文档库 最新最全的文档下载
当前位置:文档库 › 实验六 组合逻辑电路的分析和设计及开关电路设计

实验六 组合逻辑电路的分析和设计及开关电路设计

实验六  组合逻辑电路的分析和设计及开关电路设计
实验六  组合逻辑电路的分析和设计及开关电路设计

实验六组合逻辑电路的分析和设计及开关电路设计

一、实验目的:

1.掌握用基本逻辑门电路进行组合逻辑电路的分析、设计方法;

2.通过实验,论证设计的正确性;

3.掌握使用双极性三极管、单极性三极管开关电路的设计;

4.掌握组合逻辑电路故障排除方法。

二、实验原理:

1、组合逻辑电路的分析:

所谓组合逻辑电路分析,即通过分析电路,说明电路的逻辑功能。

通常采用的分析方法是从电路的输入到输出,根据逻辑符号的功能逐级写出逻辑函数表达式,最后得到表示输出和输入之间关系的函数逻辑式。然后利用公式化简法或卡诺图化简法将得到的函数式化简或变换,已使逻辑关系简单明了。为了使电路的逻辑功能更加直观,有时还可以把逻辑函数式转换为真值表的形式。

2、组合逻辑电路的设计:

根据给出的实际逻辑问题,求出实现这一逻辑功能的最简单逻辑电路,称为组合逻辑电路的设计。其通常分为SSI设计和MSI设计。

(1)SSI设计:SSI设计通常采用如下步骤:

1>逻辑抽象:分析事件的因果关系,确定输入和输出变量。一般把引起事件的原因定位输入变量,而把事件的结果作为输出变量。

2>定义逻辑状态的含义:以二值逻辑的0、1两种状态分别代表输入变量和输出变量的两种不同状态。

3>根据给出的因果关系列出逻辑真值表。

4>写出逻辑表达式,利用化简方法进行化简,并根据选定器件进行适当转换;

5>根据化简、变换后的逻辑表达式,画出逻辑电路的连接图;

6>实验仿真,结果验证。

(2)MSI设计:MSI设计通常采用如下步骤:

1> 2> 3>步骤同SSI设计步骤;

4>写出逻辑表达式;

5>根据表达式查找合适的MSI器件;

6>通过比较表达式或真值表,利用适当的设计实现所需功能;

7>画出逻辑电路的连接图;

8>实验仿真,结果验证。

三、实验仪器:

1、多功能实验箱1台

2、数字万用表1台

四、实验内容:

1、码制转换器分析

下图为一个BCD码转换组合逻辑电路,按图搭接电路,求出真值表及逻辑表达式,说明电路功能;

2、联锁器电路[用基本逻辑门电路(SSI用双输入端与非门7400)设计]

所谓联锁器即为密码锁,其输入为K1、K2、K3开关,报警和解锁输出分别为F1、F2。其中K1、K2、K3为单刀双掷开关,根据拨动可分别置‘1’或‘0’。当F1=‘1’,表示不报警,否则报警。当F2=‘1’,表示解锁,否则安锁。现要求:

(1)当联锁器处于始态(K1=K2=K3=‘1’),则F1=‘1’、F2=‘0’即:安锁且不

报警。

(2)试利用所学知识分析电路,设计密码锁电路,使其只有按K1->K2->K3顺序拨动开关时,才能解锁且不报警,否则不能开锁并报警。

(3)若报警信号F1要求频率1KHZ声音(8Ω喇叭)、光(高亮LED最大电流350mA,导通电压3V)方式报警,如何设计驱动电路(采用N沟道MOS管设计);若解锁采用继电器(12V)驱动,如何设计驱动电路(双极性三极管)。

实验仿真:

仿真真值表:

联锁器电路

真值表:

表达式:

F1=((K1’K2’)’(K2K3)’)’F2=F1K3’

仿真电路:

一键开关机电路设计集锦

一键开关机电路设计集锦 键可以作为开机键,接地时V15通,单片机上电,使MCU拉高,使V16通,保持。若此时长按KEY,则单片机读取键值,判断是否长按,若为长按,单片机控制MCU为低,进行自杀。下图试验证明是可行的。 单键实现单片机开关机? 1,控制流程,按下按键,Q1导通.单片机通电复位,进入工作.? 2,检测?K-IN?是否低电平,否?不处理.是?单片机输出?K-OUT?为高电平,Q2导通,相当于按键长按.LED指示灯亮.?3,放开按键,K-IN?经过上拉电阻,为高电平.单片机可以正常工作.? 4,在工作期间,按键按下,K-IN?为低电平,单片机检测到长按1秒,K-OUT?输出低电平,Q2截止.LED指示灯熄灭.放开按键,Q1截止,单片机断电.? 5,通过软件处理,可以实现短按开机,长按关机.? 单片机用PIC16F84A,通过简单的程序演示,证实此电路的可行性。 这电路如果这样用,是体现不出它的优点,用到开关电源控制,控制光耦.可以做到完全关断电原,实现零功耗待机.有些打印机上就是用这种电路. 此电路可以应用于很宽的电压范围(4.5V~40V,最大19A的电流),R5为可选,当输入电压小于20V时可短接;输入电压大于20V时建议接上,R5的取值应满足与R1的分压使MOS管V1的GS电压大于-20V 小于-5V(在V2导通时),尽量使V1的GS电压在-10V~-20V之间以使V1输出大电流。 按钮按下前,V2的GS电压(即C1电压)为零,V2截止,V1的GS电压为0,V1截止无输出;当按下S1,C1充电,V2?GS电压上升至约3V时V2导通并迅速饱和,V1?GS电压小于-4V,V1饱和导通,Vout有输出,发光管亮(此时应放开按钮)C1通过R2、R3继续充电,V1、V2状态被锁定;当再次按下按钮时,由于V2处于饱和导通状态,漏极电压约为0V,C1通过R3放电,放至约3V时,V2截止,V1栅源电压大于-4V,V1截止,Vout无输出,发光管灭(放开按钮),C1通过R2、R3及外电路继续放电,V1、V2维持截止状态。 注:S1使Vout打开或关闭后应放开按钮,不然会形成开关振荡。

