文档库 最新最全的文档下载
当前位置:文档库 › 随机振动过程中轮轨系统内的能量研究

随机振动过程中轮轨系统内的能量研究

随机振动过程中轮轨系统内的能量研究
随机振动过程中轮轨系统内的能量研究

采用TE能量收集系统实现热电能量的收集

采用TE能量收集系统实现热电能量的收集 在自然环境和人造环境中几乎无处不在。它们很容易辨认,因为它们往往是个人不适的根源。我们穿着温暖,以减少在寒冷的一天损失的身体热量,而加热和空调通过设置室内空气温度,以满足个人喜好,提高舒适度。然而,通常不希望的温度梯度可以用所谓的热电效应进行有用的工作。 热电效应(TE)已有近两个世纪的历史。托马斯·约翰·塞贝克(Thomas Johann Seebeck)发现,在温度梯度上放置的不同金属可以偏转罗盘针。每单位温度产生电压的材料或器件的系数称为塞贝克系数(以V/°C表示)。 热电装置最常用作冷却用热泵,通常称为Peltier冷却器。这源于1884年Jean Charles Athanase Peltier的发现,即通过两种金属之间的连接处的电流将在一侧吸收热量并在另一侧产生热量。 便携式固态冷却多年来证明非常有用,特别是在红外探测器等设备中。然而,正如Seebeck 所注意到的那样,该设备将反过来工作,这在今天作为一种收集热能并将其用于微功率电子设备的方法非常有用。 实现一系列n型和p型半导体支路的夹层(图1)创建了典型的TE模块。腿是碲化铋或碲化锑的颗粒。腿绑在一起以形成串联电连接和并联热连接。模块的顶部和底部通常是氧化铝陶瓷,以提供电绝缘和良好的导热性。 完整模块的塞贝克系数取决于其他因素,但对于原始碲化铋材料,某些组合物的最高可达-287μV/°C。对于尺寸适中,大约一平方英寸(单级模块厚度在2到5毫米之间)的完整模块,可以产生超过100 mV/°C。 图1:热电发电机模块结构。(由Linear Technology提供。)TE能量收集 TE能量收集系统利用其两个表面之间的任何温差。温度梯度无处不在。我们遇到的各种设备在远高于周围环境的温度下运行。考虑到核心体温为37°C,我们自己的身体相对温暖。皮肤温度通常在32℃的范围内。对于典型的室内空气温度,连接到人体皮肤的收割机

超低频标准振动系统基础设计技术

2007第九届全国振动理论及应用学术会议论文集 2007.10.17~19 https://www.wendangku.net/doc/9717554747.html, 超低频标准振动系统基础设计技术 韩冬, 何闻 (浙江大学机械与能源工程学院,浙江 杭州 310027) 摘 要:针对超低频标准振动系统易受外界振动干扰的问题,研究了超低频标准振动台与激光测振仪的隔振基础设计技术。首先以振动台台面输出信噪比为出发点,确定了超低频标准振动台基础噪声的基本要求;然后采用有限元分析的数值方法,分别对振动台基础与激光测振仪基础作动力学分析,再对激光测振仪基础作静力学分析。结果表明,振动台基础底面应与地基刚性连接,而激光测振仪基础底面应与地基弹性连接;优化橡胶减震垫的布局可以提高激光测振仪隔震系统的稳定性。 关键词:超低频 标准振动系统 基础 有限元 Design of foundation for ultra-low-frequency standard vibration system HAN Dong, HE Wen (College of Mechanical and Energy Engineering, Zhejiang University, Hangzhou 310027, China) Abstract:Considering the influence of external vibration on ultra-low frequency standard vibration system, the vibration insulating foundation for vibration tables and a laser vibrometer were studied. On the start point of signal-to-noise ratio, the basic requirements of background noise on the foundation was determined, then some dynamic analysis on the foundation of tables and a laser vibrometer, and static analysis on the foundation of the laser vibrometer were done with the finite element analysis method. Research results show that the bottom surface of the tables should be fixed with ground base, and the bottom surface of the foundation of the laser vibrometer should be elastically fixed with ground base. At last, the stability of the laser vibrometer system could be improved by optimizing the distribution of shocking rubber pad. Key words:Ultra-low frequency; standard vibration system; foundation; finite element analysis 引 言 目前对振动传感器进行标定主要有绝对法与相对法两种方法,而两种方法通常是在标准振动台上进行的[1]。随着科学技术的发展,尤其是地震科学技术的发展,传感器越来越要求能够测量超低频振动信号,比如英国Güralp公司生产的CMG-3T地震计、北京港震机电技术有限公司生产的BBVS-120甚宽频带地震计、东方振动与噪声研究所研制的INV9898压电加速度传感器,频率下限已达0.1Hz以下。超低频传感器对标准振动装置提出了要求,然而ISO的TC108委员会推荐的绝对法低频标准振动装置,低频校准频率为0.5Hz[2]。因此研究并开发超低频标准振动计量装置成为各国科技工作者努力的方向。 标准振动台工作于超低频段时,振动台台面输出的加速度非常小,容易受外界环境因素,比如拍岸浪、气旋风暴、地震波、车辆行人等的影响,使输出波形的失真度变大,信噪比和 作者简介:韩冬 (1982-),男,吉林人,硕士研究生,从事振动理论、测试方面的研究工作.E-mail: handongu@https://www.wendangku.net/doc/9717554747.html,通讯作者:何闻,教授.E-mail:hewens@https://www.wendangku.net/doc/9717554747.html,

