文档库 最新最全的文档下载
当前位置:文档库 › 电容去耦原理(解释十分透彻)

电容去耦原理(解释十分透彻)

电容去耦原理(解释十分透彻)
电容去耦原理(解释十分透彻)

电容去耦原理(解释十分透彻)

一、电容退耦原理

采用电容退耦是解决电源噪声问题的主要方法。这种方法对提高瞬态电流的响应速度,降低电源分配系统的阻抗都非常有效。

对于电容退耦,很多资料中都有涉及,但是阐述的角度不同。有些是从局部电荷存储(即储能)的角度来说明,有些是从电源分配系统的阻抗的角度来说明,还有些资料的说明更为混乱,一会提储能,一会提阻抗,因此很多人在看资料的时候感到有些迷惑。其实,这两种提法,本质上是相同的,只不过看待问题的视角不同而已。为了让大家有个清楚的认识,本文分别介绍一下这两种解释。

二、从储能的角度来说明电容退耦原理。

在制作电路板时,通常会在负载芯片周围放置很多电容,这些电容就起到电源退耦作用。其原理可用图1说明。

图 1 去耦电路

当负载电流不变时,其电流由稳压电源部分提供,即图中的I0,方向如图所示。此时电容两端电压与负载两端电压一致,电流Ic 为0,电容两端存储相当数量的电荷,其电荷数量和电容量有关。当负载瞬态电流发生变化时,由于负载芯片内部晶体管电平转换速度极快,必须在极短的时间内为负载芯片提供足够的电流。但是稳压电源无法很快响应负载电流的变化,因此,电流I0 不会马上满足负载瞬态电流要求,因此负载芯片电压会降低。但是由于电容电压与负载电压相同,因此电容两端存在电压变化。对于电容来说电压变化必然产生电流,此时电容对负载放电,电流Ic 不再为0,为负载芯片提供电流。

根据电容等式:

(公式1)

只要电容量C 足够大,只需很小的电压变化,电容就可以提供足够大的电流,满足负载瞬态电流的要求。这样就保证了负载芯片电压的变化在容许的范围内。这里,相当于电容预先存储了一部分电能,在负载需要的时候释放出来,即电容是储能元件。储能电容的存在使负载消耗的能量得到快速补充,因此保证了负载两端电压不至于有太大变化,此时电容担负的是局部电源的角色。

从储能的角度来理解电源退耦,非常直观易懂,但是对电路设计帮助不大。从阻抗的角度理解电容退耦,能让我们设计电路时有章可循。实际上,在决定电源分配系统的去耦电容量的时候,用的就是阻抗的概念。

三、从阻抗的角度来理解退耦原理。

将图1 中的负载芯片拿掉,如图 2 所示。从AB 两点向左看过去,稳压电源以及电容退耦系统一起,可以看成一个复合的电源系统。这个电源系统的特点是:不论AB 两点间负载瞬态电流如何变化,都能保证AB 两点间的电压保持稳定,即AB 两点间电压变化很小。

图片2 电源部分

我们可以用一个等效电源模型表示上面这个复合的电源系统,如图 3

图 3 等效电源

对于这个电路可写出如下等式:

(公式2)

我们的最终设计目标是,不论AB 两点间负载瞬态电流如何变化,都要保持AB 两点间电压变化范围很小,根据公式2,这个要求等效于电源系统的阻抗Z 要足够低。在图2 中,我们是通过去耦电容来达到这一要求的,因此从等效的角度出发,可以说去耦电容降低了电源系统的阻抗。另一方面,从电路原理的角度来说,可得到同样结论。电容对于交流信号呈现低阻抗特性,因此加入电容,实际上也确实降低了电源系统的交流阻抗。

从阻抗的角度理解电容退耦,可以给我们设计电源分配系统带来极大的方便。实际上,电源分配系统设计的最根本的原则就是使阻抗最小。最有效的设计方法就是在这个原则指导下产生的。

正确使用电容进行电源退耦,必须了解实际电容的频率特性。理想电容器在实际中是不存在的,这就是为什么经常听到“电容不仅仅是电容”的原因。

实际的电容器总会存在一些寄生参数,这些寄生参数在低频时表现不明显,但是高频情况下,其重要性可能会超过容值本身。图 4 是实际电容器的SPICE 模型,图中,ESR 代表等效串联电阻,ESL 代表等效串联电感或寄生电感,C 为理想电容。

图 4 电容模型

等效串联电感(寄生电感)无法消除,只要存在引线,就会有寄生电感。这从磁场能量变化的角度可以很容易理解,电流发生变化时,磁场能量发生变化,但是不可能发生能量跃变,表现出电感特性。寄生电感会延缓电容电流的变化,电感越大,电容充放电阻抗就越大,反应时间就越长。等效串联电阻也不可消除的,很简单,因为制作电容的材料不是超导体。

讨论实际电容特性之前,首先介绍谐振的概念。对于图 4 的电容模型,其复阻抗为:

(公式3)

电容器此时表现为电感性,因此“高频时电容不再是电容”,而呈现为电感。当时,

此时容性阻抗矢量与感性阻抗之差为0,电容的总阻抗最小,表现为纯电阻特性。该频率点就是电容的自谐振频率。自谐振频率点是区分电容是容性还是感性的分界点,高于谐振频率时,“电容不再是电容”,因此退耦作用将下降。因此,实际电容器都有一定的工作频率范围,只有在其工作频率范围内,电容才具有很好的退耦作用,使用电容进行电源退耦时要特别关注这一点。寄生电感(等效串联电感)是电容器在高于自谐振频率点之后退耦功能被消弱的根本原因。图 5 显示了一个实际的0805 封装0.1uF 陶瓷电容,其阻抗随频率变化的曲线。

图5 电容阻抗特性

电容的自谐振频率值和它的电容值及等效串联电感值有关,使用时可查看器件手册,了解该项参数,确定电容的有效频率范围。下面列出了AVX 生产的陶瓷电容不同封装的各项参数值。

电容的等效串联电感和生产工艺和封装尺寸有关,同一个厂家的同种封装尺寸的电容,其等效串联电感基本相同。通常小封装的电容等效串联电感更低,宽体封装的电容比窄体封装的电容有更低的等效串联电感。

既然电容可以看成RLC 串联电路,因此也会存在品质因数,即Q 值,这也是在使用电容时的一个重要参数。

电路在谐振时容抗等于感抗,所以电容和电感上两端的电压有效值必然相等,电容上的电压有效值UC=I*1/ωC=U/ωCR=QU,品质因数Q=1/ωCR,这里I 是电路的总电流。电感上的电压有效值UL=ωLI=ωL*U/R=QU,品质因数Q=ωL/R。因为:UC=UL 所以Q=1/ωCR=ωL/R。

电容上的电压与外加信号电压U 之比UC/U=(I*1/ωC)/RI=1/ωCR=Q。电感上的电压与外加信号电压U 之比UL/U=ωLI/RI=ωL/R=Q。从上面分析可见,电路的品质因数越高,电感或电容上的电压比外加电压越高。

图 6 Q 值的影响

Q值影响电路的频率选择性。当电路处于谐振频率时,有最大的电流,偏离谐振频率时总电流减小。我们用I/I0 表示通过电容的电流与谐振电流的比值,即相对变化率。表示频率偏离谐振频率程度。图 6 显示了I/I0 与ω/ω0关系曲线。这里有三条曲线,对应三个不同的Q 值,其中有Q1>Q2>Q3。从图中可看出当外加信号频率ω 偏离电路的谐振频率ω0时,I/I0 均小于1。Q 值越高在一定的频偏下电流下降得越快,其谐振曲线越尖锐。也就是说电路的选择性是由电路的品质因素Q 所决定的,Q 值越高选择性越好。

在电路板上会放置一些大的电容,通常是坦电容或电解电容。这类电容有很低的ESL,但是ESR 很高,因此Q 值很低,具有很宽的有效频率范围,非常适合板级电源滤波。

当电容安装到电路板上后,还会引入额外的寄生参数,从而引起谐振频率的偏移。充分理解电容的自谐振频率和安装谐振频率非常重要,在计算系统参数时,实际使用的是安装谐振频率,而不是自谐振频率,因为我们关注的是电容安装到电路板上之后的表现。

