文档库 最新最全的文档下载
当前位置:文档库 › 当光纤纤芯直径小于光线波长时

当光纤纤芯直径小于光线波长时

当光纤纤芯直径小于光线波长时

当光纤纤芯直径小于光线波长时,能不能传输该光线

当光纤直径小于所传输的光线时,这种光纤称为亚波长直径光纤(Subwavelength-diamete r optical fibre)。它传播光线的特点是由于波长大于光纤的直径,较多的光线会在光纤外表面传导,这样就会受到光纤表面形态如一些污染物的影响。进一步了解,可以参考2003年发在Nature上的一篇文章Subwavelength-diameter silica wires for low-loss optical w ave guiding,希望对你有帮助!

......纤芯直径通常小于所传播光波的波长,也称为亚波长直径光纤....

一种微纳光纤损耗测试方法的实验研究

https://www.wendangku.net/doc/9d18661105.html,/magazine/Article/BDTG201005023.htm

另外,关于光波在亚波长光纤里的传播特点,相关方程可以参考10年PRL上的文章Emer gence of Geometrical Optical Nonlinearities in Photonic Crystal Fiber Nanowires

各种波长及其颜色

1、芯片发光颜色(COLW) 红(Red):R(610nm-640nm)黄(Yellow):Y(580nm-595nm)兰(Blue):B(455nm-490nm)兰绿(Cyan):C(490nm-515nm)绿(Green):G(501nm-540nm)紫(Purple):P(380nm-410nm)琥珀(Amber):A(590nm-610nm)白(White):W2 黄绿(Kelly):K(560nm-580nm)暖白(Warm white)W3 2、颜色波长 ★红: R1:610nm-615nm R2:615nm-620nm R3:620nm-625nm R4:625nm-630nm R5:630nm-635nm R6:635nm-640nm ★黄: Y1:580nm-585nm Y2:585nm-590nm Y3:590nm-595nm ★琥珀色: A1:600nm-605nm A2:605nm-610nm ★兰绿: G1:515nm-517.5nm G2:517.5-520nm G3:520nm-525nm G4:525nm-530nm G5:530nm-535nm G6:535nm-540nm ★兰: B1:455nm-460nm B2:460nm-462.5nm B3:462.5nm-465nm B4:460nm-465nm B5:465nm-470nm B6:470nm-475nm B7:475nm-480nm B8:480nm-485nm B9:485nm-490nm ★黄绿: K1:560nm-565nm K2:565nm-570nm K3:570nm-575nm K4:575nm-580nm ★纯绿: C1:490nm-495nm C2:495nm-500nm C3:500nm-515nm

可见光的光谱及各类光的波长

c 在这里是光速,x 、y 和z 是空间的坐标,t 是时间的坐标,u (x ,y ,z )是描写光的函数,下标表示取偏导数。在空间固定的一点(x 、y 、z 固定),u 就成为时间的一个函数了。通过 傅里叶变换我们可以获得每个波长的振幅。由此我们可以得到这个光在每个波长的强度。这样一来我们就可以从波动方程获得一个光谱。 但实际上要描写一组光谱到底会产生什么颜色,我们还的理解视网膜的生理功能才行。 亚里士多德就已经讨论过光和颜色之间的关系,但真正阐明两者关系的是艾萨克·牛顿。约翰·沃尔夫冈·歌德也曾经研究过颜色的成因。托马斯·杨1801年第一次提出三元色的理论,后来赫尔曼·冯·亥姆霍兹将它完善了。1960年代人们发现了人眼内部感受颜色的色素,从而确定了这个理论的正确性。 人眼中的锥状细胞和棒状细胞都能感受颜色,一般人眼中有三种不同的锥状细胞:第一种主要感受红色,它的最敏感点在565纳米左右;第二种主要感受绿色,它的最敏感点在535纳米左右;第三种主要感受蓝色,其最敏感点在445纳米左右。杆状细胞只有一种,它的最敏感的颜色波长在蓝色和绿色之间。 每种锥状细胞的敏感曲线大致是钟形的。因此进入眼睛的光一般相应这三种锥状细胞和杆状细胞被分为4个不同强度的信号。 因为每种细胞也对其他的波长有反映,因此并非所有的光谱都能被区分。比如绿光不仅可以被绿锥状细胞接受,其他锥状细胞也可以产生一定强度的信号,所有这些信号的组合就是人眼能够区分的颜色的总和。 如我们的眼睛长时间看一种颜色的话,我们把目光转开就会在别的地方看到这种颜色的补色。这被称作颜色的互补原理,简单说来,当某个细胞受到某种颜色的光刺激时,它同时会释放出两种信号:刺激黄色,并同时拟制黄色的补色紫色。 事实上,某个场景的光在视网膜上细胞产生的信号并不是完全被百分之百等于人对这个场景的感受。人的大脑会对这些信号处理,并分析比较周围的信号。例如,一张用绿色滤镜拍的白宫照片——白宫的形象事实上是绿色的。但是因为人大脑对白宫的固有印象,加上周围环境的的绿色色调,人脑的会把绿色的障碍剔除——很多时候依然把白宫感受成白色。这被称作现象在英文中被称作“Retinex”——合成了视网膜(retina )和大脑皮层(cortex )两个单词。梵高就曾使用过这个现象作画。 人眼一共约能区分一千万种颜色,不过这只是一个估计,因为每个人眼的构造不同,每个人看到的颜色也少许不同,因此对颜色的区分是相当主观的。假如一个人的一种或多种锥状细胞不能正常对入射的光反映,那么这个人能够区别的颜色就比较少,这样的人被称为色弱。有 时这也被称为色盲,但实际上这个称呼并不正确,因为真正只能区分黑白的人是非常少的。 杆状细胞。杆状细胞虽然一般被认为只能分辨黑白,但它们对不同的颜色的灵敏度是略微不同的,因此当光暗下来的时候,杆状细胞的感光特性就越来越重要了,它可以改变我们对颜色的感觉。 、管路敷设技术通过管线不仅可以解决吊顶层配置不规范高中资料试卷问题,而且可保障各类管路习题到位。在管路敷设过程中,要加强看护关于管路高中资料试卷连接管口处理高中资料试卷弯扁度固定盒位置保护层防腐跨接地线弯曲半径标等,要求技术交底。管线敷设技术中包含线槽、管架等多项方式,为解决高中语文电气课件中管壁薄、接口不严等问题,合理利用管线敷设技术。线缆敷设原则:在分线盒处,当不同电压回路交叉时,应采用金属隔板进行隔开处理;同一线槽内强电回路须同时切断习题电源,线缆敷设完毕,要进行检查和检测处理。、电气课件中调试对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行 高中资料试卷调整试验;通电检查所有设备高中资料试卷相互作用与相互关系,根据生产工艺高中资料试卷要求,对电气设备进行空载与带负荷下高中资料试卷调控试验;对设备进行调整使其在正常工况下与过度工作下都可以正常工作;对于继电保护进行整核对定值,审核与校对图纸,编写复杂设备与装置高中资料试卷调试方案,编写重要设备高中资料试卷试验方案以及系统启动方案;对整套启动过程中高中资料试卷电气设备进行调试工作并且进行过关运行高中资料试卷技术指导。对于调试过程中高中资料试卷技术问题,作为调试人员,需要在事前掌握图纸资料、设备制造厂家出具高中资料试卷试验报告与相关技术资料,并且了解现场设备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况 ,然后根据规范与规程规定,制定设备调试高中资料试卷方案。 、电气设备调试高中资料试卷技术电力保护装置调试技术,电力保护高中资料试卷配置技术是指机组在进行继电保护高中资料试卷总体配置时,需要在最大限度内来确保机组高中资料试卷安全,并且尽可能地缩小故障高中资料试卷破坏范围,或者对某些异常高中资料试卷工况进行自动处理,尤其要避免错误高中资料试卷保护装置动作,并且拒绝动作,来避免不必要高中资料试卷突然停机。因此,电力高中资料试卷保护装置调试技术,要求电力保护装置做到准确灵活。对于差动保护装置高中资料试卷调试技术是指发电机一变压器组在发生内部故障时,需要进行外部电源高中资料试卷切除从而采用高中资料试卷主要保护装置。