一种压电能量收集装置设计

一种压电能量收集装置的设计 研究现状: 压电能量收集模式将压电材料铺设于道路路而结构中,利用压电效应将道路上交通荷载产生的部分机械能转化为电能,继而将产生的电能收集、处理、利用。自从1880年代居里兄弟发现压电效应至今,经过100多年的研究积淀,针对压电材料性能及应用研究己日趋成熟。由于其优良的能量转换能力,压电能量收集系统受到了全球科研机构及企业的普遍关注。 2008年以色列的Innowattech公司与海法理工学院共同研发了应用于道路工程的压电能量收集系统(Innowattech Piezo Electric Venerator,IPEV)。图1,2分别为IPEV的概念模型和现场试验照片。采用该能量收集系统,交通量为600 }eh " h 1的一条双车道道路上能产生0. 4 MW " km 以上的电量,可支持400 ^} 600户家庭的日常用电;且随着交通量、车载的增加,收集的电能也随之增加;IPEV的使用不会增加车辆单位油耗;其使用寿命约为30年。然而,该技术尚处于对外保密阶段,不能给中国研究者提供直接参考。 Lee等口6〕研究了路而动态荷载作用下基于压电效应的能量转化影响因素及其之间的关系;Ye等o;〕提出了一种基于遗传算法的压电换能器自动优化方法,通过该方法设计的换能器可以根据实时路而振动数据自动调节内部频率以收集更多的能量;曹秉刚等mo研发了一种利用公路系统振动能量压电发电的方法和系统;林伟等口月设计了一种应用于沥青混凝土路而的堆叠式压电自发电能量采集与照明装置;Zhao等基于有限元对应用于沥青路而进行能量收集的钱式压电能量收集器参数进行了分析优化,在20 Hz, 0. 7 MPa交通荷载的作用下,按照其设计的钱式换能器,计算机模拟单个钱式压电能量收集器可产出功率为1.2mW的电能;Ky-missis在麻省理工学院将压电晶体置于鞋内,研究出一种发电鞋。测定发现压电晶体产生的峰值电能为80mW ; Rastega等开发了一种可应用于多种平台的针

过程系统节能技术——夹点技术

学科导论(论文)题目过程系统节能技术——夹点技术 小组成员陈明敏(041004103) 陈铭坤(041004104) 李丹郎(041004118) 所在学院化学化工学院 专业过程装备与控制工程 指导教师刘康林 日期 2011年10月20日

过程系统节能技术——夹点技术 陈明敏陈铭坤李丹郎 摘要能源危机的到来,节能降耗已是大势所趋。夹点技术是换热网络、水网络优化最实用的节能技术。本文主要介绍了夹点技术的基本原理以及近几年在工程设计中的广泛应用和良好前景。 关键词节能降耗;点技术;换热网络;水网络 1.1前言 过程工业也称流程工业,主要指化工、石油、冶金、建材等连续制造工业。过程工业是高能耗的产业部门,占工业总能耗的一半以上。因此,为了降低过程工业生产成本、合理利用资源,已从对单台设备的操作优化集成发展到对整个系统的集成优化, 即采用过程集成技术。在70 年代末,英国曼彻斯特大学BodoL innhoff教授及其同事于20世纪70年代末在前人研究成果的基础上提出的换热网络优化设计方法, 并逐步发展成为化工过程能量综合技术的方法论——夹点技术。 1.2夹点技术 夹点技术 ( Pinch technology ) 是十年来国际上诞生的新节能技术,它基于现代节能的火用分析理论 ( Exergy analysis ),同时又充分考虑设备状况、能量利用与回收、经济状况、系统关联的系统综合优化的节能技术。它不仅建立了完备的系统总体节能理论,更突出的是:它形成了一种可行、实用和有效的节能增效技术。它特别强调从系统全局出发,来进行节能与节约资金综合的系统诊断和优化。夹点技术能够直接应用于

汽车发动机振动噪声测试实用标准系统

附件1 汽车发动机振动噪声测试系统 1用途及基本要求: 该设备主要用于教学和科研中的振动和噪声测量,要求能够测量试验对象的振动噪声特性(频率、阶次、声强等),能对试验数据进行综合分析。该产品的生产厂应具有多年振动噪声行业从业经验,有较高的知名度和影响力。系统软件和硬件应该为成熟的模块化设计,同时具有很强的扩展能力,能保证将来软件和硬件同时升级。 2设备技术要求及参数 2.1设备系统配置 2.1.1数据采集系统一套; 2.1.2数据测试分析软件一套; 2.1.3传声器 2个; 2.1.4加速度计 2个; 2.1.5声强探头 1套; 2.1.6声级校准器 1个; 2.1.7笔记本电脑一台 2.2数据采集、控制系统技术要求 2.2.1主机箱一个;供电采用9~36V直流和 200~240V交流; 2.2.2便携式采集前端,适用于实验室及现场环境; 2.2.3整机消耗功率<150W; 2.2.4工作环境温度:-10?C ~50?C; 2.2.5中文或英文WindowsXP下运行,操作主机采用笔记本电脑; 2.2.6输入通道数:4个以上,其中2个200V极化电压输入通道、不少一个转速输入通道; 2.2.7输入通道拥有Dyn-X技术,动态围160dB; 2.2.8每通道最高采样频率:≥65.5kHz,最大分析带宽:≥25.6kHz; 2.2.9系统留有扩充板插槽,根据需要可以进一步扩充;数据采集前端可同时连接多种形式传感器,包括加速度计、转速探头、传声器、声强探头等; 2.2.10系统具有堆叠和分拆能力,多个小系统可组成多通道大系统进行测量。大系统可分拆成多个小系统独立运行; 2.2.11采集前端的数据传输具备二种方式之一:①通过10/100M自适应以太网传输至PC; ②通过无线通讯以太网技术传输至PC,通信距离在100米以上。使测量过程更为灵活方便,方便硬件通道和计算机系统扩展升级;

