文档库 最新最全的文档下载
当前位置:文档库 › 基于adams的轴承振动失效分析

基于adams的轴承振动失效分析

基于adams的轴承振动失效分析
基于adams的轴承振动失效分析

Engineering MECHANICS,Vol.14,2007,No.4,p.259–268259

VIBRATION ANALYSIS OF ROTARY DRIER

Frantiˇs ek Palˇc′a k*,Martin Vanˇc o*

In this paper the transfer of vibration from motor to the bottom group of rotary drier

is analyzed in the ADAMS/Vibration module environment.Excitation from unba-

lanced motor shaft is transferred through bearings mounted in side shields to the

transmission device and bottom plate.Output results were time-domain courses of

displacement,velocity,acceleration and transfer functions,frequency response func-

tions and modal coordinates corresponding to excitation frequency.

Key words:vibration,rotary drier,frequency response

1.Description of goals

The goal of vibration analysis of rotary drier developed by Bosch Siemens Hausgeraete, Michalovce was the evaluation of vibration transfer from motor to the bottom plate.Ob-tained results should be used as comparative values for experimental results from point of view of allowed level of vibration.To obtain physically relevant results for basic insight of its functional and vibrational properties3D model of drier bottom plate(Fig.1)includes bearings,transmission-device with belt and bottom plate with attachment elements.

Fig.1:Scheme of drier’s bottom plate

2.Task steps

The requested research oriented to the virtual dynamic analyses of mechanical system with gross motions dictates to adopt mechanical system simulation technology to perform *Assoc.Prof.F.Palˇc′a k,Ph.D.,MSc.M.Vanˇc o,Strojn′?cka fakulta,Slovensk′a technick′a univerzita v Brati-slave,N′a m.slobody17,81231Bratislava

260Palˇc′a k F.et al.:Vibration Analysis of Rotary Drier following task steps:

1.For dynamic simulation with3D-Submodel of drier motor including bearing,transmis-

sion device and belt(without bottom plate)an unbalance of200mg on rotor(rotation 2730rpm)and torsion of100Hz,200Hz and300Hz was used as dynamic load.The results were time dependent quantities on the outer ring of the bearing,side shields and stator(rigid bodies).

2.Vibration of the motor was investigated using MSC.ADAMS/Vibration.Obtained results

contain frequency response functions from excitation point on motor to the outer ring, side shields and stator.

3.Based on the results form the?rst and second step a virtual numerical3D-Model of

drier bottom plate was developed.Time-domain dynamic analyses were used to verify functionality and proper behavior of model.The time dependent displacements,velocities and accelerations of the bearings outer rings,side shields and stator(rigid bodies)were obtained for simulations based on the same loading conditions as in step1.

4.Final step was dedicated to analyze transfer of vibration from motor to de?ned points

on bottom plate(Fig.7).Excitation was caused by rotating unbalanced mass within the range from0.1Hz to10000Hz.

Fig.2:3D model of drier bottom plate

3.Theoretical background of used computational technology

Vibration analysis is a frequency domain simulation of MSC.ADAMS models.This simulation can be a normal modes analysis in which the eigenvalues and mode shapes for the model are computed.The frequency domain simulation can also be a forced response analysis using the input and output channels along with the vibration actuators.Input channels provide a port into our system so we can obtain a plot of the frequency response or drive our system with an input force using a vibration actuator.When we create an input function a vibration actuator applies an input force to vibrate the system.A vibration actuator can contain expressions that let us use both time and frequency inputs.Each input channel must reference only one vibration actuator but each vibration actuator,however, can be associated with multiple input channels.

Engineering MECHANICS 261

Swept sine de?nes a constant amplitude sine function being applied to the model.

f (ω)=F [cos(θ)+j sin(θ)](1)

where :f is the fequency ωdependet forcing function,F is the magnitude of the force and θis the phase angle.

Fig.3:Principle of leading and lagging excitations

Transfer function is the magnitude and phase response produced by a given input channel at a given frequency ωfor a given output channel.

For frequency response computation,the linearized model is represented as:

s x (s )=A x (s )+B u (s ),

(2)y (s )=C x (s )+D u (s )(3)

where:s is the Laplace variable and A ,B ,C and D are state matrices for the linearized model.

The system transfer function can be represented as :

H (s )=y (s )u (s )=C (s I ?A )?1B +D (4)

where :H (s )is the transfer function for the model and I is the identity matrix of dimension equal to the number of system states.

For a given vibration analysis,the system frequency response y (s )is given as :

y (s )=H (s )u (s ).(5)

Modal coordinates are states in the frequency domain solution associated with a speci?c mode.Modes most active in a frequency response can be identi?ed from the modal coordi-nates.The modal coordinates are computed as :

x (s )=(s I ?A )?1B u (s ).

(6)

PSD of output channels for given input PSDs is given as :

p (s )=H ?(s )U (s )H (s )(7)where :p (s )is the matrix of power spectral density,H ?(s )is the complex conjugate trans-pose of H (s )and U (s )is the matrix of input spectral density.