组合逻辑电路实验设计

H a r b i n I n s t i t u t e o f T e c h n o l o g y 组合逻辑电路实验设计 血型匹配情况判断电路 一、实验题目: 人的血型有A、B、AB、O四种。输血时输血者的血型与受血者血型必须符合图1中用箭头指示的授受关系。判断输血者与受血者的血型是否符合上述规定,要求用八选一数据选择器(74LS151)及与非门(74LS00)实现。(提示:用两个逻辑变量的4种取值表示输血者的血型,例如00代表A、01代表 B、10代表AB、11代表O。) 图1 二、电路设计: 方案一: 解: 1、题目分析

根据题意,确定有4个输入变量,设为X、Y、M、N;输出变量为P。 其中,用两个逻辑变量X、Y的四中取值表示输血者的血型:00代表A型、01代表B型、10代表AB型、11代表O型。 用另外两个逻辑变量M、N的四种取值表示受血者的血型:00代表A型、01代表B型、10代表AB型、11代表O型。 逻辑输出变量P代表输血者与受血者的血型符合情况:1代表血型符合,0代表血型不符合。 题目中要求用八选一数据选择器(74LS151)及与非门(74LS00)实现电路设计。 2、列写输入与输出变量真值表: 真值表如下图所示 3、逻辑表达式: 根据真值表画出卡诺图:

卡诺图如右图所示: 用八选一数据选择器(74LS151),所以输出逻辑表达式写成最小项和的形式:设X 、Y 、M 为选择变量,X 为高位。 逻辑函数P 的与或标注型表达式: P (X ,Y ,M ,N ) X Y M N X Y M N X Y M N X Y M N X Y M N =+++++ 4、比较表达式: 与标准表达式比较得:267P Nm N m(0,1,3,5)m m =+∑++ 所以,数据选择器中EN=0,0135D D D D N ==== D 2=N ,D 4=0, D 6=D 7=1, 5、逻辑电路图:

实验六 组合逻辑电路的设计与测试

实验六组合逻辑电路的设计与测试 1.实验目的 (1)掌握组合逻辑电路的设计方法; (2)熟悉基本门电路的使用方法。 (3)通过实验,论证所设计的组合逻辑电路的正确性。 2.实验设备与器材 1)数字逻辑电路实验箱,2)万用表,3)集成芯片74LS00二片。 3.预习要求 (1)熟悉组合逻辑电路的设计方法; (2)根据具体实验任务,进行实验电路的设计,写出设计过程,并根据给定的标准器件画出逻辑电路图,准备实验; (3)使用器件的各管脚排列及使用方法。 4.实验原理 数字电路中,就其结构和工作原理而言可分为两大类,即组合逻辑电路和时序逻辑电路。组合逻辑电路输出状态只决定于同一时刻的各输入状态的组合,与先前状态无关,它的基本单元一般是逻辑门;时序逻辑电路输出状态不仅与输入变量的状态有关,而且还与系统原先的状态有关,它的基本单元一般是触发器。 (1)组合电路是最常用的逻辑电路,可以用一些常用的门电路来组合完成具有其他功能的门电路。设计组合逻辑电路的一般步骤是: 1)根据逻辑要求,列出真值表; 2)从真值表中写出逻辑表达式; 3)化简逻辑表达式至最简,并选用适当的器件; 4)根据选用的器件,画出逻辑电路图。 逻辑化简是组合逻辑设计的关键步骤之一。为了使电路结构简单和使用器件较少,往往要求逻辑表达式尽可能化简。由于实际使用时要考虑电路的工作速度和稳定可靠等因素,在较复杂的电路中,还要求逻辑清晰易懂,所以最简设计不一定是最佳的。但一般来说,在保证速度、稳定可靠与逻辑清楚的前提下,尽量使用最少的器件,以降低成本。 (2)与非门74LS00芯片介绍 与非门74LS00一块芯片内含有4个互相独立的与非门,每个与非门有二个输入端。其逻辑表达式为Y=AB,逻辑符号及引脚排列如图6-1(a)、(b)所示。 (a)逻辑符号(b)引脚排列 图6-1 74LS20逻辑符号及引脚排列 (3)异或运算的逻辑功能 当某种逻辑关系满足:输入相同输出为“0”,输入相异输出为“1”,这种逻辑关系称为“异或”逻辑关系。 (4)半加器的逻辑功能 在加法运算中,只考虑两个加数本身相加,不考虑由低位来的进位,这种加法器称为半加器。 5.实验内容 (1)用1片74LS00与非门芯片设计实现两输入变量异或运算的异或门电路 要求:设计逻辑电路,按设计电路连接后,接通电源,验证运算逻辑。输入端接逻辑开关输出插口,以提供“0”与“1”电平信号,开关向上,输出逻辑“1”,向下为逻辑“0”;电路的输出端接由LED发光二极管组成的0-1指示器的显示插口,LED亮红色为逻辑“1”,亮绿色为逻辑“0”。接线后检查无误,通电,用万用表直流电压20V档测量输入、输出的对地电压,并观察输出的LED颜色,填入表6-1。

简单电路设计设计大全

装饰材料购销合同 简单电路设计设计大全 1.保密室有两道门,只有当两道门都关上时(关上一道门相当于闭合一个开关),值班室内的指示灯才会发光,表明门都关上了.下图中符合要求的电路是 2.小轿车上大都装有一个指示灯,用它来提醒司机或乘客车门是否关好。四个车门中只要有一个车门没关好(相当于一个开关断开),该指示灯就会发光。下图为小明同学设计的模拟电路图,你认为最符合要求的是 3.中考试卷库大门控制电路的两把钥匙分别有两名工作人员保管,单把钥匙无法打开,如图所示电路中符合要求的是 ”表示)击中乙方的导电服时,电路导通,4.击剑比赛中,当甲方运动员的剑(图中用“S 甲 乙方指示灯亮。下面能反映这种原理的电路是 5.家用电吹风由电动机和电热丝等组成,为了保证电吹风的安全使用,要求:电动机不工作时,电热丝不能发热;电热丝发热和不发热时,电动机都能正常工作。如图所示电路中符合要求的是( )