对能量采集系统中电源管理的一些看法

对能量采集系统中电源管理的一些看法 能量收集的概念已经出现超过10 年了,然而在现实环境中,由环境能源供电的系统一直很笨重、复杂和昂贵。不过,有些市场已经成功地采用了能量收集方法,如交通运输基础设施、无线医疗设备、轮胎压力检测和楼宇自动化市场。尤其是在楼宇自动化系统中,诸如占位传感器、自动调温器甚至光控开关等,以前安装时通常使用的电源或控制配线,现在已经不需要了,取而代之的是,它们采用了局部能量收集系统。 能量收集系统的一个主要应用是楼宇自动化系统中的无线传感器。为方便说明,我们考虑一下美国能源使用的分布情况。建筑物每年都是能源生产的头号用户,约占总能耗的38%,紧随其后的是交通运输和工业领域,各占总能耗的28%。此外,建筑物可以进一步分成商用建筑和民用建筑,在这38% 的能耗中,分别分得17% 和21%。而民用建筑21% 的能耗数字还可以进一步划分,其中取暖、通风和空调(HV AC)约占民用建筑总能耗的3/4。目前预计,从2003 年到2030 年,能源使用量将翻一番,依此推算,采用楼宇自动化系统可以节省多达30% 的能源[数据来源:World Energy,Technology and Climate policy outlook (WETO),由欧盟多个研究机构联合撰写]。 类似地,一个采用能量收集方法的无线网络可以将一幢大楼中任何数量的传感器连接起来,以在非主要区域的大楼或房间中没人时,调节该区域的温度或关掉该区域的照明灯,从而降低HV AC 和电力费用。此外,能量收集电子线路的成本常常低于布设电源线的成本或更换电池所需的日常维护成本,因此用收集的能量供电之方法,显然有经济收益。不过,如果每个节点都需要自己的外部电源,那么很多无线传感器网络就失去了优势。尽管电源管理技术确实在持续发展,已经使电子电路能在给定电源情况下工作更长时间,但这是有限度的,而用收集的能量供电提供了一种补充方法。因此,能量收集通过将局部环境能源转换成可用的电能,成为一种给无线传感器节点供电的方法。环境能源包括光、温差、振动波束、已发送RF 信号或能通过换能器产生电荷的任何能源。这些能源在我们周围到处都是,利用合适的换能器,如面向温差的热电发生器(TEG)、面向振动的压电组件、面向太阳光(或室内照明光)的光伏电池等,可将这些能源转换成电能,甚至可以

随机共振系统输入阈值的频率特性_王嘉赋

随机共振系统输入阈值的频率特性 王嘉赋 刘 锋 王均义 陈 光 王 炜 (南京大学物理系,固体物理研究所,南京 210093) (1997年4月28日收到) 通过对双稳态系统和Hindmarsh -Rose 神经元输入信号阈值的频率特性进行数值计算, 分别研究了非自激和可自激随机共振系统输入阈值随信号频率的依赖关系,提出了确定非自 激系统阈值的频率特性的解析方法;指出了可自激系统阈值的频率特性可能在某些频区出现 反常极小现象,并对产生这一现象的物理原因进行了理论分析. PACC :0547;8710;0250 1 引言 随机共振概念是由Benzi 等[1,2]为了解释古气象学中冰川期与暖气候期周期性交替出现现象时提出的.他们的气候模型认为,处于非线性条件下的地球可能取冷、暖两种气候状态.地球偏心率的很小的周期变化虽然不能直接使气候在两种状态之间变动,但地球所受的随机力(如太阳常量的各种无规变化等)却能大大提高弱小周期信号对非线性系统状态的调制能力,从而引起大气候的大幅度周期变化,出现随机共振现象.目前,随机共振现象已在Schmitt 电子触发器[3]、双向环形激光器[4]和磁弹板[5]等诸多双稳系统中被观察到,并已用来研究感觉神经元的发放机制[6,7],甚至用来检测计算机字符输入的成功率[8].最近随机共振思想已推广应用到多稳态[9]甚至单稳态[10]等许多可激发系统[11]. 随机共振机制表明,合适的噪声强度可以使得弱输入信号驱动下的非线性系统的输出信噪比达到某一最佳值.分析这一现象的本质可知,它是噪声能量转化为信号能量的结果,是输入信号与噪声的协作效应.这一能量转移机制也只能在非线性系统中得以实现.总结产生随机共振现象的条件,大致可以归纳为以下三个要素:(1)阈值.非线性系统要存在两个(或更多个)稳态或亚稳态,或者说系统吸引子之间存在某种势垒,从而使得外部驱动(信号)只有超过某一个临界值(阈值)时系统才会出现不同(亚)稳态之间的跃迁,或者说系统才会从一个吸引域跃变到另一个吸引域.(2)阈下输入信号.输入信号还不足引起系统在不同(亚)稳态之间跃迁,亦即粒子将滞留在系统的某个确定的吸引域内,从而系统将不给出以在不同(亚)稳态间跃迁为标志的输出信号(输入信号超过阈值所引起的信号输出,往往不在随机共振理论研究所关心的范围).通常人们大多考虑输入信号为周期信号的情形,也有人讨论过非周期输入信号驱动下的可激发系统的随机共振问题[12].(3)噪声.它既可以是系统外部的随机驱动力,也可以来自系统内部相互作用引起的涨落或关第46卷第12期1997年12月 1000-3290/97/46(12)/2305-08物 理 学 报ACTA PHYSICA SI NI CA Vol .46,No .12,December ,1997c 1997Chin .Phys .Soc .

