文档库 最新最全的文档下载
当前位置:文档库 › 第2讲 函数概念与表示

第2讲 函数概念与表示

第2讲 函数概念及其表示方法

一.要点精讲

1.函数的概念:

设A 、B 是非空的数集,如果按照某个确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f (x )和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数。记作:y =f (x ),x ∈A 。其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{f (x )| x ∈A }叫做函数的值域。

注意:(1)“y =f (x )”是函数符号,可以用任意的字母表示,如“y =g(x )”;

(2)函数符号“y =f (x )”中的f (x )表示与x 对应的函数值,一个数,而不是f 乘x 。

2.构成函数的三要素:定义域、对应关系和值域

(1)解决一切函数问题必须认真确定该函数的定义域,函数的定义域包含三种形式:

(2)求函数的值域是比较困难的数学问题,中学数学要求能用初等方法求一些简单函数的值域问题。

①配方法(将函数转化为二次函数);②判别式法(将函数转化为二次方程);③不等式法(运用不等式的各种性质);④函数法(运用基本函数性质,或抓住函数的单调性、函数图象等)。

3.两个函数是同一函数的条件: 。

4.区间

(1)区间的分类:开区间、闭区间、半开半闭区间;

(2)无穷区间;

(3)区间的数轴表示。

5.映射的概念

一般地,设A 、B 是两个非空的集合,如果按某一个确定的对应法则f ,使对于集合A 中的任意一个元素x ,在集合B 中都有唯一确定的元素y 与之对应,那么就称对应f :A →B 为从集合A 到集合B 的一个映射。记作“f :A →B ”。

6.常用的函数表示法

(1)解析法:就是把两个变量的函数关系,用一个等式来表示,这个等式叫做函数的解析表达式,简称解析式;

(2)列表法:就是列出表格来表示两个变量的函数关系;

(3)图象法:就是用函数图象表示两个变量之间的关系。

7.分段函数

若一个函数的定义域分成了若干个子区间,而每个子区间的解析式不同,这种函数又称分段函数;

8.复合函数

若y =f (u),u=g(x ),x ∈(a ,b ),u ∈(m,n),那么y =f [g(x )]称为复合函数,u 称为中间变量,它的取值范围是g(x )的值域。 二.典例解析

题型1:函数概念

例1.(1)设函数).89(,)100()

5()100(3)(f x x f x x x f 求???<+≥-= (2)设函数f (x )=?

??+∞∈-∞∈-),1(,log ]1,(,281x x x ,则满足f (x )=41的x 值为 。

变式题:设1232,2()((2))log (1) 2.

x e x f x f f x x -??=?-≥??<,则的值为,( ) A .0 B .1 C .2 D .3

例2.(1)函数()f x 对于任意实数x 满足条件()()12f x f x +=

,若()15,f =-则()()5f f =__ ________;

(2)函数()f x 对于任意实数x 满足条件()()1

2f x f x +=,若()15,f =-则

()()5f f =__________。

题型二:判断两个函数是否相同

例3.试判断以下各组函数是否表示同一函数?

(1)f (x )=2x ,g (x )=33x ; (2)f (x )=x

x |

|,g (x )=???<-≥;01,01x x (3)f (x )=1212++n n x ,g (x )=(12-n x )

2n -1(n ∈N *); (4)f (x )=x

1+x ,g (x )=x x +2; (5)f (x )=x 2-2x -1,g (t )=t 2-2t -1。

题型三:函数定义域问题

例4.求下述函数的定义域:

(1)02)23()12lg(2)(x x x x x f -+--=

; (2)x x y -?-=11

(3)x y --=113 (4)2

253x x y -+-=

例5.已知函数()f x 定义域为(0,2),求下列函数的定义域:

(1) 2()23f x +;

(2)2y =。

变式题1:⑴已知函数f(x)的定义域为(]1,0 ,求函数)(2x f 的定义域 ⑵已知函数)1(+x f 的定义域为[]3,0 ,求函数f(x)的定义域

⑶已知函数)1(+x f 的定义域为[]3,2- ,求函数)1(2-x f 的定义域

变式题2:已知函数f (x )=

31323

-+-ax ax

x 的定义域是R ,则实数a 的取值范围是( ) A .a >

31

B .-12<a ≤0

C .-12<a <0

D .a ≤31

题型四:函数值域问题

例5.求下列函数的值域:

(1)232y x x =-+;(2)y =(3)31

2x y x +=-;

(4)y x =+(5)y x =+(6)|1||4|y x x =-++;

(7)22221x x y x x -+=

++;(8)2211()212x x y x x -+=>-;

题型五:函数解析式

Ⅰ.函数的解析式的定义: 用数学运算符号和括号把数和表示数的字母连结而成的

式子叫解析式,

Ⅱ.求函数解析式的方法:

①定义法 ②待定系数法 ③换元法 ④配凑法 ⑤赋值法 例6.设二次函数()f x 满足f (x +2)=f (2-x ),且方程()0f x =的两实根的平方和为10,)(x f 的图象过点(0,3),求f (x )的解析式.

