文档库 最新最全的文档下载
当前位置:文档库 › 实验报告2dpsk

实验报告2dpsk

实验报告2dpsk
实验报告2dpsk

用SystemView 仿真实现

二进制差分相位键控(2DPSK )的调制

1、实验目的

(1)了解2DPSK 系统的电路组成、工作原理和特点;

(2)分别从时域、频域视角观测2DPSK 系统中的基带信号、载波及已调信号; (3)熟悉系统中信号功率谱的特点。

2、实验内容

以PN 码作为系统输入信号,码速率Rb =20kbit/s 。

(1)采用键控法实现2DPSK 的调制;分别观测绝对码序列、差分编码序列,比较两序列的波形;观察调制信号、载波及2DPSK 等信号的波形。 (2)获取主要信号的功率谱密度。

3、实验原理

2DPSK 方式是用前后相邻码元的载波相对相位变化来表示数字信息。假设前后相邻码元的载波相位差为??,可定义一种数字信息与??之间的关系为

则一组二进制数字信息与其对应的2DPSK 信号的载波相位关系如下表所示

数字信息与?? 之间的关系也可以定义为

2DPSK 信号调制过程波形如图1所示。

0,01φπ??=?

?表示数字信息“”,表示数字信息“”

()()1 1 0 1 0 0 1 10

2DPSK 0 0 0 0 0 00 0 0 0

ππππππ

ππππ二进制数字信息:信号相位:或0,10φπ??=?

?表示数字信息“”

,表示数字信息“”

图1 2DPSK 信号调制过程波形

从上图可以看出,2DPSK 信号的实现方法可以采用:首先对二进制数字基带信号进行差分编码,将绝对码表示二进制信息变换为用相对码表示二进制信息,然后再进行绝对调相,从而产生二进制差分相位键控信号。2DPSK 信号调制器原理图如图2所示。

图2 2DPSK 信号调制器原理图

其中码变换即差分编码器如图3所示。在差分编码器中:{an}为二进制绝对码序列,{dn}为差分编码序列。D 触发器用于将序列延迟一个码元间隔,在SystemView 中此延迟环节一般可不采用D 触发器,而是采用操作库中的“延迟图符块”。

绝对码

相对码

载波DP SK 信

号10

1100101 0 0 1 0 1 1 0

2

开关电路图3差分编码器

4、系统组成、图符块参数设置及仿真结果

采用键控法进行调制的组成如图4所示:

图4 键控法调制的系统组成

其中图符0产生绝对码序列,传码率为20kbit/s。图符2和图符3实现差分编码;图符5输出正弦波,频率为40k Hz;图符29对正弦波反相;图符7为键控开关,输出2DPSK信号。图符的参数设置如表1所示。

表1:键控法图符参数设置表

系统定时:起始时间0秒,终止时间1.5e-3秒,采样点数301,采样速率200e+3Hz,获得的仿真波形如图5所示。

(a)绝对码序列

(b)相对码序列

(c)未调载波信号

(d)二相相对调相(2DPSK)信号

(f)绝对码与相对码瀑布图

图5调制过程仿真波形

从图5(b)和(d)波形对比中可以发现,绝对码序列中的“1”使已调信号的相位变化π相位;绝对码的“0”使已调信号的相位变化0°相位。

绝对码和2DPSK的瀑布图如图6所示。

图6 绝对码和2DPSK的瀑布图5、主要信号的功率谱密度

调制信号的功率谱如图7所示。

图7调制信号的功率谱正弦载波的频谱如图8所示。

图8 正弦载波的频谱

2DPSK的功率谱如图9所示。

图9 2DPSK的功率谱

由图7可见,基带信号的大部分能量落在第一个零点(20kHz)的频率范围之内,即基带带宽为20kHz;又由图5(b)可见,相对码序列为双极性脉冲序列,不含有直流分量,所以,不含离散谱。

由图8可见,载频信号的频谱位于40kHz,且频谱较纯。

由图9可见,已调信号的频谱为DSB信号,因为调制信号为双极性不归零脉冲,用双极性不归零码对载波进行相乘的调制,可以达到抑制载波的目的,即已调信号的频谱中,只有载频位置,没有载波分量,频带宽度为40kHz。

用SystemView仿真实现

二进制差分相位键控(2DPSK)的解调

1、实验目的

(1)了解2DPSK系统解调的电路组成、工作原理和特点;

(2)掌握2DPSK系统解调过程信号波形的特点;

(3)熟悉系统中信号功率谱的特点。

2、实验内容

以2DPSK作为系统输入信号,码速率Rb=20kbit/s。

(1)采用相干解调法实现2DPSK 的解调,分别观察系统各点波形。 (2)获取主要信号的功率谱密度。

3、实验原理

[相干解调法]

2DPSK 信号可以采用相干解调方式(极性比较法),对2DPSK 信号进行相干解调,恢复出相对码,再通过码反变换器变换为绝对码,从而恢复出发送的二进制数字信息。解调器原理图和解调过程各点时间波形如图13(a)、(b)所示:

其中码反变换器即差分译码器组成如图14所示。在差分译码器中:{?n

d }为差分编码序列,{?n a

}为差分译码序列。D 触发器用于将序列延迟一个码元间隔,在SystemView 中此延迟环节一般可不使用D 触发器,而是使用操作库中的“延迟图符块

”。

(a )

a b c d e f (b )e 1011000a b c d e f

(b )

e 出

101100

图13 2DPSK 信号相干解调器原理图和解调过程各点时间波形

图1 4 差分译码器

4、系统组成、图符块参数设置及仿真结果

[相干解调法]

相干解调法的系统组成如图16 所示。

图16 相干解调法的系统组成

其中,图符11为带通滤波器,图符18实现相干载波的提取,图符16为乘法器,图符20为低通滤波器,图符22、23、24实现抽样判决,图符27、30实现差分解码。图符30输出再生的绝对码。图符的参数设置如表3所示。