电容在电路板上的安装通常包括一小段从焊盘拉出的引出线,两个或更多的过孔。我们知道,不论引线还是过孔都存在寄生电感。寄生电感是我们主要关注的重要参数,因为它对电容的特性影响最大。电容安装后,可以对其周围一小片区域有效去耦,这涉及到去耦半径问题,本文后面还要详细讲述。现在我们考察这样一种情况,电容要对距离它 2 厘米处的一点去耦,这时寄生电感包括哪几部分。首先,电容自身存在寄生电感。从电容到达需要去耦区域的路径上包括焊盘、一小段引出线、过孔、2 厘米长的电源及地平面,这几个部分都存在寄生电感。相比较而言,过孔的寄生电感较大。可以用公式近似计算一个过孔的寄生电感有多大。

公式为

其中:L 是过孔的寄生电感,单位是nH。h 为过孔的长度,和板厚有关,单位是英寸。d为过孔的直径,单位是英寸。下面就计算一个常见的过孔的寄生电感,看看有多大,以便有一个感性认识。设过孔的长度为63mil(对应电路板的厚度1.6 毫米,这一厚度的电路板很常见),过孔直径8mil,根据上面公式得:

这一寄生电感比很多小封装电容自身的寄生电感要大,必须考虑它的影响。过孔的直径越大,寄生电感越小。过孔长度越长,电感越大。下面我们就以一个0805 封装0.01uF 电容为例,计算安装前后谐振频率的变化。参数如下:容值:

C=0.01uF。电容自身等效串联电感:ESL=0.6 nH。安装后增加的寄生电感:Lmount=1.5nH。

电容的自谐振频率:

安装后的总寄生电感:0.6+1.5=2.1nH。注意,实际上安装一个电容至少要两个过孔,寄生电感是串联的,如果只用两个过孔,则过孔引入的寄生电感就有3nH。但是在电容的每一端都并联几个过孔,可以有效减小总的寄生电感量,这和安装方法有关。

安装后的谐振频率为:

可见,安装后电容的谐振频率发生了很大的偏移,使得小电容的高频去耦特性被消弱。在进行电路参数设计时,应以这个安装后的谐振频率计算,因为这才是电容在电路板上的实际表现。

安装电感对电容的去耦特性产生很大影响,应尽量减小。实际上,如何最大程度的减小安装后的寄生电感,是一个非常重要的问题。

四、从电源系统的角度进行去耦设计

这一节就来讲讲另一种方法,从电源系统的角度进行去耦设计。该方法本着这样一个原则:在感兴趣的频率范围内,使整个电源分配系统阻抗最低。其方法仍然是使用去耦电容。

电源去耦涉及到很多问题:总的电容量多大才能满足要求?如何确定这个值?选择那些电容值?放多少个电容?选什么材质的电容?电容如何安装到电路板上?电容放置距离有什么要求?下面分别介绍。

1、目标阻抗

目标阻抗(Target Impedance)定义为:

该定义可解释为:能满足负载最大瞬态电流供应,且电压变化不超过最大容许波动范围的情况下,电源系统自身阻抗的最大值。超过这一阻抗值,电源波动将超过容许范围。如果你对阻抗和电压波动的关系不清楚的话,请回顾“电容退耦的两种解释”一节。

对目标阻抗有两点需要说明:

1、目标阻抗是电源系统的瞬态阻抗,是对快速变化的电流表现出来的一种阻抗特性。

2、目标阻抗和一定宽度的频段有关。在感兴趣的整个频率范围内,电源阻抗都不能超过这个值。阻抗是电阻、电感和电容共同作用的结果,因此必然与频率有关。感兴趣的整个频率范围有多大?这和负载对瞬态电流的要求有关。顾名思义,瞬态电流是指在极短时间内电源必须提供的电流。如果把这个电流看做信号的话,相当于一个阶跃信号,具有很宽的频谱,这一频谱范围就是我们感兴趣的频率范围。

如果暂时不理解上述两点,没关系,继续看完本文后面的部分,你就明白了。

2、需要多大电容量

有两种方法确定所需的电容量。第一种方法利用电源驱动的负载计算电容量。这种方法没有考虑ESL 及ESR 的影响,因此很不精确,但是对理解电容量的选

择有好处。第二种方法就是利用目标阻抗(Target Impedance)来计算总电容量,这是业界通用的方法,得到了广泛验证。你可以先用这种方法来计算,然后做局部微调,能达到很好的效果,如何进行局部微调,是一个更高级的话题。下面分别介绍两种方法。

方法一:利用电源驱动的负载计算电容量

设负载(容性)为30pF,要在2ns 内从0V 驱动到3.3V,瞬态电流为:

如果共有36 个这样的负载需要驱动,则瞬态电流为:36*49.5mA=1.782A。假

设容许电压波动为:3.3*2.5%=82.5 mV,所需电容量为

C=I*dt/dv=1.782A*2ns/0.0825V=43.2nF

说明:所加的电容实际上作为抑制电压波纹的储能元件,该电容必须在2ns 内

为负载提供1.782A 的电流,同时电压下降不能超过82.5 mV,因此电容值应根据82.5 mV 来计算。记住:电容放电给负载提供电流,其本身电压也会下降,但是电压下降的量不能超过82.5mV(容许的电压波纹)。这种计算没什么实际意义,之所以放在这里说一下,是为了让大家对去耦原理认识更深。

方法二:利用目标阻抗计算电容量(设计思想很严谨,要吃透)

为了清楚的说明电容量的计算方法,我们用一个例子。要去耦的电源为 1.2V,容许电压波动为2.5%,最大瞬态电流600mA,

第一步:计算目标阻抗

第二步:确定稳压电源频率响应范围。

和具体使用的电源片子有关,通常在DC 到几百kHz 之间。这里设为DC 到100kHz。在100kHz 以下时,电源芯片能很好的对瞬态电流做出反应,高于100kHz 时,表现为很高的阻抗,如果没有外加电容,电源波动将超过允许的2.5%。为了在高于100kHz 时仍满足电压波动小于2.5%要求,应该加多大的电容?

第三步:计算bulk 电容量

当频率处于电容自谐振点以下时,电容的阻抗可近似表示为:频

率f 越高,阻抗越小,频率越低,阻抗越大。在感兴趣的频率范围内,电容的最大阻抗不能超过目标阻抗,因此使用100kHz 计算(电容起作用的频率范围的最低频率,对应电容最高阻抗)。

第四步:计算bulk 电容的最高有效频率

当频率处于电容自谐振点以上时,电容的阻抗可近似表示为:

第五步:计算频率高于 1.6MHz 时所需电容

假设使用某公司的0402 封装陶瓷电容,寄生电感约为0.4nH,加上安装到电路板上后过孔的寄生电感(本文后面有计算方法)假设为0.6nH,则总的寄生电感为1 nH。为了满足总电感不大于0.16 nH 的要求,我们需要并联的电容个数为:1/0.016=62.5 个,因此需要63 个0402 电容。

为了在1.6MHz 时阻抗小于目标阻抗,需要电容量为:

因此每个电容的电容量为 1.9894/63=0.0316 uF。

综上所述,对于这个系统,我们选择 1 个31.831 uF 的大电容和63 个0.0316 uF 的小电容即可满足要求。

3、相同容值电容并联

使用很多电容并联能有效地减小阻抗。63 个0.0316 uF 的小电容(每个电容ESL 为1 nH)并联的效果相当于一个具有0.159 nH ESL 的1.9908 uF 电容。

图10 多个等值电容并联

单个电容及并联电容的阻抗特性如图10 所示。并联后仍有相同的谐振频率,但是并联电容在每一个频率点上的阻抗都小于单个电容。

但是,从图中我们看到,阻抗曲线呈V 字型,随着频率偏离谐振点,其阻抗仍然上升的很快。要在很宽的频率范围内满足目标阻抗要求,需要并联大量的同值电容。这不是一种好的方法,造成极大地浪费。有些人喜欢在电路板上放置很多0.1uF 电容,如果你设计的电路工作频率很高,信号变化很快,那就不要这样做,最好使用不同容值的组合来构成相对平坦的阻抗曲线。

4、不同容值电容的联与反谐振

容值不同的电容具有不同的谐振点。图11 画出了两个电容阻抗随频率变化的曲线。

图11 两个不同电容的阻抗曲线

左边谐振点之前,两个电容都呈容性,右边谐振点后,两个电容都呈感性。在两个谐振点之间,阻抗曲线交叉,在交叉点处,左边曲线代表的电容呈感性,而右边曲线代表的电容呈容性,此时相当于LC 并联电路。对于LC 并联电路来说,当L 和C 上的电抗相等时,发生并联谐振。因此,两条曲线的交叉点处会发生并联谐振,这就是反谐振效应,该频率点为反谐振点。

