文档库 最新最全的文档下载
当前位置:文档库 › 【步步高】四川高三数学理大一轮复习练习8.7立体几何中的向量方法(Ⅰ)——证明平行与垂直(含答案解析)

【步步高】四川高三数学理大一轮复习练习8.7立体几何中的向量方法(Ⅰ)——证明平行与垂直(含答案解析)

【步步高】四川高三数学理大一轮复习练习8.7立体几何中的向量方法(Ⅰ)——证明平行与垂直(含答案解析)
【步步高】四川高三数学理大一轮复习练习8.7立体几何中的向量方法(Ⅰ)——证明平行与垂直(含答案解析)

8.7 立体几何中的向量方法(Ⅰ)----证明平行与垂直

一、选择题

1.若直线l 1,l 2的方向向量分别为a =(2,4,-4),b =(-6,9,6),则( ).

A .l 1∥l 2

B .l 1⊥l 2

C .l 1与l 2相交但不垂直

D .以上均不正确

答案 B

2.直线l 1,l 2相互垂直,则下列向量可能是这两条直线的方向向量的是( )

A .s 1=(1,1,2),s 2=(2,-1,0)

B .s 1=(0,1,-1),s 2=(2,0,0)

C .s 1=(1,1,1),s 2=(2,2,-2)

D .s 1=(1,-1,1),s 2=(-2,2,-2)

解析 两直线垂直,其方向向量垂直,只有选项B 中的两个向量垂直. 答案 B

3.已知a =? ????1,-32,52,b =?

????-3,λ,-152满足a∥b ,则λ等于( ). A.23 B.92 C .-92 D .-23

解析 由1-3=-

32λ=52-152,可知λ=92. 答案 B

4.若直线l 的方向向量为a ,平面α的法向量为n ,能使l ∥α的是 ( ).

A .a =(1,0,0),n =(-2,0,0)

B .a =(1,3,5),n =(1,0,1)

C .a =(0,2,1),n =(-1,0,-1)

D .a =(1,-1,3),n =(0,3,1)

解析 若l ∥α,则a·n =0.

而A 中a·n =-2,

B 中a·n =1+5=6,

C 中a·n =-1,只有

D 选项中a·n =-3+3=0.

答案 D

5.若平面α,β平行,则下面可以是这两个平面的法向量的是( )

A .n 1=(1,2,3),n 2=(-3,2,1)

B .n 1=(1,2,2),n 2=(-2,2,1)

C .n 1=(1,1,1),n 2=(-2,2,1)

D .n 1=(1,1,1),n 2=(-2,-2,-2)

解析 两个平面平行时其法向量也平行,检验知正确选项为D.

答案 D

6.已知a =(2,-1,3),b =(-1,4,-2),c =(7,5,λ),若a ,b ,c 三向量共面,则实数λ等于( ).

A.627

B.637

C.607

D.657

解析 由题意得c =t a +μb

=(2t -μ,-t +4μ,3t -2μ),

∴??? 7=2t -μ

5=-t +4μ

,λ=3t -2μ

∴????? t =337μ=177λ=657.

答案 D 7.已知平面α内有一个点A (2,-1,2),α的一个法向量为n =(3,1,2),则下列点P 中,在平面α内的是( )

A .(1,-1,1)

B.? ????1,3,32

C.? ????1,-3,32

D.?

????-1,3,-32 解析 对于选项A ,PA =(1,0,1),则PA ·n =(1,0,1)·(3,1,2)=5≠0,故排

除A ;对于选项B ,PA =? ????1,-4,12,则PA ·n =? ??

??1,-4,12·(3,1,2)=0,验证可知C 、D 均不满足PA ·n =0.

答案 B

二、填空题

8.两不重合直线l 1和l 2的方向向量分别为v 1=(1,0,-1),v 2=(-2,0,2),则

高三数学知识点总结:立体几何

2019年高三数学知识点总结:立体几何 由查字典数学网高中频道提供,2019年高三数学知识点总结:立体几何,因此老师及家长请认真阅读,关注孩子的成长。 立体几何初步 (1)棱柱: 定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。 分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。 表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱 几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。 (2)棱锥 定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体 分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等 表示:用各顶点字母,如五棱锥 几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。 (3)棱台:

定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分 分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等 表示:用各顶点字母,如五棱台 几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点 (4)圆柱: 定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体 几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。 (5)圆锥: 定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体 几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。 (6)圆台: 定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分 几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。

高中文科数学立体几何知识点(大题)

高考立体几何中直线、平面之间的位置关系知识点总结(文科) 一.平行问题 (一) 线线平行: 方法一:常用初中方法(1中位线定理;2平行四边形定理;3三角形中对应边成比例;4同位角、内错角、同旁内角) 方法二:1线面平行?线线平行 m l m l l ////??? ???=??βαβα 方法三:2面面平行?线线平行 m l m l ////??????=?=?βγαγβα 方法四:3线面垂直 ?线线平行 若αα⊥⊥m l ,,则m l //。 (二) 线面平行: 方法一:4线线平行?线面平行 ααα////l l m m l ??? ????? 方法二:5面面平行?线面平行 αββα////l l ????? (三) 面面平行:6方法一:线线平 行?面面平行 βααβ//',','//' //??? ???????且相交且相交m l m l m m l l 方法二:7线面平行?面面平行 βαβαα//,////??? ???=?A m l m l m l I , 方法三:8线面垂直?面面平行 βαβα面面面面//?? ??⊥⊥l l l

