文档库 最新最全的文档下载
当前位置:文档库 › 聚酰胺改性研究进展

聚酰胺改性研究进展

聚酰胺改性研究进展
聚酰胺改性研究进展

聚酰胺改性研究进展

摘要:聚酰胺(尼龙,英文缩写为PA)是通用工程塑料中产量最大、品种最多、用途最广、性能优良的基础树脂。具有很高的机械强度、熔点高、耐磨、耐油、耐热性能优良等优点,广泛应用于汽车、电子电气、机械等领域。但由于聚酰胺的吸水性较大,造成产品尺寸稳定性差,干态或低温下冲击强度低等缺点,也限制了其更广泛的应用。对其进行改性可以得到性能多样的产品,拓宽其应用领域。为此,人们对聚酰胺的改性进行了大量研究。本文对近些年来聚酰胺改性方面的研究进展进行综述。

关键词:PA6 聚酰胺-胺聚酰胺石墨N -甲基吡咯类聚酰胺

1. PA6的增容改性

聚酰胺6(PA6)具有优良的力学性能,并且耐磨性和自润滑性好,易成型加工,是应用极广的工程塑料。但PA6具有吸湿大、尺寸不稳定、成型收缩大的缺点。而聚对苯二甲酸丁二醇酯(PBT)具有刚度好、强度高、耐热老化性优异、耐有机溶剂性好、易加工成型等优点,同时也具有冲击韧性差、在高温、高湿环境下易分解等缺点。将两者制成合金,可改善PA6的吸水性和PBT的冲击脆性。陈兴江等人采用固体环氧树脂(EP)反应增容聚酰胺6/聚对苯二甲酸丁二醇酯(PA6/PBT)共混物。结果表明:EP的加入降低了共混物的界面张力,使分散相粒径明显细化;当PA6/PBT=80/20,EP含量为1~1.5份时,共混物的改性效果较好;当PA6用量少于30份或超过70份时,EP的加入可明显提高共混物的冲击性能和拉伸性能;随着EP的加入,共混物的流动性降低。并采用固体环氧树脂(EP)反应增容聚酰胺6/聚对苯二甲酸丁二醇酯(PA6/PBT)共混物。EP的加入降低了共混物的界面张力,使分散相粒径明显细化;当PA6/PBT=80/20,EP含量为1~1.5份时,共混物的改性效果较好;当PA6用量少于30份或超过70份时,EP的加入可明显提高共混物的冲击性能和拉伸性能;随着EP的加入,共混物的流动性降低。

2.OMMT改性PA6制备纳米复合材料

周雪琴等人采用环氧树脂改性MMT ,得到有机化改性的OMMT ,然后通过熔融插层法制备PA6/ OMMT 纳米复合材料,并利用X 射线衍射仪、透射电子显微镜、万能材料试验机等研究了纳米复合材料的形态结构、力学性能及热稳定性结果表明,经环氧树脂改性得到的OMMT 的层间距明显增加,从未改性的1. 22 nm 增加到 5. 13 nm ,并以纳米尺度分散于PA6 基体中;随着OMMT 含量的增加,PA6/ OMMT 复合材料的拉伸强度、弯曲强度和弯曲模量增加,热变形温度提高,拉伸强度可达76 MPa ,弯曲模量达到 3.462GPa,热变形温度为134 ℃;PA6/OMMT复合材料失重10%时的温度为422℃,比纯PA6 提高16 ℃,提高了PA6 的热稳定性。

3.改性聚酰胺-胺树枝状高分子

用乙二醇改性王持等人合成了PAMAM-PEG作为基因载体,PAMAM-PEG 细胞毒性能有效降低,但转染率也有所降低,引入少量(10%) PEG 改性的效果更为显著。王持等人以IDPI 为偶联剂,由相对分子量2000 的甲氧端基聚乙二醇

(mPEG-2k) 和5代聚酰胺-胺(PAMAM-G5)通过二步法合成了聚酰胺-胺-聚乙二醇(PAMAM-PEG)共聚物。MTT法的结果发现, PEG修饰后共聚物的细胞毒性明显降低, 随PEG 结合率的提高, 毒性下降更明显。凝胶阻滞电泳说明,PAMAM-PEG可以与DNA结合形成复合物。动态光散射的测定数据证明,当N/P≥50时,共聚物/DNA复合物的粒径在150~200 nm, zeta电位在10~25 mV。基因转染的结果表明,在N/P≤50时, PAMAM-PEG共聚物的基因转染率稍低于PAMAM-G5,但可以通过提高N/P 值或延长转染时间的方法来提高转染率。综合考虑毒性和转染率, PAMAM-PEG-13 比PAMAM-PEG-39 的改性效果更好。PAMAM 用PEG 改性后,细胞毒性明显降低,且随PEG 结合率的提高,毒性下降更明显。PAMAM-PEG 共聚物可以与DNA 自组装形成复合物,其粒径在200nm左右, zeta电位在10~25 mV,表现出良好的基因载体特性,在N/P≤50时,PAMAM-PEG共聚物的基因转染率稍低于PAMAM-G5, 但可以通过提高N/P值或延长转染时间的方法提高转染率。用二氧化硅改性,卢康等人以发散法合成了以SiO2为核的树枝状大分子聚酰胺胺(PAMAM),并用苯甲醛对端基为氨基的整代PAMAM 进行封端,制备了一种以SiO2为亲水硬核、希夫碱为末端基的PAMAM 疏水软壳的核-壳结构材料。红外光谱、紫外-可见吸收光谱证实了产物结构,亲水疏水性分析希夫碱为末端基的PAMAM接枝改性的SiO2具有较好的疏水性,同时具有较好的对铜离子吸附性能和抗菌性能。希夫碱为末端基的PAMAM 改性SiO2是一种核壳结构及亲水亲油性材料,PAMAM 接枝代数越高,则亲水亲油性能越好。

4.改性聚酰胺超细纤维

马兴元等人通过合理的超细纤维酶法水解改性技术,利用1398蛋白酶对聚酰胺超细纤维表面进行水解,以增加超细纤维上的亲水基团,改变纤维结构,改善超细纤维合成革的手感、透水汽性能和物理机械性能。研究结果表明:适宜的酶处理可以分散纤维束,并使纤维束的编织形态发生变化。能使聚酰胺超细纤维的手感得到了较大的改善。强烈的酶处理可使聚酰胺分子链发生断裂,使聚酰胺超细纤维的物理性能降低。经过适宜的酶处理以后,会使纤维表面的酰胺键适度水解,从而增加了纤维表面的亲水基团,起到了良好的增深作用,同时也使基布的透水汽性得到明显改善。经过酶法处理,可降低聚酰胺超细纤维的玻璃化转变温度。5.增强改性聚酰胺玻璃纤维增强。自20世纪30年代玻璃纤维增强塑料(俗称玻璃钢)发明以来,因其无毒、质轻、优良的机械强度、耐磨性及较好的耐腐蚀性、价格低廉和良好的可设计性等,在军事、建筑、船舶、汽车、机械、化工、仪表、汽车等工业中用于制造轴承、齿轮、泵叶及其他零件,尤其是在耐腐蚀化学领域得到了广泛应用。由于作为增强成分的玻璃纤维性价比高,尺寸稳定性好,耐腐蚀、耐热,易加工,近年来用玻璃纤维掺混改性工程塑料的研究日益广泛。玻璃纤维增强复合材料,是以聚合物为基体,以玻璃纤维为增强材料而制成的复合材料,综合了聚合物和玻璃纤维的性能。王艇以通用聚酰胺为基体,利用短切玻璃纤维(事先用硅烷偶联剂进行表面处理)对其进行共混改性。研究了玻纤含量分布对复合材料力学性能的影响,扫描电镜分析了玻璃纤维增强聚酰胺复合材料的断面特征。当玻璃纤维用量约为30%时,材料的拉伸强度、拉伸模量和弯曲强度、弯曲模量最好,这时的拉伸强度、弹性模量、弯曲强度和弯曲模量分别增长了45.8%、100.1%、57.1%和110.4%,冲击强度为5.3kJ?cm-2。玻璃纤维改善复合材料的界面状况,有提高聚酰胺复合材料力学性能的作用,因为玻纤表面能够与聚酰胺之间形成紧密的结合。玻璃微珠增强,梁文聪等人采用熔融共混挤出的方法,