表3:相干解调法图符参数设置表

调制信号为PN序列,码速率Rb=20kbit/s;正弦载波的频率为40k Hz。

系统定时:起始时间0秒,终止时间1.5e-3秒,采样点数500,采样速率200e+3Hz,获得的仿真波形如图17所示。

(a)二相相对调相(2DPSK)信号

(b)带通滤波器的输出

(c)提取的相干载波

(d)乘法器的输出

(e)低通滤波器的输出

(f)解调输出的相对码

(g)解调输出的绝对码

图17相干解调过程的仿真波形

2DPSK系统输入的PN序列和输出PN序列的瀑布图如图18所示。

图18 2DPSK系统输入的PN序列和输出PN序列的瀑布图眼图如图19所示。

图19 眼图

图19的眼图是没有加噪声情况下的仿真结果,眼图张开度较大,扫迹清晰。

信噪比0dB时的眼图输入噪声电压为1V

信噪比5dB时的眼图输入噪声电压为0.56V

信噪比20dB时的眼图输入噪声电压为0.1V

信噪比30dB时的眼图输入噪声电压为0.032V

信噪比50的dB时的眼图输入噪声电压为0.0032V 可以看出随着信噪比的增加,眼图质量越来越好。

5、主要信号的功率谱密度

2DPSK的谱如图24所示。

图24 2DPSK的谱

乘法器输出信号的谱如图25所示。

图25 乘法器输出信号的谱

输出PN序列的基带谱如图26所示。

图26 输出PN序列的基带谱

通过比较相干解调法和非相干解调法可以看出,相干解调法需要提取相干载波,还要进行码反变换,即将相对码变换为绝对码;而非相干解调法不需要提取相干载波,也不需要进行码反变换。

6、低通滤波器的单位冲击相应及幅频特性曲线

低通滤波器的单位冲击相应

低通滤波器的幅频特性曲线

7、高通滤波器的单位冲击相应及幅频特性曲线

高通滤波器的单位冲击相应

高通滤波器的幅频特性曲线

用SystemView对二进制差分相位键控(2DPSK)

进行性能估计

1、实验目的:

(1)了解2DPSK系统电路组成、工作原理和特点;

(2)学会分析2DPSK系统的抗噪声性能;

(3)掌握使用SystemView软件对2DPSK系统进行性能估计的方法。

2、实验内容:

以2DPSK作为系统输入信号,码速率Rb=20kbit/s。

(1)采用相干解调法实现2DPSK的解调,分别观察系统各点波形。

(2)采用非相干解调法实现2DPSK的解调,分别观察系统各点波形。

(3)获取主要信号的功率谱密度。

3、实验原理:

在仿真系统中,信道模拟成一个高斯噪声信道(AWGN),输入信号经过AWGN 信道后在输出端进行判断,当带有噪声的接收信号大于判决电平时,输出判为1,此时的原参照信号如果为0,则产生误码。

高斯信道如图所示:

为了便于对各个系统进行比较,通常将信噪比用每比特所携带的能量除以噪声功率谱密度来表示,即Eb/N0,对基带信号,定义信噪比为:

这里的A为信号的幅度(通常取归一化值),R=1/T是信号的传码率。

也可以利用:信噪比=20lg(信号电压/噪声电压)db来求解。

事实上,我们也可以通过控制图符9中Gain参数来改变噪声的强度,从而获得不同的信噪比。

4.测试误码率系统组成及参数

系统组成图:

参数如下表:

原PN序列进入图符38,输出为延迟一个周期后的图形,图符37对其进行采样。解调输出后的图形进入图符34进行采样。图符33可以估计信道的误码率,它与36(停止接收图符)互相配合,进行长时间的仿真。

误码率波形如下:

终值器的波形如下:

matlab实验报告 数字调制解调

实验报告 姓名:李鹏博实验名称:数字调制解调 学号:2011300704 课程名称:数字信号处理 班级:03041102 实验室名称:航海西楼303 组号: 1 实验日期:2014.06.27 一、实验目的、要求 掌握掌握数字调制以及对应解调方法的原理。 掌握数字调制解调方法的计算机编程实现方法,即软件实现。 二、实验原理 二进制数字频率调制(2FSK) 二进制数字频率调制,简称频移键控2FSK,是利用二进制数字基带信号控制载波的频率,进行频谱变换的过程。在发送端,由基带信号控制载波,用不同频率的载波振荡信号来传输数字信号“1”和“0”;接收端则根据不同频率的载波信号,将其还原成相应的数字基带信号。 PSK调制 在PSK调制时载波的相位随调制信号状态不同而改变。如果两个频率相同的载波同时开始振荡这两个频率同时达到正最大值同时达到零值同时达到负最大值此时它们就处于“同相”状态如果一个达到正最大值时另一个达到负最大值则称为“反相”。把信号振荡一次一周作为360度。如果一个波比另一个波相差半个周期两个波的相位差180度也就是反相。当传输数字信号时“1”码控制发0度相位“0”码控制发180度相位。 三、实验环境 PC机,Windows2000,office2000,Matlab6.5以上版本软件。 四、实验内容、步骤 实验内容 已知消息信号为一个长度为8的二进制序列;载波频率为 800 c f Hz ,采样频率为 4KHz。编程实现一种调制、传输、滤波和解调过程。 实验步骤 根据参数产生消息信号s和载波信号。调用函数randint生成随机序列。 编程实现调制过程。调用函数y=fskmod(s,M,FREQ_SEP,NSAMP)完成频率调制,y=pskmod(s,M) 完成相位调制,或者。调用函数modulate完成信号调制。 编程实现信号的传输过程。产生白噪声noise,并将其加到调制信号序列。或者调用函

实验三 Matlab的数字调制系统仿真实验(参考)

成都理工大学实验报告 课程名称:数字通信原理 姓名:__________________学号:______________ 成绩:____ ___ 实验三Matlab的数字调制系统仿真实验(参考) 1 数字调制系统的相关原理 数字调制可以分为二进制调制和多进制调制,多进制调制是二进制调制的推广,主要讨论二进制的调制与解调,简单讨论一下多进制调制中的差分相位键控调制(M-DPSK)。 最常见的二进制数字调制方式有二进制振幅键控(2-ASK)、移频键控(2-FSK)和移相键控(2-PSK 和2-DPSK)。下面是这几种调制方式的相关原理。 1.1 二进制幅度键控(2-ASK) 幅度键控可以通过乘法器和开关电路来实现。载波在数字信号1 或0 的控制下通或断,在信号为1 的状态载波接通,此时传输信道上有载波出现;在信号为0 的状态下,载波被关断,此时传输信道上无载波传送。那么在接收端我们就可以根据载波的有无还原出数字信号的1 和0。 幅移键控法(ASK)的载波幅度是随着调制信号而变化的,其最简单的形式是,载波在二进制调制信号控制下通断,此时又可称作开关键控法(OOK)。多电平MASK调制方式是一种比较高效的传输方式,但由于它的抗噪声能力较差,尤其是抗衰落的能力不强,因而一般只适宜在恒参信道下采用。 2-ASK 信号功率谱密度的特点如下: (1)由连续谱和离散谱两部分构成;连续谱由传号的波形g(t)经线性调制后决定,离散谱由载波分量决定; (2)已调信号的带宽是基带脉冲波形带宽的二倍。 1.2 二进制频移键控(2-FSK) 数字频率调制又称频移键控(FSK),二进制频移键控记作2FSK。数字频移键控是用载波的频率来传送数字消息,即用所传送的数字消息控制载波的频率。2FSK