波长与发光颜色知识汇总

白色光有完美的颜色特性,但它会损害适应暗光的视觉,一定光源熄灭后需要一定的时间来重新适应。 红色光通常是用作夜视。红光不会引起你瞳孔过分收缩和一旦红光熄灭时眼睛不需要重新适应黑暗。红色也通常在单色相片处理被用作为“安全”颜色因为它不会损坏正在冲印的底片黄色光有着红色光和白色光的一些优点。黄色光另外一优点就是当你阅读时减少因为长时间阅读而导致眼睛疲劳的反射和眩目的光。 绿色光也可以用作为夜视,绿色光还特别适用于在夜晚的时候阅读地图或图表。它还不那么容易被夜视装备发现,便很容易被人眼发现,绿色光的亮度比红色光低。 蓝色光可被用作在夜晚阅读地图和通常很受军事人员青睐,因为蓝色光增加了对比度的水平。它还可以用作戏院和演出时的后台工作灯色。 蓝绿光有着相似绿光和蓝光的夜视优点,但随着蓝绿光的颜色特性的提高,一些用户因为这个原因喜欢用蓝绿光。 红外线红光是与夜视装备一起使用的。否则人的眼睛是看不到红外线光的。 紫外光通常是用作识别钞票是否伪造,一些紫外发光二极管照明物在夜总会和派对上很受欢迎,它们被用来使荧光物质发出更亮的光。 光的颜色和它的波长 光的颜色是否可以看见是由它的波长决定的,光的波长是以纳米为单位的也说是十亿分之一米。发光二极管发出的光几乎都是一致的也就是说它几乎都是在一个波长,发出非常纯的颜色。以下是光的颜色和它的波长。 中红外线红光 4600nm - 1600nm --不可见光 低红外线红光 1300nm - 870nm --不可见光 850nm - 810nm -几乎不可见光 近红外线光 780nm -当直接观察时可看见一个非常暗淡的樱桃红色光 770nm -当直接观察时可看见一个深樱桃红色光 740nm -深樱桃红色光 红色光 700nm - 深红色 660nm - 红色 645nm - 鲜红色 630nm - 橘红 620nm - 橙红 橙色光

波长 频率和波速教案

[高二物理教案10-3] 10.31波长、频率和波速 一、教学目标 1、知识目标: ①知道什么是波的波长,能在波的图象中求出波长。 ②知道什么是波传播的周期(频率),理解周期与质点振动周期的关系。 ③理解决定波的周期的因素,并知道其在波的传播过程中的特点。 ④理解波长、周期(频率)和波速的物理意义及它们之间的关系,并会应用这一关系进行计算和分析实际问题。 2、能力目标: 学会应用波长、周期(频率)和波速的关系分析解决实际问题的方法。 二、教学重点: 理解波长、周期(频率)和波速的物理意义及它们之间的关系,并会应用这一关系进行计算和分析实际问题。 三、教学方法: 实验演示和多媒体辅助教学 四、教具: 波动演示仪、演示波的图象用的教学课件、计算机、大屏幕 五、教学过程: (一)引入新课 在物理中,一些物理现象、过程、规律等,都需要用物理量进行描述。同样,机械波及其传播过程,也需要一些物理量进行描述。在上一节我们认识和理解波的图象的基础上,这节课,我们来学习和研究描述波的几个物理量,即波长、频率和波速 【板书】第三节波长、频率和波速 (二)进行新课 【板书】一、波长(λ) 在教材中的图10-5可以看出,由质点1发出的振动传到质点13,使质点13开始振动时,质点1完成一次全振动,因而这两个质点的振动步调完全一致。也就是说,至两个质点在振动中的任何时刻,对平衡位置的位移大小和方向总是相等的。我们就把这样两个质点之