二.垂直问题:(一)线线垂直 方法一:常用初中的方法(1勾股定理的逆定理;2三线合一 ;3直径所对的圆周角为直角;4菱形的对角线互相垂直。) 方法二:9线面垂直?线线垂直 m l m l ⊥?????⊥αα (二)线面垂直:10方法一:线线垂直?线面垂直 α α⊥??? ? ???? ?=?⊥⊥l AB AC A AB AC AB l AC l , 方法二:11面面垂直?线面垂直 αββαβα⊥???????⊥=?⊥l l m l m , (面) 面面垂直: 方法一:12线面垂直?面面垂直 βαβα⊥???? ?⊥l l 三、夹角问题:异面直线所成的角: (一) 范围:]90,0(?? (二)求法:方法一:定义法。 步骤1:平移,使它们相交,找到夹角。 步骤2:解三角形求出角。(计算结果可能是其补角) 线面角:直线PA 与平面α所成角为θ,如下图 求法:就是放到三角形中解三角形 四、距离问题:点到面的距离求法 1、直接求, 2、等体积法(换顶点)

2015届高三数学立体几何专题训练及详细答案

2015届高三数学立体几何专题训练 1.(2013·高考新课标全国卷Ⅰ)某几何体的三视图如图所示,则该几何体的体积为( ) A .16+8π B .8+8π C .16+16π D .8+16π 解析:选A. 原几何体为组合体:上面是长方体,下面是圆柱的一半(如图所示),其体积为V =4×2×2+1 2 π×22×4=16+8π. 2.(2013·高考新课标全国卷Ⅰ)如图,有一个水平放置的透明无盖的正方体容器,容器高8 cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6 cm ,如果不计容器厚度,则球的体积为( ) A.500π3 cm 3 B.866π3 cm 3 C.1 372π3 cm 3 D.2 048π3 cm 3 解析:选A. 如图,作出球的一个截面,则MC =8-6=2(cm), BM =12AB =1 2 ×8=4(cm). 设球的半径为R cm ,则R 2=OM 2+MB 2=(R -2)2+42,∴R =5, ∴V 球=43π×53=500π 3 (cm 3). 3.(2013·高考新课标全国卷Ⅱ)已知m ,n 为异面直线,m ⊥平面α,n ⊥平面β.直线l 满足l ⊥m ,l ⊥n ,l ?α,l ?β,则( ) A .α∥β且l ∥α B .α⊥β且l ⊥β

C .α与β相交,且交线垂直于l D .α与β相交,且交线平行于l 解析:选D. 根据所给的已知条件作图,如图所示. 由图可知α与β相交,且交线平行于l ,故选D. 4.(2013·高考大纲全国卷)已知正四棱柱ABC D-A 1B 1C 1D 1中,AA 1=2AB ,则C D 与平面B D C 1所成角的正弦值等于( ) A.23 B.33 C.23 D.13 解析:选A.法一: 如图,连接AC ,交B D 于点O ,由正四棱柱的性质,有AC ⊥B D.因为CC 1⊥平面ABC D ,所以CC 1⊥B D.又CC 1∩AC =C ,所以B D ⊥平面CC 1O .在平面CC 1O 内作CH ⊥C 1O ,垂足为H ,则B D ⊥CH .又B D ∩C 1O =O ,所以CH ⊥平面B D C 1,连接D H ,则D H 为C D 在平面B D C 1上的射影,所以∠C D H 为C D 与平面B D C 1所成的角.设AA 1=2AB =2.在Rt △COC 1中,由 等面积变换易求得CH =23.在Rt △C D H 中,s in ∠C D H =CH CD =2 3 . 法二: 以D 为坐标原点,建立空间直角坐标系,如图,设AA 1=2AB =2,则D(0,0,0),C (0,1,0), B (1,1,0), C 1(0,1,2),则DC →=(0,1,0),DB →=(1,1,0),DC 1→ =(0,1,2). 设平面B D C 1的法向量为n =(x ,y ,z ),则 n ⊥DB →,n ⊥DC 1→ ,所以有????? x +y =0,y +2z =0, 令y =-2,得平面B D C 1的一个法向量为n =(2, -2,1). 设C D 与平面B D C 1所成的角为θ,则s in θ=|co s n ,DC → =???? ??n ·DC →|n ||DC →|=23. 5.(2013·高考大纲全国卷)已知正四棱柱ABC D-A 1B 1C 1D 1中,AA 1=2AB ,则C D 与平面B D C 1所成角的正弦值等于( ) A.23 B.33

高中数学立体几何专题

高中课程复习专题——数学立体几何 一空间几何体 ㈠空间几何体的类型 1 多面体:由若干个平面多边形围成的几何体。围成多面体的各个多边形叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点。 2 旋转体:把一个平面图形绕它所在的平面内的一条定直线旋转形成了封闭几何体。其中,这条直线称为旋转体的轴。 ㈡几种空间几何体的结构特征 1 棱柱的结构特征 棱柱的定义:有两个面互相平行,其余各面都是四边形, 并且每相邻两个四边形的公共边都互相平行,由这些面所 围成的几何体叫做棱柱。 棱柱的分类 棱柱的性质 ⑴侧棱都相等,侧面是平行四边形; ⑵两个底面与平行于底面的截面是全等的多边形; ⑶过不相邻的两条侧棱的截面是平行四边形; ⑷直棱柱的侧棱长与高相等,侧面的对角面是矩形。 长方体的性质 ⑴长方体的一条对角线的长的平方等于一个顶点上三 条棱的平方和:AC12 = AB2 + AC2 + AA12 ⑵长方体的一条对角线AC1与过定点A的三条棱所成图1-2 长方体