制备了不同添加量的微米玻璃微珠(GB)填充聚酰胺66的复合材料,考察了玻璃微珠对聚酰胺66的力学性能及结晶特性的影响。结果表明,GB的加入改善了材料的结晶性能。当GB的添加质量分数小于4%时,复合材料的冲击强度与聚酰胺66相当,而硬度、拉伸强度大幅提高,其中GB含量2%时材料的综合性能较好。竹纤维增强。陈礼辉等人对竹纤维增强聚酰胺树脂复合材料界面改性剂及其界面改性机理进行研究,以聚乙二醇和马来酸酐为原料,用热催化法合成具有线型结构的羧化聚醚。通过红外光谱分析表明,在聚醚链上成功地接枝马来酸酐;经羧化聚醚界面改性剂改性后,羧化聚醚中的马来酸酐可与竹纤维中的羟基发生酯化反应;聚酰胺树脂端氨基和酰胺键中的亚氨基与羧化聚醚中马来酸酐发生酰胺化反应。经2%羧化聚醚改性后,竹纤维聚酰胺树脂复合材料强度性能指标和热变形温度均有大幅度地提高,竹纤维增强效果显著。

6.石墨对聚酰胺6 的改性

应宗荣等人采用表面处理剂对膨胀石墨(EG)进行表面处理,制备了聚酰胺6(PA6)/EG复合材料,考察了表面处理EG对PA6的改性效果,研究了复合材料流变性能与热性能,观察了复合材料形态结构。结果表明,偶联剂TX210,YDH2602和YDH2550处理EG的增强作用好;随着EG含量增加,复合材料拉伸强度先增加后下降,弯曲强度提高,缺口冲击强度下降,EG使复合材料剪切粘度增加,对热性能基本上没有影响。扫描电镜(SEM)观察发现,表面处理EG与PA6基体界面粘结良好,能大量以纳米石墨微片形式均匀地分散在PA6 基体中。

7.封闭聚氨酯改性PAE

李刚辉等人以咪唑为封闭剂制备出封闭聚氨酯(BPU),用BPU代替部分环氧氯丙烷(ECH)与聚酰胺多胺反应得到改性PAE纸张。增湿强剂(MPAE)。研究了BPU 封闭率、ECH添加量、助留剂及抄造系统pH值等因素对纸张性能的影响。结果表明,异氰酸酯基团比PAE分子中活性基团对提高纸张湿强性能更有效;w(ECH)为25.71%时,纸张湿抗张指数和湿强度保留率分别达到7108N?m/g和3316%;助留剂CPAM可间接提高MPAE的留着率;抄造系统的中(弱)碱性有利于发挥增湿强剂的应用性能。

8.N -甲基吡咯类聚酰胺与DNA的相互作用

DavidM.Chenoweth and Peter B .Dervan发现寡聚酰胺分子主要是通过反平行成对的N-甲基吡咯和N-甲基咪唑的氨基酸残基与DNA的碱基作用而对DNA进行识别的,其Py/Py配对识别A-T或T-A碱基对,而Py/Im和Im/Py配对分别识别C-G和G-C碱基对。寡聚酰胺分子中通常还含有氨基丙酸、氨基丁酸和N,N-二甲基氨基丙胺(Dp)。氨基丙酸和氨基丁酸的作用主要是增加分子的柔性,调节寡聚酰胺分子和DNA结合时的曲率,提高寡聚酰胺分子对DNA的亲和力。

参考文献

1.David M.Chenoweth and PeterB.Dervan,J.AM.CHEM. SOC. 2010,132,1 4521–14529

2.陈兴江,罗筑。刘一春,墓学鹏,吴建军,秦舒浩塑料科技2010.7.38

3.周雪琴,盛仲夷1,2,谢松桂2,申屠宝卿13,翁志学,中国塑料,2010.2

4.2

4.王持,潘仕荣*,吴红梅,温玉婷,曾昕,冯敏药学学报2011,46(1):102?108

5.卢康利,陈枫,杨晋涛,钟明强,科技通报,2010,5,26

6.马兴元,吕凌云,李哓,中国皮革第2010.3.39

7.王艇,化工技术与开发,2010,39.2

8.应宗荣,王志高,刘海生,廖逸婷,卞如民,现代塑料加工应2009,21,4

9.李刚辉,沈一丁,唐新,赖小娟,中国造纸学报,2009,124,

10.梁文聪,王冲,刘文志,吴水珠,刘述梅,赵建青,合成材料老化与应用2009,3,8

11.陈礼辉,李正红,杨文斌,福建林学院学报,2008,28(4):299-303

改性尼龙需要注意的问题点

聚酰胺俗称尼龙(Nylon),英文名称Polyamide(简称PA),是分子主链上含有重复酰胺基团—[NHCO]—的热塑性树脂总称。包括脂肪族PA,脂肪—芳香族PA和芳香族PA。其中,脂肪族PA品种多,产量大,应用广泛,其命名由合成单体具体的碳原子数而定。是美国著名化学家卡罗瑟斯和他的科研小组发明的。 尼龙中的主要品种是尼龙6和尼龙66,占绝对主导地位,其次是尼龙11,尼龙12,尼龙610,尼龙612,另外还有尼龙1010,尼龙46,尼龙7,尼龙9,尼龙13,新品种有尼龙6I,尼龙9T和特殊尼龙MXD6(阻隔性树脂)等,尼龙的改性品种数量繁多,如增强尼龙,单体浇铸尼龙(MC尼龙),反应注射成型(RIM)尼龙,芳香族尼龙,透明尼龙,高抗冲(超韧)尼龙,电镀尼龙,导电尼龙,阻燃尼龙,尼龙与其他聚合物共混物和合金等,满足不同特殊要求,广泛用作金属,木材等传统材料代用品,作为各种结构材料。 尼龙是最重要的工程塑料,产量在五大通用工程塑料中居首位。 尼龙[1],是聚酰胺纤维(锦纶)是一种说法. 可制成长纤或短纤。 尼龙是美国杰出的科学家卡罗瑟斯(Carothers)及其领导下的一个科研小组研制出来的,是世界上出现的第一种合成纤维。尼龙的出现使纺织品的面貌焕然一新,它的合成是合成纤维工业的重大突破,同时也是高分子化学的一个重要里程碑。 1928年,美国最大的化学工业公司——杜邦公司成立了基础化学研究所,年仅32岁的卡罗瑟斯博士受聘担任该所的负责人。他主要从事聚合反应方面的研究。他首先研究双官能团分子的缩聚反应,通过二元醇和二元羧酸的酯化缩合,合成长链的、相对分子质量高的聚酯。在不到两年的时间内,卡罗瑟斯在制备线型聚合物特别是聚酯方面,取得了重要的进展,将聚合物的相对分子质量提高到10 000~25 000,他把相对分子质量高于10 000的聚合物称为高聚物(Superpolymer)。1930年,卡罗瑟斯的助手发现,二元醇和二元羧酸通过缩聚反应制取的高聚酯,其熔融物能像制棉花糖那样抽出丝来,而且这种纤维状的细丝即使冷却后还能继续拉伸,拉伸长度可达到原来的几倍,经过冷却拉伸后纤维的强度、弹性、透明度和光泽度都大大增加。这种聚酯的奇特性质使他们预感到可能具有重大的商业价值,有可能用熔融的聚合物来纺制纤维。然而,继续研究表明,从聚酯得到纤维只具有理论上的意义。因为高聚酯在100 ℃以下即熔化,特别易溶于各种有机溶剂,只是在水中还稍稳定些,因此不适合用于纺织。 随后卡罗瑟斯又对一系列的聚酯和聚酰胺类化合物进行了深入的研究。经过多方对比,选定他在1935年2月28日首次由己二胺和己二酸合成出的聚酰胺66(第一个6表示二胺中的碳原子数,第二个6表示二酸中的碳原子数)。这种聚酰胺不溶于普通溶剂,熔点为263 ℃,高于通常使用的熨烫温度,拉制的纤维具有丝的外观和光泽,在结构和性质上也接近天然丝,其耐磨性和强度超过当时任何一种纤维。从其性质和制造成本综合考虑,在已知聚酰胺中它是最佳选择。接着,杜邦公司又解决了生产聚酰胺66原料的工业来源问题,1938年10月27日正式宣布世界上第一种合成纤维诞生了,并将聚酰胺66这种合成纤维命名为尼龙(Nylon)。尼龙后来在英语中成了“从煤、空气、水或其他物质合成的,具有耐磨性和柔韧性、类似蛋白质化学结构的所有聚酰胺的总称”。 聚酰胺(尼龙) 聚癸二酸癸二胺(尼龙1010) 聚十一酰胺(尼龙11) 聚十二酰胺(尼龙12) 聚己内酰胺(尼龙6) 聚癸二酰乙二胺(尼龙610) 聚十二烷二酰乙二胺(尼龙612) 聚己二酸己二胺(尼龙66) CAS编码:32131-17-2