间的距离叫做波长。 【板书】1、在波动中,对平衡位置的位移总是相等的两个相邻质点间的距离,叫做波的波长。 对于波长这个物理量,我们还需要结合波的图象,进一步加深理解。 【板书】2、几点说明 要理解“位移总相等”的含义。这里要求的是每时每刻都相等。如图10-10所示,如E、F两点在图示的时刻位移是相等的,但过一段时间后,位移就不一定相等,所以E、F两点的距离就不等于一个波长。 【板书】(1)“位移总相等”的含义是“每时每刻都相等”。 从波的图象中不难看出,位移总相等的两个质点,其速度也总是相等的。 【板书】(2)位移总相等的两个质点,其速度也总是相等的。 在横波中,两个相邻波峰或两个相邻波谷之间的距离等于波长。在纵波中,两个相邻密部或两个相邻疏部之间的距离也等于波长。 结合图10-10,我们可以看到,相距λ/2的两个质点振动总是相反的。进而可以总结出这样的结论:相距λ整数倍的质点振动步调总是相同的;相距λ/2奇数倍的质点振动步调总是相反的。 【板书】(3)相距λ整数倍的质点振动步调总是相同的;相距λ/2奇数倍的质点振动步调总是相反的。 在波的传播过程中,由于波源质点的振动,而带动相邻的质点依次振动,各个质点振动的周期与频率,都与波源质点的振动周期和频率相同。所以波的传播是具有周期性的。因此,为了描述波的传播过程,还需要引入物理量——周期和频率。 【板书】二、周期(T)、频率(f) 波源质点振动的周期(或频率)也就是波传播的周期(频率)。 【板书】1、波源质点振动的周期(或频率)就是波的周期(或频率)。

光的颜色和波长

光的颜色和波长 光在传播过程中,遇到障碍物或小孔时,光将偏离直线传播的途径而绕到障碍物后面传播的现象,叫光的衍射。光的衍射和光的干涉一样证明了光具有波动性。 刀口尺也称作刀口直尺、刀口平尺等。光隙法是凭借人眼观察通过实际间隙的课件光隙量多少来判断间隙大小的一种基本方法。光隙法测量是将刀口尺置于被测实际线上并使刀口尺与实际线紧密接触,转动刀口直尺使其位置符合最小条件,然后观察刀口尺与被测线之间的最大光隙,此时的最大光隙即为直线度误差。当光隙值较大时,可用量块或塞尺测出其值。光隙值较小时,可通过标准光隙比较来估读光隙值大小。若间隙大于0.0025mm,则透光颜色为白光;间隙为0.001~0.002mm时,透光颜色为红光;间隙为0.001mm时,透光颜色为蓝光;刀平平尺与被测线间隙小于0.001mm时,透光颜色为紫光;刀口尺与被测线间隙小于0.0005mm时,则不透光。由此可以判断刀口尺的直线度误差。 光的颜色和它的波长 光的颜色是否可以看见是由它的波长决定的,光的波长是以纳米为单位的也说是十亿分之一米。发光二极管发出的光几乎都是一致的也就是说它几乎都是在一个波长,发出非常纯的颜色。以下是光的颜色和它的波长。 中红外线红光 4600nm-1600nm--不可见光 低红外线红光 1300nm-870nm--不可见光850nm-810nm-几乎不可见光 近红外线光 780nm-当直接观察时可看见一个非常暗淡的樱桃红色光 770nm-当直接观察时可看见一个深樱桃红色光 740nm-深樱桃红色光 红色光 700nm-深红色660nm-红色645nm-鲜红色630nm- 620nm-橙红 橙色光 615nm-红橙色光610nm-橙色光605nm-琥珀色光 黄色光 590nm-“钠“黄色585nm-黄色575nm-柠檬黄色/淡绿色 绿色 570nm-淡青绿色565nm-青绿色555nm-550nm-鲜绿色525nm-纯绿色蓝绿色(青) 505nm-青绿色/蓝绿色500nm-淡绿青色495nm-天蓝色 蓝色 475nm-天青蓝470nm-460nm-鲜亮蓝色450nm-纯蓝色 蓝紫色 444nm-深蓝色30nm-蓝紫色 紫色 405nm-纯紫色400nm-深紫色 近紫外线光 395nm-带微红的深紫色UV-A型紫外线光 370nm-几乎是不可见光,受木质玻璃滤光时显现出一个暗深紫色。 白光发光二极管有微黄色的到略带紫色的白光。白光发光二极管的色温范围有低至4000°K到12000°K。常见的白光发光二极管通常都是6500°-8000°K范围内。

无线电波的波长频率与波段

无线电波的波长(频率)与波段 电磁波的电场(或磁场)随时间变化,具有周期性。在一个振荡周期中传播的距离叫波长。振荡周期的倒数,即每秒钟振动(变化)的次数称频率。很显然,波长与频率的乘积就是每秒钟传播的距离,即波速。令波长为λ,频率为f,速度为V,得: λ=V/f波长入的单位是米(m),速度的单位是米/秒(m/sec),频率的单位为赫兹(Hertz,Hz)。 整个电磁频谱,包含从电波到宇宙射线的各种波、光、和射线的集合。不同频率段落分别命名为无线电波(3KHz—3000GHz)、红外线、可见光、紫外线、X 射线、丫射线和宇宙射线。 在19世纪末,意大利人马可尼和俄国人波波夫同在1895年进行了无线电通信试验。在此后的100年间,从3KHz直到3000GHz频谱被认识、开发和逐步利用。根据不同的持播特性,不同的使用业务,对整个无线电频谱进行划分,共分9段:甚低频(VLF)、低频(LF)、中频(MF),高频(HF)、甚高频(VHF)\特高频(uHF)\超高频(sHF)\极高频(EHF)和至高频,对应的波段从甚(超)长波、长波、中波、短波、米波、分米波、厘米波、毫米波和丝米波(后4种统称为微波)。见下表。 无线电频谱和波段划分 段号频段名称 频段范围 (含上限不含下限)波段名称 波长范围(含 上限不含下 限) 1甚低频(VLF)3~30千赫(KHz)甚长波100~10km