变式:已知f (x )是一次函数,且满足3(1)2(1)217f x f x x +--=+,求()f x ;

例7.(1)已知3311()f x x x x +

=+,求()f x ; (2)已知2

(1)lg f x x +=,求()f x ;

(3)已知()f x 是一次函数,且满足3(1)2(1)217f x f x x +--=+,求()f x ;

(4)已知()f x 满足1

2()()3f x f x x +=,求()f x 。

课后反思:

函数概念及其基本性质

第二章函数概念与基本初等函数I 一. 课标要求: 函数是高中数学的核心概念,本章把函数作为描述客观世界变化规律的重要数学模型来学习,强调结合实际问题,从而发展学生对变量数学的认识。教材把指数函数,对数函数,幂函数当作三种重要的函数模型来学习,强调通过实例和图象的直观,揭示这三种函数模型增长的差异及其关系,体会建立和研究一个函数模型的基本过程和方法,学会运用具体函数模型解决一些实际问题. 1.会用集合与对应的语言来刻画函数,理解函数符号y=f(x)的含义;了解函数构成 的三要素,了解映射的概念;体会函数是一种刻画变量之间关系的重要数学模型,体会对应关系在刻画函数概念中的作用;会求一些简单函数的定义域和值域, 2. 了解函数的一些基本表示法(列表法、图象法、分析法),并能在实际情境中,恰当地进行选择;会用描点法画一些简单函数的图象. 3.通过具体实例,了解简单的分段函数,并能简单应用. 4. 结合熟悉的具体函数,理解函数的单调性、最大(小)值及其几何意义,了解奇偶性和周期性的含义,通过具体函数的图象,初步了解中心对称图形和轴对称图形. 5. 学会运用函数的图象理解和研究函数的性质,体会数形结合的数学方法. 6.理解有理数指数幂的意义,通过具体实例了解实数指数幂的意义,掌握幂的运算. 7.了解指数函数模型的实际背景.理解指数函数的概念和意义,掌握f(x)=a x的符号、意义,能借助计算器或计算机画出具体指数函数的图象,探索并理解指数函数的有关性质(单调性、值域、特别点). 8.理解对数的概念及其运算性质,了解对数换底公式及其简单应用,能将一般对数转化为常用对数或自然对数,通过阅读材料,了解对数的发现历史及其对简化运算的作用.通过具体函数,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,掌握f(x)=log a x符号及意义,体会对数函数是一类重要的函数模型,能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的有关性质(单调性、值域、特殊点). 9.知道指数函数y=a x与对数函数y=log a x互为反函数(a>0, a≠1),初步了解反函数的概念和f- -1(x)的意义. 10.通过实例,了解幂函数的概念,结合五种具体函数 1 312 ,,, y x y x y x y x - ====的 图象,了解它们的变化情况 11.通过应用实例的教学,体会指数函数是一种重要的函数模型. 12. 通过实习作业,使学生初步了解对数学发展有过重大影响的重大历史事件和重要人物,了解生活中的函数实例. 二. 编写意图与教学建议 1.教材突出了函数概念的背景教学,强调从实例出发,让学生对函数概念有充分的感性基础,再用集合与对应语言抽象出函数概念,符合学生的认识规律,同时有利于培养学生的抽象概括的能力,增强学生应用数学的意识,教学中要高度重视数学概念的背景教学. 2..教材对函数的三要素着重从函数的实质上要求理解,而对定义域、值域的繁难计算,特别是人为的过于技巧化的训练不做提倡,要准确把握这方面的要求,防止拨高教学. 3. 函数的表示是本章的主要内容之一,教材重视采用不同的表示法(列表法、图象法、分析法),目的是丰富学生对函数的认识,帮助理解抽象的函数概念. 在教学中,既要充分发挥图象的直观作用,又要适当地引导学生从代数的角度研究图象,使学生深刻体会数形结合这一重要数学方法.

函数的概念和性质

专题讲座 高中数学“函数的概念与性质”教学研究 李梁北京市西城区教育研修学院 函数就是中学数学中的重点内容,它就是描述变量之间依赖关系的重要数学模型、 本专题内容由四部分构成:关于函数内容的深层理解;函数概念与性质的教学建议;学 生学习中常见的错误分析与解决策略;学生学习目标检测分析、 研究函数问题通常有两条主线:一就是对函数性质作一般性的研究,二就是研究几种具体的基本初等函数——二次函数、指数函数、对数函数、幂函数、研究函数的问题主要围绕以下几个方面:函数的概念,函数的图象与性质,函数的有关应用等、 一、关于函数内容的深层理解 (一)函数概念的发展史简述 数学史角度:早期函数概念(Descartes,1596—1650引入坐标系创立解析几 何,已经关注到一个变量对于另一个变量的依赖关系)[几何角度];Newton,1642—1727,用数流来定义流量(fluxion)的变化率,用以表示变量间的关系;Leibniz,1646—1716引入 常量、变量、参变量等概念;Euler引入函数符号,并称变量的函数就是一个解析表达式[代数角度];Dirichlet,1805—1859提出就是与之间的一种对应的观点[对应关系角度] ;Hausdorff在《集合论纲要》中用“序偶”来定义函数[集合论角度]、 Dirichlet:认为怎样去建立与之间的关系无关紧要,她拓广了函数概念,指出:“对于在某区间上的每一个确定的值,都有一个确定的值,那么叫做的函数、”这种函数的定义,避免了以往函数定义中所有的关于依赖关系的描述,简明精确(经典函数定义)、 Veblen,1880-1960用“集合”与“对应”的概念给出了近代函数定义,通过集合概念,把函数的对应关系、定义域及值域进一步具体化了,且打破了“变量就是数”的限制,变量可以就是数,也可以就是其它对象、 (二)初高中函数概念的区别与联系 1.初中函数概念:

高一数学函数的概念及表示方法

全方位教学辅导教案姓名性别年级高一 教学 内容 函数与映射的概念及其函数的表示法 重点难点教学重点:理解函数的概念;区间”、“无穷大”的概念,定义域的求法,映射的概念教学难点:函数的概念,无穷大”的概念,定义域的求法,映射的概念 教学目标1.理解函数的定义;明确决定函数的定义域、值域和对应法则三个要素; 2.能够正确理解和使用“区间”、“无穷大”等记号;掌握分式函数、根式函数定义域的求法,掌握求函数解析式的思想方法 3.了解映射的概念及表示方法 4.了解象与原象的概念,会判断一些简单的对应是否是映射,会求象或原象. 5.会结合简单的图示,了解一一映射的概念 教学过程课前检 查与交 流 作业完成情况: 交流与沟通 针 对 性 授 课 一、函数的概念 一、复习引入: 初中(传统)的函数的定义是什么?初中学过哪些函数? 设在一个变化过程中有两个变量x和y,如果对于x的每一个值,y都有唯一的 值与它对应,那么就说x是自变量,y是x的函数.并将自变量x取值的集合叫做 函数的定义域,和自变量x的值对应的y值叫做函数值,函数值的集合叫做函数 的值域.这种用变量叙述的函数定义我们称之为函数的传统定义. 初中已经学过:正比例函数、反比例函数、一次函数、二次函数等 问题1:()是函数吗? 问题2:与是同一函数吗? 观察对应: 30 45 60 90 2 1 2 2 2 3 9 4 1 1 -1 2 -2 3 -3 3 -3 2 -2 1 -1 1 4 9 1 2 3 1 2 3 4 5 6 (1)(2) (3)(4) 开平方求正弦 求平方乘以2 A A A A B B B B 1 二、讲解新课:

一次函数概念图像及性质

一次函数概念、图像及性质 【教学目标】 1. 了解认识一次函数定义、图像,并能根据函数解析式画出图像 2. 理解一次函数的截距概念,会根据直线的表达式指出它在y 轴上的截距 3. 理解、掌握一次函数性质,熟悉图像所经过的象限及y 随x 变化而变化的情况 4. 能运用一次函数的图像及性质解综合型问题 【教学重难点】 1. 根据一次函数的图像确定解析式 2. 掌握一次函数性质,并能灵活运用于解题 3. 能结合一次函数知识点灵活求解综合型问题 【教学内容】 ★ 知识梳理 一、概念 定义:解析式形如)0( ≠+=k b kx y 的函数叫做一次函数 二、图像 一次函数的图象满足:(1)形状是一条直线;(2)始终经过(0 , b )和(k b - , 0)两点 三、截距 定义:直线)0( ≠+=k b kx y 与y 轴的交点坐标是) , 0 (b ,截距是b 四、性质 1. 一次函数)0( ≠+=k b kx y ,当0>k 时,函数值y 随自变量x 的值增大而增大;当0k ,且0>b 时,直线)0( ≠+=k b kx y 经过第一、二、三象限 (2)当0>k ,且0b 时,直线)0( ≠+=k b kx y 经过第一、二、四象限 (4)当0

一、概念 例1. 下列关于x 的函数中,是一次函数的是( ) (A )1)1(32+-=x y (B )x x y 1+ = (C )x y 3-= (D )x y 5-= 例2. 下列各式中,y 与x 成正比例关系的是 ;成一次函数关系的是 (1)x y 43= (2)x y 2 2-= (3)x y 29-= (4)x y 4= (5)52=+xy (6)765=+y x 例3. 下列说法中,不正确的是( ) (A )一次函数不一定是正比例函数 (B )不是一次函数就一定不是正比例函数 (C )正比例函数是特殊的一次函数 (D )不是正比例函数不一定不是一次函数 例4. 下列说法不正确的是( ) (A )在32--=x y 中,y 是x 的正比例函数 (B )在x y 21-=中,y 与x 成正比例 (C )在1=xy 中,y 与x 1成正比例 (D )在圆的面积公式2r S π=中,S 与2r 成正比例 例5. 已知b kx y +=,当3-=x 时,0=y ;当1=x 时,4=y ,求k 、b 的值