6.一辆卡车驾驶室内的灯泡,由左右两道门上的开关S l、S2和车内司机右上方的开关S3共同控制。S1和S2分别由左右两道门的开、关来控制:门打开后,S1和S2闭合,门关上后,S l和S2断开。S3是一个单刀三掷开关,根据需要可将其置于三个不同位置。在一个电路中,要求在三个开关的共同控制下,分别具有如下三个功能:(1)无论门开还是关,灯都不亮; (2)打开两道门中的任意一道或两道都打开时,灯就亮,两道门都关上时,灯不亮;(3)无论门开还是关,灯都亮。如图所示的四幅图中,符合上述要求的电路是 A.图甲 B.图乙 C.图丙 D.图丁 7.教室里投影仪的光源是强光灯泡,发光时必须用风扇给予降温。为了保证灯泡不被烧坏,要求:带动风扇的电动机启动后,灯泡才能发光;风扇不转,灯泡不能发光。则在如图3所示的四个电路图中符合要求的是 ( ) 8.一般家用电吹风机都有冷热两挡,带扇叶的电动机产生风,电阻R产生热。冷热风能方便转换,下面图3中能正确反应电吹风机特点的电路图是 ( ) 9.飞机黑匣子的电路等效为两部分。一部分为信号发射电路,可用等效电阻R1表示,用开关S1控制,30天后自动断开,R1停止工作。另一部分为信息存储电路,可用等效电阻R2表示,用开关S2控制,

实验一组合逻辑电路设计

实验一 组合逻辑电路的设计 一、实验目的: 1、 掌握组合逻辑电路的设计方法。 2、 掌握组合逻辑电路的静态测试方法。 3、 加深FPGA 设计的过程,并比较原理图输入和文本输入的优劣。 4、 理解“毛刺”产生的原因及如何消除其影响。 5、 理解组合逻辑电路的特点。 二、实验的硬件要求: 1、 EDA/SOPC 实验箱。 2、 计算机。 三、实验原理 1、组合逻辑电路的定义 数字逻辑电路可分为两类:组合逻辑电路和时序逻辑电路。组合逻辑电路中不包含记忆单元(触发器、锁存器等),主要由逻辑门电路构成,电路在任何时刻的输出只和当前时刻的输入有关,而与以前的输入无关。时序电路则是指包含了记忆单元的逻辑电路,其输出不仅跟当前电路的输入有关,还和输入信号作用前电路的状态有关。 通常组合逻辑电路可以用图1.1所示结构来描述。其中,X0、X1、…、Xn 为输入信号, L0、L1、…、Lm 为输出信号。输入和输出之间的逻辑函数关系可用式1.1表示: 2、组合逻辑电路的设计方法 组合逻辑电路的设计任务是根据给定的逻辑功能,求出可实现该逻辑功能的最合理组 合电路。理解组合逻辑电路的设计概念应该分两个层次:(1)设计的电路在功能上是完整的,能够满足所有设计要求;(2)考虑到成本和设计复杂度,设计的电路应该是最简单的,设计最优化是设计人员必须努力达到的目标。 在设计组合逻辑电路时,首先需要对实际问题进行逻辑抽象,列出真值表,建立起逻辑模型;然后利用代数法或卡诺图法简化逻辑函数,找到最简或最合理的函数表达式;根据简化的逻辑函数画出逻辑图,并验证电路的功能完整性。设计过程中还应该考虑到一些实际的工程问题,如被选门电路的驱动能力、扇出系数是否足够,信号传递延时是否合乎要求等。组合电路的基本设计步骤可用图1.2来表示。 3、组合逻辑电路的特点及设计时的注意事项 ①组合逻辑电路的输出具有立即性,即输入发生变化时,输出立即变化。(实际电路中 图 1.1 组合逻辑电路框图 L0=F0(X0,X1,···Xn) · · · Lm=F0(X0,X1,···Xn) (1.1) 图 1.2 组合电路设计步骤示意图图

组合逻辑电路实验

实验一基本门电路的功能和特性及组合逻辑电路实验(2学时) 实验目的及要求:掌握常用的集成门电路的逻辑功能与特性;掌握各种门电路的逻辑符号;了解集成电路的外引线排列及其使用方法;学习组合逻辑电路的设计及测试方法。 实验题目:部分TTL门电路逻辑功能验证及组合逻辑电路设计之全加器或全减器。 实验二数值比较器、数据选择器(3学时) 实验目的及要求:掌握数值比较器和数据选择器的逻辑功能;学习组合逻辑电路的设计及测试方法。用7486和7400、7404搭出一位数值比较器,画出其设计逻辑电路图,并验证它的运算;用74153选择器实现多数据表决器,要求3个输入中有2个或3个为1时,输出Y为高电平,否则Y为低电平。画出电路图并简述实现原理。用7400、7404、7432实现该多数表决器。 实验题目:组合逻辑电路设计之数值比较器和数据选择器 实验三计数器的应用(3学时) 实验目的及要求:掌握集成二进制同步计数器74161的逻辑功能;掌握任意进制计数器的构成方法;学习时序逻辑电路的设计及测试方法。用74161搭建一个60进制计数器电路,并将结果输出到7段数码管显示出来,画出其设计逻辑电路图并验证它的功能。 实验题目:时序逻辑电路设计之计数器的应用 74LS00: QUAD 2-INPUT NAND GATE

74LS04: HEX INVERTER 74LS32:Quad 2-Input OR Gates

74LS74: Dual Positive-Edge-Triggered D Flip-Flops with Preset, Clear and Complementary Outputs 74LS153: Dual 4-Input Multiplexer with common select inputs and individual enable inputs 74LS161: Synchronous 4-Bit Binary Counters