2低频(LF)30~300千赫(KHz)长波10~1km 3中频(MF) 300~3000千赫 (KHz) 中波1000~100m 4高频(HF)3~30兆赫(MHz)短波100~10m 5甚高频(VHF)30~300兆赫(MHz)米波10~1m 6特高频(UHF) 300~3000兆赫 (MHz)分米 波 微波 100~10cm 7超高频(SHF)3~30吉赫(GHz) 厘米 波 10~1cm 8极高频(EHF)30~300吉赫(GHz) 毫米 波 10~1mm 9至高频 300~3000吉赫 (GHz)丝米 波 1~0.1mm

各种颜色的吸收波长

人的眼睛能感觉到的光称为可见光(visible light)。在可见光区内,不同波长的光具有不同的颜色,只具有一种波长的光称为单色光,由不同波长组成的光称为复合光。日常我们所看到的太阳光、白炽灯光、日光灯光等白光都是复合光,它是由400~760 nm波长范围内的红、橙、黄、绿、青、蓝、紫等各种颜色的光按一定比例混合而成的。 实验证明,如果将两种适当颜色的单色光按一定强度比例混合,也可以得到白光,我们通常将这两种颜色的单色光称为互补色光。图(8—1)为互补色光示意图,图中处于直线关系的两种颜色的光是互补色光,它们彼此按一定比例混合即成为白光。 2.溶液的颜色和对光的选择性吸收 物质呈现的颜色与光有密切的关系,当光照射到物质上时,由于物质对于不同波长的光的反射、散射、折射、吸收、透射的程度不同,使物质呈现不同的颜色。 对于溶液来说,它所呈现的不同颜色,是由于溶液中的质点选择性地吸收了某种颜色的光而引起的。当一束白光通过某溶液时,如果溶液对各种颜色的光均不吸收,入射光全透过,或虽有吸收,但各种颜色的光透过程度相同,则溶液是无色的;如果溶液只吸收了白光中一部分波长的光,而其余的光都透过溶液,则溶液呈现出透过光的颜色,在透过光中,除吸收光的互补色光外,其它的光都互补为白光,所以溶液呈现的恰是吸收光的互补色光的颜色。例如,CuSO4溶液选择性地吸收了白光中的黄色光而呈现蓝色;KMnO4溶液选择性地吸收了白光中的绿色光而呈现紫红色。表8—2列出了溶液颜色与吸收光颜色和波长的关系,可以作为测定时选择入射光波长范围的参考。 表8-2溶液颜色与吸收光颜色和波长的关系 吸收光 溶液颜色 颜色λ/ nm 黄绿紫400 ~450 黄蓝450 ~480 橙绿蓝480 ~490 红蓝绿490 ~500 紫红绿500 ~560 紫黄绿560 ~580 蓝黄580 ~600 绿蓝橙600 ~650 蓝绿红650 ~760 3.吸收光谱 物质对光的吸收具有选择性,如果要知道某溶液对不同波长单色光的吸收程度,我们使各种波长的单色光依次通过一定浓度的某溶液,测量该溶液对各种单色光的吸收程度,并记录每一波长处的吸光度,然后以波长为横坐标,吸光度为纵坐标作图,得一曲线,即该物质的光吸收曲线或吸收光谱(absorption spectrum)。对应于光吸收程度最大处的波长称最大吸收波长(maxi mu m absorption),以λ最大或λmax 表示,如图(8-2)所示。在λmax处测定吸光度灵敏度最高,故吸收光谱是吸光光度法中选择入射光波长的重要依据。 图8-2吸收光谱示意图 吸收光谱可以清楚、直观地反映出物质对不同波长光的吸收情况。图(8-3)是四种不同浓度的KMnO4溶液的吸收光谱。由图可知:①在可见光范围内,KMnO4溶液对不同波长的光的吸收情况不同,对波长为525 nm的绿色光吸收最多,有一吸收高峰;②四条曲线的最大

光的各个波长区域-nm

光的各个波长区域 光是一种电磁波,它的波长区间以几个nm(1nm=10-9m)到1mm左右。这些光并不是都能看得见的,人眼所能看见的只是其中的一部分,我便把这部分光称为可见光。在可见光中,波长最短的是紫光,稍长的是蓝光,以后的顺序是青光、绿光、黄光、橙光和红光,其中红光的波长最长,在不可见光中,波长比紫光短的光称为紫外线,比红光长的光叫做红外线。下表列出紫外可见光和红外区的大致的波长范

围。波长小于200nm的光之所以称为真空紫外,是因为这部分光在空气中很快被吸收,因此它只能在真空中传播。 现在常用的光波波长单位是μm,nm和?(埃),它们之间的关系是:1μm=103nm=104?。光除具有波动性之外,还具有粒子性。量子论认为,光是由许多光量子组成的,这些光量子具有的能量为hυ,其中h=×10-34J·S是普朗克常数,υ=c/λ是光的频率,c=3×10-8m/s 是真空中的光速。量子论较好地反映了光的波粒二象性。 在光辐射中的一部分是人眼能够看得见的。人眼怎么会感到这部分光的呢原来在人眼的视网膜上面布满了大量的感光细胞。感光细胞有两种:柱状细胞和锥状细胞。前者灵敏度高,能感觉极微弱的光;后者灵敏度较低,但能很好的区别颜色。在柱状细胞和锥状细胞里都会有一种感光物质,当光线照到视网膜上时,感光物质发生化学变化,刺激神经细胞,最后由神经传到大脑,产生视觉。如同感光片对各种颜色光的灵敏度也不一样,它对绿光的灵敏度最高,可对红光的灵敏度低得多。也就是说,相同能量的绿光和红光,前者在人眼中引起的视觉强度要比后者大得多。实践表明,不同的观察者的眼睛对各种波长的光的灵敏度稍有不同,而且还随着时间、观察者的年龄和健康状况而变。因此,只能以许多人的大量观察结果中取平均。现在大家公认的视觉函数曲线是国际照明委员会(简称CIE)根据平均人眼对各种波长的光的相对灵敏度值画成的曲线。