的角分别是α、β、γ,那么: cos2α + cos2β + cos2γ = 1 sin2α + sin2β + sin2γ = 2 ⑶ 长方体的一条对角线AC1与过定点A的相邻三个面所组成的角分别为α、β、γ,则: cos2α + cos2β + cos2γ = 2 sin2α + sin2β + sin2γ = 1 棱柱的侧面展开图:正n棱柱的侧面展开图是由n个全等矩形组成的以底面周长和侧棱为邻边的矩形。 棱柱的面积和体积公式 S直棱柱侧面 = c·h (c为底面周长,h为棱柱的高) S直棱柱全 = c·h+ 2S底 V棱柱 = S底·h 2 圆柱的结构特征 2-1 圆柱的定义:以矩形的一边所在的直线 为旋转轴,其余各边旋转而形成的曲面所围成 的几何体叫圆柱。 图1-3 圆柱 2-2 圆柱的性质 ⑴上、下底及平行于底面的截面都是等圆; ⑵过轴的截面(轴截面)是全等的矩形。 2-3 圆柱的侧面展开图:圆柱的侧面展开图是以底面周长和母线长为邻边的矩形。 2-4 圆柱的面积和体积公式 S圆柱侧面= 2π·r·h (r为底面半径,h为圆柱的高) S圆柱全= 2π r h + 2π r2 V圆柱 = S底h = πr2h 3 棱锥的结构特征 3-1 棱锥的定义 ⑴棱锥:有一个面是多边形,其余各面是 有一个公共顶点的三角形,由这些面所围成 的几何体叫做棱锥。

高考文科数学 立体几何大题-知识点、考点及解题方法

立体几何大题题型及解题方法 立体几何大题一般考以下五个方面: 一、平行位置关系的证明 1、证明线面平行(重点) 解题方法:(1)线面平行判定定理;(2)面面平行的性质定理。 2、证明面面平行 解题方法:(1)面面平行的判定定理;(2)面面平行判定定理的推论;(3)垂直于同一直线的两平面平行;(4)平行平面的传递性。 3、平行位置关系的探索 (1)对命题条件的探索;(2)对命题结论的探索;(3)通过翻折来探索。 二、垂直位置关系的证明 1、证明线线垂直 解题方法: 2、证明线面垂直(重点) 解题方法: 3、证明面面垂直 4、垂直位置关系的探索 (1)对命题条件的探索;(2)对命题结论的探索;(3)通过翻折来探索。 三、求空间距离

1、点到平面的距离 解题方法: 2、空间线段长 解题方法:(1)解三角形法;(2)列方程法。 四、求几何体体积 五、求空间角 1、异面直线所成的角 2、直线与平面所成的角 考点一:如何判断空间中点、线、面的位置关系(排除法)

考点二:平行位置关系的证明 证明题一般的解题步骤: 一、根据题目的问题,确定要证明什么;根据题目的条件,确定用什么证明方法, 如果无法确定,则要通过逆向思维来分析题目; 二、看题目是否需要作辅助线(创造条件),证明平行位置问题一般作的辅助线是连等 分点,特别是中点; 三、根据确定的证明方法,看该方法需要多少个条件,然后看题目给的条件通过什 么方式给,如果是间接条件则需要推理证明得出,如果是直接条件或隐含条件则直接罗列; 四、准备好条件后,再次检查条件是否都满足,是否都罗列了,最后得出结论; 五、规范书写答案过程:一般过程为1、作辅助线;2、准备间接条件;3、罗列直接

2020高考数学专题复习----立体几何专题

空间图形的计算与证明 一、近几年高考试卷部分立几试题 1、(全国 8)正六棱柱 ABCDEF -A 1B 1C 1D 1E 1F 1 底面边长为 1, 侧棱长为 2 ,则这个棱柱的侧面对角线 E 1D 与 BC 1 所成的角是 ( ) A 、90° B 、60° C 、45° D 、30° [评注]主要考查正六棱柱的性质,以及异面直线所成角的求法。 2、(全国 18)如图,正方形ABCD 、ABEF 的边长都是 1,而且 平面 ABCD 、ABEF 互相垂直,点 M 在 AC 上移动,点 N 在 BF C 上移动,若 CM=NB=a(0

的底面是边长为a的正方形,PB⊥面ABCD。 (1)若面PAD与面ABCD所成的二面角为60°, 求这个四棱锥的体积; (2)证明无论四棱锥的高怎样变化,面PAD与面 PCD所成的二面角恒大于90°。 [评注]考查线面关系和二面角概念,以及空间想象力和逻辑推理能力。 4、(02全国文22)(一)给出两块面积相同的正三角形纸片,要求用其中一块剪拼成一个正三棱锥模型,使它们的全面积都与原三角形面积相等,请设计一种剪拼法,分别用虚线标示在图(1)(2)中,并作简要说明。 (3) (1)(2) (二)试比较你剪拼的正三棱锥与正三棱柱的体积的大小。(三)如果给出的是一块任意三角形的纸片,如图(3)要求剪拼成一个直三棱柱模型,使它的全面积与给出的三角形面积相等,请设计一种剪拼方法,用虚线标出在图3中,并作简要说明。

用向量方法解立体几何题(老师用)