振动测试系统

一、振动测试系统 1.主要功能 DASP V10振动测试系统包括信号采集和实时分析软硬件。DASP V10 是一套运行在Windows95/98/Me/NT/2000/Xp平台上的多通道信号采集和实时分析软件,通过和东方所的不同硬件配合使用,即可构成一个可进行多种动静态试验的试验室。DASP V10 软件既具有多类型视窗的多模块功能高度集成特性,具有操作便捷的特点。基于东方所在各种工程应用领域的长期经验,DASP-V10对各种功能模块重新进行整合,成为一套功能更加全面、操作更加便捷、界面更加美观、性能继续保持领先的动静态信号测试分析系统。DASP V10 软件的每一个模块中均包含了非常多的功能,各种功能可交错使用,在测试和分析的功能和性能上突破了以往信号分析仪的种种限制,与INV系列采集仪配合形成的系统的各项指标均可达到或超过国家高级仪器的标准。DASP V10 软件的所有测试分析结果都可以多种方式输出,包括图形的复制、存盘、打印,数据导出为TXT、CSV、Excel电子表格和Access数据库格式,并可轻松输出图文并茂的Word格式或者Html格式的分析报告。基于DASP V10 的平台上,还可以运行专业模态和动力学分析系统、虚拟仪器库、信号发生器以及针对声学、旋转机械、路桥土木、计量检定等行业的多种软件系统,满足各方面各层次的测试和分析需求。

3.隶属 (1)实验室:水机测控实验室(B01-205/207) (2)负责人:魏德华 二、ANSYS/CFD流体分析软件 1.主要功能 FLUENT、CFX是目前国际上比较流行的商用CFD软件包,国际市场占有率达70%。凡跟流体、热传递及化学反应等有关的领域均可使用。它具有丰富的物理模型、先进的数值方法以及强大的前后处理功能,在航空航天、汽车设计、石油天然气、涡轮机设计等方面都有着广泛应用,包括管路、渠道、流体机械、燃烧、环境分析、油气消散/聚积、喷射控制、多相流等方面的流动计算分析。 2.主要设备 3.隶属 (1)实验室:水机测控实验室(B01-205/207) (2)负责人:石祥钟

随机振动名词解释

"脉冲响应函数" 英文对照 impulse response function; "脉冲响应函数" 在学术文献中的解释 1、h(t)是在初始时刻作用以单位脉冲而使单自由度系统产生的响应,所以称为脉冲响应函数.1·1·2频率响应函数H(ω)=1k-ω2m+iωcH(ω)是角频率为ω的单位简谐激励所引起的结构稳态简谐响应的振幅,称为频率响应函数,也称为转换函数 文献来源 2、Yεi,jtt+s作为时间间隔s的一个函数,度量了在其他变量不变的情况下Yi,t+s对Yj,t的一个脉冲的反应,因此称为脉冲响应函数 文献来源 "频率响应函数" 英文对照 frequency response function; "频率响应函数" 在学术文献中的解释 1、频率响应函数是指系统输出信号与输入信号的比值随频率的变化关系它是衡量高速倾斜镜工作性能的一个重要指标.通过抑制谐振峰可以改善高速倾斜镜的使用性能 文献来源 2、经傅利叶变换,得到频域内的导纳(一般用速度导纳来表示)表达式 Hv(ω)=v(ω)F(ω)=jω-ω2M+jωC+K(2)H(ω)又称为频率响应函数 文献来源 3、y(t)=A0eiωty(t)=iωA0eiωt(6)将(6)代入(3)得A0eiωt(RCiω+1)=Ajeiωt(7)和A0Aj=1RCiω+1=U(iω)(8)U(iω)称为频率响应函数 文献来源 "传递函数" 英文对照 transfer function of; transfer function; transfer function - noise; "传递函数" 在学术文献中的解释 1、由于传递函数的定义是两个拉普拉斯变换之比,所以使用时必须准确知道传递函数的类型,即,是位移、速度,还是加速度传递函数,才能避免出错 文献来源 2、而传递函数的定义是两个分量之比为两个传感器之间优势波的传递函数.它给我们的启发是任取两个已知传感器组成一个传递函数通过分析传递函数的特征可以判断两个分量的优势波和非优势波 文献来源

【CN109921508A】一种高速公路风光互补能量采集系统【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910298289.2 (22)申请日 2019.04.15 (71)申请人 西南交通大学 地址 610031 四川省成都市二环路北一段 111号 (72)发明人 张祖涛 漆令飞 张冲冲 曾晓辉  闫鑫 马骏 胡文婷 陈俊彤  潘亚嘉  (74)专利代理机构 成都点睛专利代理事务所 (普通合伙) 51232 代理人 葛启函 (51)Int.Cl. H02J 7/35(2006.01) H02S 30/20(2014.01) H02S 10/12(2014.01) H02K 7/18(2006.01) (54)发明名称一种高速公路风光互补能量采集系统(57)摘要本发明提供了一种高速公路风光互补能量采集系统,涉及一种高速公路传感系统供电技术领域。壳体为三面体立式结构,所述底板的正中心设有立式发电机,第一主轴的下端部穿过该通孔并通过联轴器与发电机输入轴连接;第一主轴的上端与轴承的内圈过盈配合,第二主轴的下端与轴承的外圈配合,第二主轴的上端与顶板的下表面固定;第一主轴的上部与第一套筒固定,所述第一套筒的侧壁径向均布三根伸缩杆,所述伸缩杆的前端端部设有叶片;三块太阳能板分别铰接于顶板的三个边缘,它们的底部正中均设有支铰,第一拉杆的一端与所述支铰铰接,另一端与第二主轴上的第二套筒铰接,所述第二套筒与把 手通过第二拉杆连接。权利要求书1页 说明书3页 附图3页CN 109921508 A 2019.06.21 C N 109921508 A