天线和频率(波长)关系

天线的长短是根据中心工作频率的波长来决定的: 1.波长和频率的关系是倒数关系,具体的计算公式是:波长(单位:米)=300/频率(单位:MHz)中心频率为150MHz时,波长就是2米,所以我们又把150MHz左右的信号称为2米波,而430MHz的波长是0.7米,所以430MHz左右的信号又被叫着70厘米波。 2.天线的长短和波长成正比,所以和频率成反比,频率越高,波长越短,天线也就可以做得越短。 3.天线的长度并不等于一个波长,往往是1/4波长或者5/8波长,如果你购买的是原装天线,你能在包装或说明书上看到类似这样的说明。为什么要用这样的长度,我以后再来介绍。 4.很多缩短型天线,比如大家常说的烟

屁苗子,是用加感的方式来缩短长度,实际上把里面一圈一圈的线材拉直,长度也接近波长的1/4或者5/8。当然也有用其他技术手段、设计思想制作的缩短天线,但现在在业余领域还没有效果太好的产品。 5.我们使用的U段和V段都有一个比较宽的范围,U段从430到440,有10MHz的宽度,V段从144到146有2M的宽度,而天线的最佳点(也就是长度和波长最匹配的频率点)理论上就在某一个频率上。保持在整个频率范围内都有比较好的特性,这就是天线好坏的一个重要特征。 6.如果你常用的某个频点,天线的特性不好(比如驻波较大),可以通过修剪天线来进行调试。修剪工作一 定要由有经验的人士在仪器的帮助下完成。这个道理就不用多讲了。 7.国产天线的性能不一定就比进口天

线的性能差,但国产天线的一致性不好,碰到好的就特别好,碰到不好就算倒霉,呵呵,当然修剪一下还是可以用的。 8.天线对通连的效果是至关重要的,一副好的天线可以让你用比别人低得多的发射功率把信号送到同样远的地方,或者说,用同样的功率,一副好天线可以把信号送到更远的地方。

不同波长光线的颜色

色彩的本质是电磁波。电磁波由于波氏的不同诃分为通讯波.红外线.可见光.紫外线、X线.R线和宇宙线等。其中波K 为380-780NM的电磁波为可见光。町见光透过三棱镜町以呈现出红.橙、黄、绿、权盎、紫七种颜色组成的光谱。红色光波鼓匕640-780NM:紫色光波最短.380-430NM在真空中: M0E-7M 红光:7700- 6400 橙黄光:6400-5800 绿光:5800- 4950 蓝龊光:4950?4400 紫光:4400-4000 波长为380-780NM的电磁波为町见光。町见光透过三棱镜可以呈现出红、檢?黄、绿、青、蓝.紫七种濒色组成的光谱。红色光波最匕640-780NM:紫色光波最短,380—430NM: 上网搜索图片:连续光谱。 红640—780NM.橙640—610,黄610—530.绿505—525.蓝505—470.紫470—380。 红640—780NM 橙640—610NM 黄610—530NM 绿505—525NM 蓝505—470NM 紫470—380NM 肉眼看得见的是电磁波中很短的一段.从0.4-0.76微米这部分称为町见光。町见光经三棱镜分光后?成为一条由红、橙、黄、绿、Wx蓝.紫七种颜色组成的光带.这光带称为光谱。其中红光波长僉tC紫光波长城短?其它备色光的波长则依次介干其间。波长氏于红光的(>0.76微米)有红外线有无线电波:波长短于紫色光的(<0.4微米)有紫外线 可见光波长(4*10-7m—7*10-7ni) 光色 波长X (nm) 代表波长 红(Red) 7S0-630 700 橙 630-600 620 黄(Yellow) 600?570 5S0 绿(Green) 570-500

知识讲解波长频率和波速

波长、频率和波速 编稿:张金虎审稿:吴嘉峰 【学习目标】 1.知道波长、频率的含义。 2.掌握波长、频率和波速的关系式,并能应用其解答有关问题。 3.知道波速由介质本身决定,频率由波源决定。 【要点梳理】 要点一、波长、频率和波速 1.波长、频率和波速 (1)波长. 两个相邻的运动状态总是相同的质点间的距离,或者说在振动过程中,对平衡位置的位移总是相等的两个相邻质点间的距离叫做波长.例如,在横波中两个相邻波峰(或波谷)之间的距离,在纵波中两个相邻密部(或疏部)之间的距离都等于波长.波长用 ?表示. (2)频率. 由实验观测可知:波源振动一个周期,其他被波源带动的质点也刚好完成一次全振动,且波在介质中往前传播一个波长.由此可知,波动的频率就是波源振动的频率.频率用f表示. (3)波速. 波速是指波在介质中传播的速度. 要点诠释:①机械波的波速只与传播介质的性质有关.不同频率的机械波在相同的介质中传播速度相等;同频率的横波和纵波在相同介质中传播速度不相同.②波在同一均匀介质中匀速向前传播,波速”是不变的;而质点的振动是变加速运动,振动速度随时间变化. 2.波长、频率和波速之间的关系 在一个周期的时间内,振动在介质中传播的距离等于一个波长,因而可以得到波长?、频率f(或周期T)和波速v三者的关系为:vT??. 根据1Tf?,则有vf??。 3.波长?、波速v、频率f的决定因素 (1)周期或频率,只取决于波源,而与v?、无直接关系. (2)速度v取决于介质的物理性质,它与T?、无直接关系.只要介质不变,v 就不变,而不取决于T?、;反之如果介质变,v也一定变. (3)波长?则取决于v和T。只要vT、其中一个发生变化,其?值必然发生变化,