尼龙66注塑成型工艺 (1)

华侨大学 课程名称:增强增韧尼龙66汽车专用料姓名:彭儒 学号:9 专业:08高分子二班 任课教师:钱浩

前言: 尼龙是结晶型塑料,品种颇多,已达到130多种,应用于注塑加工的有尼龙6、尼龙66、尼龙610、尼龙1010以及共聚性尼龙、超韧性尼龙、玻璃纤维增强尼龙、矿物增强尼龙等等。世界市场中,应用量最大的是尼龙66。 尼龙最早在1889年首先由Gabriel和Maass 两人合成制得,但系统的研究并最终实现工业化实在1929年,由美国杜邦公司的Carothers着手进行的。1931年Carothers申请了第一篇尼龙专利,1935年首先制得尼龙66,1939年实现工业化。 尼龙66的应用领域一般在汽车、电子电器、化工设备、机械设备等方面。从最终用途看,汽车行业消耗的尼龙66占第一位,电子电器占第二位。大约有88%的尼龙66通过注射成型加工成各种制件,约12%的尼龙66则通过挤出、吹塑等成型加工成相应的制品。 由于尼龙66优良的耐热性、耐化学药品性、强度和加工方便等,因而在汽车工业得到了大量应用,目前几乎已能用于汽车的所有部位,如发动机部位,电器部位和车体部位。发动机部位包括进气系统和燃油系统,如发动机气缸盖罩、节气门、空气滤清器机器外壳,车用空气喇叭、车用空调软管、冷却风扇及其外壳、进水管、刹车油罐及灌盖,等等。车体部位零部件有:汽车挡泥板、后视镜架、保险杠、仪表盘、行李架、车门手柄、雨刷支架、安全带扣搭、车内各种装饰件等等。车内电器方面如电控门窗、连接器、保鲜盒、电缆扎线等。 工艺特点:

⑴吸水性尼龙66较易吸湿,如果长时间暴露在空气下,会吸收大气中的水分。吸水后会发生体积膨胀,影响制品的尺寸精度,如在注塑前吸收过量的水分时,其制作的外国外观和力学性质都会受损。 ⑵结晶性尼龙66为结晶性高聚物,一般在20%~30%之间。结晶度的高低与性能有关,结晶度高,拉伸强度、耐磨性、硬度、润滑性等性能有所提高,热膨胀系数和吸水性趋于下降。 ⑶热稳定性在熔点以上温度,约254℃,水分子会与尼龙66发生化学反应,使聚合物水解或裂解,使尼龙66变色,树脂分子量及其韧性相对减弱,流动性增大,不单带来加工上的困难,而且会对制品性能造成损害。注塑时喷嘴流涎,制件飞边严重。聚合物裂解产生的气体和从空气中吸收的水分,共同夹击制件,轻则在表面形成不光洁、银丝、斑纹、微孔、气泡,重则反生熔体膨胀无法成型或成型后机械强度下降。最后,经过这种水解裂解的尼龙,其性能完全不可还原,即使重新干燥也不能再次使用。 干燥好的原料如果随便在空气中露置,会迅速在空气中吸收水分而使干燥效果丧失殆尽。即使在加盖的机台料斗内,存放的时间也不宜太长,一般雨天不超过1h,晴天限制在3h之内。 尼龙66熔融温度虽然高,但当达到熔点后,其粘度远较一般热塑性塑料如聚苯乙烯等低很多,故成型时流动性不成问题,尼龙66的流变特性是剪切速率增加时其表观粘度下降不突出,加之熔融温度范围较窄,在3~5℃之间,所以高的料温无疑是顺利冲模的保证,而不在乎高的注射速度和压力。 ⑷流动性尼龙66熔体的粘度低,流动性大,容易冲模成型,对薄壁制品更是如此,而且制品在模内能迅速固化,模塑周期短。

尼龙工程材料的改性

尼龙工程材料的改性 摘要: 尼龙66是由Du pont公司于1935年研制成功的,1939年实现工业化,1956年开始作为工程塑料使用。它是国际上产量最大,应用最广的工程塑料之一,也是我国主要的尼龙产品。尼龙66优越的力学性能、耐磨性、自润滑性、耐腐蚀性等使其在汽车部件、机械部件、电子电器、胶粘剂以及包装材料及领域得到了广泛的应用。但尼龙66在使用过程中还存在许多不足之处,如成型周期长、脱模性能差、尺寸不稳定、易脆断、耐热性差,还有不透明性、溶解性差等。因此对尼龙66的改性受到人们的广泛关注。国内外对尼龙改性多集中在共混、填充、共缩聚、接枝共聚等技术领域。 1.尼龙改性的研究进展 对尼龙66的改性主要有接枝共聚、共混、增强和添加助剂等方法,使其向多功能方向发展。本实验主要从快速成型和缩短成型周期的角度出发来改善尼龙66的综合性能,并使其得到更广泛的应用。 1.1共混改性 在尼龙改性研究中,高分子合金是最常用的一种手段。其中尼龙合金在所有工程塑料合金中发展最快,其原因是与周期长、投资大的新PA基础品种的开发相比, 尼龙合金的工艺简单、成本低、使用性能良好,且能满足不同用户对多元化、高性能化和功能化的要求。国外各大公司均十分重视尼龙合金的开发,很多产品已经商品化并具有一定市场规模。就尼龙合金而言,主要的研究集中在以下几个方面。1.1.1尼龙与聚烯烃(PO)共混改性 聚酰胺(PA)和聚丙烯(PP)是一对性能不同且使用场合也不一样的聚合物,但通过熔融混合工艺可以克服两者的固有缺点,取其各自的特点,得到所需性能的合金材料。此类合金可以提高尼龙在低温、干态下的冲击强度和降低吸湿性,特别使尼龙与含有烃基的烯烃弹性体或弹性体接枝共聚物等组成的共混合金可以得到超韧性的尼龙。 在极性的聚酰胺树脂和非极性的聚烯烃树脂共混改性的时候,最重要的一个问题是两者之间的相容性。PA 和PO 是一对热力学不相容体系,该共混物呈现相分离的双相结构。根据聚合物共混理论,理想的体系应该是两组分部分既相容,又各自成相,相间存在一界面层,在层中两种聚合物的分子链相互扩散,有明显的浓度梯度。通过增大共混组分间的相容性,进而增强扩散,使相界面弥散,界面层厚度加大,是获得综合性能优异共混物的重要条件。