图12 不同容值电容并联后阻抗曲线

两个容值不同的电容并联后,阻抗曲线如图12 所示。从图12 中我们可以得出两个结论:a 不同容值的电容并联,其阻抗特性曲线的底部要比图10 阻抗曲线的底部平坦得多(虽然存在反谐振点,有一个阻抗尖峰),因而能更有效地在很宽的频率范围内减小阻抗。

b 在反谐振(Anti-Resonance)点处,并联电容的阻抗值无限大,高于两个电容任何一个单独作用时的阻抗。并联谐振或反谐振现象是使用并联去耦方法的不足之处。

在并联电容去耦的电路中,虽然大多数频率值的噪声或信号都能在电源系统中找到低阻抗回流路径,但是对于那些频率值接近反谐振点的,由于电源系统表现出的高阻抗,使得这部分噪声或信号能量无法在电源分配系统中找到回流路径,最终会从PCB 上发射出去(空气也是一种介质,波阻抗只有几百欧姆),从而在反谐振频率点处产生严重的EMI 问题。

因此,并联电容去耦的电源分配系统一个重要的问题就是:合理的选择电容,尽可能的压低反谐振点处的阻抗。

ESR 对反谐振(Anti-Resonance)的影响Anti-Resonance 给电源去耦带来麻烦,但幸运的是,实际情况不会像图12 显示的那么糟糕。

实际电容除了LC 之外,还存在等效串联电阻ESR。

因此,反谐振点处的阻抗也不会是无限大的。实际上,可以通过计算得到反谐振点处的阻抗,X 为反谐振点处单个电容的阻抗虚部(均相等)。

滤波电容、去耦电容、旁路电容的作用

滤波电容、去耦电容、旁路电容作用 滤波电容用在电源整流电路中,用来滤除交流成分。使输出的直流更平滑。去耦电容用在放大电路中不需要交流的地方,用来消除自激,使放大器稳定工作。旁路电容用在有电阻连接时,接在电阻两端使交流信号顺利通过。 1.关于去耦电容蓄能作用的理解 1)去耦电容主要是去除高频如RF信号的干扰,干扰的进入方式是通过电磁辐射。数字,集成电路,IC,FAQ,Design compiler,数字信号处理,滤波器,DSP,VCS,NC,coverage,覆盖率,modelsim,unix,c,verilog,hdl,VHDL,IP,STA,vera,验证,primetime,FIFO,SDRAM,SRAM,IIR,FIR,DPLL L a O(i_ P e 而实际上,芯片附近的电容还有蓄能的作用,这是第二位的。 你可以把总电源看作密云水库,我们大楼内的家家户户都需要供水, 这时候,水不是直接来自于水库,那样距离太远了, 等水过来,我们已经渴的不行了。Digital IC Designer's forum:h X,t

py7A(r4QF 实际水是来自于大楼顶上的水塔,水塔其实是一个buffer 的作用。 如果微观来看,高频器件在工作的时候,其电流是不连续的,而且频率很高,L x!H\D"P/} 而器件VCC到总电源有一段距离,即便距离不长,在频率很高的情况下,:`&y"S$O(S9WV5s%^"L 阻抗Z=i*wL+R,线路的电感影响也会非常大,数字,集成电路,IC,FAQ,Design compiler,数字信号处理,滤波器,DSP,VCS,NC,coverage,覆盖率,modelsim,unix,c,verilog,hdl,VHDL,IP,STA,vera,验证,primetime,FIFO,SDRAM,SRAM,IIR,FIR,DPLL2G K v{I;N,J(R x 会导致器件在需要电流的时候,不能被及时供给。数字,集成电路,IC,FAQ,Design compiler,数字信号处理,滤波器,DSP,VCS,NC,coverage,覆盖率,modelsim,unix,c,verilog,hdl,VHDL,IP,STA,vera,验证,primetime,FIFO,SDRAM,SRAM,IIR,FIR,DPLL1q Q&\6g i*V7o n O 而去耦电容可以弥补此不足。 这也是为什么很多电路板在高频器件VCC管脚处放置小电容的原因之一

滤波电容的选型与计算(详解)

电源滤波电容的选择与计算 电感的阻抗与频率成正比,电容的阻抗与频率成反比.所以,电感可以阻扼高频通过,电容可以阻扼低频通过.二者适当组合,就可过滤各种频率信号.如在整流电路中,将电容并在负载上或将电感串联在负载上,可滤去交流纹波.。电容滤波属电压滤波,是直接储存脉动电压来平滑输出电压,输出电压高,接近交流电压峰值;适用于小电流,电流越小滤波效果越好。电感滤波属电流滤波,是靠通过电流产生电磁感应来平滑输出电流,输出电压低,低于交流电压有效值;适用于大电流,电流越大滤波效果越好。电容和电感的很多特性是恰恰相反的。一般情况下,电解电容的作用是过滤掉电流中的低频信号,但即使是低频信号,其频率也分为了好几个数量级。因此为了适合在不同频率下使用,电解电容也分为高频电容和低频电容(这里的高频是相对而言)。 低频滤波电容主要用于市电滤波或变压器整流后的滤波,其工作频率与市电一致为50Hz;而高频滤波电容主要工作在开关电源整流后的滤波,其工作频率为几千Hz到几万Hz。当我们将低频滤波电容用于高频电路时,由于低频滤波电容高频特性不好,它在高频充放电时内阻较大,等效电感较高。因此在使用中会因电解液的频繁极化而产生较大的热量。而较高的温度将使电容内部的电解液气化,电容内压力升高,最终导致电容的鼓包和爆裂。 电源滤波电容的大小,平时做设计,前级用4.7u,用于滤低频,二级用0.1u,用于滤高频,4.7uF的电容作用是减小输出脉动和低频干扰,0.1uF的电容应该是减小由于负载电流瞬时变化引起的高频干扰。一般前面那个越大越好,两个电容值相差大概100倍左右。电源滤波,开关电源,要看你的ESR(电容的等效串联电阻)有多大,而高频电容的选择最好在其自谐振频率上。大电容是防止浪涌,机理就好比大水库防洪能力更强一样;小电容滤高频干扰,任何器件都可以等效成一个电阻、电感、电容的串并联电路,也就有了自谐振,只有在这个自谐振频率上,等效电阻最小,所以滤波最好! 电容的等效模型为一电感L,一电阻R和电容C的串联, 电感L为电容引线所至,电阻R代表电容的有功功率损耗,电容C. 因而可等效为串联LC回路求其谐振频率,串联谐振的条件为WL=1/WC,W=2*PI*f,从而得到此式子f=1/(2pi*LC).,串联LC回路中心频率处电抗最小表现为纯电阻,所以中心频 率处起到滤波效果.引线电感的大小因其粗细长短而不同,接地电容的电感一般是1MM为

(完整版)电容去耦原理(解释十分透彻)

电容退耦原理 采用电容退耦是解决电源噪声问题的主要方法。这种方法对提高瞬态电流的响应速度,降低电源分配系统的阻抗都非常有效。 对于电容退耦,很多资料中都有涉及,但是阐述的角度不同。有些是从局部电荷存储(即储能)的角度来说明,有些是从电源分配系统的阻抗的角度来说明,还有些资料的说明更为混乱,一会提储能,一会提阻抗,因此很多人在看资料的时候感到有些迷惑。其实,这两种提法,本质上是相同的,只不过看待问题的视角不同而已。为了让大家有个清楚的认 识,本文分别介绍一下这两种解释。 4.1 从储能的角度来说明电容退耦原理。 在制作电路板时,通常会在负载芯片周围放置很多电容,这些电容就起到电源退耦作用。其原理可用图 1 说明。 图 1 去耦电路 当负载电流不变时,其电流由稳压电源部分提供,即图中的I0,方向如图所示。此时电容两端电压与负载两端电压一致,电流Ic 为0,电容两端存储相当数量的电荷,其电荷数量和电容量有关。当负载瞬态电流发生变化时,由于负载芯片内部晶体管电平转换速度极快,必须在极短的时间内为负载芯片提供足够的电流。但是稳压电源无法很快响应负载电流的变化,因此,电流I0 不会马上满足负载瞬态电流要求,因此负载芯片电压会降低。但是由于电容电压与负载电压相同,因此电容两端存在电压变化。对于电容来说电压变化必然产生电流,此时电容对负载放电,电流Ic 不再为0,为负载芯片提供电流。根据电容等式: (公式1) 只要电容量 C 足够大,只需很小的电压变化,电容就可以提供足够大的电流,满足负载瞬 态电流的要求。这样就保证了负载芯片电压的变化在容许的范围内。这里,相当于电容预先存储了一部分电能,在负载需要的时候释放出来,即电容是储能元件。储能电容的存在