波长频率和波速示范教案

波长频率和波速示范教案Newly compiled on November 23, 2020

第三节:波长、频率和波速示范教案 教学目标 (一)知识目标 1、掌握波长、频率、波速的物理意义; 2、能在机械波的图象中识别波长; 3、掌握波长、频率和波速之间的关系,并会应用这一关系进行计算和分析 问题; (二)能力目标:培养学生阅读材料、识别图象、钻研问题的能力. 教学重点:波长、频率和波速之间的关系 教学难点:波长、频率和波速之间的关系 教学方法:讨论法 教学用具:横波演示器、计算机多媒体 教学步骤 一、引入新课 教师用计算机幻灯(PPT)展示简谐横波的图象,如图所 示: 教师提问:=0、=、=、=、=、=、=这些 质点的振动方向如何请学生回答。 学生回答: =0向下振动;=速度等于0;=向上振动;=速度等于0;=向下振动;=速度等于0;=向上振动 教师提问:在这些质点中振动相同的是哪些点 学生回答:=0 =向下振动、= =向上振动、= = =速度等于0。 教师提问:在以上三组相同中又有什么不同呢 学生回答:前两组的质点的振动是完全相同,后一组有不同的。

教师提问:振动完全相同指什么 学生回答:指:质点的位移、回复力、加速度、速度都相同。 教师提问:相邻的振动完全相同的质点间的水平距离都相等吗请学生讨论。 教师可在教室里指导个别学生,并与学生讨论学生提出的问题。 教师总结:这就是波长,用表示,单位是米 教师板书: 一、波长:在波动中,对平衡位置的位移总是相等的两个相邻质点间的距离,叫波长 1、单位:米 2、符号表示: 教师提问:设波源的振动频率(周期)是,则波传播的频率和周期是多少 学生回答:也是 教师提问:为什么 请学生讨论 教师总结:因为每个质点都在做受迫振动,所以每个质点的振动频率或周期也是。教师用横波演示器给学生讲解:经过一个周期,振动在介质中的传播的距离等于一个波长;经过半个周期,振动在介质中的传播的距离等于半个波长;经过四分之一个周期,振动在介质中的传播的距离等于一个波长的四分之一。 教师板书: 二、总结出波长、频率和波速的关系: 三、应用 例题:如图中的实线是一列简谐波在某一时刻的波形曲线.经后,其波形如图中虚线所示.设该波的周期大于. (1)如果波是向左传播的,波速是多大波的周期是多大 (2)如果波是向右传播的,波速是多大波的周期是多大

灯光波长与水草关系

灯光波长与水草关系 编辑: myle 灯光波长与水草关系因为光线在唔同之波长下(nm),才有唔同之颜色; 例如: 紫外线会在400nm以下,人类肉眼无法睇到紫外线,无论是对动物或植物均有害;蓝-蓝绿色光会在400-500nm内,叶绿素主要利用红、蓝光来行光合作用,此波段对水草光合作用的贡献仅次於 灯光波长与水草关系 因为光线在唔同之波长下(nm),才有唔同之颜色;例如: 紫外线会在400nm以下,人类肉眼无法睇到紫外线,无论是对动物或植物均有害;蓝-蓝绿色光会在400-500nm内,叶绿素主要利用红、蓝光来行光合作用,此波段对水草光合作用的贡献仅次於橙红色光波,此外,由於波长愈短透光率愈强,因此蓝光区光线的透光率在水深60公分时,其光照度仍可维持不变; 绿、黄光在500-600nm内,由於绿光照到叶绿素後会被反射,无法吸收利用,因此这段光波对水草的光合作用帮助极少,不过水草的叶绿体尚有少量萝卜素、叶黄素等光合色素,它们还会吸收绿光,并藉以行光合反应,绿光区的光线的照射到40公分深左右时,光照度会递减成原光源之70%; 橙黄-红色光在600-700nm内,叶绿素对红光及蓝光的吸收力最强,而相较之下,红光又略胜蓝光一筹,所以此段光波为水草行光合作用最有助益,此外,由於红光区光线的波长较长,因此与蓝光及绿光相比其透光率最差。 光质在植物生长及生理作用扮演著极重要之角色,太阳为全光谱的光质,所以人工照明灯具当然应选择与太阳相似全光谱之灯管为主,再配合不同水草的特性,以其他灯源辅助,例如绿色水草可加强红、蓝光质;而对红色水草可加强绿光区及蓝光区的光质对其生长及色泽有明显之作用。 波长较短之蓝色光,有使水草矮化、呈横生及使叶片肥厚等作用,此光谱之灯管适

可见光的光谱及各种光的波长

各种光的波长 各种光的波长可见光的光谱

一个虹所表现的每个颜色只包含一个波长的光。我们称这样的颜色 为单色的。虹的光谱实际上是连续的,但一般人们将它分为七种颜色:红、橙、黄、绿、青、蓝、紫,但每个人的分法总是稍稍不同的。单色光的强度也会影响人对一个波长的光的颜色的感受,比如 暗的橙黄被感受为褐色,而暗的黄绿被感受为橄榄绿,等等。p1Ean qFDPw 显示器无法产生单色的橙色)。出于眼睛的生理原理,我们无法区 分这两种光的颜色。 也有许多颜色是不可能是单色的,因为没有这样的单色的颜色。黑色、灰色和白色比如就是这样的颜色,粉红色或绛紫色也是这样的 颜色。DXDiTa9E3d 波动方程是用来描写光的方程,因此通过解波动方程我们应该可以 得到颜色的信息。在真空中光的波动方程如下: utt = c2(uxx + uyy + uzz> c在这里是光速,x、y和z是空间的坐标,t是时间的坐标,u(x,y, z>是描写光的函数,下标表示取偏导数。在空间固定的一点