聚酰胺改性的意义

聚酰胺改性的意义,现状与发展趋势 摘要:聚酰胺(PA,俗称尼龙)是美国DuPont公司最先开发用于纤维的树脂,于1939年实现工业化。20世纪50年代开始开发和生产注塑制品,以取代金属满足下游工业制品轻量化、降低成本的要求。PA具有良好的综合性能,包括力学性能、耐热性、耐磨损性、耐化学药品性和自润滑性,且摩擦系数低,有一定的阻燃性,易于加工,适于用玻璃纤维和其它填料填充增强改性,提高性能和扩大应用范围。 关键词:聚酰胺树脂综合性能加工增强改性性能 引言 聚酰胺是通用工程塑料中产量最大、品种最多、用途最广、性能优良的基础树脂。具有很高的机械强度、熔点高、耐磨、耐油、耐热性能优良等优点,广泛应用于汽车、电子电气、机械等领域。但由于聚酰胺的吸水性较大,造成产品尺寸稳定性差,干态或低温下冲击强度低等缺点,也限制了其更广泛的应用。对其进行改性可以得到性能多样的产品,拓宽其应用领域。为此,人们对聚酰胺的改性进行了大量研究。 正文 聚酰胺由二元酸与二元胺或由氨基酸经缩聚而得,是分子链上含有重复酰胺基团-CONH-的树脂总称。在用作纤维时,我国称为锦纶。PA品种繁多,有PA6、PA66、PA11、PA12、PA46、PA610、PA1010、PA612和近几年开发的新品种PA6T,PA9T,特殊尼龙MXD6等,其中PA6和PA66占主导地位,占总量的80%以上。PA属于结晶型塑料,在相对宽的温度和湿度范围内具有良好的综合性能,如拉伸强度高、耐摩擦、耐化学性(油、脂肪、脂肪族和芳香族烃类)、良好的冲击强度和阻隔性,而在此范围内,也有其不足的方面就是吸湿性大、吸水率高。 未改性前,在20℃、65%RH下,PA6吸水率约3.5%,PA66为2.5%左右,PA610为1.5%~2.0%,PA12约为1%;但改性后,PA吸水率非常小,如PA6T、9T在水中饱和吸水率仅为3%;未改性PA在干态和低温下冲击强度低,韧性差,除PA11和PA12外,其余经紫外辐照后性能将大大下降。填充、增强是改性PA 最常用的方法,可以提高冲击性能、尺寸稳定性、耐热性、阻燃性,PA可通过填料、增强剂或添加增韧剂、润滑剂、热稳定剂、加工助剂和着色剂来改进和提高性能,或同时使用添加剂和改性剂进行改性。 由于尼龙具有很多的特性,因此,在汽车、电气设备、机械部构、交通器材、纺织、造纸机械等方面得到广泛应用。随着汽车的小型化、电子电气设备的高性能化、机械设备轻量化的进程加快,对尼龙的需求将更高更大。特别是尼龙作为结构性材料,对其强度、耐热性、耐寒性等方面提出了很高的要求。尼龙的固有缺点也是限制其应用的重要因素,特别是对于PA6、PA66两大品种来说,与PA46、PAl2等品种比具有很强的价格优势,虽某些性能不能满足相关行业发展的要求。因此,必须针对某一应用领域,通过改性,提高其某些性能,来扩大其应用领域。主要在以下几方面进行改性: ①改善尼龙的吸水性,提高制品的尺寸稳定性。 ②提高尼龙的阻燃性,以适应电子、电气、通讯等行业的要求。

聚酰胺特性

1.聚酰胺特性 聚酰胺(PA)具有品种多、产量大、应用广泛的特点,是五大工程塑料之一。但是,也由于聚酰胺品种繁多,在应用领域方面有些产品具有相似性,有些又有相当大的 差别,需要仔细区分。 聚酰胺(Polyamide)俗称尼龙,是分子主链上含有重复酰胺基团-[-NHCO-]-的热塑 性树脂总称。 尼龙中的主要品种是PA6和PA66,占绝对主导地位;其次是PA11、PA12、PA610、PA612,另外还有PA1010、PA46、PA7、PA9、PA13。新品种有尼龙6I、尼龙9T、特殊尼龙MXD6(阻隔性树脂)等;改性品种包括:增强尼龙、单体浇铸尼龙(MC尼龙)、反应注射成型(RIM)尼龙、芳香族尼龙、透明尼龙、高抗冲(超韧)尼龙、电镀尼龙、导电尼龙、阻燃尼龙、尼龙与其他聚合物共混物和合金等。 1.1.性能指标 尼龙为韧性角状半透明或乳白色结晶性树脂,作为工程塑料的尼龙分子量一般 为15000-30000。尼龙具有很高的机械强度,软化点高,耐热,摩擦系数低,耐磨损,具有自润滑性、吸震性和消音性,耐油,耐弱酸,耐碱和一般溶剂;电绝缘性好, 有自熄性,无毒,无臭,耐候性好等。尼龙与玻璃纤维亲合性十分良好,因而容易 增强。但是尼龙染色性差,不易着色。尼龙的吸水性大,影响尺寸稳定性和电性能,纤维增强可降低树脂吸水率,使其能在高温、高湿下工作。其中尼龙66的硬度、刚性最高,但韧性最差。尼龙的燃烧性为UL94V2级,氧指数为24-28。尼龙的分解温度﹥299℃,在449℃-499℃会发生自燃。尼龙的熔体流动性好,故制品壁厚可小到1mm。

1.2.性能特点与用途 1.2.1.PA6 物性:乳白色或微黄色透明到不透明角质状结晶性聚合物;可自由着色,韧性、耐磨性、自润滑性好、刚性小、耐低温,耐细菌、能慢燃,离火慢熄,有滴落、起泡现象。最高使用温度可达180℃,加抗冲改性剂后会降至160℃;用15%-50%玻纤增强,可提高至199℃,无机填充PA能提高其热变形温度。 加工:成型加工性极好,可注塑、吹塑、浇塑、喷涂、粉末成型、机加工、焊 接、粘接。 PA6是吸水率最高的PA,尺寸稳定性差,并影响电性能(击穿电压)。 应用:轴承、齿轮、凸轮、滚子、滑轮、辊轴、螺钉、螺帽、垫片、高压油管、 储油容器等。 1.2.2.PA66 物性:半透明或不透明的乳白色结晶聚合物,受紫外光照射会发紫白色或蓝白色光,机械强度较高,耐应力开裂性好,是耐磨性最好的PA,自润滑性优良,仅次于聚四氟乙烯和聚甲醛,耐热性也较好,属自熄性材料,化学稳定性好,尤其耐油性极佳,但易溶于苯酚,甲酸等极性溶剂,加碳黑可提高耐候性;吸水性大,因而 尺寸稳定性差。 加工:成型加工性好,可用于注塑、挤出、吹塑、喷涂、浇铸成型、机械加工、 焊接、粘接。 应用:与尼龙6基本相同,还可作把手、壳体、支撑架等。