权 利 要 求 书1/1页CN 109921508 A 1.一种高速公路风光互补能量采集系统,包括壳体、叶片和太阳能板,其特征在于:壳体为三面体立式结构,其顶板(1)、底板(2)和中板(4)均为正三角形,所述底板(2)的正中心设有立式发电机(18),发电机(18)输入轴的轴线垂直、朝上设置,中板(4)的中心设有通孔,第一主轴(7)的下端部穿过该通孔并通过联轴器(17)与发电机(18)输入轴连接;第一主轴(7)的上端与轴承(9)的内圈过盈配合,第二主轴(8)的下端与轴承(9)的外圈配合,第二主轴(8)的上端与顶板(1)的下表面固定;第一主轴(7)的上部与第一套筒(19)固定,所述第一套筒(19)的侧壁径向均布三根伸缩杆(16),所述伸缩杆(16)的前端端部设有叶片(15);三块太阳能板(10)分别铰接于顶板(1)的三个边缘,它们的底部正中均设有支铰,第一拉杆(11)的一端与所述支铰铰接,另一端与第二主轴(8)上的第二套筒(13)铰接,所述第二套筒(13)与把手(14)通过第二拉杆(12)连接;电路模块分为太阳能和风能两个电路模块,太阳能电路模块通过DC/DC变压后与控制器联接,风能电路模块通过AC/DC整流后进行DC/DC变压后与控制器联接,所述控制器与蓄电池连接。 2.根据权利要求1所述的一种高速公路风光互补能量采集系统,其特征在于:所述侧板 (3)上半部分的上边缘与顶板(1)的边缘固定、下半部分的下边缘与底板(2)的边缘固定。 3.根据权利要求1所述的一种高速公路风光互补能量采集系统,其特征在于:所述伸缩杆(16)的尾端与第一套筒(19)固定,与轴线垂直,在同一平面内,所述伸缩杆(16)两两之间均设有两根装饰条连接件(6),分别与三个装饰条(5)固定,其中,每两个中心板连接件连接一个装饰条(5)。 4.根据权利要求1所述的一种高速公路风光互补能量采集系统,其特征在于:所述径向均布三根伸缩杆(16)之间的夹角均为120°。 2

随机振动试验报告

随机振动试验报告 高等桥梁结构试验报告 讲课老师: 张启伟(教授) 姓名: 史先飞 学号: 1232627 试验报告 1 试验目的 1.过试验进一步加深对结构模态分析理论知识的理解; 2.熟悉随机振动试验常用仪器的性能与操作方法; 3.复习和巩固随机振动数据测量和分析中有关基本概念; 4.掌握通过多点激振、单点拾振的方法,利用DASP2005软件进行模态分析的基本操作步骤。

2 试验仪器和设备 1. ZJY-601振动与控制教学实验仪系统(ZJY-601A型振动教学实验仪、激励锤、YJ9-A型压电型加速度传感器等)。 2. DASP 16通道接口箱。 3. 装有“DASP2005智能数据采集和信号分析系统”软件的PC机。 4. 有关设备之间的联接电缆。 3 试验原理 3.1模态叠加原理 N自由度线性振动系统的运动微分方程是一组耦合的方程组: 引入模态矩阵Φ和模态坐标(广义坐标或主坐标)q,使X= Φq。 如果阻尼矩阵能对角化,方程组即可解耦: 解耦后的第i个方程为: 可见,采用固有振型描述振动的模态坐标后,N自由度线性振动系统的振动响应可以表示为N阶模态响应的叠加。 3.2实模态理论 实模态理论建立在无阻尼的假设基础上。在实模态理论中,模态频率就是系统的无阻 ,尼模态固有频率错误~未找到引用源。;而固有振型矩阵中的各元素都是实数,它们之间i 的相位差是0?或180?。 系统在P点激励,l点测量的频响函数为:

K,,式中,称为频率比,,为模态固有频率。当,则: ,,,,,/,,,iiiiiMi 取频响函数矩阵的一列或一行,如第P列,就可确定振动系统的全部动力特性(模态参数)。 3.3伪实模态理论 某些有阻尼振动系统有时会出现与实模态一样的实数振型,而非复数振型,但其模态 2,,,,,1固有频率为,具有这种性质的振动系统的模态称为伪实模态。伪实模态理diii 论仅适应于阻尼矩阵可解耦,即可采用固有振型矩阵正交化模态称为伪实模态。在伪实模态下,各测点的相位差都是0?或180?。 伪实模态理论仅适应于阻尼矩阵可解耦,即可采用固有振型矩阵正交化的情况。一般情况下,阻尼矩阵对角化的充要条件为: 上式也是有阻尼振动系统方程解耦的充要条件。 总之,H(ω)建立了模态参数与频响函数的关系。因此,利用实验测出的H(ω) 值,即可计算出系统的模态参数。根据频响函数的互易定理及模态理论,只需 H(ω)矩阵的一列(或一行)即可求出全部模态参数。