但实际上要描写一组光谱到底会产生什么颜色,我们还的理解视网膜的生理功能才行。 亚里士多德就已经讨论过光和颜色之间的关系,但真正阐明两者关系的是艾萨克·牛顿。约翰·沃尔夫冈·歌德也曾经研究过颜色的成因。托马斯·杨1801年第一次提出三元色的理论,后来赫尔曼·冯·亥姆霍兹将它完善了。1960年代人们发现了人眼内部感受颜色的色素,从而确定了这个理论的正确性。5PCzVD7HxA 人眼中的锥状细胞和棒状细胞都能感受颜色,一般人眼中有三种不同的锥状细胞:第一种主要感受红色,它的最敏感点在565纳M左右;第二种主要感受绿色,它的最敏感点在535纳M左右;第三种主要感受蓝色,其最敏感点在445纳M左右。杆状细胞只有一种,它的最敏感的颜色波长在蓝色和绿色之间。jLBHrnAILg 每种锥状细胞的敏感曲线大致是钟形的。因此进入眼睛的光一般相应这三种锥状细胞和杆状细胞被分为4个不同强度的信号。xHAQX74 J0X 因为每种细胞也对其他的波长有反映,因此并非所有的光谱都能被区分。比如绿光不仅可以被绿锥状细胞接受,其他锥状细胞也可以产生一定强度的信号,所有这些信号的组合就是人眼能够区分的颜色的总和。LDAYtRyKfE

波长及颜色

三、芯片发光颜色(COLW) 红(Red):R(610nm-640nm)黄(Yellow):Y(580nm-595nm)兰(Blue):B(455nm-490nm)兰绿(Cyan):C(490nm-515nm)绿(Green):G(501nm-540nm)紫(Purple):P(380nm-410nm)琥珀(Amber):A(590nm-610nm)白(White):W2 黄绿(Kelly):K(560nm-580nm)暖白(Warm white)W3 四、颜色波长 ★红: R1:610nm-615nm R2:615nm-620nm R3:620nm-625nm R4:625nm-630nm R5:630nm-635nm R6:635nm-640nm ★黄: Y1:580nm-585nm Y2:585nm-590nm Y3:590nm-595nm ★琥珀色: A1:600nm-605nm A2:605nm-610nm ★兰绿: G1:515nm-517.5nm G2:517.5-520nm G3:520nm-525nm G4:525nm-530nm G5:530nm-535nm G6:535nm-540nm ★兰: B1:455nm-460nm B2:460nm-462.5nm B3:462.5nm-465nm B4:460nm-465nm B5:465nm-470nm B6:470nm-475nm B7:475nm-480nm B8:480nm-485nm B9:485nm-490nm ★黄绿: K1:560nm-565nm K2:565nm-570nm K3:570nm-575nm K4:575nm-580nm ★纯绿: C1:490nm-495nm C2:495nm-500nm C3:500nm-515nm

物质颜色和吸收光颜色的对应关系_互补色关系

物质颜色和吸收光颜色的对应关系 简单的讲,颜色常见的方式有3种: 第一是吸收色,它一定是需要一个光源的。如太阳光于叶绿素,太阳光照射到叶子上,被吸收掉蓝光与红光之后,留下绿光,进入到人眼。所以叶子是绿色的。又如印刷行业中的cmyk印刷色彩模式(与RGB发射色构成白光同等重要)。在互补色中,红色对应的靛青,绿色对应的是品红,蓝色对应的是黄色。所以在UV-Vis吸收谱中,如果450nm及以下有强吸收,那么这种物质多半是黄色的(吸收色),如果550nm及以下有吸收,那么多半是红色(吸收色)的,如果700nm及以下都有吸收,那么一定是黑色(吸收色)的。 第二种是发射色,就入lz所说的PL发射色了。各种波长对应颜色的关系,大致可以划分为450nm蓝色,550nm绿色,650nm红色;420nm以下是紫色,480nm 是青色(靛青),580nm是黄色(正黄),600nm是橙色,绿色的波长范围是最宽的,大概从510-570nm都是很夺眼的绿色。 第三种就是衍射色了,常见的如贝壳的那一层珍珠膜的颜色,还有已经over的光子晶体。 还有种常见的就是吸收色和发射色的叠加。 The Relation between Matter’s Color and Color Absorbed 序号(No.) 物质颜色 (Matter’s color) 吸收光颜色(Color absorbed) 波长范围 (wavelength) λ/nm 1 黄绿色紫色400~450 2 黄色蓝色450~480 3 橙色绿蓝色480~490 4 红色蓝绿色490~500 5 紫红色绿色500~560 6 紫色黄绿色560~580 7 蓝色黄色580~600 8 绿蓝色橙色600~650 9 蓝绿色红色650~750

灯光波长与水草关系

灯光波长与水草关系 编辑: myle 灯光波长与水草关系因为光线在唔同之波长下(nm),才有唔同之颜色;例如: 紫外线会在400nm以下,人类肉眼无法睇到紫外线,无论是对动物或植物均有害;蓝-蓝绿色光会在400-500nm内,叶绿素主要利用红、蓝光来行光合作用,此波段对水草光合作用的贡献仅次於 灯光波长与水草关系 因为光线在唔同之波长下(nm),才有唔同之颜色;例如: 紫外线会在400nm以下,人类肉眼无法睇到紫外线,无论是对动物或植物均有害;蓝-蓝绿色光会在400-500nm内,叶绿素主要利用红、蓝光来行光合作用,此波段对水草光合作用的贡献仅次於橙红色光波,此外,由於波长愈短透光率愈强,因此蓝光区光线的透光率在水深60公分时,其光照度仍可维持不变; 绿、黄光在500-600nm内,由於绿光照到叶绿素後会被反射,无法吸收利用,因此这段光波对水草的光合作用帮助极少,不过水草的叶绿体尚有少量萝卜素、叶黄素等光合色素,它们还会吸收绿光,并藉以行光合反应,绿光区的光线的照射到40公分深左右时,光照度会递减成原光源之70%; 橙黄-红色光在600-700nm内,叶绿素对红光及蓝光的吸收力最强,而相较之下,红光又略胜蓝光一筹,所以此段光波为水草行光合作用最有助益,此外,由於红光区光线的波长较长,因此与蓝光及绿光相比其透光率最差。 光质在植物生长及生理作用扮演著极重要之角色,太阳为全光谱的光质,所以人工照明灯具当然应选择与太阳相似全光谱之灯管为主,再配合不同水草的特性,以其他灯源辅助,例如绿色水草可加强红、蓝光质;而对红色水草可加强绿光区及蓝光区的光质对其生长及色泽有明显之作用。