开关量采集电路设计

开关量采集电路设计 开关量采集电路适用于对开关量信号进行采集,如循环泵的状态信号、进出仓阀门的开关状态等开关量。污染源在线监控仪可采集16路开关信号,输入24V 直流电压;设定当输入范围为18~24VDC 时,认为是高电平,被监视的设备处于工作状态;当输入低于18VDC 时,认为是低电平,被监视的设备处于停止状态。 为了避免电气特性及恶劣工作环境带来的干扰,该电路采用光电耦合器TLP521对信号实现了一次电-光-电的转换,从而起到输入\输出隔离的作用。 同时,还安装有LED 工作指示灯,可以使用户对每一通路的工作情况一目了然。其中一路的开关量采集电路如图1所示: 图 1 开关量采集电路 光耦TLP521将红外发光二极管和发光三级管相互绝缘的组合在一起,发光二极管为输入回路,它将电能转换成光能;发光三极管为输出回路,它将光能再转换成电能,实现了两部分电路的电气隔离。 当输入范围为18 ~24VDC 时,认为是高电平,此时光耦导通,电阻R10、R14和发光二极管共同构成输入回路。 根据光耦导通时电流为4 ~10mA ,当输入最高电压24V 时, mA V R R mA V 42414101024<+<,即Ω<+<Ωk R R k 614104.2 当输入低于18V 时认为是低电平,此时光耦的工作电流肯定低于4m A ,此时光耦不导通,电阻 R10、 R14和R12共同构成输入回路,所以: mA R R R V 412 141018<++,即R10+R14+R12>4.5k Ω。在设计中,选择R10=R12=2k Ω,R12=1k Ω。

光耦导通的最小电流为4mA,根据光耦的电流传输比CTR(Current Transfer Ratio)为50%,指当管压降U CE足够大时,集电极电流I C与发光二极管输入电流I F的百分比,所以集电极电流I C=I F*50%=4mA* 50%=2mA,同时为了使光电三极管尽快进入饱和区,选取上拉电阻R8为4.7KΩ。 最后,为了保护光耦,防止大的输入电压突变,在限流电阻R12的两端并联肖特基二极管IN5819。

组合逻辑电路设计实验报告

组合逻辑电路设计实验报告 1.实验题目 组合电路逻辑设计一: ①用卡诺图设计8421码转换为格雷码的转换电路。 ②用74LS197产生连续的8421码,并接入转换电路。 ③记录输入输出所有信号的波形。 组合电路逻辑设计二: ①用卡诺图设计BCD码转换为显示七段码的转换电路。 ②用74LS197产生连续的8421码,并接入转换电路。 ③把转换后的七段码送入共阴极数码管,记录显示的效果。 2.实验目的 (1)学习熟练运用卡诺图由真值表化简得出表达式 (2)熟悉了解74LS197元件的性质及其使用 3.程序设计 格雷码转化: 真值表如下:

卡诺图: 1 010100D D D D D D G ⊕=+= 2 121211D D D D D D G ⊕=+=

3232322D D D D D D G ⊕=+= 33D G = 电路原理图如下: 七段码显示: 真值表如下: 卡诺图:

2031020231a D D D D D D D D D D S ⊕++=+++= 10210102b D D D D D D D D S ⊕+=++= 201c D D D S ++= 2020101213d D D D D D D D D D D S ++++= 2001e D D D D S +=

2021013f D D D D D D D S +++= 2101213g D D D D D D D S +++= 01213g D D D D D S +⊕+= 电路原理图如下:

4.程序运行与测试 格雷码转化: 逻辑分析仪显示波形:

数电实验报告 实验二 组合逻辑电路的设计

实验二组合逻辑电路的设计 一、实验目的 1.掌握组合逻辑电路的设计方法及功能测试方法。 2.熟悉组合电路的特点。 二、实验仪器及材料 a) TDS-4数电实验箱、双踪示波器、数字万用表。 b) 参考元件:74LS86、74LS00。 三、预习要求及思考题 1.预习要求: 1)所用中规模集成组件的功能、外部引线排列及使用方法。 2) 组合逻辑电路的功能特点和结构特点. 3) 中规模集成组件一般分析及设计方法. 4)用multisim软件对实验进行仿真并分析实验是否成功。 2.思考题 在进行组合逻辑电路设计时,什么是最佳设计方案? 四、实验原理 1.本实验所用到的集成电路的引脚功能图见附录 2.用集成电路进行组合逻辑电路设计的一般步骤是: 1)根据设计要求,定义输入逻辑变量和输出逻辑变量,然后列出真值表; 2)利用卡络图或公式法得出最简逻辑表达式,并根据设计要求所指定的门电路或选定的门电路,将最简逻辑表达式变换为与所指定门电路相应的形式; 3)画出逻辑图; 4)用逻辑门或组件构成实际电路,最后测试验证其逻辑功能。 五、实验内容 1.用四2输入异或门(74LS86)和四2输入与非门(74LS00)设计一个一位全加器。 1)列出真值表,如下表2-1。其中A i、B i、C i分别为一个加数、另一个加数、低位向本位的进位;S i、C i+1分别为本位和、本位向高位的进位。 2)由表2-1全加器真值表写出函数表达式。

3)将上面两逻辑表达式转换为能用四2输入异或门(74LS86)和四2输入与非门(74LS00)实现的表达式。 4)画出逻辑电路图如图2-1,并在图中标明芯片引脚号。按图选择需要的集成块及门电路连线,将A i、B i、C i接逻辑开关,输出Si、Ci+1接发光二极管。改变输入信 号的状态验证真值表。 2.在一个射击游戏中,每人可打三枪,一枪打鸟(A),一枪打鸡(B),一枪打兔子(C)。 规则是:打中两枪并且其中有一枪必须是打中鸟者得奖(Z)。试用与非门设计判断得奖的电路。(请按照设计步骤独立完成之) 五、实验报告要求: 1.画出实验电路连线示意图,整理实验数据,分析实验结果与理论值是否相等。 2.设计判断得奖电路时需写出真值表及得到相应输出表达式以及逻辑电路图。 3.总结中规模集成电路的使用方法及功能。