2FSK数字频率调制解调仿真通信原理课程设计

XXXXXXXXXXXX 通信原理课程设计 题目2FSK数字频率调制解调计算机仿真 院(系)电子工程与电气自动化学院 专业电子信息工程 学生姓名XXXXXXXXXXXXXXXXXXXXXXXXXX 学号XXXXXXXXXXXXXXXXXXXXXXXXXXXXX 指导教师XXXXXX 职称讲师 论文字数

摘要 本文主要利用Systemview来实现2FSK数字调制系统解调器的设计。该设计模块包含信源调制、发送滤波器模块、信道、接收滤波器模块、解调以及信宿,并对各个模块进行相应的参数设置。在此基础上熟悉Systemview的功能及操作,最后通过观察仿真波形进行波形分析及系统的性能评价。 2FSK信号的产生方法主要有两种:一种是模拟调频法,另一种是键控法,即在二进制基带矩形脉冲序列的控制下通过开关电路对两个不同的独立频率源进行选通,使其在每一个码元Ts期间输出f1或f2两个载波之一。这两种方法产生2FSK信号的差异在于:由调频法产生的2FSK信号在相邻码元之间的相位是连续变化的,而键控法产生的2FSK信号是由电子开关在两个独立的频率源之间转换形成,故相邻码元之间的相位不一定连续。本实验采用的是模拟调频法产生2FSK信号。2FSK信号的接受也分相干和非相干接受两种,非相干接收方法不止一种,他们都不利用信号的相位信息。故本设计采用相干解调法。 关键词:2FSK Systemview 调制解调误码率 Computer simulation of 2FSK modulation and demodulation Abstract The design of this paper use Systemview to achieve 2FSK demodulator for digital

实验二 数字调制

实验二数字调制 一、实验目的 1、掌握绝对码、相对码概念及它们之间的变换关系。 2、掌握用键控法产生2ASK、2FSK、2DPSK信号的方法。 3、掌握相对码波形与2PSK信号波形之间的关系、绝对码波形与2DPSK信号波形之间的关系。 1、了解2ASK、2FSK、2DPSK信号的频谱与数字基带信号频谱之间的关系。 二、实验内容 1、用示波器观察绝对码波形、相对码波形。 2、用示波器观察2ASK、2FSK、2PSK、2DPSK信号波形。 3、用频谱仪观察数字基带信号频谱及2ASK、2FSK、2DPSK信号的频谱。 三、基本原理 本实验用到数字信源模块和数字调制模块。信源模块向调制模块提供数字基带信号(NRZ码)和位同步信号BS(已在实验电路板上连通,不必手工接线)。调制模块将输入的绝对码AK(NRZ码)变为相对码BK、用键控法产生2ASK、2FSK、2DPSK信号。调制模块内部只用+5V电压。 数字调制单元的原理方框图如图2-1所示,电原理图如图2-2所示(见附录)。 图2-1 数字调制方框图 本单元有以下测试点及输入输出点: ? CAR 2DPSK信号载波测试点 ? BK 相对码测试点 ? 2DPSK 2DPSK信号测试点/输出点,V P-P>0.5V ? 2FSK 2FSK信号测试点/输出点,V P-P>0.5V ? 2ASK 2ASK信号测试点,V P-P>0.5V 用2-1中晶体振荡器与信源共用,位于信源单元,其它各部分与电路板上主要元器件对应关系如下: ?÷2(A)U8:双D触发器74LS74 ?÷2(B)U9:双D触发器74LS74

?滤波器A V6:三极管9013,调谐回路 ?滤波器B V1:三极管9013,调谐回路 ?码变换U18:双D触发器74LS74;U19:异或门74LS86 ? 2ASK调制U22:三路二选一模拟开关4053 ? 2FSK调制U22:三路二选一模拟开关4053 ? 2PSK调制U21:八选一模拟开关4051 ?放大器V5:三极管9013 ?射随器V3:三极管9013 将晶振信号进行2分频、滤波后,得到2ASK的载频2.2165MHZ。放大器的发射极和集电极输出两个频率相等、相位相反的信号,这两个信号就是2PSK、2DPSK的两个载波,2FSK 信号的两个载波频率分别为晶振频率的1/2和1/4,也是通过分频和滤波得到的。 下面重点介绍2PSK、2DPSK。2PSK、2DPSK波形与信息代码的关系如图2-3所示。 图2-3 2PSK、2DPSK波形 图中假设码元宽度等于载波周期的1.5倍。2PSK信号的相位与信息代码的关系是:前后码元相异时,2PSK信号相位变化180?,相同时2PSK信号相位不变,可简称为“异变同不变”。2DPSK信号的相位与信息代码的关系是:码元为“1”时,2DPSK信号的相位变化180?。码元为“0”时,2DPSK信号的相位不变,可简称为“1变0不变”。 应该说明的是,此处所说的相位变或不变,是指将本码元内信号的初相与上一码元内信号的末相进行比较,而不是将相邻码元信号的初相进行比较。实际工程中,2PSK或2DPSK 信号载波频率与码速率之间可能是整数倍关系也可能是非整数倍关系。但不管是那种关系,上述结论总是成立的。 本单元用码变换——2PSK调制方法产生2DPSK信号,原理框图及波形图如图2-4所示。相对于绝对码AK、2PSK调制器的输出就是2DPSK信号,相对于相对码、2PSK调制器的输出是2PSK信号。图中设码元宽度等于载波周期,已调信号的相位变化与AK、BK的关系当然也是符合上述规律的,即对于AK来说是“1变0不变”关系,对于BK来说是“异变同不变”关系,由AK到BK的变换也符合“1变0不变”规律。 图2-4中调制后的信号波形也可能具有相反的相位,BK也可能具有相反的序列即00100,这取决于载波的参考相位以及异或门电路的初始状态。 2DPSK通信系统可以克服上述2PSK系统的相位模糊现象,故实际通信中采用2DPSK而不用2PSK(多进制下亦如此,采用多进制差分相位调制MDPSK),此问题将在数字解调实验中再详细介绍。

实验的三基于某simulink地2FSK数字调制与解调仿真

河北北方学院信工 学院 数据通信原理实验(2013/2014学年第二学期) 课程名称:数据通信原理 题目:基于Simulink的2FSK数字调制与解调 专业班级:信息工程三班 学生姓名:王璐伟201342250 宋帅楠201342291 指导教师:刘钰 设计周数:1周 设计成绩: 2014年11月22日 第1章实验目的