函数的概念及性质

函数的概念及性质 概览:概念,表示方法,图象和性质 1. 概念 函数的定义:传统定义(初中的),近代定义。自变量,对应法则,定义域,值域〖两域都是集合,回答时要正确表示。〗 对应法则f 是函数的核心,是对自变量的“操作”,如)(x f 是对x 进行“操作”,而)(2x f 是对2x 进行“操作”,)2(f 是对2进行“操作” 函数的三要素,或两要素:定义域、对应法则 判定两个函数是否相同。〖定义域和值域分别相同的两个函数不一定是同一函数,例x y x y 2,==;又如])1,0[(,2∈==x x y x y 定义域都取〗 区间 定义,名称,符号,几何(数轴)表示 映射 定义,符号,与函数的异同 2. 函数的表示方法 列表法,图象法,解析法 分段函数 定义域、值域、最值 求函数解析式的常用方法:配凑,换元,待定系数,函数方程(消去法) 3. 函数的图象 作图的步骤:定义域,列表,描点,连线〖注意抓住特征点,如边界点,与两轴的交点等;边界点注意空心/实心〗 带有绝对值符号的函数 定义域,分段脱去绝对值,作图 4. 函数的性质 求定义域 分式,偶次根式,对数的真数和底数,复合函数,实际问题中的实际意义。 求值域 由定义域和对应法则决定,故应先考虑定义域。方法:观察分析,例 函数211)(x x f +=;配方;换元;判别式;单调性;数形结合(图象);基本不等式;反求法(反函数法)等。 单调性 对于定义域内的某个区间而言。 单调区间若不含端点,则必须写成开区间,若含端点,则写成闭区间,通常写成开区间也可。 一个函数可能有多个独立的单调区间,应用逗号相隔回答,不用并集,而函数的两域都是整体性的集合,若有必要则要用并集回答。 图象特征:从左到右升/降。 证明步骤:设值,作差,定号,作答。 判断函数单调性的有关规律。 如增加增得增,减加减得减;注意:增乘增未必增,减乘减未必减(还要看各自的函数值是否同正或同负) 奇偶性

函数的概念与表示法

函数的概念和函数的表示法 考点一:由函数的概念判断是否构成函数 函数概念:设A 、B 是非空的数集,如果按照某种确定的关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有 唯一确定的数f (x )和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数。 例1. 下列从集合A 到集合B 的对应关系中,能确定y 是x 的函数的是( ) ① A={x x ∈Z},B={y y ∈Z},对应法则f :x →y= 3 x ; ② A={x x>0,x ∈R}, B={y y ∈R},对应法则f :x →2y =3x; ③ A=R,B=R, 对应法则f :x →y=2 x ; 变式1. 下列图像中,是函数图像的是( ) ① ② ③ ④ 变式2. 下列式子能确定y 是x 的函数的有( ) ①22x y +=2 1= ③ A 、0个 B 、1个 C 、2个 D 、3个 变式3. 已知函数y=f (x ),则对于直线x=a (a 为常数),以下说法正确的是( ) A. y=f (x )图像与直线x=a 必有一个交点 B.y=f (x )图像与直线x=a 没有交点 C.y=f (x )图像与直线x=a 最少有一个交点 D.y=f (x )图像与直线x=a 最多有一个交点 变式4.对于函数y =f(x),以下说法正确的有…( ) ①y 是x 的函数 ②对于不同的x ,y 的值也不同 ③f(a)表示当x =a 时函数f(x)的值,是一个常量 ④f(x)一定可以用一个具体的式子表示出来 A .1个 B .2个 C .3个 D .4个 变式5.设集合M ={x|0≤x ≤2},N ={y|0≤y ≤2},那么下面的4个图形中,能表示集合M 到集合N 的函数关系的有( ) A .①②③④ B .①②③ C .②③ D .② 考点二:同一函数的判定 函数的三要素:定义域、对应关系、值域。 如果两个函数的定义域相同,并且对应关系完全一致,我们就称这两个函数相等。 例2. 下列哪个函数与y=x 相同( ) ①. y=x ②.y = ③. 2 y = ④.y=t ⑤.3 3x y = ;⑥.2x y =

函数概念与性质练习题目大全

函数概念与性质练习题大全 函数定义域 1、函数x x x y +-=)1(的定义域为 A . {}0≥x x B .{}1≥x x C .{}{}01 ≥x x D .{}10≤≤x x 2、函数x x y +-=1的定义域为 A . {}1≤x x B .{}0≥x x C .{}01≤≥x x x 或 D .{}10≤≤x x 3、若函数)(x f y =的定义域是[]2,0,则函数1 ) 2()(-= x x f x g 的定义域是 A . []1,0 B .[)1,0 C .[)(]4,11,0 D .()1,0 4、函数的定义域为)4323ln(1 )(22+--++-= x x x x x x f A . (][)+∞-∞-,24, B .()()1,00,4 - C .[)(]1,00,4 - D .[)()1,00,4 - 5、函数)20(3)(≤<=x x f x 的反函数的定义域为 A . ()+∞,0 B .(]9,1 C .()1,0 D .[)+∞,9 6、函数4 1lg )(--=x x x f 的定义域为 A . ()4,1 B .[)4,1 C .()()+∞∞-,41, D .(]()+∞∞-,41, 7、函数2 1lg )(x x f -=的定义域为 A . []1,0 B .()1,1- C .[]1,1- B .()()+∞-∞-,11, 8、已知函数 x x f -= 11)(的定义域为M ,)1ln() (x x g +=的定义域为N ,则=N M A . {}1->x x B .{}1

函数的基本概念及表示法

题一:定义集合{1,2,…,n }到{1,2,…,n }上的函数f :k →i k ,k =1,2,…,n .记作:121,2,,,,,n n i i i ?? ??? . 设121,2,,,,,n n f i i i ??= ??? ,12 1,2,,,,,n n g j j j ??= ??? (这里的j 1,j 2,…,j n n j j j ,,,21 也是1,2,…,n 这n 个整数的一个排列).定义g f 12 1,2,,,,,n n i i i ??= ??? 121,2,,,,,n n j j j ?? ??? ,其中)]([)(k g f k g f = ,k =1,2,…,n ..则? ?? ? ?????? ??4,5,1,2,35,4,3,2,13,1,2,4,55,4,3,2,1= 题二:在加工爆米花的过程中,爆开且不糊的粒数占加工总数的比率称为可食用率p .它的大小主要取决于加工时间t (单位:分钟). 做了三次实验,数据记录如图所示.已知图中三个点都在函数p =-0.2t 2+bt +c 上,则由此得到的理论最佳加工时间为 分钟. 题三:3,10 ()((5)),10x x f x f f x x -≥?=?+