尼龙66改性的最新研究进展

xx66改性的最新进展 第一章诸论 1.1xx66的概述 尼龙66是一种高档热塑性树脂,是制造化学纤维和工程塑料优良的聚合材料。它是高级合成纤维的原料,可广泛用于制作针织品、轮胎帘子线、滤布、绳索、渔网等。经过加工还可以制成弹力尼龙,更适合于生产民用仿真丝制品、泳衣、球拍及高级地毯等。尼龙66还是工程塑料的主要原料,用于生产机械零件,如齿轮润滑轴承等。也可以代替有色金属材料作机器的外壳。由于用它制成的工程塑料具有比重小,化学性能稳定,机械性能良好,电绝缘性能优越,易加工成型等众多优点,因此,被广泛应用于汽车、电子电器、机械仪器仪表等工业领域,其后续加工前景广阔。 尼龙66由己二胺和己二酸缩合制得,常见的尼龙是一种结晶性高分子,不同牌号、不同测试方法报道的尼龙66的熔点在250-271℃之间。由于尼龙66无定型部分的酞胺基易与水分子结合,常温下尼龙66的吸水率较高。与一般塑料相比,尼龙66的冲击韧性大,耐磨性优良,摩擦噪音小,另外,尼龙66对烃类溶剂,特别是汽油和润滑油的耐受力较强。尼龙66的90%应用于工业制品领域。 其中,尼龙在汽车工业中的用量占总用量的37%,其用途包括储油槽、汽缸盖、散热器、油箱、水箱、水泵叶轮、车轮盖、进气管、手柄、齿轮、轴承、轴瓦、外板、接线柱等。尼龙66的第二大应用领域是电子电器工业,消耗量占总量的22%,其用途包括电器外壳、各类插件、接线柱等。此外尼龙66也被广泛应用于文化办公用品、医疗卫生用品、工具、玩具等场合。 我国尼龙66的生产起步于60年代中期。1964年辽阳石油化纤公司引进了法国生产技术,建设了年产 4.6万吨的生产装置。1994年,我国第二个尼龙“生产装置开工建设,该装置引进日本的技术,年产尼龙66为

尼龙66的主要牌号与性能

尼龙66的主要牌号与性能 01.3.6.1国产尼龙66的主要性能指标 国内生产尼龙66的厂家有:黑龙江省尼龙厂、上海塑料制品十八厂、辽阳化纤工业总公司、太原合成纤维厂、神马集团、浙江衢州化工厂、宜兴太湖尼龙厂、江苏海安化工厂。其产品主要用制造各种机械、汽车、化工、电子电气装置的零部件,特别适合用于高强度或耐磨部件,如各种齿轮、滑轮、辊轴、轴承、泵体中叶轮、风箱叶片、高压密封圈、阀座、垫片、衬套、各种壳体、工具手柄、支撑架、电缆包层、汽车灯罩等。在电子仪器设备、继电器等电气设备中制造零件、电梯导轨、建筑装饰扶手等。在医疗器械、体育用品和日用品上也有广泛应用,如棒球棒、滑雪板等。也可制成薄膜后与铝箔等形成复合膜用于食品包装,如软包装饮料、罐头等。表01-73列出了几家企业的尼龙66产品指标。 表01-73 国产尼龙66的性能指标 01.3.6.2阻燃增强尼龙66的主要性能指标

目前,国内尚有许多厂家从事改性尼龙66树脂的生产。生产阻燃尼龙66和阻燃增强尼龙66的主要厂家有:黑龙江省尼龙厂、黑龙江省化工研究所、上海赛璐珞厂、广州莲花山工程塑料厂、江阴市永建化工有限公司等。阻燃尼龙66主要用于低压电器、机床电器、广播电视工业中,制造各种阻燃零件如调压器开关、仪器仪表外壳和电子电气连接器等;生产玻纤增强尼龙66的主要厂家有:黑龙江省尼龙厂、上海德胜塑料厂、广州莲花山工程塑料厂、苏州塑料一厂等。产品主要应用于低压电器工业,如交流接触器底座、线圈骨架、行程开关等各种要求耐火性能的介电零件中。黑龙江省化学研究所还生产防老化尼龙。其主要指标列于表01-74中。 表01-74 国产改性尼龙66树脂的主要性能指标 01.3.6.3杜邦公司系列尼龙66产品的基本性能指标 杜邦公司是主要的尼龙66生产厂家之一,其产品型号齐全,覆盖面广,满足各行各业对尼龙66树脂的不同性能要求,见表01-75。 表01-75 杜邦公司Zytel? 尼龙66树脂型号与用途

高分子论文综述(聚酰胺)

摘要 聚酰胺6的结构与性能之间存在相互关系,其加工方式多种多样,成型方式也多种多样,其加工工艺有六个方面需要注意。聚酰胺主要采用注塑和挤出。由于聚酞胺具有机械强度高、耐热性、耐磨性和耐油性优异等特点,已广泛应用于国民经济的许多领域。但由于其尚存在吸水性大、干态和低温冲击强度低等缺陷而限制了它在某些方面的应用。为此,国内外广泛开展了PA6的改性研究。 目前增强改性PA6主要研究有玻璃纤维、晶须、碳纳米管和热致液晶高分子材料增强改性聚酰胺6(PA6)的方法,并对其影响因素进行了分析。结果表明:4种增强材料均可提高PA6的力学性能;玻璃纤维是最常用的PA6增强材料,而短切玻纤因其易加工、成本低及良好的力学性能而被广泛应用。 PA6的应用市场广泛,未来PA6的研究方向将围绕低成本和高性能化、功能化不断发展。 关键词:聚酰胺6(PA6);加工工艺;增强改性;玻璃纤维;晶须;碳纳米管;热致液晶高分子材料;应用;低成本;功能化

目录 摘要 (2) 绪论 (4) 引言 (4) 一、PA6的结构与性能 (4) 二、PA6的加工 (6) 三、PA6的改性研究 (7) (一)改性研究的背景与意义 (7) (二)改性方向 (10) (三)增强改性PA6的研究进展 (11) 四、PA6的应用市场 (18) 五、PA6的发展展望 (21) 参考文献 (22)

绪论 引言 聚酰胺俗称尼龙(Nylon),英文名称Polyamid eP,它是大分子主链重复单元中含有酰胺基团的高聚物的总称。聚酰胺可由内酸胺开环聚合制得,也可由二元胺与二元酸缩聚等得到的。是美国DuPont 公司最先开发用于纤维的树脂,于1939年实现工业化。20世纪50年代开始开发和生产注塑制品,以取代金属满足下游工业制品轻量化、降低成本的要求。PA具有良好的综合性能,包括力学性能、耐热性、耐磨损性、耐化学药品性和自润滑性,且摩擦系数低,有一定的阻燃性,易于加工,适于用玻璃纤维和其它填料填充增强改性,提高性能和扩大应用范围。PA的品种繁多,有PA6、PA66、PAll、PAl2、PA46、PA610、PA612、PAl010等,以及近几年开发的半芳香族尼龙PA6T和特种尼龙等新品种。 而聚酰胺 6 ( PA6) 是由德国 Farben 公司的 P.Schlack 开发,并于 1943 年实现工业化生产的,因其具备优良的耐热性、机械性、耐磨性、耐化学性、易加工等特点,被普遍用于机械设备、化工设备、航空设备、冶金设备等制造业中,成为工程塑料中用量最大的材料。 一、PA6的结构与性能 聚酰胺PA6是部分结晶性聚合物。PA6的结晶密度1.24g/cm3,结晶度约20%一30%,Tg约48℃。聚酰胺分子间通过酰氨基形成氢键,这是其物性优秀的重要因素。PA6化学结构式如图1-1.