1、熟悉2FSK系统的调制、解调原理 2、进一步熟悉MATLAB环境下的Simulink仿真平台 3、锻炼学生分析问题和解决问题的能力 第2章设计基础及要求 2.1 数字通信系统数学模型 图1.1 数字通信系统模型 图2-1 数字通信系统 典型的数字通信系统由信源、编码解码、调制解调、信道及信宿等环节构成,如图 1-1所示,数字调制是数字通信系统的重要组成部分,数字调制系统的输入端是经编码器编码后适合在信道中传输的基带信号。对数字调制系统进行仿真时,我们并不关心基带信号的码型,因此,我们在仿真的时候可以给数字调制系统直接输入数字基带信号,不用在经过编码器。 2.2 项目目的 基于Simulink的数字通信系统仿真—采用2FSK调制技术 2.2.1技术要求及原始数据 (1)对数字通信系统主要原理和技术进行研究,包括二进制频移键控(2FSK)及解调技术 和高斯噪声信道原理等; (2)建立数字通信系统数学模型; (3)建立完整的基于2FSK的模拟通信系统仿真模型; (4)对系统进行仿真、分析。 2.2.2主要任务 (1)建立模拟通信系统数学模型; (2)利用Simulink的模块建立模拟通信系统的仿真模型; (3)对通信系统进行时间流上的仿真,得到仿真结果;

PSK调制解调实验报告标准范本

报告编号:LX-FS-A22577 PSK调制解调实验报告标准范本 The Stage T asks Completed According T o The Plan Reflect The Basic Situation In The Work And The Lessons Learned In The Work, So As T o Obtain Further Guidance From The Superior. 编写:_________________________ 审批:_________________________ 时间:________年_____月_____日 A4打印/ 新修订/ 完整/ 内容可编辑

PSK调制解调实验报告标准范本 使用说明:本报告资料适用于按计划完成的阶段任务而进行的,反映工作中的基本情况、工作中取得的经验教训、存在的问题以及今后工作设想的汇报,以取得上级的进一步指导作用。资料内容可按真实状况进行条款调整,套用时请仔细阅读。 一、实验目的 1. 掌握二相绝对码与相对码的码变换方法; 2. 掌握二相相位键控调制解调的工作原理及性能测试; 3. 学习二相相位调制、解调硬件实现,掌握电路调整测试方法。 二、实验仪器 1.时钟与基带数据发生模块,位号:G 2.PSK 调制模块,位号A 3.PSK 解调模块,位号C 4.噪声模块,位号B

5.复接/解复接、同步技术模块,位号I 6.20M 双踪示波器1 台 7.小平口螺丝刀1 只 8.频率计1 台(选用) 9.信号连接线4 根 三、实验原理 相位键控调制在数字通信系统中是一种极重要的调制方式,它具有优良的抗干扰噪声性能及较高的频带利用率。在相同的信噪比条件下,可获得比其他调制方式(例如:ASK、FSK)更低的误码率,因而广泛应用在实际通信系统中。本实验箱采用相位选择法实现相位调制(二进制),绝对移相键控(PSK 或CPSK)是用输入的基带信号(绝对码)选择开关通断控制载波相位的变化来实现。相对移相键控(DPSK)采用绝对码与相对码变换后,用相对码控

数字调制与解调 实验报告材料

计算机与信息工程学院实验报告 一、实验目的 1.掌握绝对码、相对码概念及它们之间的变换关系。 2.掌握用键控法产生2FSK信号的方法。 3.掌握2FSK过零检测解调原理。 4.了解2FSK信号的频谱与数字基带信号频谱之间的关系。 二、实验仪器或设备 1.通信原理教学实验系统 TX-6(武汉华科胜达电子有限公司 2011.10) 2.LDS20410示波器(江苏绿扬电子仪器集团有限公司 2011.4.1) 三、总体设计 3.1数字调制 3.1.1实验内容: 1、用示波器观察绝对码波形、相对码波形。 2、用示波器观察2FSK信号波形。 3、用频谱仪观察数字基带信号频谱及2FSK信号的频谱。 3.1.2基本原理: 本实验用到数字信源模块和数字调制模块。信源模块向调制模块提供数字基带信号(NRZ码)和位同步信号BS(已在实验电路板上连通,不必手工接线)。调制模块将输入的绝对码AK(NRZ码)变为相对码BK、用键控法产生2FSK信号。调制模块内部只用+5V电压。 数字调制单元的原理方框图如图1-1所示。 图1-1 数字调制方框图 本单元有以下测试点及输入输出点:

? CAR 2DPSK 信号载波测试点 ? BK 相对码测试点 ? 2FSK 2FSK 信号测试点/输出点,V P-P >0.5V 用1-1中晶体振荡器与信源共用,位于信源单元,其它各部分与电路板上主要元器件对 应关系如下: ? ÷2(A ) U8:双D 触发器74LS74 ? ÷2(B ) U9:双D 触发器74LS74 ? 滤波器A V6:三极管9013,调谐回路 ? 滤波器B V1:三极管9013,调谐回路 ? 码变换 U18:双D 触发器74LS74;U19:异或门74LS86 ? 2FSK 调制 U22:三路二选一模拟开关4053 ? 放大器 V5:三极管9013 ? 射随器 V3:三极管9013 2FSK 信号的两个载波频率分别为晶振频率的1/2和1/4,通过分频和滤波得到。 2FSK 信号(相位不连续2FSK )可看成是AK 与AK 调制不同载频信号形成的两个2ASK 信号相加。时域表达式为 t t m t t m t S c c 21cos )(cos )()(ωω+= 式中m(t)为NRZ 码。 2FSK 信号功率谱 设码元宽度为T S ,f S =1/T S 在数值上等于码速率, 2FSK 的功率谱密度如图所示。多进制的MFSK 信号的功率谱与二进制信号功率谱类似。 本实验系统中m(t)是一个周期信号,故m(t)有离散谱,因而2FSK 也具有离散谱。 3.2 数字解调 3.2.1 实验内容 1、 用示波器观察2FSK 过零检测解调器各点波形。 3.2.2 基本原理 2FSK 信号的解调方法有:包络括检波法、相干解调法、鉴频法、过零检测法等。