262Palˇc′a k F.et al.:Vibration Analysis of Rotary Drier 4.Modelling of contact forces

For models of contacts in our model were used2D impact force contacts,which include the interaction between planar geometric elements(circle and point).

F n=k(g e)+STEP(g,0,0,d max,c max)d g

d t

.(8)

In Eq.(8)g represents the penetration of one geometry into another,d g/d t is the penetration velocity at the contact point,e is a positive real value denoting the force exponent,d max is a positive real value specifying the boundary penetration to apply the maximum damping coe?cient c max.The bearing model depicted on the Fig.4is advanced bearing model with possibility of ball settling and enabling to obtain relevant contact forces between inner ring and bearing ball(Fig.5).

Fig.4:Advanced bearing model for contact forces and possibility of ball settling

Fig.5:Time course of contact force between inner ring and bearing ball

Engineering MECHANICS263 On the Fig.6is comparison of time courses of response forces in?xed joint connecting bearing outer ring with ground with excitation from unbalanced mass and without excitation.

Idealized geometric constraints

To preserve guidance of belt against pulley and balls against rings in bearings there were used planar joints.

Fig.6:Time courses of response forces in?xed joint connecting bearing outer

ring with ground;small wawes are caused by unbalanced mass

Fig.7:Frequency response function of AS shield acceleration

and transfer function of AS shield acceleration

264Palˇc′a k F.et al.:Vibration Analysis of Rotary Drier 5.Disscusion of obtained results

On the Fig.7is frequency response function and transfer function corresponding to the excitation by unbalanced mass of200mg on the rotor.

On Fig.8is steady state portion of force response in attachment mount(MOUNT1) after low pass?ltering with cut o?frequency200Hz because working range of drier is about excitation frequency45.5Hz.

On Fig.9is time range between0.2and0.2219corresponding to one revolution of motor shaft.

Fig.8:Force response in attachment mount(MOUNT1

on Fig.2)to the excitation from motor

Fig.9:FFT analysis of displacement response of bottom

plate in attachment mount(MOUNT1)

Engineering MECHANICS265 From results yields that lower value(45.5Hz)corresponding to rotation of unbalance mass and higher value(554.6Hz)is caused by excitation due to contact of belt segments with pulley.In this section we deals with obtained frequency response functions(FRF from excitation point to the center of gravity of the outer ring,end shields,stator and bottom plate).Input point of excitation is located on the motor shaft.On the Fig.10is depicted the frequency response function of bottom plate center of mass acceleration.

Fig.10:Frequency response function of bottom plate center of mass acceleration with frequency and magnitude axes in linear scale

Fig.11:Position of output points for requested vibration responses Other response outputs are denoted OP1–OP9according to Fig.11with de?ned positions of output points.Output points OP6,OP7,OP8and OP9are on attachment mounts of bottom plate to the ground.

266Palˇc′a k F.et al.:Vibration Analysis of Rotary Drier On?gure Fig.12are results for acceleration of output points,because acceleration is often used as a measured quantity in real experiments.For comparison the frequency357.73Hz was selected,because in this value we can see ampli?cation of responses.

Fig.12:Frequency response functions for accelerations of bottom plate output points (frequency and magnitude axis are in linear scale)

Fig.13:Modal coordinates corresponding to excitation frequency45.5Hz from input channel in horizontal(x-direction)are displayed in the upper plot,and from

input channel in vertical(y-direction)are displayed in the lower plot From whole frequency spectrum we concentrate on responses corresponding to the exci-tation frequency45.5Hz.On Fig.13we see which of normal modes(165,480in y-direction and139,165,480in x-direction)have highest values of modal coordinates.In Tab.1are sorted modal coordinates according to their magnitudes for excitation frequency(45.5Hz) at input channel in horizontal x-direction,resp.vertical y-direction.

Engineering MECHANICS267 Input channel x-direction Input channel y-direction

Mode Modal Coordinate Mode Modal Coordinate

4800.3584164800.584575

1650.1688511650.233424

1390.0794611390.0257517

4930.0335*******.0218263

1410.022********.0155453

2460.022********.00755551

1590.01912462460.00744555

1700.01866871410.00726804

1550.01849122550.00697145

2500.01574752450.00660005

Tab.1:Modal coordinates for excitation frequency45.5Hz from input channel

in horizontal x-direction,resp.vertical y-direction in the tabular form

6.Conclusion

To obtain better understanding of vibration transfer from motor to the bottom plate all three types of obtained results,from functional,time domain and frequency domain analyses were presented in this paper.It can be concluded,that all obtained results are acceptable from physical point of view and with respect to accuracy and performance are in line with expectations.

The FFT analysis of results from dynamic simulation of the motor in time domain con?rmed correctness of the excitation frequency45.5Hz corresponding to the rotation 2730rpm.In the?rst dynamic time domain simulation we detected unwanted in?uence of belt,which is documented by FFT analysis on Fig.6(frequency554.6Hz)corresponding to excitation of belt segments(for one revolution of shaft,12.2segments passes over shaft pulley and therefore12.2·45.5=555.1).From Fig.8we can conclude that the highest values of acceleration are on attachments points of bottom plate to the ground(OP6,OP7,OP8 and OP9).