三极管开关电路设计详细过程

揭秘:三极管开关电路设计详细过程 电源网首页| 分类:功率开关| 2011-03-10 09:15:39 | 评论(0) 摘要:三极管除了可以当做交流信号放大器之外,也可以做为开关之用。严格说起来,三极管与一般的机械接点式开关在动作上并不完全相同,但是它却具有一些机械式开关所没有的特点。图1所示,即为三极管电... 三极管除了可以当做交流信号放大器之外,也可以做为开关之用。严格说起来,三极管与一般的机械接点式开关在动作上并不完全相同,但是它却具有一些机械式开关所没有的特点。图1所示,即为三极管电子开关的基本电路图。由下图可知,负载电阻被直接跨接于三极管的集电极与电源之间,而位居三极管主电流的回路上。 输入电压Vin则控制三极管开关的开启(open) 与闭合(closed) 动作,当三极管呈开启状态时,负载电流便被阻断,反之,当三极管呈闭合状态时,电流便可以流通。详细的说,当Vin为低电压时,由于基极没有电流,因此集电极亦无电流,致使连接于集电极端的负载亦没有电流,而相当于开关的开启,此时三极管乃胜作于截止(cut off)区。

同理,当Vin为高电压时,由于有基极电流流动,因此使集电极流过更大的放大电流,因此负载回路便被导通,而相当于开关的闭合,此时三极管乃胜作于饱和区(saturation)。 一、三极管开关电路的分析设计 由于对硅三极管而言,其基射极接面之正向偏压值约为0.6伏特,因此欲使三极管截止,Vin必须低于0.6伏特,以使三极管的基极电流为零。通常在设计时,为了可以更确定三极管必处于截止状态起见,往往使Vin值低于0.3伏特。(838电子资源)当然输入电压愈接近零伏特便愈能保证三极管开关必处于截止状态。欲将电流传送到负载上,则三极管的集电极与射极必须短路,就像机械开关的闭合动作一样。欲如此就必须使Vin达到够高的准位,以驱动三极管使其进入饱和工作区工作,三极管呈饱和状态时,集电极电流相当大,几乎使得整个电源电压Vcc均跨在负载电阻上,如此则VcE便接近于0,而使三极管的集电极和射极几乎呈短路。在理想状况下,根据奥姆定律三极管呈饱和时,其集电极电流应该为﹕ 因此,基极电流最少应为: 上式表出了IC和IB之间的基本关系,式中的β值代表三极管的直流电流增益,对某些三极管而言,其交流β值和直流β值之间,有着甚大的差异。欲使开关闭合,则其V in值必须够高,以送出超过或等于(式1) 式所要求的最低基极电流值。由于基极回路只是一个电阻和基射极接面的串联电路,故Vin可由下式来求解﹕

组合逻辑电路实验报告

组合逻辑电路实验报告

图6-1:O型静态险象 如图6-1所示电路 其输出函数Z=A+A,在电路达到稳定时,即静态时,输出F 总是1。然而在输入A变化时(动态时)从图6-1(b)可见,在输出Z的某些瞬间会出现O,即当A经历1→0的变化时,Z出现窄脉冲,即电路存在静态O型险象。 进一步研究得知,对于任何复杂的按“与或”或“或与”函数式构成的组合电路中,只要能成为A+A或AA的形式,必然存在险象。为了消除此险象,可以增加校正项,前者的校正项为被赋值各变量的“乘积项”,后者的校正项为被赋值各变量的“和项”。 还可以用卡诺图的方法来判断组合电路是否存在静态险象,以及找出校正项来消除静态险象。 实验设备与器件 1.+5V直流电源 2.双踪示波器 3.连续脉冲源 4.逻辑电平开关 5.0-1指示器

(3)根据真值表画出逻辑函数Si、Ci的卡诺图 (4)按图6-5要求,选择与非门并接线,进行测试,将测试结果填入下表,并与上面真值表进行比较逻辑功能是否一致。 4.分析、测试用异或门、或非门和非门组成的全加器逻辑电路。 根据全加器的逻辑表达式

全加和Di =(Ai⊕Bi)⊕Di-1 进位Gi =(Ai⊕Bi)·Di-1+Ai·Bi 可知一位全加器可以用两个异或门和两个与门一个或门组成。(1)画出用上述门电路实现的全加器逻辑电路。 (2)按所画的原理图,选择器件,并在实验箱上接线。(3)进行逻辑功能测试,将结果填入自拟表格中,判断测试是否正确。 5.观察冒险现象 按图6-6接线,当B=1,C=1时,A输入矩形波(f=1MHZ 以上),用示波器观察Z输出波形。并用添加校正项方法消除险象。

实验二--组合逻辑电路的设计与测试

实验二组合逻辑电路的设计与测试 一、实验目的 1、掌握组合逻辑电路的分析与设计方法。 2、加深对基本门电路使用的理解。 二、实验原理 1、组合电路是最常用的逻辑电路,可以用一些常用的门电路来组合完成具有其他 功能的门电路。例如,根据与门的逻辑表达式Z= AB =得知,可以用两 个非门和一个或非门组合成一个与门,还可以组合成更复杂的逻辑关系。 2、分析组合逻辑电路的一般步骤是: 1)由逻辑图写出各输出端的逻辑表达式; 2)化简和变换各逻辑表达式; 3)列出真值表; 4) 根据真值表和逻辑表达式对逻辑电路进行分析,最后确定其功能。 3、设计组合逻辑电路的一般步骤与上面相反,是: 1)根据任务的要求,列出真值表; 2)用卡诺图或代数化简法求出最简的逻辑表达式; 3)根据表达式,画出逻辑电路图,用标准器件构成电路; 4)最后,用实验来验证设计的正确性。 4、组合逻辑电路的设计举例 1)用“与非门”设计一个表决电路。当四个输入端中有三个或四个“1”时, 输出端才为“1”。 设计步骤: 根据题意,列出真值表如表2-1所示,再添入卡诺图表2-2中。 表2-1 表决电路的真值表 表2-2 表决电路的卡诺图 然后,由卡诺图得出逻辑表达式,并演化成“与非”的形式: ABD CDA BCD ABC Z+ + + = B A+