去耦罐的原理和功能

去耦罐(与二次泵系统的分集水器+平衡管相类似)的原理和功能 (2012-09-18 10:09:40) 转载▼ 标签: 家居 去耦罐俗称混水罐,是指在使用水系统采暖中,因各回路之间存在水力耦合,当某一个支路或用户的流量发生变更时,其余支路或用户的流量及锅炉的流量都将受到影响,从而各个循环回路的水力平衡被攻破。利用一个通过创造一个压损近乎为零的区域,让水泵实现各自的循环,互不干扰,热量的无损失传递的装置,进行去耦化处理,该装置叫做去耦罐。 一、去耦罐的功能和作用 用户使用电动温控阀或手动调节温控阀,达到调节每个房间的使用温度,引起采暖系统中流量和压力发生变化,去耦罐的功能可以平衡壁挂炉系统和采暖系统中压力,对壁挂炉系统流量没有任何影响;另一方面,对于闭式小锅炉采暖系统,去耦罐的应用避免了锅炉的频繁启动造成的能源浪费同时起到保护锅炉的作用;第二、在地暖系统中安装去耦罐,可以实现地暖系统大流量和小温差的技术优势,对于壁挂炉加预制薄型地暖系统是必选方案。 在壁挂锅炉运行体系中,去耦罐将系统分成一次系统跟二次系统两局部。去耦罐的作用是隔离一次侧与二次侧之间的水力耦合,使其水力工况互不影响。去耦罐的构造,如图所示。污物、杂质的积淀。因而,在去耦罐上部安装自动排气阀,下部安装排污阀。应用去耦罐后,原来由一台水泵构成的“大循环”或锅炉加用户,改为各回路独立循环。从名义上看,水泵的数目增长了,增添了一次投资,但每台水泵的功率要比原水泵小很多。同时各支路独立循环,便于管理与调节,防止了调节中有可能呈现的水力失调。当某一支路不工作时,可封闭该支

路的循环泵。使用去耦罐构建系统,有利于管理与节能。 二、去耦罐运行方式 在系统运行时,依据各路轮回流量的不同,去耦罐的工作方式如图所示。当GprGsec时,在去耦罐中,供水的分支直接旁通回锅炉,此时锅炉回水温度升高。表明管路携带的热量基本满足采暖负荷,锅炉此时将停止工作,即实现节能。 三、去耦罐的结构尺寸与安装 1、去耦罐的结构尺寸 为到达水力系统之间去耦的作用,对去耦罐的结构尺寸有必定请求,重要是为了保障去耦罐中流体纵向的流动速度为系统中流速的1/10,并建议在任何情况均不要超过0. 1m/s。通常情形下,去耦罐衔接管中水流速为0. 7- 0. 9m/s,假如去耦罐的直径为连接收直径的3倍,则去耦罐中的均匀流速不会超过0. 1m/s,也可通过计算断定尺寸。 2、去耦罐的安装 去耦罐的安装应留神两点:首先,应竖向安装;其次,在与系统连接时,温度高的管道(如供水管)应接在上部,温度低的管道(如回水管)应接在F部。去耦罐上部安装主动排气阀,部安装排污阀,去耦罐与系同一起保温。

去耦电容、旁路电容、滤波电容的选择和区别

区别去耦电容 去除在期间切换时从?高配到配电?网中 的RF能量量 储能作?用,供局部化的直流电源,减 少跨板浪涌电流 在VCC 引脚通常并联?一个去耦电容, 电容同交隔直将交流分量量从这个电容 接地 有源器?件在开关时产?生的?高频开关噪声江燕电源线传播, 去耦电容就是提供?一个局部的直流给有源器?件,减少开关 噪声在板上的传播并且能将噪声引导到地。 如果主要是为了了增加电源和地的交流耦合,减少交流信号 对电源的影响,就可以称为去耦电容; 旁路路电容 从元件或电缆中转移出不不想要的共模 RF 能量量。这主要是通 过产?生 AC 旁路路消除?无意的能量量进?入敏?感的部分,另外还可 以提供基带滤波功能(带宽受限)。 在电路路中,如果电容起的主要作?用是给交流信号提供低阻抗的通 路路,就称为旁路路电容; 电?子电路路中,去耦电容和旁路路电容都是起到抗?干扰的作?用,电容所处 的位置不不同,称呼就不不?一样了了。对于同?一个电路路来说,旁路路(bypass) 电容是把输?入信号中的?高频噪声作为滤除对象,把前级携带的?高频杂 波滤除,?而去耦 (decoupling)电容也称退耦电容,是把输出信号的?干 扰作为滤除对象。 滤波电容选择 经过整流桥以后的是脉动直流,波动 ?方位很?大,后?面?一般?用?大?小两个电容 ?大电容?用来稳定输出,因为电容两端 电压不不能突变,可以使输出平滑,?小 电容?用来滤除?高频?干扰,使输出电压 纯净,电容越?小,谐振频率越?高,可 滤除的?干扰频率越?高 容量量的选择 ?大电容,负载越重,吸收电流的能?力力越强,这 个?大电容的容量量就要越?大 ?小电容,凭经验,?一般104 即可 1、电容对地滤波,需要?一个较?小的电容并联对地, 对?高频信号提供了了?一个对地通路路。 2、电源滤波中电容对地脚要尽可能靠近地。 3、理理论上说电源滤波?用电容越?大越好,?一般?大电容滤低频波,?小 电容滤?高频波。 4、可靠的做法是将?一?大?一?小两个电容并联,?一般要求相差两个 数量量级以上,以获得更更?大的滤波频段. 滤波电容电源和地直接连接去耦电容 1.为本集成电路路蓄能电容 2.滤除该期间产?生的?高频噪声,切断其通过供电回路路进?行行传播的通路路 3.防?止电源携带的噪声对电路路构成?干扰 滤波电容的选?用原则在电源设计中,滤波电容的选取原则是: C≥2.5T/R 其中: C 为滤波电容,单位为UF; T 为频率, 单位为Hz,R 为负载电阻,单位为Ω 当然,这只是?一般的选?用原则,在实际的应?用中,如条件(空间和成本)允许,都选取C≥5T/R. PCB制版电容的选择?一般的10PF 左右的电容?用来滤除?高频的?干扰信号,0.1UF 左右的?用来滤除低频的纹波?干扰,还可以起到稳压的作?用。滤波电容具体选择什什么容值要取决于你PCB 上主要的?工作频率和可能对系统造成影响的谐波频率,可以查?一下相关?厂商的电容资料料或者参考?厂商提供的资料料库软件,根据具体的需要选择。 如果你PCB 上主要?工作频率?比较低的话,加两个电容就可以了了,?一个虑除纹波,?一个虑除?高频信号。如果会出现?比较?大的瞬时电流,建议再加?一个?比较?大的钽电容。 实?用点的,?一般数字电路路去耦0.1uF 即可,?用于10M 以下;20M 以上?用1到10 个uF,去除?高频噪声好些,?大概按C=1/f 。旁路路?一般就?比较的?小了了,?一般根据谐振频率?一般为0.1 或0.01uF