数字信号处理综合设计实验报告

数字信号处理实验八 调制解调系统的实现 一、实验目的: (1)深刻理解滤波器的设计指标及根据指标进行数字滤波器设计的过程(2)了解滤波器在通信系统中的应用 二、实验步骤: 1.通过SYSTEMVIEW软件设计与仿真工具,设计一个FIR数字带通滤波器,预先给定截止频率和在截止频率上的幅度值,通过软件设计完后,确认滤波器的阶数和系统函数,画出该滤波器的频率响应曲线,进行技术指标的验证。 建立一个两载波幅度调制与解调的通信系统,将该滤波器作为两个载波分别解调的关键部件,验证其带通的频率特性的有效性。系统框图如下: 规划整个系统,确定系统的采样频率、观测时间、细化并设计整个系统,仿真调整并不断改进达到正确调制、正确滤波、正确解调的目的。(参考文件

zhan3.svu) (1)检查滤波器的波特图,看是否达到预定要求; (2)检查幅度调制的波形以及相加后的信号的波形与频谱是否正常; (3)检查解调后的的基带信号是否正常,分析波形变形的原因和解决措施;(4)实验中必须体现带通滤波器的物理意义和在实际中的应用价值。 2.熟悉matlab中的仿真系统; 3.将1.中设计的SYSTEMVIEW(如zhan3.svu)系统移植到matlab中的仿真环境中,使其达到相同的效果; 4.或者不用仿真环境,编写程序实现该系统,并验证调制解调前后的信号是否一致。 实验总共提供三个单元的时间(6节课)给学生,由学生自行学习和自行设计与移植 三、系统设计 本系统是基于matlab的simulink仿真软件设计的基带信号调制与解调的系统,利用matlab自带的数字信号仿真模块构成其原理框图并通过设置载波、带通滤波器以及低通滤波器等把基带信号经过载波调制后再经乘法器、带通滤波器和低通滤波器等电路系统能解调出基带信号。 1、实验原理框图

数字调制解调实验

武汉大学教学实验报告 电子信息学院 ** 专业 2016 年 ** 月 ** 日 实验名称数字调制解调实验指导教师 *** 姓名 *** 年级 14级学号 20143012***** 成绩 图1 FSK调制电路原理框图

代表信号载波的恒定偏移。 FSK 的信号频谱如图2 所示。 图2 FSK 的信号频谱 公式给出:,其中B 为数字基带信号的带宽。假设信号带宽限制在主 FSK 的传输带宽变为:。 图3 FSK锁相环解调器原理示意图 锁相解调的工作原理是十分简单的,只要在设计锁相环时, 此时对应的环路滤波器输出电压为零,而对另一载频失锁,则对应的环路滤波器输出电压不为零,那末在锁相环路滤波器输出端就可以获得原基带信号的信息。FSK锁相环解调器原理图如图3所示。FSK 。其中,压控振荡器的频率是由5C2.5R3.5R4.5U3等元件参数确定,中心频率设计在 电位器进行微调。当输入信号为32KHz时,环路锁定,经形成电路后,输出高电平;当输入信号为 失锁,经形成电路后,输出低电平,则在解调器输出端就得到解调的基带信号序列。

图4 PSK、DPSK调制电路原理框图 ,通过4P5和4P6两个铆孔输入到FPGA中,FPGA软件完成 解调器电路采用科斯塔斯环(Constas环)解调,其原理如图5所示。 图5 解调器原理方框图 输入电路由射随器和比较器组成,射随器是为了发送(调制器)和接收(解调器)电路之间的隔离,从而使它们工作互不影响。比较电路是将正弦信号转换为脉冲信号,目的是便于控制科斯塔斯特环中的乘法器。由于跟随器电源电压已调波信号幅度不能太大,一般控制在1.8V左右,否则会产生波形失真。 )科斯塔斯环提取载波原理(原理中标号参见原理图) 采用科斯塔斯特环解调,科斯塔斯特环方框原理如图6所示。 图6 科斯塔斯特环电路方框原理如图 解调输入电路的输出信号被加到模拟门5U6C和5U6D构成的乘法器,前者为正交载波乘法器,相当于图 ,后者为同相载波乘法器,相当于框图中乘法器1。5U7A,5U7B周边电路为低通滤波器。 的作用是将低通滤波后的信号整形,变成方波信号。PSK解调信号从5U8的7脚经5U11B.C ,若5U10A两输入信号分别为A和B,因(A、B同为 5E2用来稳压,以便提高VCO的频率稳定度。VCO信号从7脚经5C21输出至移相90o90o移

通信原理2DPSK调制与解调实验报告

通信原理课程设计报告 一. 2DPSK基本原理 1.2DPSK信号原理 2DPSK方式即是利用前后相邻码元的相对相位值去表示数字信息的一种方式。现假设用Φ表示本码元初相与前一码元初相之差,并规定:Φ=0表示0码,

Φ=π表示1码。则数字信息序列与2DPSK信号的码元相位关系可举例表示如2PSK信号是用载波的不同相位直接去表示相应的数字信号而得出的,在接收端只能采用相干解调,它的时域波形图如图2.1所示。 图1.1 2DPSK信号 在这种绝对移相方式中,发送端是采用某一个相位作为基准,所以在系统接收端也必须采用相同的基准相位。如果基准相位发生变化,则在接收端回复的信号将与发送的数字信息完全相反。所以在实际过程中一般不采用绝对移相方式,而采用相对移相方式。 定义?Φ为本码元初相与前一码元初相之差,假设: ?Φ=0→数字信息“0”; ?Φ=π→数字信息“1”。 则数字信息序列与2DPSK信号的码元相位关系可举例表示如下: 数字信息: 1 0 1 1 0 1 1 1 0 1 DPSK信号相位:0 π π 0 π π 0 π 0 0 π 或:π 0 0 π 0 0 π 0 π π 0 2. 2DPSK信号的调制原理 一般来说,2DPSK信号有两种调试方法,即模拟调制法和键控法。2DPSK 信号的的模拟调制法框图如图1.2.1所示,其中码变换的过程为将输入的单极性不归零码转换为双极性不归零码。

图1.2.1 模拟调制法 2DPSK信号的的键控调制法框图如图1.2.2所示,其中码变换的过程为将输入的基带信号差分,即变为它的相对码。选相开关作用为当输入为数字信息“0”时接相位0,当输入数字信息为“1”时接pi。 图1.2.2 键控法调制原理图 3. 2DPSK信号的解调原理 2DPSK信号最常用的解调方法有两种,一种是极性比较和码变换法,另一种是差分相干解调法。 (1) 2DPSK信号解调的极性比较法 它的原理是2DPSK信号先经过带通滤波器,去除调制信号频带以外的在信道中混入的噪声,再与本地载波相乘,去掉调制信号中的载波成分,再经过低通滤波器去除高频成分,得到包含基带信号的低频信号,将其送入抽样判决器中进行抽样判决的到基带信号的差分码,再经过逆差分器,就得到了基带信号。它的原理框图如图1.3.1所示。 码变换相乘 载波 s(t)e o(t) 相乘器低通滤波器抽样判决器2DPSK 带通滤波器 延迟T