用向量方法求空间角和距离 在高考的立体几何试题中,求角与距离是常考查的问题,其传统的“三步曲”解法:“作图、证明、解三角形”,作辅助线多、技巧性强,是教学和学习的难点.向量进入高中教材,为立体几何增添了活力,新思想、新方法与时俱进,本专题将运用向量方法简捷地解决这些问题. 1 求空间角问题 空间的角主要有:异面直线所成的角;直线和平面所成的角;二面角. (1)求异面直线所成的角 设a 、b 分别为异面直线a 、b 的方向向量, 则两异面直线所成的角α=arccos |||||| a b a b (2)求线面角 设l 是斜线 l 的方向向量,n 是平面α的法向量, 则斜线l 与平面α所成的角α=arcsin |||||| l n l n (3)求二面角 法一、在α内a l ⊥,在β内b l ⊥,其方向如图,则二面角l αβ--的平面角α=arccos |||| a b a b

法二、设12,,n n 是二面角l αβ --的两个半平面的法向量, 其方向一个指向内侧,另一个指向外侧,则二面角l α β --的平面角α=12 12arccos |||| n n n n 2 求空间距离问题 构成空间的点、线、面之间有七种距离,这里着重介绍点面距离的求法,象异面直线间的距离、线面距离;面面距离都可化为点面距离来求. (1)求点面距离 法一、设n 是平面α的法向量,在α内取一点B, 则 A 到α的距离|| |||cos ||| AB n d AB n θ== 法二、设A O α ⊥于O,利用A O α ⊥和点O 在α内 的向量表示,可确定点O 的位置,从而求出||A O . (2)求异面直线的距离 法一、找平面β使b β?且a β ,则异面直线a 、b 的距离就转化为直线a 到平面β的距离,又转化为点A 到平面β的距离. 法二、在a 上取一点A, 在b 上取一点B, 设a 、b 分别 为异面直线a 、b 的方向向量,求n (n a ⊥ ,n b ⊥ ),则 异面直线a 、b 的距离|| |||cos ||| AB n d AB n θ== (此方法移植 于点面距离的求法).

立体几何-2009-2017全国高中数学联赛分类汇编

2009-2017全国高中数学联赛分类汇编第09讲:立体几何 1、(2010一试7)正三棱柱111C B A ABC -的9条棱长都相等,P 是1CC 的中点,二面角α=--11B P A B ,则=αsin 【答案】4 【解析】 O E P 1B 1 A 1 C B A 设分别与平面P BA 1、平面P A B 11垂直的向量是),,(111z y x m =、),,(222z y x n =,则 ???? ?=++-=?=+-=?,03, 022111111z y x z x BA ???? ?=-+-=?=-=?, 03, 022221211z y x B x A B n 由此可设)3,1,0(),1,0,1(==,所以cos m n m n α?=? ,即 2cos cos αα=?= .所以4 10sin =α. 解法二:如图,PB PA PC PC ==11, . 设B A 1与1AB 交于点,O 则1111,,OA OB OA OB A B AB ==⊥ . 11,,PA PB PO AB =⊥因为 所以 从而⊥1AB 平面B PA 1 . 过O 在平面B PA 1上作P A OE 1⊥,垂足为E .

连结E B 1,则EO B 1∠为二面角11B P A B --的平面角.设21=AA ,则易求得 3,2,5111== ===PO O B O A PA PB . 在直角O PA 1?中,OE P A PO O A ?=?11,即5 6,532= ∴?= ?OE OE . 11B O B E =∴===又.4 10 5 542sin sin 111= ==∠=E B O B EO B α. 2、(2011一试6)在四面体ABCD 中,已知?=∠=∠=∠60CDA BDC ADB ,3==BD AD ,2=CD ,则四面体ABCD 的外接球的半径为 【解析】 因为?=∠=∠=∠60ADB CDB CDA ,设CD 与平面ABD 所成角为θ,可求得3 2sin ,3 1cos = = θθ. 在△DMN 中,332 33232,121=??=?=== DP DN CD DM .学科*网 由余弦定理得231312)3(1222=? ??-+=MN , 故2=MN .四边形DMON 的外接圆的直径 33 22sin === θ MN OD .故球O 的半径3=R . 3、(2012一试5)设同底的两个正三棱锥P ABC -和Q ABC -内接于同一个球.若正三棱锥P ABC -的

2021高考数学立体几何专题

专题09立体几何与空间向量选择填空题历年考题细目表 题型年份考点试题位置 单选题2019 表面积与体积2019年新课标1理科12 单选题2018 几何体的结构特征2018年新课标1理科07 单选题2018 表面积与体积2018年新课标1理科12 单选题2017 三视图与直观图2017年新课标1理科07 单选题2016 三视图与直观图2016年新课标1理科06 单选题2016 空间向量在立体几何中的应 用2016年新课标1理科11 单选题2015 表面积与体积2015年新课标1理科06 单选题2015 三视图与直观图2015年新课标1理科11 单选题2014 三视图与直观图2014年新课标1理科12 单选题2013 表面积与体积2013年新课标1理科06 单选题2013 三视图与直观图2013年新课标1理科08 单选题2012 三视图与直观图2012年新课标1理科07 单选题2012 表面积与体积2012年新课标1理科11 单选题2011 三视图与直观图2011年新课标1理科06 单选题2010 表面积与体积2010年新课标1理科10 填空题2017 表面积与体积2017年新课标1理科16 填空题2011 表面积与体积2011年新课标1理科15 填空题2010 三视图与直观图2010年新课标1理科14 历年高考真题汇编 1.【2019年新课标1理科12】已知三棱锥P﹣ABC的四个顶点在球O的球面上,P A=PB=PC,△ABC是边长为2的正三角形,E,F分别是P A,AB的中点,∠CEF=90°,则球O的体积为() A.8πB.4πC.2πD.π 2.【2018年新课标1理科07】某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为()