? = ? ABC? ACD BCD ABC 最后,画出用“与非门”构成的逻辑电路如图2-1所示: 图2-1 表决电路原理图 输入端接至逻辑开关(拨位开关)输出插口,输出端接逻辑电平显示端口,自拟真值表,逐次改变输入变量,验证逻辑功能。 三、实验设备与器材 1.数字逻辑电路实验箱。 2.数字逻辑电路实验箱扩展板。 3.数字万用表。 4.芯片74LS00、74LS02、74LS04、74LS10、74LS20。 四、实验内容实验步骤 1、完成组合逻辑电路的设计中的两个例子。 2、设计一个四人无弃权表决电路(多数赞成则提议通过),要求用四2输入与非门 来实现。 3、用与非门74LS00和异或门74LS86设计一可逆的4位码变换器。 要求: 1)当控制信号C=1时,它将8421码转换成为格雷码;当控制信号C=0时,它 将格雷码转换成为8421码; 2)写出设计步骤,列出码变换关系真值表并画出逻辑电路图; 3)安装电路并测试逻辑电路的功能。 五、实验预习要求 1、复习各种基本门电路的使用方法。 2、实验前,画好实验用的电路图和表格。 3、自己参考有关资料画出实验内容2、3、4中的原理图,找出实验将要使用的芯 片,以备实验时用。 六、实验报告要求 1、将实验结果填入自制的表格中,验证设计是否正确。 2、总结组合逻辑电路的分析与设计方法。

实验一组合逻辑电路设计

电子信息工程晓旭 2011117147 实验一组合逻辑电路设计(含门电路功能测试) 一.实验目的 1掌握常用门电路的逻辑功能。 2掌握用小规模集成电路设计组合逻辑电路的方法。 3掌握组合逻辑电路的功能测试方法。 二.实验设备与器材 数字电路实验箱一个 双踪示波器一部 稳压电源一部 数字多用表一个 74LS20 二4 输入与非门一片 74LS00 四2 输入与非门一片 74LS10 三3 输入与非门一片 三 .实验任务 1对74LS00,74LS20逻辑门进行功能测试。静态测试列出真值表,动态测试画出波形图,并说明测试的门电路功能是否正常。 2分析测试1.7中各个电路逻辑功能并根据测试结果写出它们的逻辑表达式。 3设计控制楼梯电灯的开关控制器。设楼上,楼下各装一个开关,要求两个开关均可以控制楼梯电灯。 4某公司设计一个优先级区分器。该公司收到有A,B,C,三类,A,类的优先级最高,B 类次之,C类最低。到达时,其对应的指示灯亮起,提醒工作人员及时处理。当不同类的同时到达时,对优先级最高的先做处理,其对应的指示灯亮,优先级低的暂不理会。按组合逻辑电路的一般设计步骤设计电路完成此功能,输入输出高低电平代表到

实验一: (1)74LS00的静态逻辑功能测试 实验器材:直流电压源,电阻,发光二极管,74LS00,与非门,开关,三极管 实验目的:静态逻辑功能测试用来检查门电路的真值表,确认门电路的逻辑功能正确与否 实验过程:将74LS00中的一个与非门的输入端A,B分别作为输入逻辑变量,加高低电平,观测输出电平是否符合真值表描述功能。 电路如图1: 图1 真值表1.1: 实验问题:与非门的引脚要连接正确,注意接地线及直流电源 实验结果:由二极管的发光情况可判断出74LS00 实现二输入与非门的功能 (2)71LS00的动态逻辑功能测试 实验器材:函数发生器,示波器,74LS00,与非门,开关,直流电压源 实验目的:测试74LS00与非门的逻辑功能 实验容:动态测试适合用于数字系统中逻辑功能的检查,测试时,电路输入串行数字

数字电路组合逻辑电路设计实验报告

实验三组合逻辑电路设计(含门电路功能测试)

一、实验目的 1.掌握常用门电路的逻辑功能 2.掌握小规模集成电路设计组合逻辑电路的方法 3.掌握组合逻辑电路的功能测试方法 二、实验设备与器材 Multisim 、74LS00 四输入2与非门、示波器、导线 三、实验原理 TTL集成逻辑电路种类繁多,使用时应对选用的器件做简单逻辑功能检查,保证实验的顺利进行。 测试门电路逻辑功能有静态测试和动态测试两种方法。静态测试时,门电路输入端加固定的高(H)、低电平,用示波器、万用表、或发光二极管(LED)测出门电路的输出响应。动

态测试时,门电路的输入端加脉冲信号,用示波器观测输入波形与输出波形的同步关系。 下面以74LS00为例,简述集成逻辑门功能测试的方法。74LS00为四输入2与非门,电路图如3-1所示。74LS00是将四个二输入与非门封装在一个集成电路芯片中,共有14条外引线。使用时必须保证在第14脚上加+5V电压,第7脚与底线接好。 整个测试过程包括静态、动态和主要参数测试三部分。 表3-1 74LS00与非门真值表 1.门电路的静态逻辑功能测试 静态逻辑功能测试用来检查门电路的真值表,确认门电路的逻辑功能正确与否。实验时,可将74LS00中的一个与非门的输入端A、B分别作为输入逻辑变量,加高、低电平,观测输出电平是否符合74LS00的真值表(表3-1)描述功能。 测试电路如图3-2所示。试验中A、B输入高、低电平,由数字电路实验箱中逻辑电平产生电路产生,输入F可直接插至逻辑电平只是电路的某一路进行显示。

仿真示意 2.门电路的动态逻辑功能测试 动态测试用于数字系统运行中逻辑功能的检查,测试时,电路输入串行数字信号,用示波器比较输入与输出信号波形,以此来确定电路的功能。实验时,与非门输入端A加一频率为

pmos功率管开关电路设计

PMOS开关管电路设计指 南 2013/7/18 本文档的目的1)能够根据本指南进行PMOS管开关电路设计

更新说明

目录 一、NMOS管等效电路 (4) 二、公司固定传感器控制盒PMOS开关电路分析 (4)