实验九 QPSK调制与解调实验报告

实验九QPSK/OQPSK 调制与解调实验 一、实验目的 1、了解用CPLD 进行电路设计的基本方法。 2、掌握QPSK 调制与解调的原理。 3、通过本实验掌握星座图的概念、星座图的产生原理及方法,了解星座图的作用及工程上的作用。 二、实验内容 1、观察QPSK 调制的各种波形。 2、观察QPSK 解调的各种波形。 三、实验器材 1、信号源模块 一块 2、⑤号模块 一块 3、20M 双踪示波器 一台 4、 连接线 若干 四、实验原理 (一)QPSK 调制解调原理 1、QPSK 调制 QPSK 信号的产生方法可分为调相法和相位选择法。 用调相法产生QPSK 信号的组成方框图如图12-1(a )所示。图中,串/并变换器将输入的二进制序列依次分为两个并行的双极性序列。设两个序列中的二进制数字分别为a 和b ,每一对ab 称为一个双比特码元。双极性的a 和b 脉冲通过两个平衡调制器分别对同相载波及正交载波进行二相调制,得到图12-1(b )中虚线矢量。将两路输出叠加,即得如图12-1(b )中实线所示的四相移相信号,其相位编码逻辑关系如表12-1所示。 (a ) a(0)b(0) b(1) a(1) (b ) 图12-1 QPSK 调制 /并变换。串/并变换器将输入的二进制序列分为两个并行的双极性序列110010*********和

111101*********。双极性的a 和b 脉冲通过两个平衡调制器分别对同相载波及正交载波进行二相调制,然后将两路输出叠加,即得到QPSK 调制信号。 2、QPSK 解调 图12-2 QPSK 相干解调器 由于四相绝对移相信号可以看作是两个正交2PSK 信号的合成,故它可以采用与2PSK 信号类似的解调方法进行解调,即由两个2PSK 信号相干解调器构成,其组成方框图如图12-2所示。图中的并/串变换器的作用与调制器中的串/并变换器相反,它是用来将上、下支路所得到的并行数据恢复成串行数据的。 (二)OQPSK 调制解调原理 OQPSK 又叫偏移四相相移键控,它是基于QPSK 的改进型,为了克服QPSK 中过零点的相位跃变特性,以及由此带来的幅度起伏不恒定和频带的展宽(通过带限系统后)等一系列问题。若将QPSK 中并行的I ,Q 两路码元错开时间(如半个码元),称这类QPSK 为偏移QPSK 或OQPSK 。通过I ,Q 路码元错开半个码元调制之后的波形,其载波相位跃变由180°降至90°,避免了过零点,从而大大降低了峰平比和频带的展宽。 下面通过一个具体的例子说明某个带宽波形序列的I 路,Q 路波形,以及经载波调制以后相位变化情况。 若给定基带信号序列为1 -1 -1 1 1 1 1 -1 -1 1 1 -1 对应的QPSK 与OQPSK 发送波形如图12-3所示。 1-1-11111-1-111-1111-11-111-11-1-111-11-1 基基基基I 基基Q P S K ,O Q P S K Q 基基 Q P S K Q 基基O Q P S K -1 图12-3 QPSK,OQPSK 发送信号波形 图12-3中,I 信道为U (t )的奇数数据单元,Q 信道为U (t )的偶数数据单元,而OQPSK 的Q 信道与其I 信道错开(延时)半个码元。 QPSK ,OQPSK 载波相位变化公式为 {}()33arctan ,,,()44 44j i j i Q t I t ππ?ππ? ????? =--???? ?????? ?@ QPSK 数据码元对应的相位变化如图12-4所示,OQPSK 数据码元对应相位变化如图 12-5所示

实验二--基于simulink的2ASK数字调制与解调的仿真

实验二 基于simulink 的2ASK 有扰通信系统仿真 一、实验目的 1、熟悉2ASK 系统的调制、解调原理 2、进一步熟悉MATLAB 环境下的Simulink 仿真平台 3、提高学生分析问题和解决问题的能力 二、实验原理 1、2ASK 调制原理 a)2ASK 的时间波形 振幅键控是正弦载波的幅度随数字基带信号而变化的数字调制。当数字基带信号为二进制时,则为二进制振幅键控。 设发送的二进制符号序列由0、1序列组成,发送0符号的概率为P ,发送1符号的概率为1-P ,且相互独立。该二进制符号序列可表示为 )()(S n n nT t g a t s -=∑ 其中,???=P -P 110发送概率为 发送概率为n a T s 是二进制基带信号时间间隔,g(t)是持续时间为T s 的矩形脉冲: ???≤≤=其他001)(s T t t g 则二进制振幅键控信号可表示为 t nT t g a t t s t s c s n n c ASK ωωcos )(cos )()(2?? ????-==∑ 典型波形如图1-1所示 图1-1 典型2ASK 波形

由图1-1可以看出,2ASK 信号的时间波形e 2ASK (t)随二进制基带信号s(t)通断变 化,所以又称为通断键控信号(OOK 信号)。 b)2ASK 信号的功率谱密度 由于二进制的随机脉冲序列是一个随机过程,所以调制后的二进制数字信号也是一个随机过程,因此在频率域中只能用功率谱密度表示。2ASK 信号功率谱密度的特点如下: (1)由连续谱和离散谱两部分构成,连续谱由调制信号g(t)经线性调制后决定,离散谱由载波分量决定; (2)已调信号波形的带宽是基带脉冲波形带宽的2倍。 2ASK 信号功率谱密度推导: 设调制信号s(t)为单极性不归零码,码元间隔为T s ,高电平设为A ,低电平为0, 则)(t s 的功率谱)(f P s 为 )(4)(4) (2 22f A fT Sa T A f P s s s δπ+= 已调信号为t nT t g a t t s t s c S n n c ASK ωωcos )(cos )()(2?? ????-==∑,其功率谱为 [])()(16)()(sin )()(sin 16)(2222c c s c s c s c s c s e f f f f A T f f T f f T f f T f f T A f P -+++??? ?????--+++=δδππππ 图1-2 2ASK 信号的功率谱密度示意图 图中,s b T f 1=,为调制信号s(t)的带宽,数值上也等于码元速率。 c)2ASK 信号的产生 在二进制数字振幅调制中,载波的幅度随着调制信号的变化而变化,实现这种调制的方式有两种: 模拟相乘法:通过相乘器直接将载波和数字信号相乘得到输出信号,这种直接利用二进制数字信号的振幅来调制正弦载波的方式称为模拟相乘法,其电路如图1-3所示。在该电路中载波信号和二进制数字信号同时输入到相乘器中完成调制。 数字键控法:用开关电路控制输出调制信号,当开关接载波就有信号输出,当开关接地就没信号输出,其电路如图1-4所示。

无线实验一数字调制解调讲解

1 《无线通信基础》实验一 2016年4月

目录 (1) 实验一数字调制解调实验Ⅰ (2) 一、实验基本情况与任务 (2) 1、实验目标 (2) 2、实验环境与准备 (2) 3、实验介绍 (2) 4、实验任务 (6) 5、理论分析 (8) 6、实验步骤及原理图 (12) 7、效果展示(结论) (15) 8、遇到的问题及解决方法 (18) 9、实验扩展 (19) 10、心得 (19) 11、参考资料 (19) 12、程序 (19) 1