每种颜色的光与波长的对应值

每种颜色的光与波长的对应值 紫光 400~450 nm 蓝光 450~480 nm 青光 480~490 nm 蓝光绿 490~500 nm 绿光 500~560 nm 黄光绿 560~580 nm 黄光 580~595 nm 橙光 595~605 nm 红光 605~700 nm

根据光子能量公式:E=hυ 其中,h为普朗克常数,υ为光子频率 可见光的性质是由其频率决定的。 另外,在不同折射率的介质中,光的波长会改变而频率不变。

色温 色温(colo(u)r temperature)是表示光源光色的尺度,单位为K(开尔文)。色温在摄影、录象、出版等领域具有重要应用。光源的色温是通过对比它的色彩和理论的热黑体辐射体来确定的。热黑体辐射体与光源的色彩相匹配时的开尔文温度就是那个光源的色温,它直接和普朗克黑体辐射定律相联系。 一.概述 基本定义 色温是表示光源光谱质量最通用的指标。一般用Tc表示。色温是按绝对黑体来定义的,光源的辐射在可见区和绝对黑体的辐射完全相同时,此时黑体的温度就称此光源的色温。低色温光源的特征是能量分布中,红辐射相对说要多些,通常称为“暖光”;色温提高后,能量

分布中,蓝辐射的比例增加,通常称为“冷光”。一些常用光源的色温为:标准烛光为1930K (开尔文温度单位);钨丝灯为2760-2900K;荧光灯为3000K;闪光灯为3800K;中午阳光为5600K;电子闪光灯为6000K;蓝天为12000-18000K。 显示器指标 色温(ColorTemperature)是高档显示器一个性能指标。我们知道,光源发光时会产生一组光谱,用一个纯黑体产生出同样的光谱时所需要达到的某一温度,这个温度就是该光源的色温。15英寸以上数控显示器肯定带有色温调节功能,通过该功能(一般有9300K、6500K、5000K三个选择)可以使显示器的色彩能够满足高标准工作要求。高档产品中有些还支持色温线性调整功能。 光源颜色 光源的颜色常用色温这一概念来表示。光源发射光的颜色与黑体在某一温度下辐射光色相同时,黑体的温度称为该光源的色温。在黑体辐射中,随着温度不同,光的颜色各不相同,黑体呈现由红——橙红——黄——黄白——白——蓝白的渐变过程。某个光源所发射的光的颜色,看起来与黑体在某一个温度下所发射的光颜色相同时,黑体的这个温度称为该光源的色温。“黑体”的温度越高,光谱中蓝色的成份则越多,而红色的成份则越少。例如,白炽灯的光色是暖白色,其色温表示为2700K,而日光色荧光灯的色温表示方法则是6000K。 某些放电光源,它发射光的颜色与黑体在各种温度下所发射的光颜色都不完全相同。所以在这种情况下用“相关色温”的概念。光源所发射的光的颜色与黑体在某一温度下发射的光的颜色最接近时,黑体的温度就称为该光源的相关色温。

LED波长与对应颜色

一些发光二极管产品,尤其是手电筒上的发光二极管有不同的光束颜色。这可不是使用了什么暗藏机关来使它们看上去漂亮,不同的光颜色有着不同的应用。下面就简单介绍一下最常见颜色和它的实际用途。 白色光有完美的颜色特性,但它会损害适应暗光的视觉,一定光源熄灭后需要一定的时间来重新适应。 红色光通常是用作夜视。红光不会引起你瞳孔过分收缩和一旦红光熄灭时眼睛不需要重新适应黑暗。红色也通常在单色相片处理被用作为“安全”颜色因为它不会损坏正在冲印的底片黄色光有着红色光和白色光的一些优点。黄色光另外一优点就是当你阅读时减少因为长时间阅读而导致眼睛疲劳的反射和眩目的光。 绿色光也可以用作为夜视,绿色光还特别适用于在夜晚的时候阅读地图或图表。它还不那么容易被夜视装备发现,便很容易被人眼发现,绿色光的亮度比红色光低。 蓝色光可被用作在夜晚阅读地图和通常很受军事人员青睐,因为蓝色光增加了对比度的水平。它还可以用作戏院和演出时的后台工作灯色。 蓝绿光有着相似绿光和蓝光的夜视优点,但随着蓝绿光的颜色特性的提高,一些用户因为这个原因喜欢用蓝绿光。 红外线红光是与夜视装备一起使用的。否则人的眼睛是看不到红外线光的。 紫外光通常是用作识别钞票是否伪造,一些紫外发光二极管照明物在夜总会和派对上很受欢迎,它们被用来使荧光物质发出更亮的光。 光的颜色和它的波长 光的颜色是否可以看见是由它的波长决定的,光的波长是以纳米为单位的也说是十亿分之一米。发光二极管发出的光几乎都是一致的也就是说它几乎都是在一个波长,发出非常纯的颜色。以下是光的颜色和它的波长。 中红外线红光 4600nm-1600nm--不可见光 低红外线红光 1300nm-870nm--不可见光 850nm-810nm-几乎不可见光 近红外线光

相关文档