高中数学函数的概念与性质(T)

函数的概念与性质 【知识要点】 1.函数的概念及函数的三要素 2.怎么判断函数的单调性 3.怎么判断函数的奇偶性 【典型例题】 例1.求下列函数的解析式,并注明定义域. (1)若x x x f 2)1(+=-,求)(x f . (2)若31 )1(44-+=+x x x x f ,求)(x f . 例2.求下列函数的值域. (1))1(1 3 2≥++=x x x y (2)1)(--=x x x f (3)232--=x x y (4)246 (),[1,4]1 x x f x x x ++= ∈+

例3.已知函数f (x )=m (x +x 1)的图象与函数h (x )=41(x +x 1 )+2的图象关于点A (0,1)对称. (1)求m 的值; (2)若g (x )=f (x )+ x a 4在区间(0,2]上为减函数,求实数a 的取值范围. 例4.判断下列函数的奇偶性 (1)334)(2-+-=x x x f (2)x x x x f -+?-=11)1()( 例5.设定义在[-2,2]上的偶函数,)(x f 在区间[0,2]上单调递减,若)()1(m f m f <-,求实为数m 的取值范围。

例6.已知函数f (x )=x + x p +m (p ≠0)是奇函数. (1)求m 的值. (2)当x ∈[1,2]时,求f (x )的最大值和最小值. 例7.(2005年北京东城区模拟题)函数f (x )的定义域为D ={x |x ≠0},且满足对于任意x 1、x 2∈D , 有f (x 1·x 2)=f (x 1)+f (x 2). (1)求f (1)的值; (2)判断f (x )的奇偶性并证明; (3)如果f (4)=1,f (3x +1)+f (2x -6)≤3,且f (x )在(0,+∞)上是增函数,求x 的取值范围.

第一节 函数的概念及其表示

第二章函数 第一节函数的概念及其表示 高考试题 考点一函数的定义域 1.(2013年重庆卷,文3)函数y= 21 log(2) x- 的定义域是( ) (A)(-∞,2) (B)(2,+∞) (C)(2,3)∪(3,+∞) (D)(2,4)∪(4,+∞) 解析:要使函数有意义,则x满足 20, 21, x x -> ? ? -≠ ? 解得x>2且x≠3.故选C. 答案:C 2.(2013年陕西卷,文10)设[x]表示不大于x的最大整数,则对任意实数x,有( ) (A)[-x]=-[x] (B) 1 2 x ?? + ?? ?? =[x] (C)[2x]=2[x] (D)[x]+ 1 2 x ?? + ?? ?? =[2x] 解析:取特殊值进行排除: 当x=1.3时,[-x]=[-1.3]=-2,-[x]=-1,选项A错. 当x=1.5时, 1 2 x ?? + ?? ?? =2,[x]=[1.5]=1, [2x]=3,2[x]=2,选项B、C错.故选D.答案:D 3.(2013年山东卷,文5)函数 的定义域为( ) (A)(-3,0] (B)(-3,1] (C)(-∞,-3)∪(-3,0] (D)(-∞,-3)∪(-3,1] 解析:由f(x)= 得 120, 30, x x ?-≥ ? +> ? 则-3

4.(2013年广东卷,文2)函数f(x)= lg(1)1x x +-的定义域是( ) (A)(-1,+∞) (B)[-1,+∞) (C)(-1,1)∪(1,+∞) (D)[-1,1)∪(1,+∞) 解析:由题意得10,10,x x -≠??+>? 即x>-1且x ≠1.故选C. 答案:C 5.(2012年山东卷,文3)函数f(x)= ()1ln 1x + 的定义域为( ) (A)[-2,0)∪(0,2] (B)(-1,0)∪(0,2] (C)[-2,2] (D)(-1,2] 解析:由210,11,40,x x x ?+>?+≠??-≥? 得1,0,22,x x x >-??≠??-≤≤?∴-1?, 得x>-1且x ≠1, ∴函数f(x)的定义域为(-1,1)∪(1,+∞).故选C. 答案:C 7.(2011年江西卷,文3)若f(x)=() 121log 21x +,则f(x)的定义域为( ) (A)1,02??- ??? (B)1,2??-+∞ ??? (C)1,02??- ???∪(0,+∞) (D)1,22??- ??? 解析:法一 要使函数有意义,需满足210211x x +>?? +≠?解得x>-12且x ≠0.∴函数f(x)的定义域为1,02??- ??? ∪(0,+∞).故选C. 法二 显然当x=0时函数无意义,故排除B 和D;又当x=1时函数有意义,因此排除A,故选C. 答案:C