实验一数字调制解调实验Ⅰ 一、实验基本情况与任务 1、实验目标 在本实验中你要完成一个LabVIEW程序,它能够将PN序列或文本作为信源并对其进行数字调制解调。实验的目的是让你进一步熟悉LabVIEW编程软件的基本操作,并且在编程的过程中可以加深对常见数字调制方式的理解,巩固基础知识。 2、实验环境与准备 软件环境:LabVIEW 2012(或以上版本); 硬件环境:无; 实验基础:掌握LabVIEW编程环境的基本操作技巧; 知识基础:了解常见的调制解调技术以及相关概念。 3、实验介绍 本实验的程序设计流程如图1所示。 信源生成 文本 PN序列选择调制方式 BPSK QPSK 添加噪声数字解调 计算误码率 数字调制 图1程序设计流程图 在程序中首先要完成对信源的生成和调制方式的选择,再按照所选的调制方式对信源进行调制;然后对调制后的信号添加噪声;之后对信号进行数字解调来恢复信源信息;最后对比解调后的数据和原始的信源数据,计算误码率。 1

本实验包含一个主程序和若干子程序。其中主程序为Digital modulation,它的前面板如图2所示。 图2主程序前面板 前面板中左上角是参数配置选项卡,其中信源参数界面可以设置信源的类型、文本的内容以及PN序列的长度;调制参数界面可以配置调制类型、采样率、过采样率等参数;滤波参数界面用来配置脉冲成型和匹配滤波器的相关参数,例如滤波器类型和滤波器长度等。前面板右上角可以观察发送端和接收端的星座图。前面板其余的部分用来显示接收端的各种信息,包括当信源为文本时解调后恢复的文本内容;当前的信噪比以及实时的误码数、接收点数和误码率数据;接收端接收到的解调前的I/Q数据;根据信噪比和误码率生成的误码率曲线。 Digital modulation主程序的核心程序框图如图3所示。 1

实验二 数字信号载波调制

数字信号载波调制实验指导书 数字信号载波调制实验 一、实验目的 1、运用MATLAB 软件工具仿真数字信号的载波传输.研究数字信号载波调制ASK 、FSK 、PSK 在不同调制参数下的信号变化及频谱。 2,研究频移键控的两种解调方式;相干解调与非相干解调。 3、了解高斯白噪声方差对系统的影响。 4、了解伪随机序列的产生,扰码及解扰工作原理。 二、实验原理 数字信号载波调制有三种基本的调制方式:幅度键控(ASK ),频移键控(FSK )和相移键控(PSK )。它们分别是用数字基带信号控制高频载波的参数如振幅、频率和相位,得到数字带通信号。在接收端运用相干或非相干解调方式,进行解调,还原为原数字基带信号。 在幅度键控中,载波幅度是随着调制信号而变化的。最简单的形式是载波在 二进制调制信号1或0的控制下通或断,这种二进制幅度键控方式称为通—断键控(00K )。二进制幅度键控信号的频谱宽度是二进制基带信号的两倍。 在二进制频移键控中,载波频率随着调制信号1或0而变,1对应于载波频率f 1,0对应于载波频率f 2,二进制频移键控己调信号可以看作是两个不同载频的幅度键控已调信号之和。它的频带宽度是两倍基带信号带宽(B )与21||f f -之和。 在二进制相移键控中,载波的相位随调制信号1或0而改变,通常用相位0°和180°来分别表示1或0,二进制相移键控的功率谱与通一断键控的相同,只是少了一个离散的载频分量。 m 序列是最常用的一种伪随机序列,是由带线性反馈的移位寄存器所产生的序列。它具有最长周期。由n 级移位寄存器产生的m 序列,其周期为21,n m -序列有很强的规律性及其伪随机性。因此,在通信工程上得到广泛应用,在本实验中用于扰码和解扰。 扰码原理是以线性反馈移位寄存器理论作为基础的。在数字基带信号传输中,将二进制数字信息先作“随机化”处理,变为伪随机序列,从而限制连“0”

通信原理实验ASK调制和解调实验报告

新疆师范大学 实验报告 2020年4月27日课程名称通信原理实验项目实验四:ASK调制及解调实验物理与电子工程学院电子17-5 姓名赵广宇 同组实验者指导教师阿地力 一、实验目的 掌握用键控法产生ASK信号的方法。 掌握ASK非相干解调的原理 二、实验器材 主控&信号源模块 9号数字调制解调模块 示波器 三、实验原理 1、实验原理框图

2、实验框图说明 ASK调制是将基带信号和载波直接相乘。已调信号经过半波整流、低通滤波后,通过门限判决电路解调出原始基带信号。 四、实验步骤 实验项目一ASK调制 概述:ASK调制实验中,ASK(振幅键控)载波幅度是随着基带信号的变化而变化。在本项目中,通过调节输入PN序列频率或者载波频率,对比观测基带信号波形与调制输出波形,观测每个码元对应的载波波形,验证ASK调制原理

实验项目二ASK解调 概述:实验中通过对比观测调制输入与解调输出,观察波形是否有延时现象,并验证ASK解调原理。观测解调输出的中间观测点,如:TP4(整流输出),TP5(LPF-ASK),深入理解ASK解调过程。 若解调出的信号与原基带信号有差别,可调节抽样判决旋钮进行微调 观察眼图时,1.位同步信号CLK,2.低通滤波输出信号

调整主控模块,16K,PN127 五、实验分析 ●ASK即“幅移键控”又称为“振幅键控”,所以又记作OOK信号。ASK是一种相对 简单的调制方式。 ●这次实验首先对输入信号利用相关的模块进行ASK调制,再通过加入高斯白噪声 传输信道,接着在接收端对信号进行ASK解调,最后把输出的信号和输入的信号进行比较。 ●幅移键控(ASK)相当于模拟信号中的调幅,只不过与载频信号相乘的是二进制数 码而已。 ●所谓幅移就是把频率、相位作为常量,而把振幅作为变量,信息比特是通过载波 的幅度来传递的。 六、实验总结 ●第一次进行实验时,开始运行后,跳出了如图所示的提示。在停止运行后,在加 入了数字终端模块后,提示消失,在今后进行数字实验时,可引以为戒。

实验指导书(实验2-数字调制解调Ⅱ)