IoT设备中常见的能量收集系统

IoT设备中常见的能量收集系统 在功率范围的低端,对能量收集系统有毫微功率转换需求,例如:IoT设备中常见的能量收集系统。在此类系统中,必须使用能够处理非常低功率、非常小电流的电源转换IC。功率和电流可能分别为数十微瓦和数十纳安。 最新和现成有售的能量收集(E H)技术,例如:振动能量收集产品以及室内或可穿戴光伏电池,在典型工作条件下产生mW量级的功率。尽管这个量级的功率或许看似有限,但是无线传感器节点(WSN)等能量收集组件在若干年内持续工作可能意味着,无论从所提供的能量还是从单位能量的成本上看,能量收集产品与长寿命主电池都大致相当。虽然主电池声称能够提供长达10 年的寿命,但这在极大的程度上取决于从其取出的功率级别以及抽取功率的频度。拥有能量收集能力的系统一般能够在电量耗尽后再充电,而仅由主电池供电的系统却做不到这一点。不过,大多数实施方案都将用某种环境能量源作为主电源,而用主电池作为环境能源的补充,如果环境能量源消失或中断,就可以接入主电池。这可被认为是一种“电池寿命延长器”能力,可为系统提供很长的工作寿命─这接近于电池的工作寿命,对于锂亚硫酰氯化学组成来说通常约为12 年。 当然,能量收集电源所提供的能量取决于该电源能工作多长时间。因此,能量收集电源的主要比较指标是功率密度,而不是能量密度。能量收集的可用功率一般很低、可变和不可预测,所以常常使用连接至收集器和辅助电源的混合结构。辅助电源可能是一块可再充电电池或者一个存储电容器。收集器由于能量供应无限及功率不足而成为系统的能量源。辅助电力储存库(或是电池或是电容器)产生较大的输出功率,但存储较少的能量,在需要时供电,而在其他情况下则定期从能量收集器接收电荷。 因此,在由于某种原因而没有环境能量可供收集的时候,辅助电力储存器可用来给下游电子系统或WSN供电。 IoT也推动了需求 支持物联网(IoT)的无线传感器在激增,这增大了对面向较低功率无线设备而定制的小型、紧凑和高效率电源转换器的需求。最近物联网市场中新出现的细分市场之一是可穿戴

振动系统固有频率的测试

振动系统固有频率的测试实验指导书 一.实验目的 1.学习振动系统固有频率的测试方法; 2.了解DASP-STD软件; 3.学习锤击法测试振动系统固有频率的原理与方法;(传函判别法) 二.实验仪器及简介 ZJY-601T型振动教学实验台,ZJY-601T型振动教学试验仪,采集仪,DASP-STD(DASP Standard 标准版)软件,微机。 1.ZJY-601T型振动教学实验台:主要由底座、桥墩 型支座、简支梁、悬臂梁、等强度梁、偏心电动机、 调压器、接触式激振器及支座、非接触式激振器、磁 性表座、减振橡胶垫、减振器、吸振器、悬索轴承装 置、配重锤、钢丝、圆板、质量块等部件和辅助件组 成。与ZJY-601T型振动教学实验仪配套,完成各种振 动教学实验。 它以力学和电学参数为设计出发点,力学模型合 理,带有10种典型力学结构,多种激振、减振和拾振方式。 力学结构有:两端简支梁、两端固支梁、等截面悬臂梁、等强度悬臂梁(变截面)、复合材料梁、圆板、单自由度质量-弹簧系统、两自由度质量-弹簧系统、三自由度质量-弹簧系统、悬索。 激励方式有:脉冲锤击法、正弦激励(接触、非接触式)、正弦扫描(接触、非接触式)、偏心质量、支承运动。 减振和隔振有:主动隔振、被动隔振、阻尼减振、动力减振(单式)、动力减振(复式)。 传感器类型有:压电加速度传感器、磁电式速度传感器、电涡流位移传感器、力传感器(力锤中)。 2.ZJY-601T型振动教学试验仪:由双通多功能振动测试 仪、扫频信号发生器、功率放大器组成,并集成了数据采集 器,可连接压电式加速度传感器、磁电式速度传感器或电涡 流传感器,对被测物体的振动加速度、速度和位移进行测量。 可将每个通道所测振动信号转换成与之相对应的0~5V AC 电压信号输出,供计算机使用。扫频信号发生器的输出频率 在手动档时,可通过旋钮在0.1~1000Hz范围内连续调节;在自动档时,可从10到1000Hz自动变换,扫频时间可由电位器控制,3s~240s连续可调,激振频率可由液晶显示器显示。功率放大器可直接与JZ-1型激振器或JZF-1非接触式激振器连接,对物体进行激振,其输出幅度可连续调节。3.DASP-STD(DASP Standard 标准版):是一套运行在Windows95/98/Me/NT/2000/XP平台上的多通道信号采集和实时分析软件,通过和东方所的不同硬件配合使用,即可构成一个可进行多种动静态试验的试验室。 DASP-STD主要包括单通道、双通道、多通道、扩展、示波采样分析和模态教学6个基本部分,可以实现信号的实时分析,即可以连续不间断地进行信号的采样,并同时进行频谱分析和结果显示,实现了采样、分析和显示示波的同步进行 三.实验原理 对于振动系统,经常要测定其固有频率,常用的方法有简谐力激振法和锤击法。本次实验用后一种方法,即通过输入的力信号和输出的响应信号进行传函分析,得到各阶固有频率。 通常我们认为振动系统为线性系统,用一特定已知的激振力,经可控的方法来激励结构,同时