滤波电容去耦电容旁路电容作用及区别

滤波电容、去耦电容、旁路电容作用 电容在减小同步开关噪声起重要作用,而电源完整性设计的重点也在如何合理地选择和放置这些电容上。各种各样的电容种类繁杂,但无论再怎么分类,其基本原理都是利用电容对交变信号呈低阻状态。交变电流的频率f越高,电容的阻抗就越低。旁路电容起的主要作用是给交流信号提供低阻抗的通路;去耦电容的主要功能是提供一个局部的直流电源给有源器件,以减少开关噪声在板上的传播和将噪声引导到地,加入去耦电容后电压的纹波干扰会明显减小;滤波电容常用于滤波电路中。 对于理想的电容器来说,不考虑寄生电感和电阻的影响,那么在电容设计上就没有任何顾虑,电容的值越大越好。但实际情况却相差很远,并不是电容越大对高速电路越有利,反而小电容才能被应用于高频。 滤波电容用在电源整流电路中,用来滤除交流成分。使输出的直流更平滑。去耦电容用在放大电路中不需要交流的地方,用来消除自激,使放大器稳定工作。旁路电容用在有电阻连接时,接在电阻两端使交流信号顺利通过。 1.去耦电容蓄能作用的理解 (1)去耦电容主要是去除高频如RF信号的干扰,干扰的进入方式是通过电磁辐射。而实际上,芯片附近的电容还有蓄能的作用,这是第二位的。如果微观来看,高频器件在工作的时候,其电流是不连续的,而且

频率很高,而器件VCC到总电源有一段距离,即便距离不长,在频率很高的情况下,阻抗Z=i*wL+R,线路的电感影响也会非常大,会导致器件在需要电流的时候,不能被及时供给。而去耦电容可以弥补此不足。这也是为什么很多电路板在高频器件VCC管脚处放置小电容的原因之一(在Vcc引脚上通常并联一个去耦电容,这样交流分量就从这个电容接地。 (2)有源器件在开关时产生的高频开关噪声将沿着电源线传播。去耦电容的主要功能就是提供一个局部的直流电源给有源器件,以减少开关噪声在板上的传播和将噪声引导到地。 2.旁路电容与去耦电容的区别 去耦电容:去除在器件切换时从高频器件进入到配电网络中的RF能量。去耦电容还可以为器件提供局部化的DC电压源,它在减少跨板浪涌电流方面特别有用。 旁路电容:从元件或电缆中转移出不想要的共模RF能量。这主要是通过产生AC旁路消除无意的能量进入敏感的部分,另外还可以提供基带滤波功能(带宽受限)。 我们经常可以看到,在电源和地之间连接着去耦电容,它有三个方面的作用:一是作为本集成电路的蓄能电容;二是滤除该器件产生的高频噪声,切断其通过供电回路进行传播的通路;三是防止电源携带的噪声对电路构成干扰。

耦合电容、滤波电容、去耦电容、旁路电容

耦合电容器主要的作用是隔离直流信号。电容的阻抗和信号的频率成反比,信号的频率越高,衰减越小。理论上,对于直流信号的阻抗是无穷大。很多场合需要放大的是交流信号,所以,会用耦合电容去掉信号中的直流部分。 滤波电容用在电源整流电路中,用来滤除交流成分。使输出的直流更平滑。 去耦电容用在放大电路中不需要交流的地方,用来消除自激,使放大器稳定工作。 旁路电容用在有电阻连接时,接在电阻两端使交流信号顺利通过。 1.关于去耦电容蓄能作用的理解 1)去耦电容主要是去除高频如RF信号的干扰,干扰的进入方式是通过电磁辐射。 而实际上,芯片附近的电容还有蓄能的作用,这是第二位的。你可以把总电源看作密云水库,我们大楼内的家家户户都需要供水, 这时候,水不是直接来自于水库,那样距离太远了,等水过来,我们已经渴的不行了。 实际水是来自于大楼顶上的水塔,水塔其实是一个buffer的作用。如果微观来看,高频器件在工作的时候,其电流是不连续的,而且频率很高,而器件VCC到总电源有一段距离,即便距离不长,在频率很高的情况下, 阻抗Z=i*wL+R,线路的电感影响也会非常大,会导致器件在需要电流的时候,不能被及时供给。 而去耦电容可以弥补此不足。这也是为什么很多电路板在高频器件VCC管脚处放置小电容的原因之一 (在vcc引脚上通常并联一个去藕电容,这样交流分量就从这个电容接地。) 2)有源器件在开关时产生的高频开关噪声将沿着电源线传播。去耦电容的主要功能就是提供一个局部的直流电源给有源器件,以减少开关噪声在板上的传播和将噪声引导到地 2.旁路电容和去耦电容的区别 去耦:去除在器件切换时从高频器件进入到配电网络中的RF能量 。去耦电容还可以为器件提供局部化的DC电压源,它在减少跨板浪涌电流方面特别有用。旁路:从元件或电缆中转移出不想要的共模RF能量。这主要是通过产生AC旁路消除无意的能量进入敏感的部分,另外还可以提供基带滤波功能(带宽受限)。 我们经常可以看到,在电源和地之间连接着去耦电容,它有三个方面的作用: 一是作为本集成电路的蓄能电容; 二是滤除该器件产生的高频噪声,切断其通过供电回路进行传播的通路; 三是防止电源携带的噪声对电路构成干扰。 在电子电路中,去耦电容和旁路电容都是起到抗干扰的作用,电容所处的位置不同,称呼就不一样了。对于同一个电路来说,旁路(bypass)电容是把输入信号中的高频噪声作为滤除对象,把前级携带的高频杂波滤除,而去耦(decoupling)电容也称退耦电容,是把输出信号的干扰作为滤除对象。 去耦 在直流电源回路中,负载的变化会引起电源噪声。例如在数字电路中,当电路从一个状态转换为另一种状态时,就会在电源线上产生一个很大的尖峰电流,形成瞬变的噪声电压。

去耦电容的选择、容值计算和布局布线

去耦电容的容值计算和布局布线 有源器件在开关时产生的高频开关噪声将沿着电源线传播。去耦电容的主要功能就是提供一个局部的直流电源给有源器件,以减少开关噪声在板上的传播, 和将噪声引导到地。 去耦电容的容值计算 去耦的初衷是:不论I C对电流波动的规定和要求如何都要使电压限值维持在规定的允许误差范围之内。 使用表达式: C⊿U=I⊿t 由此可计算出一个I C所要求的去耦电容的电容量C。 ⊿U是实际电源总线电压所允许的降低,单位为V。 I是以A(安培)为单位的最大要求电流; ⊿t是这个要求所维持的时间。 x i l i n x公司推荐的去耦电容容值计算方法: 推荐使用远大于1/m乘以等效开路电容的电容值。 此处m是在I C的电源插针上所允许的电源总线电压变化的最大百分数,一般I C 的数据手册都会给出具体的参数值。 等效开路电容定义为: C=P/(f U^2) 式中: P——I C所耗散的总瓦数; U——I C的最大D C供电电压; f——I C的时钟频率。

一旦决定了等效开关电容,再用远大于1/m的值与它相乘来找出I C所要求的总去耦电容值。然后还要把结果再与连接到相同电源总线电源插针的总数相 除,最后求得安装在每个连接到电源总线的所有电源插针附近的电容值。 去耦电容选择不同容值组合的原因: 在去耦电容的设计上,通常采用几个不同容值(通常相差二到三个数量级,如0.1u F与10u F),基本的出发点是分散串联谐振以获得一个较宽频率范 围内的较低阻抗。 电容谐振频率的解释: 由于焊盘和引脚的原因,每个电容都存在等效串联电感(E S L),因此自身会形成一个串联谐振电路,L C串联谐振电路存在一个谐振频率,随着电力的频 率不同,电容的特性也随之变化,在工作频率低于谐振频率时,电容总体呈容性,在工作频率高于谐振频率时,电容总体呈感性,此时去耦电容就失去了去耦的效 果,如下图所示。因此,要提高串联谐振频率,就要尽可能降低电容的等效串联电感。 电容的容值选择一般取决于电容的谐振频率。 不同封装的电容有不同的谐振频率,下表列出了不同容值不同封装的电容的谐振频率:

滤波电容的选择

滤波电容起平滑电压的作用;容值大小与输入桥式整流的输入电压无关;一般是越大越好。但要明白它取值的原理:滤波电容的取值与后级电路的突变电流有关。 打个比方:电容就好比一个水桶,输入往这个水桶中倒水,输出(后级电路)从这个水桶中抽水。如果恒定的抽水,只要倒入的水量大于抽水量,那么水桶将永远是满的,所以这个水桶可以不需要(当然这是理想情况)。假如某时刻需要抽出大量的水,大于输入的量,你会怎么办? 你可以准备一个较大的水桶,在这个时刻到来之前,将这个水桶的水灌满;等到了抽水的时刻,水桶中已经有足够的水抽取,就不会出现缺水的情况。 滤波电容就好比这个较大的水桶! 至于它的具体值,你将后级电路的突变电流与电容充、放电系数联系起来考虑,相信你能领悟出合适的计算方法。 滤波电容的作用和大小是怎样的? 一般情况下,电解电容的作用是过滤掉电流中的低频信号,但即使是低频信号,其频率也分为了好几个数量级。因此为了适合在不同频率下使用,电解电容也分为高频电容和低频电容(这里的高频是相对而言)。 低频滤波电容主要用于市电滤波或变压器整流后的滤波,其工作频率与市电一致为50Hz;而高频滤波电容主要工作在开关电源整流后的滤波,其工作频率为几千Hz到几万Hz。当我们将低频滤波电容用于高频电路时,由于低频滤波电容高频特性不好,它在高频充放电时内阻较大,等效电感较高。因此在使用中会因电解液的频繁极化而产生较大的热量。而较高的温度将使电容内部的电解液气化,电容内压力升高,最终导致电容的鼓包和爆裂 滤波电容在电路中作用 滤波电容用在电源整流电路中,用来滤除交流成分。使输出的直流更平滑。 去耦电容用在放大电路中不需要交流的地方,用来消除自激,使放大器稳定工作。 旁路电容用在有电阻连接时,接在电阻两端使交流信号顺利通过。 容的容抗为1/ωC欧姆(类似电阻,如果是非电类大学以上学历就把它当作电容器的电阻看吧),ω为角频率,ω=2πf,f为频率。容抗与自身容量C和频率ω(或者说f)有关,当C一定时,频率越高,容抗越小,对电流的阻碍作用就越小;频率越低,容抗越大。……人们所说的“电容通高频阻低频,通交流阻直流”是在不同情况下说的,也可以说是在不同容量C的情况下说的,都是正确的。 到此就不必再多说了吧,分析1/ωC就行了。 电路中的电容滤波问题解析

旁路电容和耦合电容详解讲解

关于旁路电容和耦合电容精讲从电路来说,总是存在驱动的源和被驱动的负载.如果负载电容比较大,驱动电路要把电容充电、放电,才能完成信号的跳变,在上升沿比较陡峭的时候,电流比较大,这样驱动的电流就会吸收很大的电源电流,由于电路中的电感,电阻(特别是芯片管脚上的电感,会产生反弹),这种电流相对于正常情况来说实际上就是一种噪声,会影响前级的正常工作.这就是耦合. 去藕电容就是起到一个电池的作用,满足驱动电路电流的变化,避免相互间的耦合干扰. 旁路电容实际也是去藕合的,只是旁路电容一般是指高频旁路,也就是给高频的开关噪声提高一条低阻抗泄防途径.高频旁路电容一般比较小,根据谐振频率一般是0.1u,0.01u等,而去耦合电容一般比较大,是10u或者更大,依据电路中分布参数,以及驱动电流的变化大小来确定. 旁路是把输入信号中的干扰作为滤除对象,而去耦是把输出信号的干扰作为滤除对象,防止干扰信号返回电源.这应该是他们的本质区别. 去耦电容在集成电路电源和地之间的有两个作用:一方面是本集成电路的蓄能电容,另一方面旁路掉该器件的高频噪声.数字电路中典型的去耦电容值是0.1μF.这个电容的分布电感的典型值是5μH.0.1μF的去耦电容有5μH的分布电感,它的并行共振频率大约在7MHz左右,也就是说,对于10MHz以下的噪声有较好的去耦效果,对40MHz以上的噪声几乎不起作用.1μF、10μF的电容,并行共振频率在20MHz以上,去除高频噪声的效果要好一些.每10片左右集成电路要加一片充放电电容,或1个蓄能电容,可选10μF左右.最好不用电解电容,电解电容是两层薄膜卷起来的,这种卷起来的结构在高频时表现为电感.要使用钽电容或聚碳酸酯电容.去耦电容的选用并不严格,可按C=1/F,即10MHz取0.1μF,100MHz 取0.01μF. 分布电容是指由非形态电容形成的一种分布参数.一般是指在印制板或其他形态的电路形式,在线与线之间、印制板的上下层之间形成的电容.这种电容的容量很小,但可能对电路形成一定的影响.在对印制板进行设计时一定要充分考虑这种影响,尤其是在工作频率很高的时候.也成为寄生电容,制造时一定会产生,只是大小的问题.布高速PCB时,过孔可以减少板层电容,但会增加电感. 分布电感是指在频率提高时,因导体自感而造成的阻抗增加.

滤波电容的大小的选取

滤波电容的大小的选取 印制板中有接触器、继电器、按钮等元件时.操作它们时均会产生较大火花放电,必须采用RC吸收电路来吸收放电电流。一般R取1~2kΩ,C取2.2~4.7μF 一般的10PF左右的电容用来滤除高频的干扰信号,0.1UF左右的用来滤除低频的纹波干扰,可以起到稳压的作用 滤波电容具体选择什么容值要取决于你PCB上主要的工作频率和可能对系统造成影响的谐波频率,可以查一下相关厂商的电容资料或者参考厂商提供的资料库软件,根据具体的需要选择。至于个数就不一定了,看你的具体需要了,多加一两个也挺好的,暂时没用的可以先不贴,根据实际的调试情况再选择容值。如果你PCB上主要工作频率比较低的话,加两个电容就可以了,一个虑除纹波,一个虑除高频信号。如果会出现比较大的瞬时电流,建议再加一个比较大的钽电容。 其实滤波应该也包含两个方面,也就是各位所说的大容值和小容值的,就是去耦和旁路。原理我就不说了,实用点的,一般数字电路去耦0.1uF即可,用于10M以下;20M以上用1到10个uF,去除高频噪声好些,大概按C=1/f 。旁路一般就比较的小了,一般根据谐振频率一般为0.1或0.01uF 说到电容,各种各样的叫法就会让人头晕目眩,旁路电容,去耦电容,滤波电容等等,其实无论如何称呼,它的原理都是一样的,即利用对交流信号呈现低阻抗的特性,这一点可以通过电容的等效阻抗公式看出来:Xcap=1/2лfC,工作频率越高,电容值越大则电容的阻抗越小.。在电路中,如果电容起的主要作用是给交流信号提供低阻抗的通路,就称为旁路电容;如果主要是为了增加电源和地的交流耦合,减少交流信号对电源的影响,就可以称为去耦电容;如果用于滤波电路中,那么又可以称为滤波电容;除此以外,对于直流电压,电容器还可作为电路储能,利用冲放电起到电池的作用。而实际情况中,往往电容的作用是多方面的,我们大可不必花太多的心思考虑如何定义。本文里,我们统一把这些应用于高速PCB设计中的电容都称为旁路电容. 电容的本质是通交流,隔直流,理论上说电源滤波用电容越大越好。 但由于引线和PCB布线原因,实际上电容是电感和电容的并联电路, (还有电容本身的电阻,有时也不可忽略) 这就引入了谐振频率的概念:ω=1/(LC)1/2 在谐振频率以下电容呈容性,谐振频率以上电容呈感性。 因而一般大电容滤低频波,小电容滤高频波。 这也能解释为什么同样容值的STM封装的电容滤波频率比DIP封装更高。

耦合、旁路、滤波电容作用

电容耦合的作用是将交流信号从前一级传到下一级。当然,耦合的方法还有直接耦合和变压器耦合的方法。直接耦合效率最高,信号又不失真,但是,前后两级的工作点的调整复杂,相互牵连。为了不使后一级的工作点不受前一级的影响,就必须在直流方面把前一级和后一级分开。同时,又能使交流信号顺利的从前一级传给后一级,同时能完成这一任务的方法就是采用电容传输或变压器传输来实现。它们都能传递交流信号和隔断直流,使前后级的工作点互不牵连。但不同的是,用电容传输时,信号的相位要延迟一些,用变压器传输时,信号的高频成份要损失一些。一般情况下,小信号传输时,常用电容作为耦合元件,大信号或强信号的传输,常用变压器作耦合元件。 滤波电容、去耦电容、旁路电容作用 滤波电容用在电源整流电路中,用来滤除交流成分。使输出的直流更平滑。 去耦电容用在放大电路中不需要交流的地方,用来消除自激,使放大器稳定工作。 旁路电容用在有电阻连接时,接在电阻两端使交流信号顺利通过。 1.关于去耦电容蓄能作用的理解 1)去耦电容主要是去除高频如RF信号的干扰,干扰的进入方式是通过电磁辐射。 而实际上,芯片附近的电容还有蓄能的作用,这是第二位的。 你可以把总电源看作密云水库,我们大楼内的家家户户都需要供水, 这时候,水不是直接来自于水库,那样距离太远了, 等水过来,我们已经渴的不行了。 实际水是来自于大楼顶上的水塔,水塔其实是一个buffer的作用。 如果微观来看,高频器件在工作的时候,其电流是不连续的,而且频率很高, 而器件VCC到总电源有一段距离,即便距离不长,在频率很高的情况下, 阻抗Z=i*wL+R,线路的电感影响也会非常大, 会导致器件在需要电流的时候,不能被及时供给。 而去耦电容可以弥补此不足。 这也是为什么很多电路板在高频器件VCC管脚处放置小电容的原因之一 (在vcc引脚上通常并联一个去藕电容,这样交流分量就从这个电容接地。) 2)有源器件在开关时产生的高频开关噪声将沿着电源线传播。去耦电容的主要功能就是提供一个局部的直流电源给有源器件,以减少开关噪声在板上的传播和将噪声引导到地