实验二数字调制解调实验Ⅱ 1、实验目标 本实验的目的是使用USRP来实现发射和接收射频信号,并且通过LabVIEW 来实现对不同调制信号的同步性能的对比,由于你在实验一中已经完成了数字调制的实验,所以在做这部分实验时,需要用到之前的调制解调模块。该实验将通过配置USRP的参数来使你了解把基带信号上变频到射频信号以及把射频信号下变频到基带信号的过程,并熟悉LabVIEW中的各种USRP模块的配置方法。 2、实验环境与准备 软件环境:LabVIEW 2012(或以上版本); 硬件环境:一套USRP和一台计算机; 实验基础:了解LabVIEW编程环境和USRP的基本操作; 知识基础:了解常见的数字调制解调技术以及相关概念。 3、实验介绍 本实验发送端主程序的前面板如图所示,首先是USRP的基本参数设置,包括IP地址、载波频率、IQ采样率等;接下来是PN序列的参数设置,包括保护间隔、信息序列长度、同步比特长度和PN序列的类型;然后是采样数和滤波器参数;之后是输出的PN序列以及调制前的信号时域图,频域图;最后是不同调制方式的不同调制结果。 接收端主程序的前面板如图所示,一开始的设置与发送端一样。在解调部分,是解调信号以及它的时域图、频域图、星座图和误码数,你可以通过这些来判断你的程序是否正确。

图1 数字调制解调实验发送端前面板 图2数字调制解调实验接收端前面板

1、发送端介绍 本实验发送端的调制主程序包含4个功能模块,其功能分别如下所述。(1)TX_init 本模块主要实现USRP的初始化,是配置一些基本USRP参数的模块。(2)transmitter 本模块是调制程序的核心,实现的是基带信号的产生,包括信源编码,调制,脉冲成形等重要功能。 (3)TXRF_prepare_for_transmit 本模块的作用是对调制完的信号幅度进行归一化。 (4)TXRF_send 本模块实现的功能是把调制完的数据写入USRP,实现发送。 2、接收端介绍 本实验接收端端的解调主程序包含5个功能模块,其功能分别如下所述。(1)RXRF_init 本模块的作用实现USRP初始化。 (2)RXRF_config 本模块的作用是配置USRP的参数。 (3)RXRF_recv 本模块的作用是接收射频信号,并且下采样到中频。 (4)receiver 本模块是解调程序的核心,实现的是恢复出原数据流。包括匹配滤波,同步,信道估计,均衡,解调,检测误码率等重要功能。 (5)RXRF_close.(SubVI) 本模块的作用是关闭USRP会话。 实验中USRP 配置原理及流程已经在第四章中介绍过了,请参考第四章来进行USRP的配置。 4、实验任务 本次实验中你需要完成的有top_tx和top_rx两个主程序,完成实验后,你需要提交上述程序和实验报告。 你所要完成的任务是下面这三个,目标是在进行完这三个任务后得到一个完

PSK数字信号的调制与解调分享

信息对抗大作业 一、实验目的。 使用MATLAB构成一个加性高斯白噪声情况下的2psk调制解系统,仿真分析使用信道编码纠错和不使用信道编码时,不同信道噪声比情况下的系统误码率。 二、实验原理。 数字信号的传输方式分为基带传输和带通传输,在实际应用中,大多数信道具有带通特性而不能直接传输基带信号。为了使数字信号在带通信道中传输,必须使用数字基带信号对载波进行调制,以使信号与信道的特性相匹配。这种用数字基带信号控制载波,把数字基带信号变换为数字带通信号的过程称为数字调制。 数字调制技术的两种方法:①利用模拟调制的方法去实现数字式调制,即把数字调制看成是模拟调制的一个特例,把数字基带信号当做模拟信号的特殊情况处理;②利用数字信号的离散取值特点通过开关键控载波,从而实现数字调制。这种方法通常称为键控法,比如对载波的相位进行键控,便可获得相移键控(PSK)基本的调制方式。 图1相应的信号波形的示例 101 作为360180度,也就是反相。当传输数字信号时,"1" 也就带上了信息。 相移键控是利用载波的相位变化来传递数字信息,而振幅和频率保持不变。在2PSK中,通常用初始相位0和π分别表示二进制“1”和“0”。因此,2PSK信号的时域表达式为 (t)=Acost+) 其中,表示第n个符号的绝对相位: = 因此,上式可以改写为 图22PSK信号波形 解调原理 2PSK信号的解调方法是相干解调法。由于PSK信号本身就是利用相位传递信息的,所以在接收端必须利用信号的相位信息来解调信号。下图2-3中给出了一种2PSK信号相干接收设备的原理框图。图中经过带通滤波的信号在相乘器中与本地载波相乘,然后用低通滤波器滤除高频分量,在进行抽样判决。判决器是按极性来判决的。即正抽样值判为1,负抽样值判为0. 2PSK信号相干解调各点时间波形如图3所示.当恢复的相干载波产生180°倒相时,解调出的数字基带信号将与发送的数字基带信号正好是相反,解调器输出数字基带信号全部出错. 图32PSK信号相干解调各点时间波形

Removed_数字调制解调(matlab)-西工大

实验五 数字调制解调 一、实验目的 让学生掌握掌握模拟调制以及对应解调方法的原理。 掌握模拟调制解调方法的计算机编程实现方法,即软件实现。培养学生综合分析、解决问题的能力,加深对课堂内容的理解。二、实验要求 掌握模拟AM 、PM 和FM 的方法原理以及对应的解调原理;编制调制解调程序;完成对一个正弦信号的调制、传输、滤波、解调过程的仿真;实验后撰写实验报告。三、实验环境 PC 机,Windows2000,office2000,Matlab6.5以上版本软件。四、实验内容、步骤 实验内容 已知消息信号为:频率为的正弦信号;载波频率为 10f Hz =,采样频率为40KHz 。编程实现一种调制、传输、滤波和解8c f KHz =调过程。 实验步骤 1.根据参数产生消息信号s 和载波信号。 2.编程实现调制过程。调用函数y=ammod(s,Fc,Fs)完成幅度调制,y=fmmod(s,Fc,Fs, FREQDEV) 完成频率调制,y=pmmod(s,Fc,Fs, PHASEDEV) 完成相位调制。 3.编程实现信号的传输过程。产生白噪声noise ,并将其加到调制信号序列。 4.编程实现信号的解调。调用函数x=amdemod(y,Fc,Fs)完成幅度调制信号的解调,x=fmdemod(y,Fc,Fs, FREQDEV) 完成频率调制信号的解调,x=pmdemod(y,Fc,Fs, PHASEDEV) 完成相位调制信号的解调。 五、实验报告要求及计录、格式 1.画图给出消息信号和载波信号的波形和频谱。2.画图给出已调信号的波形和频谱。3.画图给出解调后信号的波形和频谱。六、讨论、思考题 1.总结模拟调制解调的方法,并与课堂上所讲的方法对照。 实验结果:

相关文档
相关文档 最新文档