利用法向量解立体几何题

利用法向量解立体几何题 一、运用法向量求空间角 向量法求空间两条异面直线a, b 所成角θ,只要在两条异面直线a, b 上各任取一个向量 ''AA BB 和,则角<','AA BB >=θ或π-θ,因为θ是锐角,所以cos θ= '''' AA BB AA BB ??, 不需 要用法向量。 1、运用法向量求直线和平面所成角 设平面α的法向量为n =(x, y, 1),则直线AB 和平面α所成的角θ的正弦值为 sin θ= cos( 2 π -θ) = |cos| = AB AB n n ?? 2、运用法向量求二面角 设二面角的两个面的法向量为12,n n ,则<12,n n >或π-<12,n n >是所求角。这时要借助图形来判断所求角为锐角还是钝角,来决定<12,n n >是所求,还是π-<12,n n >是所求角。 二、运用法向量求空间距离 1、求两条异面直线间的距离 设异面直线a 、b 的公共法向量为(,,)n x y z =,在a 、b 上任取一点A 、B ,则异面直线a 、b 的距离 d =AB ·cos ∠BAA ' = || || AB n n ? 略证:如图,EF 为a 、b 的公垂线段,a '为过F 与a 平行的直线, 在a 、b 上任取一点A 、B ,过A 作AA '// EF ,交a '于A ' , A

则?ˉ //AA n ,所以∠BAA ' =<,BA n >(或其补角) ∴异面直线a 、b 的距离d =AB ·cos ∠BAA ' = || || AB n n ? * 其中,n 的坐标可利用a 、b 上的任一向量,a b (或图中的,AE BF ),及n 的定义得 0n a n a n b n b ??⊥?=?????⊥?=??? ? ① 解方程组可得n 。 2、求点到面的距离 求A 点到平面α的距离,设平面α的法向量法为(,,1)n x y =,在α内任取一点B ,则A 点到平面α的距离为 d = || || AB n n ?,n 的坐标由n 与平面α内的两个不共线向量的垂直关系,得到方程组(类似于前面所述, 若方程组无解,则法向量与XOY 平面平行,此时可改设 (1,,0)n y =,下同)。 3、求直线到与直线平行的平面的距离 求直线a 到平面α的距离,设平面α的法向量法为(,,1)n x y =,在直线a 上任取一点A , 在平面α内任取一点B ,则直线a 到平面α的距离 d = || || AB n n ? 4、求两平行平面的距离 设两个平行设平面α、β的公共法向量法为(,,1)n x y =,在平面α、β内各任取一点A 、 B ,则平面α到平面β的距离 d = || || AB n n ? 三、证明线面、面面的平行、垂直关系 设平面外的直线a 和平面α、β,两个面α、β的法向量为12,n n ,则 1a//a n α?⊥ 1a a//n α⊥? 12////n n αβ? 12n n αβ⊥?⊥

高中数学立体几何知识点总结

高中数学之立体几何 平面的基本性质 公理1 如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内. 公理2 如果两个平面有一个公共点,那么它们有且只有一条通过这个点的公共直线. 公理3 经过不在同一直线上的三个点,有且只有一个平面. 根据上面的公理,可得以下推论. 推论1 经过一条直线和这条直线外一点,有且只有一个平面. 推论2 经过两条相交直线,有且只有一个平面. 推论3 经过两条平行直线,有且只有一个平面. 空间线面的位置关系 共面平行—没有公共点 (1)直线与直线相交—有且只有一个公共点 异面(既不平行,又不相交) 直线在平面内—有无数个公共点 (2)直线和平面直线不在平面内平行—没有公共点 (直线在平面外) 相交—有且只有一公共点 (3)平面与平面相交—有一条公共直线(无数个公共点) 平行—没有公共点 异面直线的判定 证明两条直线是异面直线通常采用反证法. 有时也可用定理“平面内一点与平面外一点的连线,与平面内不经过该点的直线是异面直线”. 线面平行与垂直的判定 (1)两直线平行的判定 ①定义:在同一个平面内,且没有公共点的两条直线平行. ②如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行,即若a∥α,aβ,α∩β=b,则a∥b. ③平行于同一直线的两直线平行,即若a∥b,b∥c,则a∥c. ④垂直于同一平面的两直线平行,即若a⊥α,b⊥α,则a∥b ⑤两平行平面与同一个平面相交,那么两条交线平行,即若α∥β,α∩γ,β∩γ=b,则a∥b ⑥如果一条直线和两个相交平面都平行,那么这条直线与这两个平面的交线平行,即若α∩β=b,a∥α,a∥β,则a∥b. (2)两直线垂直的判定

用向量方法解立体几何题

用向量方法求空间角和距离 前言: 在高考的立体几何试题中,求角与距离是常考查的问题,其传统的“三步曲”解法:“作图、证明、解三角形”,作辅助线多、技巧性强,是教学和学习的难点.向量进入高中教材,为立体几何增添了活力,新思想、新方法与时俱进,本专题将运用向量方法简捷地解决这些问题. 1.求空间角问题 空间的角主要有:异面直线所成的角;直线和平面所成的角;(平面和平面所成的角)二面角. (1)求异面直线所成的角 设a r 、b r 分别为异面直线a 、b 的方向向量, 则两异面直线所成的角α=arccos ||||||a b a b r r g r r (2)求线面角 设l r 是斜线l 的方向向量,n r 是平面α的法向量, 与平面α所成的角α=arcsin |||||| l n l n r r g r r 则斜线l (3)求二面角