PMOS开关管电路设计指南 一、NMOS管等效电路 A)B) 图2 NMOS管等效模型 1、驱动G极时,因为输入电容Ciss(Cgd+Cgs)的存在,要求电压变化快,i=Cdu/dt, 当G极电流大时,du/dt也大,增大开关速度。 2、根据B图,功率MOS管内部存在等效三极管,当S接地,刚上电时,三极 管会导通,且电流有可能过大,所以,最好D极有缓启动电路保护。 3、根据A图,反向寄生二极管有可能被正向或反向击穿。反向击穿有可能因为 D极部分,当电源开启时会有冲击电流,因为线上电感原因,U = Ldi/dt,导致U过大。正向击穿,可能因为S极在关电时,因为线上电感原因,造成U 过大;或者线上串入能量较大干扰电压,导致寄生二极管正向通道电流过大,烧毁寄生二极管,从而造成MOS管失效。 二、控制盒PMOS开关电路分析 1、小电流切换电路

A)B) 图3 5V激光器驱动电路和24V LED灯驱动电路 1、电路A: 1)三极管集电极电阻过大,导致开关速度不高;考虑是激光器驱动电路,正好使用这个缓启动功能。 2)MOS管损坏过,现象是能够正常开启MOS管,但不能完全关断MOS管,怀疑是MOS管寄生二极管损坏导致。 解决办法, a)更换Vds较大的MOS管(IRLML5203,Vds最大30V,而6401的Vds最大12V)b)电源处增加缓启动 c)D端增加5V TVS d)在输出端口增加电阻等措施 e)去掉输出π型滤波电路上的并接反向二极管,如有可能,在输出放置防反接二极管。 2、电路B 1)24V驱动电路,导通时Vgs过大,影响PMOS管寿命 解决办法:修改R13为10K,R11为20K,Vgs最大为-8V 2)电源上电有可能Vgs过大,在G、S极增加一个8V稳压二极管保护 3)IRF9393的最大Vds约55V,更改为IRF6217,最大Vds变为150V 4)在D极增加24V TVS 5)在输出端口增加电阻等措施 6)去掉输出π型滤波电路上的并接反向二极管,如有可能,在输出放置防反接二极管。

实验三组合逻辑电路

实验三组合逻辑电路(常用门电路、译码器和数据选择器) 一、实验目的 1.掌握组合逻辑电路的设计方法 2.了解组合逻辑电路的冒险现象与消除方法 3.熟悉常用门电路逻辑器件的使用方法 4.熟悉用门电路、74LS138和74LS151进行综合性设计的方法 二、实验原理及实验资料 (一)组合电路的一般设计方法 1.设计步骤 根据给出的实际逻辑问题,求出实现这一逻辑功能的最简单逻辑电路,这就是设计组合逻辑电路时要完成的工作。组合逻辑电路的一般设计步骤如图所示。 图组合逻辑电路的一般设计步骤 设计组合逻辑电路时,通常先将实际问题进行逻辑抽象,然后根据具体的设计任务要求列出真值表,再根据器件的类型将函数式进行化简或变换,最后画出逻辑电路图。 2. 组合电路的竞争与冒险(旧实验指导书P17~20) (二)常用组合逻辑器件 1.四二输入与非门74LS00 74LS00为双列直插14脚塑料封装,外部引脚排列和内部逻辑结构如图所示。它共有四个独立的二输入“与非”门,每个门的构造和逻辑功能相同。 图 74LS00引脚排列及内部逻辑结构 2.二四输入与非门74LS20

74LS20为双列直插14脚塑料封装,外部引脚排列和内部逻辑结构如图所示。它共有两个独立的四输入“与非”门,每个门的构造和逻辑功能相同。 图 74LS20引脚排列及内部逻辑结构 3.四二输入异或门74LS86 74LS86为双列直插14脚塑料封装,外部引脚排列和内部逻辑结构如图所示。它共有四个独立的二输入“异或”门,每个门的构造和逻辑功能相同。 图 74LS86引脚排列及内部逻辑结构 3.3线-8线译码器74LS138 74LS138是集成3线-8线译码器,其功能表见表。它的输出表达式为 i A B i Y G G G m 122(i =0,1,…7;m i 是最小项),与基本门电路配合使用,它能够实现任何三变量的逻辑函数。74LS138为双列直插16脚塑料封装,外部引脚排列如图所示。

最详细的开关电源反馈回路设计

最详细的开关电源反馈回 路设计 Prepared on 22 November 2020

开关电源反馈回路设计 开关电源反馈回路主要由光耦(如PC817)、电压精密可调并联稳压器(如TL431)等器件组成。要研究如何设计反馈回路,首先先要了解这两个最主要元器件的基本参数。 1、光耦 PC817的基本参数如下表: 2、可调并联稳压器 由TL431的等效电路图可以看到,Uref是一个内部的基准源,接在运放的反相输入端。由运放的特性可知,只有当REF端(同相端)的电压非常接近Uref()时,三极管中才会有一个稳定的非饱和电流通过,而且随着REF端电压的微小变化,通过三极管VT的电流将从1到100mA变化。当然,该图绝不是TL431的实际内部结构,所以不能简单地用这种组合来代替它。但如果在设计、分析应用TL431的电路时,这个模块图对开启思路,理解电路都是很有帮助的。 前面提到TL431的内部含有一个的基准电压,所以当在REF端引入输出反馈时,器件可以通过从阴极到阳极很宽范围的分流,控制输出电压。如图2所示的电路,当R1和R2的阻值确定时,两者对Vo的分压引入反馈,若Vo增大,反馈量增大,TL431的分流也就增加,从而又导致Vo下降。显见,这个深度的负反馈电路必然在Uref等于基准电压处稳定,此时Vo=(1+R1/R2)Vref。 图2 选择不同的R1和R2的值可以得到从到36V范围内的任意电压输出,特别地,当R1=R2时,Vo=5V。需要注意的是,在选择电阻时必须保证TL431工作的必要条件,就是通过阴极的电流要大于1mA。 了解了TL431和PC817的基本参数后,来看实际电路: 图3 反馈回路主要关注R6、R8、R13、R14、C8这几个器件的取值。 首先来看R13。R13、R14是TL431的分压电阻,首先应先确定R13的值,再根据Vo=(1+R14/R13)Vref公式来计算R14的值。 1.确定R13.、R14取值