函数的定义及表示方法

函数的定义及表示方法 1若函数()f x 满足(21)1f x x -=+,则(1)f = . 2函数()f x 对于任意实数x 满足条件1(2)() f x f x += ,若(1)5f =-,则((5))f f = . 3若函数2(21)2f x x x +=-,则(3)f = . 4已知函数2 2 (),1x f x x R x =∈+. (1)求1()()f x f x +的值; (2)计算:111 (1)(2)(3)(4)()()()234 f f f f f f f ++++++. 5已知,a b 为常数,若22()43,()1024,f x x x f ax b x x =+++=++求5a b -的值 6设函数3 (100)(),(89).[(5)](100)x x f x f f f x x -≥?=? +

(人教版)北京市必修第一册第三单元《函数概念与性质》测试题(答案解析)

一、选择题 1.已知函数()f x 为定义在R 上的奇函数,当0x ≤时,()(1)ln f x x -=+,则()1f =( ) A .ln 2- B .ln 2 C .0 D .1 2.已知定义域为R 的函数()f x 在[)2,+∞单调递减,且(4)()0f x f x -+=,则使得不等式( ) 2 (1)0f x x f x +++<成立的实数x 的取值范围是( ) A .31x -<< B .1x <-或3x > C .3x <-或1x > D .1x ≠- 3.已知0.3 1()2 a =, 12 log 0.3b =, 0.30.3c =,则a b c ,,的大小关系是( ) A .a b c << B .c a b << C .a c b << D .b c a << 4.函数2()1sin 12x f x x ?? =- ?+?? 的图象大致形状为( ). A . B . C . D . 5.奇函数()f x 在(0)+∞, 内单调递减且(2)0f =,则不等式(1)()0x f x +<的解集为( ) A .() ()(),21,02,-∞--+∞ B .() ()2,12,--+∞ C .()(),22,-∞-+∞ D .()()(),21,00,2-∞-- 6.已知函数()() 22 6 5m m m f x x -=--是幂函数,对任意1x ,()20,x ∈+∞,且12x x ≠, 满足 ()()1212 0f x f x x x ->-,若a ,b R ∈,且0a b +>,则()()f a f b +的值( ) A .恒大于0 B .恒小于0 C .等于0 D .无法判断 7.已知函数(1)f x +为偶函数,()f x 在区间[1,)+∞上单调递增,则满足不等式 (21)(3)f x f x ->的x 的解集是( )

高一函数的概念与性质

函数概念与性质 一、选择题(每小题5分,共50分) 1、下列哪组中的两个函数是同一函数 (A )2y =与y x = (B )3y =与y x = (C )y =2y = (D )y =2 x y x = 2、下列集合A 到集合B 的对应f 是映射的是 (A ){}{}1,0,1,1,0,1,A B f =-=-:A 中的数平方; (B ){}{}f B A ,1,0,1,1,0-==:A 中的数开方; (C ),,A Z B Q f ==:A 中的数取倒数; (D ),,A R B R f +==:A 中的数取绝对值; 3、已知函数11)(22-+ -=x x x f 的定义域是( ) (A )[-1,1] (B ){-1,1} (C )(-1,1) (D )),1[]1,(+∞--∞ 4、若函数)(x f 在区间(a ,b )上为增函数,在区间(b ,c )上也是增函数,则函数)(x f 在区间(a ,c )上( ) (A )必是增函数 (B )必是减函数 (C )是增函数或是减函数 (D )无法确定增减性 5、)(x f 是定义在R 上的奇函数,下列结论中,不正确... 的是( ) (A )0)()(=+-x f x f (B ))(2)()(x f x f x f -=-- (C ))(x f ·)(x f -≤0 (D )1) ()(-=-x f x f 6、函数()f x 的定义域为),(b a ,且对其内任意实数12,x x 均有:1212()[()()]0x x f x f x --<,则 ()f x 在),(b a 上是

(A )增函数 (B )减函数 (C )奇函数 (D )偶函数 7、若函数()(()0)f x f x ≠为奇函数,则必有 (A )()()0f x f x ?-> (B )()()0f x f x ?-< (C )()()f x f x <- (D )()()f x f x >- 8、设偶函数f(x)的定义域为R ,当x ],0[+∞∈时f(x)是增函数,则f(-2),f(π),f(-3)的大小关系是( ) (A )f(π)>f(-3)>f(-2) (B )f(π)>f(-2)>f(-3) (C )f(π)

函数的概念及表示方法

函数的概念及表示方法 一、选择题(每小题5分,共60分) 1、 数)(x y ?=的图象与直线a x =的交点个数为( ) A 、必有1个 B 、1个或2个 C 、至多1个 D 、可能2个以上 2、 下列四组中的函数 )(x f 与)(x g ,表示相同函数的一组是( ) A 、2)()(,)(x x g x x f == B 、1)(,11)(2-=-+=x x g x x x f C 、 x x x g x x f ==)(,)(0 D 、2)(,)(x x g x x f == 3、 下列选项正确的是( ) (1)x x y -+-= 12可以表示函数 (2)521=-+-y x 可以表示函数(3)122=+y x 可以表示函数 (4)12=+y x 可以表示函数 A 、 (2)(4) B 、(1)(3) C 、(1)(2) D 、(3)(4) 4、下列关于分段函数的叙述正确的是( ) (1) 分段函数的定义域是各段定义域的并集,值域是各段值域的并集 (2)分段函数尽管在定义域不同的部分有不同的对应法则,但它们是同一个函数 (3)若21,D D 分别是分段函数的两个不同对应法则的值域,则Φ=21D D I A 、 (1) B 、(2)、(3) C 、(1)、(2) D 、(1)、(3) 5、设2:x x f →是集合A 到B 的映射,如果{}2,1=B ,那么B A I =( ) A 、 Φ B 、 {}1 C 、Φ 或{}2 D 、Φ或{}1 6、若函数)(x f 满足),)(()()(R y x y f x f y x f ∈+=+,则下列各项不恒成立 的是( ) A 、0)0(=f B 、)1(3)3(f f = C 、)1(2 1)21(f f = D 、0)()(<-x f x f 7、将x y 1=的图像变换至函数23++=x x y 的图像,需先向 平移 个单位,再向 平移 个单位( ) A 、左,2,上,1 B 、左,2,下,1 C 、右,2,上,1 D 、右,2,上,1 8、已知函数)(x f 的定义域是),(b a ,其中b>a+2,则)13()13()(+--=x f x f x f 的定义域是( )