方法一:在α内a r l ⊥,在β内b r l ⊥,其方向如图,则二面角l αβ--的平面角 α=arccos |||| a b a b r r g r r 方法二:设12,,n n u r u u r 是二面角l αβ--的两个半平面的法向量,其方向一个指向内侧,另一个指向外侧,则二面角l αβ--的平面角 α=1212arccos |||| n n n n u r u u r g u r u u r 2.求空间距离问题 构成空间的点、线、面之间有七种距离,这里着重介绍点面距离的求法,像异面直线间的 距离、线面距离、面面距离都可化为点面距离来求. (1)求点面距离 方法一:设n r 是平面α的法向量,在α内取一点B, 则 A 到 α的距离|| |||cos ||| AB n d AB n θ==u u u r r u u u r g r 方法二:设AO α⊥于O,利用AO α⊥和点O 在α内 的向量表示,可确定点O 的位置,从而求出||AO uuu r . (2)求异面直线的距离 方法一:找平面β使b β?且a βP ,则异面直线a 、b 的距离就转化为直线a 到平面β的距离,又转化为点A 到平面β的距离. a r 、 b r 分别为异面直线a 、b 的方向 法二:在a 上取一点A, 在b 上取一点B, 设

高三数学立体几何专题复习课程

高三数学立体几何专 题

专题三 立体几何专题 【命题趋向】高考对空间想象能力的考查集中体现在立体几何试题上,着重考查空 间点、线、面的位置关系的判断及空间角等几何量的计算.既有以选择题、填空题形式出现的试题,也有以解答题形式出现的试题.选择题、填空题大多考查概念辨析、位置关系探究、空间几何量的简单计算求解,考查画图、识图、用图的能力;解答题一般以简单几何体为载体,考查直线与直线、直线与平面、平面与平面的位置关系,以及空间几何量的求解问题,综合考查空间想象能力、推理论证能力和运算求解能力.试题在突出对空间想象能力考查的同时,关注对平行、垂直关系的探究,关注对条件或结论不完备情形下的开放性问题的探究. 【考点透析】立体几何主要考点是柱、锥、台、球及其简单组合体的结构特征、三 视图、直观图,表面积体积的计算,空间点、直线、平面的位置关系判断与证明,(理科)空间向量在平行、垂直关系证明中的应用,空间向量在计算空间角中的应用等. 【例题解析】 题型1 空间几何体的三视图以及面积和体积计算 例1(2008高考海南宁夏卷)某几何体的一条棱长为7,在该几何体的正视图中,这条棱的投影是长为6的线段,在该几何体的侧视图与俯视图中,这条棱的投影分别是长为a 和b 的线段,则a b +的最大值为 A . 22 B . 32 C . 4 D . 52 分析:想像投影方式,将问题归结到一个具体的空间几何体中解决. 解析:结合长方体的对角线在三个面的投影来理解计算,如图设长方体的 高宽高分别为,,m n k = =1n ?=, a = b =,所以22(1)(1)6a b -+-= 228a b ?+=,22222()282816a b a ab b ab a b +=++=+≤++=∴4 a b ?+≤当且仅当2a b ==时取等号.

高中数学立体几何大题练习(文科)

立体几何大题练习(文科): 1.如图,在四棱锥S﹣ABCD中,底面ABCD是梯形,AB∥DC,∠ABC=90°,AD=SD,BC=CD=,侧面SAD⊥底面ABCD. (1)求证:平面SBD⊥平面SAD; (2)若∠SDA=120°,且三棱锥S﹣BCD的体积为,求侧面△SAB的面积. 【分析】(1)由梯形ABCD,设BC=a,则CD=a,AB=2a,运用勾股定理和余弦定理,可得AD,由线面垂直的判定定理可得BD⊥平面SAD,运用面面垂直的判定定理即可得证; (2)运用面面垂直的性质定理,以及三棱锥的体积公式,求得BC=1,运用勾股定理和余弦定理,可得SA,SB,运用三角形的面积公式,即可得到所求值.【解答】(1)证明:在梯形ABCD中,AB∥DC,∠ABC=90°,BC=CD=, 设BC=a,则CD=a,AB=2a,在直角三角形BCD中,∠BCD=90°, 可得BD=a,∠CBD=45°,∠ABD=45°, 由余弦定理可得AD==a, 则BD⊥AD, 由面SAD⊥底面ABCD.可得BD⊥平面SAD, 又BD?平面SBD,可得平面SBD⊥平面SAD; (2)解:∠SDA=120°,且三棱锥S﹣BCD的体积为, 由AD=SD=a, 在△SAD中,可得SA=2SDsin60°=a, △SAD的边AD上的高SH=SDsin60°=a, 由SH⊥平面BCD,可得 ×a××a2=,