组合逻辑电路的设计实验报告

中国石油大学现代远程教育 电工电子学课程实验报告 所属教学站:青岛直属学习中心 姓名:杜广志学号: 年级专业层次:网络16秋专升本学期: 实验时间:2016-11-05实验名称:组合逻辑电路的设计 小组合作:是○否●小组成员:杜广志 1、实验目的: 学习用门电路实现组合逻辑电路的设计和调试方法。 2、实验设备及材料: 仪器:实验箱 元件:74LS00 74LS10 3、实验原理: 1.概述 组合逻辑电路又称组合电路,组合电路的输出只决定于当时的外部输入情况,与电路过去状态无关。因此,组合电路的特点是无“记忆性”。在组成上组合电路的特点是由各种门电路连接而成,而且连接中没有反馈线存在。所以各种功能的门电路就是简单的组合逻辑电路。 组合逻辑电路的输入信号和输出信号往往不止一个,其功能描述方法通常有函数表达式、真值表、卡诺图和逻辑图等几种。 组合逻辑电路的分析与设计方法,是立足于小规模集成电路分析和设计的基本方法之一。 2.组合逻辑电路的分析方法 分析的任务是:对给定的电路求解其逻辑功能,即求出该电路的输出与输入之间的逻辑关系,通常是用逻辑式或真值表来描述,有时也加上必须的文字说明。 分析的步骤: (1)逐级写出逻辑表达式,最后得到输出逻辑变量与输入逻辑变量之间的逻辑函数式。 (2)化简。 (3)列出真值表。 (4)文字说明 上述四个步骤不是一成不变的。除第一步外,其它三步根据实际情况的要求而采用。 3.组合逻辑电路的设计方法 设计的任务是:由给定的功能要求,设计出相应的逻辑电路。 设计的步骤; (1)通过对给定问题的分析,获得真值表。 在分析中要特别注意实际问题如何抽象为几个输入变量和几个输出变量之间的逻辑关系问题,其输出变量之间是否存在约束关系,从而获得真值表或简化

启动开关电路设计

啟動開關電路之設計 圖一、啟動電路 圖一中穩壓二極體DZ1主要是用來箝制輸入電壓,作為啟動開關電路所需偏壓(操作在PWM-IC 所需之Start-up V );當Converter 啟動後輔助電源建立完成時,若輸入電壓轉大,啟動開關電路偏壓因DZ1的箝制,得以關閉啟動回路,使PWM-IC 所需能量單由輔助電源提供,以避免保護電路工作時(OVP 、OCP …..)輔助電源消失,PWM-IC 無法重置所造成Converter 的損壞。 在Converter 啟動、啟動開關回路關閉與DZ1未崩潰時(輸入低電壓時),回授網路的功率損失如下: () 4322R R VC P += ;()W mW P 16.02.162.868.0122 ==+= 在Converter 啟動、啟動開關回路關閉與DZ1崩潰時,回授網路功率損失需加偏壓回路功率損失如下: ()()5514322 2R R VDZ Vin R R VC P ??? ? ???-++= ()()mW P 94.078.016.010010014.9182.868.0122 2=+=???? ???-++= ()()mW P 36.72.716.010010014.9362.868.01222=+=???????-++= ()()mW P 36.392.3916.010010014.9722.868.01222=+=??? ????-++= 輸入電壓範圍:9Vdc~18Vdc

表一、廠牌MICREL 之Data Sheet 取決於PWM-IC 之Start-up V :8.4V (3843/3845)並參考輸入電壓最小值:9V 。 V DZ1 > Start-up V 取輸入電壓最小值9V+ ( 9V×2% ) = 9.18V ,預設輸入電壓為此伏時啟動電路關閉,以防功率損失。 ? 輔助電源電壓設定 取決於PWM-IC 最小與最大工作電壓之間: ? Minimum Operating :7.6V ? Maximum Operating :20V (3843/3845) 參考建議條件使用之電壓範圍: ? Conditions :12V ≦V DD ≦18V ; 參考V DZ1 = 9.18V ;考量Q3之V EBO = 5V 得V R4 < V EBO + V DZ1 = 5V + 9.18V = 14.2V ;14.2V × 0.8 = 11.36V 建議考慮0.8倍的規格比較安全;取V NAUX = 12V , ()1.112 .868.02 .812434V NAUX 4=+?=+?=R R R V R < 11.36V ()434V NAUX 4R R R V R +? =;2 .868.02 .8V 2.14NAUX +?=;V NAUX < 15.4V 結論:DZ1=9.18 ; V NAUX = 12V 並小於15.4V ,以防Q3因V EBO 崩潰燒毀。 依電壓值選零件型號:ROHM – RLZ10B ( 9.41V~9.9V ±5% );包裝:( LL-34 ) Power( mW ):500mW ;Iz :20mA ;() 451,R I V R I V E BE E MAX IN ?++?+= β () () 2,,415 Q B BE MAX IN E I R R V V I ?++-= β;β>100;V IN,MAX ;()mA I E 89.12 .94.172.8100 100 6.018==+-= DZ1崩潰之最小輸入電壓(V IN,DZ1MIM );V IN,DZ1MIM = ( V IN,MIM – V BE,Q3 ) × R4 / [ R4 + R5/( 1+β ) ] > 9.9V V IN,DZ1MIM = ( ( V IN,MIM - 0.6 ) × 8.2 / ( 1+8.2 ) = 9.41V ; V IN,DZ1MIM = 9.9V I Z,MAX = P Z / V Z = 500mW / 9.41 = 53.14mA I R4 = ( 9.9 – 0.6 ) / 8.2k = 1.13mA 最大可允許輸入電壓(V IN,DZ1MAX );V IN,MAX = ( I Z,MAX + I E ) × R 5 + V DZ1 V IN,DZ1MAX = ( 53.14 + 1.13 ) × 100 + 9.41 = 5436V ;滿足輸入電壓最大值18V

相关文档
相关文档 最新文档