上海上海大学附属中学实验学校必修第一册第三单元《函数概念与性质》检测卷(有答案解析)

一、选择题 1.已知定义域为R 的函数()f x 在[)2,+∞单调递减,且(4)()0f x f x -+=,则使得不等式( ) 2 (1)0f x x f x +++<成立的实数x 的取值范围是( ) A .31x -<< B .1x <-或3x > C .3x <-或1x > D .1x ≠- 2.中国传统文化中很多内容体现了数学的“对称美”.如图所示的太极图是由黑白两个鱼形纹组成的圆形图案,充分体现了相互变化、对称统一的形式美、和谐美.给出定义:能够将圆 O (O 为坐标原点)的周长和面积同时平分的函数称为这个圆的“优美函数”.则下列函数中一定是“优美函数”的为( ) A .1()f x x x =+ B .1()f x x x =- C .( ) 2 2()ln 1f x x x =+ + D .() 2 ()ln 1f x x x =++ 3.定义在R 偶函数()f x 满足()()22f x f x -=-+,对[]12,0,4x x ?∈,12x x ≠,都有 ()()1212 0f x f x x x ->-,则有( ) A .()()()192120211978f f f =< B .()()()192119782021f f f << C .()()()192120211978f f f << D .()()()202119781921f f f << 4.函数2()1sin 12x f x x ?? =- ?+?? 的图象大致形状为( ). A . B . C . D .

5.已知函数(1)f x +是偶函数,当121x x <<时,()()()21210f x f x x x ??-->??恒成立,设1,(2),(3)2a f b f c f ?? =-== ??? ,则,,a b c 的大小关系为( ) A .b a c << B .c b a << C .b c a << D .a b c << 6.对于实数a 和b ,定义运算“*”:,, ,. b a b a b a a b ≤?*=? >?设()f x x =, ()224g x x x =--+,则()()()M x f x g x =*的最小值为( ) A .0 B .1 C .2 D .3 7.下列函数中,是奇函数且在()0,∞+上单调递增的是( ) A .y = B .2log y x = C .1y x x =+ D .5y x = 8.已知()f x 为奇函数,且当0x >时,()2f x x =-,则1 ()2 f -的值为( ) A .52 - B .32 - C . 32 D . 52 9.已知函数2()2+1,[0,2]f x x x x =-+∈,函数()1,[1,1]g x ax x =-∈-,对于任意 1[0,2]x ∈,总存在2[1,1]x ∈-,使得21()()g x f x =成立,则实数a 的取值范围是( ) A .(,3]-∞- B .[3,)+∞ C .(,3][3,) -∞-+∞ D .(,3)(3,)-∞-?+∞ 10.已知() 2 ()ln ,(,)f x x ax b x a b R =++?∈,当0x >时()0f x ≥,则实数a 的取值范 围为( ) A .20a -≤< B .1a ≥- C .10a -<≤ D .01a <≤ 11.函数()f x =是( ) A .奇函数 B .偶函数 C .既奇又偶函数 D .非奇非偶函数 12.设函数()f x 的定义域为D ,如果对任意的x D ∈,存在y D ∈,使得()()f x f y =-成立,则称函数()f x 为“呆呆函数”,下列为“呆呆函数”的是( ) A .2sin cos cos y x x x =+ B .2x y = C .ln x y x e =+ D .22y x x =- 13.下列各组函数表示同一函数的是( ) A .()f x = 2 ()f x = B .,0(),0 x x f x x x ≥?=? -

函数的概念与性质

第三章函数 第一单元函数的概念与性质 第一节函数的概念 一、选择题 1.下列对应中是映射的是() A.(1)、(2)、(3)B.(1)、(2)、(5) C.(1)、(3)、(5) D.(1)、(2)、(3)、(5) 2.下面哪一个图形可以作为函数的图象() 3.(2009年茂名模拟)已知f:A→B是从集合A到集合B的一个映射,?是空集,那么