解得a=1, 由BD⊥平面SAD,可得BD⊥SD, SB===2a, 又AB=2a, 在等腰三角形SBA中, 边SA上的高为=a, 则△SAB的面积为×SA×a=a=. 【点评】本题考查面面垂直的判定定理的运用,注意运用转化思想,考查三棱锥的体积公式的运用,以及推理能力和空间想象能力,属于中档题. 2.如图,在三棱锥A﹣BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E、F(E与A、D不重合)分别在棱AD,BD上,且EF⊥AD. 求证:(1)EF∥平面ABC; (2)AD⊥AC. 【分析】(1)利用AB∥EF及线面平行判定定理可得结论; (2)通过取线段CD上点G,连结FG、EG使得FG∥BC,则EG∥AC,利用线面垂直的性质定理可知FG⊥AD,结合线面垂直的判定定理可知AD⊥平面EFG,从而可得结论. 【解答】证明:(1)因为AB⊥AD,EF⊥AD,且A、B、E、F四点共面,

用向量方法解立体几何题

用向量方法求空间角和距离前言: 在高考的立体几何试题中,求角与距离是常考查的问题,其传统的“三步曲”解法:“作图、证明、解三角形”,作辅助线多、技巧性强,是教学和学习的难点.向量进入高中教材,为立体几何增添了活力,新思想、新方法与时俱进,本专题将运用向量方法简捷地解决这些问题. 1.求空间角问题 空间的角主要有:异面直线所成的角;直线和平面所成的角;(平面和平面所成的角)二面角. (1)求异面直线所成的角 设a 、b 分别为异面直线a 、b 的方向向量, 则两异面直线所成的角α=arccos | |||||a b a b (2)求线面角 设l 是斜线l 的方 向向量,n 是平面α的法向量, α所成的角α=arcsin ||||||l n l n 则斜线l 与平面 (3)求二面角 方法一:在α内a l ⊥,在β内b l ⊥,其方向如图,则二面角l αβ --的平面角α=arccos |||| a b a b 12,,n n 是二面角l αβ--的两个半平面的方法二:设 法向量,其方向 一个指向内侧,另一个指向外侧,则二的平面角α=1212arccos |||| n n n n 面角l αβ--2.求空间距离问题 构成空间的点、线、面之间有七种距离,这里着重介绍点面距离的求法,像异面直线间的距离、线面距离、面面距离都可化为点面距离来求. (1)求点面距离 方法一:设n 是平面α的法向量,在α内取一点B, 则 A 到

α的距离|||||cos ||| AB n d AB n θ== 方法二:设AO α⊥于O,利用AO α⊥和点O 在α内 的向量表示, 可确定点O 的位置,从而求出||AO . (2)求异面直线的距离 方法一:找平面β使b β?且a β,则异面直线a 、b 的距离就 转化为直线a 到平面β的距离,又转化为点A 到平面β的距离. 方法二:在a 上取一点A, 在b 上 取一点B, 设a 、b 分别为异面直 线a 、b 的方向向量,求n (n a ⊥,n b ⊥),则异面直线a 、b 的距离|||||cos |||AB n d AB n θ==(此方法移植于点面距离的求法). 例1.如图,在棱长为2的正方体1111ABCD A B C D -中,E 、F 分别是 棱1111,A D A B 的中点. (Ⅰ)求异面直线1DE FC 与所成的角; (II )求1BC 和面EFBD 所成的角; (III )求1B 到面EFBD 的距离 解:(Ⅰ)记异面直线1DE FC 与所成的角为α, 则α等于向量1DE FC 与的夹角或其补角, 图建立空间坐标系D xyz -, (II )如1 1||||111111cos ||()()|||||| 222||,arccos DE FC DE FC DD D E FB B C DE FC αα∴=++=-==∴=

(完整)2019-2020年高考数学大题专题练习——立体几何(一)

2019-2020年高考数学大题专题练习——立体几何(一) 1.如图所示,四棱锥P ABCD -中,底面ABCD 为正方形,⊥PD 平面ABCD , 2PD AB ==,点,,E F G 分别为,,PC PD BC 的中点. (1)求证:EF PA ⊥; (2)求二面角D FG E --的余弦值. 2.如图所示,该几何体是由一个直角三棱柱ADE BCF -和一个正四棱锥P ABCD -组合而成,AF AD ⊥,2AE AD ==. (1)证明:平面⊥PAD 平面ABFE ; (2)求正四棱锥P ABCD -的高h ,使得二面角C AF P --的余弦值是 22 .

3.四棱锥P ABCD -中,侧面PDC是边长为2的正三角形,且与底面垂直,底面ABCD是 面积为ADC ∠为锐角,M为PB的中点. (Ⅰ)求证:PD∥面ACM. (Ⅱ)求证:PA⊥CD. (Ⅲ)求三棱锥P ABCD -的体积. 4.如图,四棱锥S ABCD -满足SA⊥面ABCD,90 DAB ABC ∠=∠=?.SA AB BC a ===,2 AD a =. (Ⅰ)求证:面SAB⊥面SAD. (Ⅱ)求证:CD⊥面SAC. S B A D M C B A P D

5.在四棱锥P ABCD -中,底面ABCD 为矩形,测棱PD ⊥底面ABCD ,PD DC =,点E 是 BC 的中点,作EF PB ⊥交PB 于F . (Ⅰ)求证:平面PCD ⊥平面PBC . (Ⅱ)求证:PB ⊥平面EFD . 6.在直棱柱111ABC A B C -中,已知AB AC ⊥,设1AB 中点为D ,1A C 中点为E . (Ⅰ)求证:DE ∥平面11BCC B . (Ⅱ)求证:平面11ABB A ⊥平面11ACC A . E D A B C C 1 B 1 A 1 D A B C E F P

