tested: resolution = 2 is best)*/ level = menu('Enter desired resolution level: ', '1',... '2 (Select this for testing)', '3', '4'); switch level case 1, resolution = 1; case 2, resolution = 2; case 3, resolution = 3; case 4, resolution = 4; end msg = ['Resolution level to be used is ', num2str(resolution)]; disp(msg); /*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % user desired amount of data to use */ data = menu('Choose amount of data to use: ', '1 day', '2 days', '3 days', '4 days',... '5 days', '6 days', '1 week (Select this for testing)'); switch data case 1, dataPoints = 48; /*%1 day = 48 points */ case 2, dataPoints = 96; /* %2 days = 96 points */ case 3, dataPoints = 144; /*%3 days = 144 points */ case 4, dataPoints = 192; /*%4 days = 192 points */ case 5, dataPoints = 240; /* %5 days = 240 points */

相关文档