PCB中去耦电容应该怎么放

PCB中去耦电容应该怎么放? 相信刚毕业的大学生,刚进单位犯错误是在所难免的,可能每个人都会有一个老师去带,如果你遇到了一个认真并且对你负责的老师带你,那我恭喜你,你的运气很好,因为一开始他对你的严格往往会使你受益终身。当然被别人批评永远是我们不愿意听到的,如果你既不想被老师批评,又想自己今后进步的很快,唯一的路径就是努力学习了。 前面说了一些自己经历的感受,下面我们开始说正题了。 相信对做硬件的工程师,毕业开始进公司时,在设计PCB时,老工程师都会对他说,PCB走线不要走直角,走线一定要短,电容一定要就近摆放等等。但是一开始我们可能都不了解为什么这样做,就凭他们的几句经验对我们来说是远远不够的哦,当然如果你没有注意这些细节问题,今后又犯了,可能又会被他们骂,“都说了多少遍了电容一定要就近摆放,放远了起不到效果等等”,往往经验告诉我们其实那些老工程师也是只有一部分人才真正掌握其中的奥妙,我们一开始不会也不用难过,多看看资料很快就能掌握的。直到被骂好几次后我们回去找相关资料,为什么设计PCB电容要就近摆放呢,等看了资料后就能了解一些,可是网上的资料很杂散,很少能找到一个很全方面讲解的。工作两年后,我看到了相关人士讲的相关文章。下面这篇文章是转载于博士的一片关于电容去耦半径的讲解,相信你看了之后可以很牛x的回答和避免类似问题的发生。 问:为什么去耦电容就近摆放呢? 答:因为它有有效半径哦,放的远了失效的。 电容去耦的一个重要问题是电容的去耦半径。大多数资料中都会提到电容摆放要尽量靠近芯片,多数资料都是从减小回路电感的角度来谈这个摆放距离问题。确实,减小电感是一个重要原因,但是还有一个重要的原因大多数资料都没有提及,那就是电容去耦半径问题。如果电容摆放离芯片过远,超出了它的去耦半径,电容将失去它的去耦的作用。 理解去耦半径最好的办法就是考察噪声源和电容补偿电流之间的相位关系。当芯片对电流的需求发生变化时,会在电源平面的一个很小的局部区域内产生电压扰动,电容要补偿这一电流(或电压),就必须先感知到这个电压扰动。信号在介质中传播需要一定的时间,因此从发生局部电压扰动到电容感知到这一扰动之间有一个时间延迟。同样,电容的补偿电流到达扰动区也需要一个延迟。因此必然造成噪声源和电容补偿电流之间的相位上的不一致。 特定的电容,对与它自谐振频率相同的噪声补偿效果最好,我们以这个频率来衡量这种相位关系。设自谐振频率为f,对应波长为,补偿电流表达式可写为: 其中,A是电流幅度,R为需要补偿的区域到电容的距离,C为信号传播速度。 当扰动区到电容的距离达到时,补偿电流的相位为,和噪声源相位刚好差180度,即完全反相。此时补偿电流不再起作用,去耦作用失效,补偿的能量无法及时送达。为了能有效传递补偿能量,应使噪声源和补偿电流的相位差尽可能的小,最好是同相位的。距离越近,相位差越小,补偿能量传递越多,如果距离为0,则补偿能量百分之百传递到扰动区。这就要求噪声源距离电容尽可能的近,要远小于。实际应用中,这一距离最好控制在之间,这是一个

滤波电容和去耦电容

滤波电容和去耦电容.txt老公如果你只能在活一天,我愿用我的生命来延续你的生命,你要快乐的生活在提出分手的时候请不要说还爱我。1,节点 在AD6的原理图中如何计算其有效节点? 也有就是说有多少个有效的焊盘,因为我可以根据此焊的数量来报价。 2 ⑴、信号层(Signal Layers),有16个信号层,TopLayer BottomLayer MidLayer1-14。 ⑵、内部电源/接地层(Internal Planes),有4个电源/接地层Planel1-4。 ⑶、机械层(Mechanical Layers),有四个机械层。 ⑷、钻孔位置层(Drill Layers),主要用于绘制钻孔图及钻孔的位置,共包括Drill Guide 和Drill drawing两层。 ⑸、助焊层(Solder Mask),有TopSolderMask和BottomSolderMask两层,手工上锡。 ⑹、锡膏防护层(Paste Mask)有TopPaste和BottomPaster两层。 ⑺、丝印层(Silkscreen),有TopOverLayer和BottomOverLayer两层,主要用于绘制元件的外形轮廓。 ⑻、其它工作层面(Other): KeepOutLayer:禁止布线层,用于绘制印制板外边界及定位孔等镂空部分。 MultiLayer:多层 有多个布线层的半导体器件具备:第一绝缘膜;形成于该第一绝缘膜上的第一布线层;形成于上述第一布线层上的第二布线层;和设置在第一绝缘膜和所述第一布线层的上面,第二布线层中相邻布线之间和所述第二布线层中布线下侧与所述第一绝缘层和所述第一布线层之间的低相对介电常数的第二绝缘膜。所述半导体器件的制造方法具备:形成第一层间绝缘膜;在所述第一层间绝缘膜中形成多个布线沟;通过将金属膜埋入所述布线沟中来形成多个布线;去除所述布线间的所述第一层间绝缘膜来形成埋入沟;在所述埋入沟中埋入由低介电常数材料构成的第二层间绝缘膜。 3 这三种叫法的电容,其实都是滤波的,只是应用在不同的电路中,叫法和用法不一样。 滤波电容,这是我们通常用在电源整流以后的电容,它是把整流电路交流整流成脉动直流,通过充放电加以平滑的电容,这种电容一般都是电解电容,而且容量较大,在微法级。 旁路电容,是把输入信号中的高频成份加以滤除,主要是用于滤除高频杂波的,通常用瓷质电容、涤纶电容,容量较小,在皮法级。 去耦电容,是把输出信号的干扰作为滤除对象,去耦电容相当于电池,利用其充放电,使得放大后的信号不会因电流的突变而受干扰。它的容量根据信号的频率、抑制波纹程度而定。 滤波电容用在电源整流电路中,用来滤除交流成分。使输出的直流更平滑。

滤波电容旁路电容和去耦电容的作用和选择

滤波电容 百科名片 储能电容的安装数字电路的电源线与回流线(地线)之间总要连接很多的电容器通常称为滤波电容。目录 简介选择作用 编辑本段简介 一般情况下,电解电容的作用是过滤掉电流中的低频信号,但即使是低频信号,其频率也分为了好几个数量级。因此为了适合在不同频率下使用,电解电容也分为高频电容和低频电容(这里的高频是相对而言 n-35g的主滤波电容 )。 低频滤波电容主要用于是电滤波或变压器整流后的滤波,其工作频率与市电一致为50Hz;而高频滤波电容主要工作在开关电源整流后的滤波,其工作频率为几千Hz到几万Hz。当我们将低频滤波电容用于高频电路时,由于低频滤波电容高频特性不好,它在高频充放电时内阻较大,等效电感较高。因此在使用中会因电解液的频繁极化而产生较大的热量。而较高的温度将使电容内部的电解液气化,电容内压力升高,最终导致电容的鼓包和爆裂。 编辑本段选择 滤波电容在开关电源中起著非常重要的作用,如何正确选择滤波电容,尤其是输出滤波电容的选择则是每个工程技术人员十分关心的问题。 50赫兹工频电路中使用的普通电解电容器,其脉动电压频率仅为100赫兹,充放电时间是毫秒数量级。为获得更小的脉动系数,所需的电容量高达数十万微法,因此普通低频铝电解电容器的目标是以提高电容量为主,电容器的电容量、损耗角正切值以及漏电流是鉴别其优劣的主要参数。而