二聚酸型聚酰胺热熔胶的应用与改性研究进展

万方数据

万方数据

万方数据

万方数据

万方数据

二聚酸型聚酰胺热熔胶的应用与改性研究进展 作者:祝爱兰, 孙静, 施才财, ZHU Ai-lan, SUN Jing, SHI Cai-cai 作者单位:上海轻工业研究所有限公司研发中心,上海,200031 刊名: 中国胶粘剂 英文刊名:CHINA ADHESIVES 年,卷(期):2008,17(12) 被引用次数:4次 参考文献(32条) 1.殷锦捷;马海云聚酰胺热熔胶牯剂的应用及发展趋势[期刊论文]-中国胶粘剂 2003(01) 2.高国生改性010聚酰胺树脂合成聚酰胺热熔胶的研究 2004 3.钟明强;徐立新;王先进热熔胶的开发与应用进展[期刊论文]-浙江化工 2000(04) 4.潘耀民二聚酸聚酰胺树脂的合成及其在制鞋工业中的应用 1997(01) 5.曹建平二聚酸聚酰胺包头胶的研制[期刊论文]-中国胶粘剂 1997(05) 6.杜郢改性聚酰胺树脂的合成及其在热熔胶领域的应用[期刊论文]-江苏石油化工学院学报 2002(01) 7.杜郢;蔡华兵;杨恩华废弃PET聚酯/二聚酸聚酰胺共聚物的合成及过程分析[期刊论文]-化工进展 2007(12) 8.金旭东;杨云峰;胡国胜聚酰胺热熔胶性能研究及其应用[期刊论文]-中国胶粘剂 2007(11) 9.牛丽红;王桂香;李春归汽车灯用热熔胶的研究及性能表征[期刊论文]-粘接 2005(01) 10.杨秀云;刘晓秋新型车灯热熔胶的研制[期刊论文]-长春理工大学学报 2007(03) 11.张彰热熔胶在电缆和光缆中的应用[期刊论文]-现代有限传播 1997(02) 12.孟宪铎热熔胶在油气管道接头密封上的应用[期刊论文]-粘接 1999(06) 13.李(足翟)亨;杨燕龙;吴宏聚酰胺与聚脂酰胺热熔胶及其制造方法 2002 14.LEONI R;GRUBER W;ROSSINI A Polyamide resin from dimer/trimer acid and N-alkyl diamine 1988 15.LEONI R;GRUBER W;WICHELHAUS J Adhesive composition comprising thermoplastic polyamide from dimer acid and N-substituted aliphatic diamine 1990 16.LEONI R;GRUBER W;WICHELHAUS J Adhesive composition comprising polyamide from dimer acid and Nalkyl diamine 1989 17.LEONI R;GRUBER W;ROSSINI A Polyamide of dimerized fatty acids and polyether urea diamines and their use as adhesives 1990 18.陈续明;贾兰琴;李瑞霞用于热熔胶的聚酰胺树脂合成组成与性能关系的研究[期刊论文]-中国胶粘剂 2000(01) 19.梁子材;李(足翟)亨;杨燕龙具有聚酰胺或聚酯酰胺结构的热态高强度热熔胶 1999 20.HEUCHER R;WICHELHAUS J;SCHUELLER K Hotmelt adhesive 1996 21.WICHELHAUS J;GRUBER W;ANDRES J Polymeric hotmelt adhesive 1988 22.DOUCET JOS Adhesive composition 1983 23.MATSUBA Y;TERADA N;OSAKO T Hot-melt polyamide adhesive and polyamide resin sheet-shaped molded product 2002 24.张华明;罗顺忠;赵鹏骥耐温保气型热熔胶的研制[期刊论文]-中国胶粘剂 1995(04) 25.张秀斌油气管道接口热收缩带用固定片及热熔胶的研制[期刊论文]-沈阳化工学院学报 2001(03) 26.陈续明;钟华;贾兰琴聚酯酰胺/EEA共混体组成与性能[期刊论文]-高分子材料科学与工程 2001(06) 27.陈续明;贾兰琴;李瑞霞聚酯酰胺/SIS共混体系的组成与性能[期刊论文]-石油化工 2001(01)

尼龙的增韧改性.

《聚合物复合材料设计与加工》课程报告 题目:尼龙的增韧改性 专业:10材料化学 姓名:李玉海 学号:2010130101025

尼龙的增韧改性 摘要:尼龙66(PA66)具有良好的力学综合性能,并且耐油、耐磨耗和优良的加工性能,可替代有色金属和其他材料广泛应用于各行业。但是尼龙66在低温条件下和在干态条件下的冲击性能差,吸水性大,制品的性能和尺寸不稳定等性能缺点。本文将就其韧性性能进行改善,针对玻璃纤维增强聚酰胺材料韧性差的问题,对聚酰胺/玻璃纤维复合体系的增韧进行了研究,考察了玻璃纤维、改性聚合物对共混材料力学性能的影响。对PA/聚烯烃、PA/聚烯烃弹性体、不同类型PA合金等几类增韧体系进行了详细介绍。其中聚烯烃应用范围广泛。采用聚烯烃增韧与玻璃纤维共混,在保持复合材料拉伸强度和模量的同时,较大地提高了冲击强度,获得了综合力学性能优异的纤维增强聚酰胺材料。 关键词:聚酰胺玻璃纤维增强增韧共混改性 1.前言 当代高分子材料发展的一个重要方向就是通过对现有聚合物进行物理和化学改性,使其进一步高性能化、结构化和工程化。尼龙是聚酸胺类树脂的统称,常觅的有尼龙6、尼龙66、尼龙610、尼龙612、尼龙ll、尼龙12、尼龙46、尼龙MXD6、尼龙lUM等,目前产量占主导地位的是尼龙6和尼龙66,占总量的90%以上。尼龙作为当今第一大工程塑料,大多数品种为结晶型聚合物,大分子链中含有酰胺键(—CO—NH—),能形成氢键,其具有强韧、耐磨、耐冲击、耐疲劳、耐腐蚀等优异的特性,特别是耐磨性和自润滑性能优良,摩擦系数小,因而尼龙在与其他工程塑料的激烈竞争中稳步迅速增长,年消费量已经超过100万吨,年增长率为8%~10%,广泛应用于汽车家用电器及运动器材等零部件的制造。为适用聚酰胺在不同领域的发展,这就要求聚酰胺具有更高的机械强度,耐热性能。机械部件,铁路机车用聚酰胺均对PA的力学性能,尺寸稳定性提出了很高的要求。因此,对尼龙的改性始在必然,采用嵌段、接枝、共混、填充等改性技术和工艺得到关注和发展,使其向多功能发展,应用与更多领域。几年来,国内外聚酰股发展的重点是对现有品种通过多组分的共聚、共混或加入不同的添加剂等方