随机振动试验研究

随机振动试验研究 摘要:随机振动试验中存在许多“失控”现象,随机振动控制理论通常把试验“失控”的原因归于:(1)共振激励太大,超出了控制仪的动态范围;(2)台面、工装、试验件三者产生共振,造成试验中过大的冲击。本文主要针对随机振动试验中的“失控”现象,从工装角度分析其现象形成的原因,并提出解决问题的方法。 关键词:随机振动试验失控现象工装 振动试验是军用设备环境试验项目之一,是产品可靠性试验的重要组成部分。振动试验是在实验室条件下产生一个人工可控的振动环境,该环境模拟产品生命周期内的使用振动环境,使产品经受与实际使用过程的振动环境相同或相似的振动激励作用,考核产品在预期使用过程的振动环境作用下,能否达到设计所规定的各项技术要求,同时也是考核产品结构强度和可靠性的一个主要试验方法。 1、基本概念 1.1 随机振动的定义 严格来说一切振动都是随机的,当随机因素可以忽略时,可看做是确定性振动,这时,可以用简单函数或这些函数的组合来描述。另一种不能用确定函数而只能用概率和统计方法描述振动规律的运动称为随机振动。 1.2 振动的分类 振动按其时域波形的特征可分为确定性振动和非确定性振动。 确定性振动是指振动物理盈随时间的变化规律可用确定的数学关系式来表达的一类振动。 非确定性振动是指振动物理量随时间的变化规律无法用确定的数学关系式来表达,而只能用概率论和统计学的方法来描述的一类振动。随机振动属非确定性振动。 2、随机振动试验中的失控现象及解决方法 2.1 随机振动设备组成及功用 在试验室振动试验中,试件一般通过适当的试验工装安装在振动台,试验工装与振动台的组合用于模拟预期使用过程中平台产生的振动环境,如图1所示。大多数情况下,振动使用条件所对应的振动控制点选择在试件与试验工装的连接界面上,其代表了预期使用过程中平台对装备的振动环境激励。在理想状态情况下,即试件相对与振动台和试验工装可以近似作为刚体处理,如果在试件与试验工装连接界面的振动响应将与预期使用过程一致,可以认为试件经受了符合预期使用过程的振动环境考核。 图1 当试件的尺寸和重量较大,或固有频率较低时,由于试件与振动台、试验工装的动力耦合作用,试验时振动环境的模拟结果往往偏离理想的试验条件。这样即使在试件与试验工装连接界面的振动控制点达到了规定的振动加速度试验条件,试件上的振动响应也会与预期使用过程中装备上的振动响应不一致,从而导致试件的过试验或欠试验。因此,在实验室振动环境试验中,需要采取适当的控制方法,以改善试件的过试验或欠试验,使得试验结果更接近预期试验情况。 2.2 失控现象及其解决途径 在复杂结构的高频振动试验中,测试系统的各部分连接一定要牢靠,否则因

第13章-随机振动试验复习过程

第13章-随机振动试 验

第13章随机振动试验 13.1 试验目的、影响机理、失效模式 产品在运输和实际使用中所遇到的振动,绝大多数就是随机性质的振动(而不是正弦振动)。例如,宇航器和导弹在发射和助推阶段的振动;火箭发动机的噪声和气动噪声使结构产生的振动;飞机(特别是高速飞机)的大功率喷气发动机的振动;飞机噪声使飞机结构产生的振动和大气湍流使机翼产生振动;飞机着陆和滑行时的振动;车辆在不平坦的道路上行驶时产生的振动;多变的海浪使船舶产生的振动等等都属于随机性质的振动。因此,随机振动试验才能更真实反映产品的耐振性能。 随机振动和正弦振动相比,随机振动的频率域宽,而且有一个连续的频谱,它能同时在所有频率上对产品进行激励,各种频率的相互作用远比用正弦振动仅对某些频率或连续扫频模拟上述振动的影响更严酷更真实和更有效。另外,用随机振动来研究产品的动态特性和结构的传递函数比用正弦振动的方法更为简单和优越。 随机振动和正弦振动一样能造成导线摩擦、紧固件松动、活动件卡死,从而破坏产品的连接、安装和固定。当随机振动激励造成的应力过大时,会使结构产生裂纹和断裂,特别在严重的共振状态下更为显著。长时间的随机振动,由于交变应力所产生的累积损伤,会使结构产生疲劳破坏。随机振动还会导致触点接触不良、带电元件相互接触或短路、焊点脱开、导线断裂以及产生强电噪声等。从而破坏产品的正常工作,使产品性能下降、失灵甚至失效。 为了能在试验室内模拟产品在现场所经受到的实际随机振动及其影响,工程技术人员为此付出了许多的努力。早在六十年代,国际上对随机振动的研究就十分活跃。不仅在理论上有了重大突破,而且有了较完善的试验方法和试验设备。1962年美国军标810中首先规定了随机振动试验方法。1964年英国国防部标准07-55中也提出了随机振动试验。1973年IEC公布了四个具有不同再现性宽带模拟式随机振动试验方法,到上世纪90年代又公布了数字式随机振动试验方法。目前国内的随机振动试验已很普及,随机振动试验设备,特别是一般用途的随机振动控制仪价格也不高。 13.2 随机振动的描述 在随机振动试验中,由于振动的质点处于不规则的运动状态,永远不会精确的重复,对其进行一系列的测量,各次记录都不一样,所以没有任何固定的周期。在任何确定的时刻,其振幅、频率、相位都不能预先知道,因此就不可能用简单的周期函数和函数的组合来描述。图13-1为典型的宽带随机振动时间历程。

2017年炼油过程能量整体优化技术原理试卷

【568829】的答卷 【试卷总题量: 35,总分: 100.00分】 用户得分:67.0分,用时1593秒,通过 字体: 大 中 小 | 打印 | 关闭 | 一、单选题 【本题型共15道题】 1.催化重整装置以生产高辛烷值汽油为主时,一般用( )的馏分。 A .60-145℃ B .80-145℃ C .60-180℃ D .80-180℃ 用户答案:[D] 得分:3.00 2.板式蒸发空冷器的特点是( )。 A .采用翅片管作为传热元件 B .将水冷与空冷、传热与传质过程融为一体且兼有两者之长的新型空冷器 C .传热过程一方面依靠水膜与空气间显热传递进行,另一方面利用管外水膜的迅速蒸发来强化管外传热 D .以不锈钢波纹板片作为传热元件,波纹表面湍流程度不高,易结垢 用户答案:[D] 得分:0.00 3.由于生产用热大多为连续用热,热负荷相对稳定,因此使用低温热的节能幅度更大,在安排低温热方案时应优先