开关电源中的输出滤波电解电容器,其锯齿波电压频率高达数万赫兹,甚至是数十兆赫兹。这时电容量并不是其主要指标,衡量高频铝电解电容优劣的标准是“阻抗- 频率”特性。要求在开关电源的工作频率内要有较低的等效阻抗,同时对于半导体器件工作时产生的高频尖峰信号具有良好的滤波作用。

水力分压器(流量罐)原理及应用

国家示范性中等职业学校建设项目水力分压器(流量罐)原 理及应用 制作人:杨 倩

水力分压器(流量罐)原理及应用

水力分压器(流量罐)原理及作用: ?水力分压器又称为“去耦罐”。其作用 是将一次循环系统分配成二次循环系统。二次循环系统的特征为有一个交点的两个循环环路,并分别有各自独立的水泵(循环动能)。我们所说的水力分压器或去耦罐就是二次循环环路的“交点”。 ? 通过水力分压器或去耦罐,我们可以将循环环路分配成二次系统。两个循环环路的动能可以相同或不同。水力分压器或去耦罐可以起到“分压”或“去耦”的作用。 ? 由于热源(如锅炉或热泵)与末端(如散热器或地暖)工况的不匹配,有时甚至是冲突,传统的一次循环系统无法保证系统的合理匹配和正常运行。水力分压器或去耦罐是解决系统工况不匹配的有效方法。力分压器或去耦罐的二次循环系统可以保证热源侧和末端侧根据自己的需要匹配动能来满足不同的循环温度、温差及流量。

水力分压器会导致的温度变化: ?我们强调:水力分压器内部有明显的混水作用 ?比如说,锅炉供应的‘热’水(在到达末端之前)可能被末端流回的‘冷’水‘降温’。在这种情况下,末端的设计应该考虑这类温降,而不是根据通常的惯例以锅炉出水的最高水温为基础 ?也有可能是,末端流回的‘冷’水(在回到锅炉之前)可能被锅炉供应的‘热’水‘升温’。这种情况下(尤其是地板采暖系统),锅炉回水的升温可以利用起来避免锅炉烟雾冷凝。

水力分压器应用中的三种工况 ?一次循环水量等于二次循环水量?一次循环水量小于二次循环水量?一次循环水量大于二次循环水量

?这是传统系统典型的情况,因为一次 循环水泵流量通常与二次循环水泵流 量相同。 ?这种情况下,可以近似推出一次水温 与二次水温关系如下: ?T1=T3 ?T2=T4 ? 因此可以认为分压器不会改变水温, 设计末端(在普通的系统中)以锅炉 出水的最高温度为基础。1、一次循环水量等于二次循环水量

电脑主板中滤波电容 去耦电容 旁路电容的作用

电脑主板中滤波电容去耦电容旁路电容的作用 009年02月22日星期日 11:18 滤波电容用在电源整流电路中,用来滤除交流成分。使输出的直流更平滑。 去耦电容用在放大电路中不需要交流的地方,用来消除自激,使放大器稳定工作。 旁路电容用在有电阻连接时,接在电阻两端使交流信号顺利通过。 1.关于去耦电容蓄能作用的理解 1)去耦电容主要是去除高频如RF信号的干扰,干扰的进入方式是通过电磁辐射。而实际上,芯片附近的电容还有蓄能的作用,这是第二位的。 你可以把总电源看作密云水库,我们大楼内的家家户户都需要供水,这时候,水不是直接来自于水库,那样距离太远了,等水过来,我们已经渴的不行了。实际水是来自于大楼顶上的水塔,水塔其实是一个buffer的作用。 如果微观来看,高频器件在工作的时候,其电流是不连续的,而且频率很高,而器件VCC到总电源有一段距离,即便距离不长,在频率很高的情况下,阻抗Z =i*wL+R,线路的电感影响也会非常大,会导致器件在需要电流的时候,不能被及时供给。而去耦电容可以弥补此不足,这也是为什么很多电路板在高频器件VCC 管脚处放置小电容的原因之(在vcc引脚上通常并联一个去藕电容,这样交流分量就从这个电容接地。) 2)有源器件在开关时产生的高频开关噪声将沿着电源线传播。去耦电容的主要功能就是提供一个局部的直流电源给有源器件,以减少开关噪声在板上的传播和将噪声引导到地 2.旁路电容和去耦电容的区别 去耦:去除在器件切换时从高频器件进入到配电网络中的RF能量。去耦电容还可以为器件供局部化的DC电压源,它在减少跨板浪涌电流方面特别有用。 旁路:从元件或电缆中转移出不想要的共模RF能量。这主要是通过产生AC 旁路消除无意的能量进入敏感的部分,另外还可以提供基带滤波功能(带宽受限)。 我们经常可以看到,在电源和地之间连接着去耦电容,它有三个方面的作用:一是作为本集成电路的蓄能电容;二是滤除该器件产生的高频噪声,切断其通过供电回路进行传播的通路;三是防止电源携带的噪声对电路构成干扰。 在电子电路中,去耦电容和旁路电容都是起到抗干扰的作用,电容所处的位

PCB布局时去耦电容摆放经验分享

P C B布局时去耦电容摆 放经验分享 Revised final draft November 26, 2020

P C B布局时去耦电容摆放经验分享 对于电容的安装,首先要提到的就是安装距离。容值最小的电容,有最高的谐振频率,去耦半径最小,因此放在最靠近芯片的位置。容值稍大些的可以距离稍远,最外层放置容值最大的。但是,所有对该芯片去耦的电容都尽量靠近芯片。 下面的图1就是一个摆放位置的例子。本例中的电容等级大致遵循10倍等级关系。 还有一点要注意,在放置时,最好均匀分布在芯片的四周,对每一个容值等级都要这样。通常芯片在设计的时候就考虑到了电源和地引脚的排列位置,一般都是均匀分布在芯片的四个边上的。因此,电压扰动在芯片的四周都存在,去耦也必须对整个芯片所在区域均匀去耦。如果把上图中的680pF电容都放在芯片的上部,由于存在去耦半径问题,那么就不能对芯片下部的电压扰动很好的去耦。 电容的安装 在安装电容时,要从焊盘拉出一小段引出线,然后通过过孔和电源平面连接,接地端也是同样。这样流经电容的电流回路为:电源平面->过孔->引出线->焊盘->电容->焊盘->引出线->过孔->地平面,图2直观的显示了电流的回流路径。 放置过孔的基本原则就是让这一环路面积最小,进而使总的寄生电感最小。图3显示了几种过孔放置方法 第一种方法从焊盘引出很长的引出线然后连接过孔,这会引入很大的寄生电感,一定要避免这样做,这是最糟糕的安装方式。 第二种方法在焊盘的两个端点紧邻焊盘打孔,比第一种方法路面积小得多,寄生电感也较小,可以接受。 第三种在焊盘侧面打孔,进一步减小了回路面积,寄生电感比第二种更小,是比较好的方法。 第四种在焊盘两侧都打孔,和第三种方法相比,相当于电容每一端都是通过过孔的并联接入电源平面和地平面,比第三种寄生电感更小,只要空间允许,尽量用这种方法。 最后一种方法在焊盘上直接打孔,寄生电感最小,但是焊接是可能会出现问题,是否使用要看加工能力和方式。 推荐使用第三种和第四种方法。 需要强调一点:有些工程师为了节省空间,有时让多个电容使用公共过孔,任何情况下都不要这样做。最好想办法优化电容组合的设计,减少电容数量。 由于印制线越宽,电感越小,从焊盘到过孔的引出线尽量加宽,如果可能,尽量和焊盘宽度相同。这样即使是0402封装的电容,你也可以使用20mil宽的引出线。引出线和过孔安装如图4所示,注意图中的各种尺寸。 对于大尺寸的电容,比如板级滤波所用的钽电容,推荐用图5中的安装方法。

相关文档
相关文档 最新文档