增强增韧尼龙66汽车专用料的性能研究

新技术与产品开发 增强增韧尼龙66汽车专用料的性能研究 Ξ 崔 欣1,王静江2 (11中国石油辽阳石化分公司研究院,辽宁辽阳111003;21中国石油辽阳石油化纤公司技术中心,辽宁辽阳111003) 摘要:采用双螺杆挤出加工工艺,对增强增韧尼龙66材料综合性能进行了研究;比较了尼龙品种、增韧剂、玻璃纤维及助剂对内饰件材料的改性效果;并分析了生产工艺对材料性能的影响。确定了材料的最佳工艺参数和配方,并成功应用在出口汽车座椅滑块制品上。 关键词:尼龙;玻璃纤维;增韧剂;结构;性能;应用 中图分类号:T Q32316 文献标识码:B 文章编号:1005-5770(2007)04-0062-04 Study of Property of R einforced and Toughened N ylon 66 Special Compound for Auto I ndustry C UI X in 1,W ANGJing 2jiang 2 (11Research Institute of Liaoyang Petrochemical Branch ,PetroChina ,Liaoyang 111003,China ;21T echnical Center of Liaoyang Petrochemical Fiber C o.,PetroChina ,Liaoyang 111003,China ) Abstract :The overall property of rein forced and toughened nylon 66com pound was studied by means of extru 2sion technology on twin 2screw extruder 1The effect of the variety of nylon and the effects of toughener ,glass fiber and additive on the m odification of the decorative com pounds were com pared ,the effect of processing technology on the property of the com pound was analyzed 1The optimum processing parameter and formulation for the com pound were determined and applied to the production of the slide bar of the saddle of car for export success fully 1 K eyw ords :Nylon ;G lass Fiber ;T oughener ;Structure ;Property ;Application 汽车上零部件要求能耐高低温、耐油、耐化学药 品、耐候和一定的机械性能,达到节能降耗、提高车速、改进外观和舒适性、降低成本等众多目标。普通单牌号尼龙虽具有良好的强度和刚性,但冲击强度各有不同,且熔融范围较窄,熔体强度对温度敏感,以30%玻纤增强尼龙66为例,其熔体质量流动速率(MFR )为10~25g/10min ,波动较大,给注塑制件的工艺调整带来不便。随着国内汽车业的不断发展和成熟,对车用材料提出了更高要求的同时,成本控制也近乎苛刻,通过合金工艺生产的尼龙合金复合材料,可以很好地解决上述问题,满足汽车用材料的要求。以汽车座椅滑块为例,要求材料具有高强度、高刚性,良好的尺寸稳定性,并具备适当的韧性和良好的加工性。本项目组采用共混合金工艺,经过反复试验,取得了良好的效果,材料性能满足使用要求。 1 实验部分 111 主要原材料及设备 尼龙66:中黏EPR27、高黏EPR32,平顶山神马集团;尼龙6:高黏32,岳阳石化;中黏26228,岳阳石化/石家庄化纤;接枝聚丙烯:K T J 21A ,沈阳科通;接枝聚乙烯:K T 25A ,大连工大;接枝POE :K TR 23C ,沈阳科通;接枝POE :长春应化所;接枝POE :9805,上海日之升;接枝EPDM :9802,上海 日之升;接枝EPDM :南京驰鸿;玻璃纤维:988(长),浙江巨石;抗氧剂:1010,瑞士汽巴/吉林大河东;光亮润滑剂:T AF ,苏州国光。 双螺杆挤出机:SH J582Ⅱ,南京信立;注塑机:CWI 2120D ,上海纪威;万能试验机:C MT5204,深圳 新三思;冲击试验机:X JU 2515,承德金建;热变形温度检测仪:XRW 2300,承德金建;熔体质量流动速率仪:SRZ 2400C ,长春智能;尺寸变化测定仪:XC B 2150,承德金建。 ? 26?塑料工业 CHI NA P LASTICS I NDUSTRY 第35卷第4期2007年4月 Ξ作者简介:崔欣,女,1968年生,大学本科,高级工程师,长期从事化工材料材料的研究,发表论文多篇。 cuixin823@sina 1com

聚酰胺改性研究进展

聚酰胺改性研究进展 摘要:聚酰胺(尼龙,英文缩写为PA)是通用工程塑料中产量最大、品种最多、用途最广、性能优良的基础树脂。具有很高的机械强度、熔点高、耐磨、耐油、耐热性能优良等优点,广泛应用于汽车、电子电气、机械等领域。但由于聚酰胺的吸水性较大,造成产品尺寸稳定性差,干态或低温下冲击强度低等缺点,也限制了其更广泛的应用。对其进行改性可以得到性能多样的产品,拓宽其应用领域。为此,人们对聚酰胺的改性进行了大量研究。本文对近些年来聚酰胺改性方面的研究进展进行综述。 关键词:PA6 聚酰胺-胺聚酰胺石墨N -甲基吡咯类聚酰胺 1. PA6的增容改性 聚酰胺6(PA6)具有优良的力学性能,并且耐磨性和自润滑性好,易成型加工,是应用极广的工程塑料。但PA6具有吸湿大、尺寸不稳定、成型收缩大的缺点。而聚对苯二甲酸丁二醇酯(PBT)具有刚度好、强度高、耐热老化性优异、耐有机溶剂性好、易加工成型等优点,同时也具有冲击韧性差、在高温、高湿环境下易分解等缺点。将两者制成合金,可改善PA6的吸水性和PBT的冲击脆性。陈兴江等人采用固体环氧树脂(EP)反应增容聚酰胺6/聚对苯二甲酸丁二醇酯(PA6/PBT)共混物。结果表明:EP的加入降低了共混物的界面张力,使分散相粒径明显细化;当PA6/PBT=80/20,EP含量为1~1.5份时,共混物的改性效果较好;当PA6用量少于30份或超过70份时,EP的加入可明显提高共混物的冲击性能和拉伸性能;随着EP的加入,共混物的流动性降低。并采用固体环氧树脂(EP)反应增容聚酰胺6/聚对苯二甲酸丁二醇酯(PA6/PBT)共混物。EP的加入降低了共混物的界面张力,使分散相粒径明显细化;当PA6/PBT=80/20,EP含量为1~1.5份时,共混物的改性效果较好;当PA6用量少于30份或超过70份时,EP的加入可明显提高共混物的冲击性能和拉伸性能;随着EP的加入,共混物的流动性降低。 2.OMMT改性PA6制备纳米复合材料 周雪琴等人采用环氧树脂改性MMT ,得到有机化改性的OMMT ,然后通过熔融插层法制备PA6/ OMMT 纳米复合材料,并利用X 射线衍射仪、透射电子显微镜、万能材料试验机等研究了纳米复合材料的形态结构、力学性能及热稳定性结果表明,经环氧树脂改性得到的OMMT 的层间距明显增加,从未改性的1. 22 nm 增加到 5. 13 nm ,并以纳米尺度分散于PA6 基体中;随着OMMT 含量的增加,PA6/ OMMT 复合材料的拉伸强度、弯曲强度和弯曲模量增加,热变形温度提高,拉伸强度可达76 MPa ,弯曲模量达到 3.462GPa,热变形温度为134 ℃;PA6/OMMT复合材料失重10%时的温度为422℃,比纯PA6 提高16 ℃,提高了PA6 的热稳定性。 3.改性聚酰胺-胺树枝状高分子 用乙二醇改性王持等人合成了PAMAM-PEG作为基因载体,PAMAM-PEG 细胞毒性能有效降低,但转染率也有所降低,引入少量(10%) PEG 改性的效果更为显著。王持等人以IDPI 为偶联剂,由相对分子量2000 的甲氧端基聚乙二醇

聚酰胺特性

聚酰胺特性 聚酰胺(PA)具有品种多、产量大、应用广泛的特点,是五大工程塑料之一。但是,也由于聚酰胺品种繁多,在应用领域方面有些产品具有相似性,有些又有相当大的差别,需要仔细区分。 聚酰胺(Polyamide)俗称尼龙,是分子主链上含有重复酰胺基团—[NHCO]—的热塑性树脂总称。 尼龙中的主要品种是PA6和PA66,占绝对主导地位;其次是P A11、P A12、P A610、PA612,另外还有P A10、P A46、P A7、P A9、PA13。新品种有尼龙6I、尼龙9T、特殊尼龙MXD6(阻隔性树脂)等;改性品种包括: 增强尼龙、单体浇铸尼龙(MC尼龙)、反应注射成型(RIM)尼龙、芳香族尼龙、透明尼龙、高抗冲(超韧)尼龙、电镀尼龙、导电尼龙、阻燃尼龙、尼龙与其他聚合物共混物和合金等。 性能指标 尼龙为韧性角状半透明或乳白色结晶性树脂,作为工程塑料的尼龙分子量一般为 1.5-3万。尼龙具有很高的机械强度,软化点高,耐热,摩擦系数低,耐磨损,具有自润滑性、吸震性和消音性,耐油,耐弱酸,耐碱和一般溶剂;电绝缘性好,有自熄性,无毒,无臭,耐候性好等。尼龙与玻璃纤维亲合性十分良