下列结论可以成立的是( ) A .A = B =? B .A =B ≠? C .A 、B 之一为? D .A ≠B 且B 的元素都有原象 4.已知集合M ={}?x ,y ?|x +y =1,映射f :M →N ,在f 作用下点(x ,y )的元素是(2x,2y ),则集合N =( ) 5.现给出下列对应: (1)A ={x |0≤x ≤1},B =R - ,f :x →y =ln x ; (2)A ={x |x ≥0},B =R ,f :x →y =±x ; (3)A ={平面α内的三角形},B ={平面α内的圆},f :三角形→该三角形的内切圆; (4)A ={0,π},B ={0,1},f :x →y =sin x . 其中是从集A 到集B 的映射的个数( ) A .1 B .2 C .3 D .4 二、填空题 6.(2009年珠海一中模拟)已知函数f (x )=x 2-1x 2+1,则f ?2?f ??? ?12=________. 7.设f :A →B 是从集合A 到B 的映射,A =B ={(x ,y )|x ∈R ,y ∈R },f :(x ,y )→(kx ,y +b ),若B 中元素(6,2)在映射f 下的元素是(3,1),则k ,b 的值分别为________. 8.(2009年东莞模拟)集合A ={a ,b },B ={1,-1,0},那么可建立从A 到B 的映射个数是________.从B 到A 的映射个数是________. 三、解答题 9.已知f 满足f (ab )=f (a )+f (b ),且f (2)=p ,f (3)=q ,求f (72)的值. 10.集合M ={a ,b ,c },N ={-1,0,1},映射f :M →N 满足f (a )+f (b )+f (c )=0,那么映射f :M →N 的个数是多少?

函数的概念及其表示

一、函数的概念及其表示 函数是刻画变量之间对应关系的数学模型和工具。 函数的共同特征: (1)都包含两个非空数集,用A 、B 来表示; (2)都有一个对应关系; (3)尽管对应关系的表示方法不同,但它们都有如下特性:对于数级A 中的任意一个数x ,按照对应关系,在数集B 中都有唯一确定的数y 和它对应。 事实上,除了解析式、图象、表格外,还有其他表示对应关系的方法。为了表示方便,我们引进符号f 统一表示对应关系。 一般地,设A 、B 是非空的实数集,如果对于集合A 中的任意一个数x,按照某种确定的对应关系f ,在集合B 中都有唯一确定的数y 和它对应,那么就称f :A →B 为从集合A 到集合b 的一个函数,记作 ().,A x x f y ∈= 其中x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合(){}A x x f ∈|叫做函数的值域。 我们所熟悉的一次函数y=kx+b ,k ≠0的定义域是R ,值域也是R 。对应关系f 把r 中的任意一个数x ,对应到R 中唯一确定的数kx+b 。二次函数)0(2≠++=a c bx ax y 的定义域是R ,值域是B 。当A>0时,B=??????-≥a b ac y y 44|2;当A<0时,B=? ?????-≤a b ac y y 44|2。对应关系f 把R 中任意一个数x,对应到B 中唯一确定的数)0(2≠++a c bx ax 。 由函数的定义可知,一个函数的构成要素为:定义域、对应关系

和值域。因为值域是由定义域和对应关系决定的,所以如果两个函数的定义域相同,并且对应关系完全一致,即相同的自变量对应的函数值也相同,那么这两个函数是同一个函数。两个函数如果仅有对应关系相同,但定义域不相同,那么它们不是同一个函数。 函数的三种表示方法:解析法、列表法和图象法。 解析法,就是用数学表达式表示两个变量之间的对应关系; 列表法,就是列出表格来表示两个变量之间的对应关系; 图象法,的就是用图象表示两个变量之间的对应关系。 这三种方法是常用的函数表示法。

函数的概念与表示法

函数的概念和函数的表示法 考点一:由函数的概念判断是否构成函数 函数概念:设A、B是非空的数集,如果按照某种确定的关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称 f:A→B为从集合A到集合B的一个函数。 例1. 下列从集合A到集合B的对应关系中,能确定y是x的函数的是( ) ①{x x∈Z},{y y∈Z},对应法则f:x→ 3 x; ②{xx>0∈R}, {y y∈R},对应法则f:x→2y=3x; ③, 对应法则f:x→2x; 变式1. 下列图像中,是函数图像的是( ) ①②③④ 变式2. 下列式子能确定y是x的函数的有() ①22 x y+=2 1= A、0个B、1个 C、2个 D、3个变式3.已知函数(x),则对于直线(a为常数),以下说法正确的是() A.(x)图像与直线必有一个交点(x)图像与直线没有交点 (x)图像与直线最少有一个交点(x)图像与直线最多有一个交点 变式4.对于函数y=f(x),以下说法正确的有…( ) ①y是x的函数 ②对于不同的x,y的值也不同

A .1个 B .2个 C.3个 D.4个 变式5.设集合M ={0≤x≤2},N ={0≤y≤2},那么下面的4个图形中,能表示集合M到集合N 的函数关系的有( ) A.①②③④ B .①②③ C.②③ D.② 考点二:同一函数的判定 函数的三要素:定义域、对应关系、值域。 如果两个函数的定义域相同,并且对应关系完全一致,我们就称这两个函数相等。 例2. 下列哪个函数与相同( ) ①. x ②.y = ③. 2 y = ④ ⑤.33x y =;⑥.2x y = 变式1.下列函数中哪个与函数y ) A . y = B . y =-y =- D . y x = 变式2. 下列各组函数表示相等函数的是( ) A. 29 3 x y x -=- 与 3y x =+ B. 1y = 与 1y x =- C. 0y x =(x ≠0) 与 1y =(x≠0) D. 21y x =+,x ∈Z 与21y x =-,x ∈Z 变式3. 下列各组中的两个函数是否为相同的函数?

相关文档
相关文档 最新文档