考虑,不属于生产热阱的是()。 A.低温加工装置的原料和塔底再沸器加热 B.加热炉用空气及燃料、动力系统生水、补充化学水、新鲜水加热 C.利用低温热发电 D.生产辅助系统,用于油品储运系统、罐区加热维温和管线伴热 用户答案:[B] 得分:0.00 4. 转换设备提供的热、功、蒸汽等形式的能量进入工艺核心环节(塔、反应器等),连同回收循环能量一起推动工艺过程,除部分能量转入到产品中外,其余均进入()。 A.能量转化系统 B.能量传输系统 C.能量回收系统 D.能量利用系统 用户答案:[D] 得分:0.00 5.()工艺将高硫渣油进焦化装置, 高硫蜡油和焦化蜡油加氢脱硫、脱氮后又作为催化裂化原料, 重油催化裂化所产生的油浆作为延迟焦化的进料。 A.渣油加氢处理 B.溶剂脱沥青 C.延迟焦化-催化裂化组合

随机振动实验

随机振动特征描述: 随机振动是一种非确定性振动。当物体作随机振动时,我们预先不能确定物体上某监测点在未来某个时刻运动参量的瞬时值。因此随机振动和确定性振动有本质的不同,是不能用时间的确定性函数来描述的一种振动现象。这种振动现象存在着一定的统计规律性,能用该现象的统计特性进行描述。 随机振动又分为平稳随机振动和非平稳随机振动。平稳随机振动是指其统计特性不随时间而变化。 卫星所经受的随机振动激励是一种声致振动,主要来自起飞喷气噪声和飞行过程中的气动噪声.过去,模拟随机振动环境大部分都是用正弦扫描试验来代替,随着快速傅里叶变换算法的出现和电子计算机的发展,各种型号数字式随机振动控制系统相继问世,才使随机振动试验得以广泛采用。 试验条件及其容差: (1)试验条件 随机振动试验条件包括试验频率范围、试验谱形及量级、试验持续时间和试验方向.试验谱形及量级常以表格形式或加速度功率谱密度曲线形式给出.下图为以功率谱密度曲线给出的卫星组件典型的随机振动试验条件。 (2)试验容差 根据中国军标GJB1027的要求,卫星及其组件随机振动试验容差为: a.加速度功率谱密度 ? 20~500Hz(分析带宽25Hz或更窄)±1.5dB ? 500~2000Hz(分析带宽50Hz或更窄)±3dB b.总均方根加速度 ±1.5dB与正弦振动试验一样,要满足随机振动试验的容差要求,不是对每个试件都能做到的.控制精度主要与控制系统的动态范围、均衡速度、均衡精度,试验夹具和试件安装的合理性、试件本身的动特性等有关.解决试验超差主要应从上述几方面分析原因,提高控制精度. 试验方法: 随机振动试验的控制原理如图所示.随机振动试验方法与正弦振动试验方法有很多共同点,二者的主要区别在于振动控制系统. (1)振动台的选用(2)总均方根加速度的计算 (3)试验参数的设置 随机振动试验控制中的参数设置直接关系到试验的控制精度.影响控制精度的参数主要有谱线数(或分辨率)和统计自由度(帧数),试验中应合理选择.谱线数决定了频率分析的精度,而统计自由度决定了统计误差.谱线数和统计自由度越多,统计分析精度越高,但不一定达到高的试验控制精度.因为谱线数和统计自由度越多,分析计算时间就越长,均衡速度也就越慢.增加均衡时间,对持续时间短的试验,在绝大部分时间内试验并未真正达到高的控制精度.对卫星的随机振动试验,因试验要求时间短(1~2min),故谱线数和自由度不宜太多.一般取400条谱线,100个统计自由度即可. 随机振动试验响应数据处理:

振动试验机随机振动试验的操作方法

振动试验机随机振动试验的操作方法 做振动试验的好处 1、设计时,可分析破坏点、易不良点 2、质量时,可分析每一批产品所产生的不同点和不良点 3、生产时,可完全一边振动一边测量,使产品不良率早发现。 4、耐久测量,让产品耐久使用、使不耐久的组件提早改进,公司品牌口碑即会更好。 振动试验机的操作方法: 1、试验前后的准备工作见“操作方法一”。 2、将滤波器转换开关选至适当的频率范围。 3、运行RANVIB.EXE,出现主窗口。 4、新试验项目可以单击“参数设置”,选“宽带随机”,“宽带加窄带”或“宽带加正弦”。 如果选择“宽带随机”,将会出现下列参数: 本系统对宽带谱线数的设置更灵活, 原理上可以在100--800内任意设置。虽然缺省值为400线,您也可以根据最低和最高试验频率进行设置, 使频率分辨率为整数, 最低频率也最好为频率分辩率的整数倍,如最低频率10Hz,最高频率500Hz,可设谱线数为250,则频率分辩率为2.00Hz。由于试验均衡速度与频率分辩率成反比,所以低频和试验时间很短的试验,比如不到1分钟,宜选较小的谱线数,否则试验均衡速度将会太慢。 真/伪随机,通常选真随机。但在时间很短的试验中,可选伪随机,以加快均衡速度。 削波系数小,可避免过大的加速度峰值, 保护振动台, 但会引起附加噪声。在进行系统动态范围测试时, 应选用较大值。显示的非零初始值为缺省值。其它各参数设置的意义比较明显,不多解释。 上述问题回答完, 系统会对上述数据进行越界检测, 如有错误将报警并自动跳到该数据位置, 便于您及时修改。按“下一步”,开始其它参数设置。 设置振级-时间表,推荐用3dB增量。

相关文档