好,因而容易增强。但是尼龙染色性差,不易着色。尼龙的吸水性大,影响尺寸稳定性和电性能,纤维增强可降低树脂吸水率,使其能在高温、高湿下工作。其中尼龙66的硬度、刚性最高,但韧性最差。尼龙的燃烧性为UL94V2级,氧指数为24-28。尼龙的分解温度﹥299℃,在449℃-499℃会发生自燃。尼龙的熔体流动性好,故制品壁厚可小到1mm。表1给出了聚酰胺主要品种的技术性能指标。 性能特点与用途 PA6 物性乳白色或微黄色透明到不透明角质状结晶性聚合物;可自由着色,韧性、耐磨性、自润滑性好、刚性小、耐低温,耐细菌、能慢燃,离火慢熄,有滴落、起泡现象。最高使用温度可达180℃,加抗冲改性剂后会降至160℃;用15%-50%玻纤增强,可提高至199℃,无机填充PA能提高其热变形温度。 加工成型加工性极好: 可注塑、吹塑、浇塑、喷涂、粉末成型、机加工、焊接、粘接。 PA6是吸水率最高的PA,尺寸稳定性差,并影响电性能(击穿电压)。 应用轴承、齿轮、凸轮、滚子、滑轮、辊轴、螺钉、螺帽、垫片、高压油管、储油容器等。 PA66 物性半透明或不透明的乳白色结晶聚合物,受紫外光照射会发紫白色或蓝白色光,机械强度较高,耐应力开裂性好,是耐磨性最好的PA,自润滑性优良,仅次于聚四氟乙烯和聚甲醛,耐热性也较好,属自熄性材料,化学稳定性好,尤其耐油性极佳,但易溶于苯酚,甲酸等极性溶剂,加碳黑可提高耐候性;吸水性大,因而尺寸稳定性差。 加工成型加工性好,可用于注塑、挤出、吹塑、喷涂、浇铸成型、机械加工、焊接、粘接。 应用与尼龙6基本相同,还可作把手、壳体、支撑架等。

尼龙的增韧改性

《聚合物复合材料设计 与加工》课程报告 题目:尼龙的增韧改性 专业:10材料化学 姓名:李玉海 尼龙的增韧改性 摘要:尼龙66(PA66)具有良好的力学综合性能,并且耐油、耐磨耗和优良的加工性能,可替代有色金属和其他材料广泛应用于各行业。但是尼龙66在低温条件下和在干态条件下的冲击性能差,吸水性大,制品的性能和尺寸不稳定等性能缺点。本文将就其韧性性能进行改善,针对玻璃纤维增强聚酰胺材料韧性差的问题,对聚酰胺/玻璃纤维复合体系的增韧进行了研究,考察了玻璃纤维、改性聚合物对共混材料力学性能的影响。对PA/聚烯烃、PA/聚烯烃弹性体、不同类型PA合金等几类增韧体系进行了详细介绍。其中聚烯烃应用范围广泛。采用聚烯烃增韧与玻璃纤维共混,在保持复合材料拉伸强度和模量的同时,较大地提高了冲击强度,获得了综合力学性能优异的纤维增强聚酰胺材料。关键词:聚酰胺玻璃纤维增强增韧共混改性 1.前言 当代高分子材料发展的一个重要方向就是通过对现有聚合物进行物理和化学改性,使其进一步高性能化、结构化和工程化。尼龙是聚酸胺类树脂的统称,常觅的有尼龙6、尼龙66、尼龙610、尼龙612、尼龙ll、尼龙12、尼龙46、尼龙MXD6、尼龙lUM等,目前产量占主导地位的是尼龙6和尼龙66,占总量的90%以上。尼龙作为当今第一大工程塑料,大多数品种为结晶型聚合物,大分子链中含有酰胺键(—CO—NH—),能形成氢键,其具有强韧、耐磨、耐冲击、耐疲劳、耐腐蚀等优异的特性,特别是耐磨性和自润滑性能优良,摩擦系数小,因而尼龙在与其他工程塑料的激烈竞争中稳步迅速增长,

年消费量已经超过100万吨,年增长率为8%~10%,广泛应用于汽车家用电器及运动器材等零部件的制造。为适用聚酰胺在不同领域的发展,这就要求聚酰胺具有更高的机械强度,耐热性能。机械部件,铁路机车用聚酰胺均对PA的力学性能,尺寸稳定性提出了很高的要求。因此,对尼龙的改性始在必然,采用嵌段、接枝、共混、填充等改性技术和工艺得到关注和发展,使其向多功能发展,应用与更多领域。几年来,国内外聚酰股发展的重点是对现有品种通过多组分的共聚、共混或加入不同的添加剂等方法,改进聚酰眩塑料的冲击性、热变形性、力学性能、阻燃性及成型加工性能。 2.国内外的技术情况 国内外学者对尼龙改性进行了大量的研究,近年来已有了新的进展,同时有了一些成熟的工业化产品,也获得了许多综合性能优良,加工性能好的产品。 尼龙自发明以来,生产能力和产量都居于五大通用工程塑料之首(PA,Pc,PoM,PBT/PET,PPO)的第一位"美国DuPont公司最先开发用于纤维的树脂,于1939年实现工业化,20世纪50年代开始开发和生产注塑制品,以取代金属满足下游工业制品轻量化、降低成本的要求,因而被广泛用于电子电气、交通运输、机械设备及日常生活用品等领域,在经济中的地位日益显着"。 但于我国经济发展的需求和国外先进技术相比,差距是不言而喻的。目前我们应当重视将比较成熟的研究成果进行中试,直至规模生产,从而减低国内用户的生产成本。同时应当在加强传统PA6共混手段研究的基础上,逐步开展一些新型PA6改性方法的研究,加速尼龙6改性研究步伐,开发系列化的耐高温、低吸湿、可电镀、高硬度、高强度、高阻隔性等特殊性能的改性PA6,进一步拓宽尼龙6应用领域以适应科技发展需要。我国尼龙66的生产起步于60年代中期。1964年辽阳石油化纤公司引进了法国生产技术,建设了年产4.6万吨的生产装置。1994年,我国第二个尼龙“生产装置开工建设,该装置引进日本的技术,年产尼龙66为6.5万吨。在当前形势下,外商普遍看好我国尼龙“产品市场。美国杜邦、德国伍德、日本东洋和旭化成等公司均将大量尼龙66等制品投放中国市场,面对跨国公司的激烈竞争,我国必须建设我们自己的尼龙66生产与加工产业,提高国内企业在市场中的地位。由于尼龙66的生产目前仍是走国外引进的路子,就要求国内加大尼龙66深加工的力度,拓展尼龙66的广阔市场。尼龙66的深度加工具有加工工艺简单、建设周期短、投资少、增值快的特点,大部分属于短平快项目。有的深加工项目只需增添一些增强剂、改性剂,然后注塑成型即可制成工程塑料。目前,我国对尼龙66的深加工主要是用来生产轮胎帘子布和高级合成纤维,而用于工程塑料尚处于摸索起

相关文档