高考数学专题 立体几何专题

专题三 立体几何专题 【命题趋向】高考对空间想象能力的考查集中体现在立体几何试题上,着重考查空间点、线、面的位置关系的判断及空间角等几何量的计算.既有以选择题、填空题形式出现的试题,也有以解答题形式出现的试题.选择题、填空题大多考查概念辨析、位置关系探究、空间几何量的简单计算求解,考查画图、识图、用图的能力;解答题一般以简单几何体为载体,考查直线与直线、直线与平面、平面与平面的位置关系,以及空间几何量的求解问题,综合考查空间想象能力、推理论证能力与运算求解能力.试题在突出对空间想象能力考查的同时,关注对平行、垂直关系的探究,关注对条件或结论不完备情形下的开放性问题的探究. 【考点透析】立体几何主要考点就是柱、锥、台、球及其简单组合体的结构特征、三视图、直观图,表面积体积的计算,空间点、直线、平面的位置关系判断与证明,空间向量在平行、垂直关系证明中的应用,空间向量在计算空间角中的应用等.【例题解析】 题型1 空间几何体的三视图以及面积与体积计算 例 1 某几何体的一条棱长为7,在该几何体的正视图中,这条棱的投影就是长为6的线段,在该几何体的侧视图与俯视图中,这条棱的投影分别就是长为a 与b 的线段,则a b +的最大值为 A. 22 B. 32 C. 4 D. 5 2分析:想像投影方式,将问题归结到一个具体的空间几何体中解决. 解析:结合长方体的对角线在三个面的投影来理解计算,如图设长方体的高宽高分别为,,m n k ,由题意得2227m n k ++=,226m k +=1n ?=, 21k a +=,21m b +=,所以22(1)(1)6 a b -+-=228a b ?+=,22222()282816a b a ab b ab a b +=++=+≤++=∴4a b ?+≤当且仅当2a b ==时取等号. 点评:本题就是高考中考查三视图的试题中难度最大的一个,我们通过移动三个试图把问题归结为长方体的一条体对角线在三个面上的射影,使问题获得了圆满的解决. 例2下图就是一个几何体的三视图,根据图中数据,可得该几何体的表面积就是 A.9π B.10π C.11π D.12π

高中数学立体几何重要知识点(经典)

立体几何知识点 1、柱、锥、台、球的结构特征 (1)棱柱: 几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。 (2)棱锥 几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与 高的比的平方。 (3)棱台: 几何特征:①上下底面是相似的平行多边形 ②侧面是梯形 ③侧棱交于原棱锥的顶点 (4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成 几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。 (5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成 几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。 (6)圆台:定义:以直角梯形的垂直与底边的腰为旋转轴,旋转一周所成 几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。 (7)球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体 几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。 4、柱体、锥体、台体的表面积与体积 (1)几何体的表面积为几何体各个面的面积的和。 (2)特殊几何体表面积公式(c 为底面周长,h 为高,' h 为斜高,l 为母线) ch S =直棱柱侧面积 rh S π2=圆柱侧 '2 1ch S =正棱锥侧面积 rl S π=圆锥侧面积 ')(2 121h c c S +=正棱台侧面积 l R r S π)(+=圆台侧面积 ()l r r S +=π2圆柱表 ()l r r S +=π圆锥表 () 22R Rl rl r S +++=π圆台表 (3)柱体、锥体、台体的体积公式 V Sh =柱 2V S h r h π==圆柱 13V S h =锥 h r V 23 1π=圆锥 '1()3 V S S h =台 '2211()()33V S S h r rR R h π=+=++圆台 (4)球体的表面积和体积公式:V 球=343 R π ; S 球面=24R π

届高三文科数学立体几何空间角专题复习

届高三文科数学立体几何空间角专题复习 TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-

2015届高三文科数学立体几何空间角专题复习 考点1:两异面直线所成的角 例1.如图所示,在长方体1111ABCD A B C D -中,AB=AD=1,AA 1=2,M 是棱CC 1的中点 (Ⅰ)求异面直线A 1M 和C 1D 1所成的角的正切值; (Ⅱ)证明:平面ABM ⊥平面A 1B 1M 1 例2.(2010全国卷1文数)直三棱柱111ABC A B C -中,若 90BAC ∠=?,1AB AC AA ==,则异面直线1BA 与1AC 所成的 角等于( C ) (A) 30° (B) 45° (C) 60° (D) 90° 变式训练: 1.(2009全国卷Ⅱ文)已知正四棱柱1111ABCD A B C D -中,1AA =2AB ,E 为1AA 中点,则异面直线BE 与1CD 所形成角的余弦值为( C ) (A ) 1010 (B) 15 (C ) 31010 (D) 35 2.如图,直三棱柱111ABC A B C -,90BCA ?∠=,点1D 、1F 分别是11A B 、11A C 的中点, 1BC CA CC ==,则1BD 与1AF 所成角的余弦值是( ) A . 1030 B .21 C .15 30 D . 10 15 3.(2012年高考(陕西理))如图,在空间直角坐标系中有直三棱 111ABC A B C -,12CA CC CB ==,则直线1BC 与直线1AB 夹角的余弦值为 ( ) A . 55 B . 53 C . 5 5 D .35 第3题图 第4题图 第5题图 4.(2007全国Ⅰ·文)如图,正四棱柱1111ABCD A B C D -中,12AA AB =,则异面直线 1A B 与1AD 所成角的余弦值为( )

相关文档
相关文档 最新文档