For documentation how is possible to obtain better insight into modal properties we prepared?gures Fig.9with modal coordinates related to excitation frequency(45.5Hz).The highest modal coordinates give us information which normal modes(165,480in y-direction and139,165,480in x-direction)contribute to unwanted frequency response.

As was stated,from methodical point of view the virtual model used for this research consist of rigid motor shaft and bottom plate with compliant attachments,which is initial phase of reality representation for study of vibration transfer to the bottom plate.The main goal in next steps of research will be to achieve properties of virtual3D-model of drier bottom group closer to the reality.A necessary re?ning of the virtual3D-model of bottom group should be achieved using input data obtained by physical experiments(nonlinear characteristics of compliant attachment elements).Further step of re?ning the rigid parts considered in the initial model(shaft,side shields,bottom plate)should be replaced by ?exible bodies.

Acknowledgement

This work was supported by the Scienti?c Grant Agency of the Slovak Republic VEGA under the grant number1/2092/05.This support is gratefully acknowledged.

268Palˇc′a k F.et al.:Vibration Analysis of Rotary Drier

References

[1]Harris C.M.,Piersol A.G.:Harris’Shock and Vibration Handbook–Fifth Edition,McGraw-

Hill,2002

[2]Inman D.J.:Engineering Vibration,Prentice Hall,Inc.,2001

[3]Mathews C.:Engineers’Guide to Rotating Equipment,Professional Engineering Publishing

Limited,2002

[4]Mobley K.R.:Vibration Fundamentals,Newnes–Reed Elsevier Group,1999

Received in editor’s o?ce:January16,2006

Approved for publishing:May25,2006

Note:The paper is an extended version of the contribution presented at the national con-ference with international participation Engineering Mechanics2005,Svratka,2005.

adams振动分析实例中文版

1.问题描述 研究太阳能板展开前和卫星或火箭分离前卫星的运行。研究其发射振动环境及其对卫星各部件的影响。 2.待解决的问题 在发射过程中,运载火箭给敏感部分航天器部件以高载荷。每个航天器部件和子系统必学设计成能够承受这些高载荷。这就会带来附加的质量,花费高、降低整体性能。 更好的选择是设计运载火箭适配器(launch vehicle adapter)结构。 这部分,将设计一个(launch vehicle adapter)的隔离mount,以在有效频率范围降低发射震动传到敏感部件的部分。关心的敏感部件在太阳能板上,对70-100HZ的输入很敏感,尤其是垂直于板方向的。 三个bushings将launch vehicle adapter和火箭连接起来。Bushing的刚度和阻尼影响70-100HZ范围传递的震动载荷。所以设计问题如下: 找到运载火箭适配器系统理想刚度和阻尼从而达到以下目的: 传到航天器的垂直加速度不被放大; 70-100HZ传递的水平加速度最小。 3.将要学习的 Step1——build:在adams中已存在的模型上添加输入通道和振动执行器来时系统振动,添加输出通道测量响应。 @ Step2——test:定义输入范围并运行一个振动分析来获得自由和强迫振动响应。 Step3——review:对自由振动观察模态振型和瞬态响应,对强迫振动,观察整体响应动画,传递函数。 Step4——improve:在横向添加力并检查传递加速度,改变bushing的刚度阻尼并将结果作比较。添加频域测量供后续设计研究和优化使用。

需创建的东西:振动执行器、输入通道、输出通道 完全非线性模型 打开模型在install dir/vibration/examples/tutorial satellite 文件夹下可将其复制到工作木录。

滚动轴承故障诊断分析

滚动轴承故障诊断分析 学院名称:机械与汽车工程学院专业班级: 学生姓名: 学生学号: 指导教师姓名:

摘要 滚动轴承故障诊断 本文对滚动轴承的故障形式、故障原因、常用诊断方法等诊断基础和滚动轴承故障的振动机理作了研究,并建立了相应的滚动轴承典型故障(外圈损伤、内圈损伤、滚动体损伤)的理论模型,给出了一些滚动轴承故障诊断常见实例。通过对滚动轴承故障振动机理的研究可以帮助我们了解滚动轴承故障的本质和特征。本文对特征参数的提取,理论推导,和过程都进行了详细的阐述, 关键词:滚动轴承;故障诊断;特征参数;特征; ABSTRACT : The Rolling fault diagnosis In the thesis ,the fault types,diagnostic methods an d vibration principle of rolling bearing are discussed.the thesis sets up a series of academic m odels of faulty rolling bearings and lists some sym ptom parameters which often used in fault diagnosis of rolling bearings . the study of vibration prin ciple of rolling bearings can help us to know the essence and feature of rolling bearings.In this pa

ADAMS分析实例 超值

ADAMS 分析实例-定轴轮系和行星轮系传动模拟 有一对外啮合渐开线直齿圆柱体齿轮传动.已知ο20,4,25,5021====αmm m z z ,两个齿轮的厚度都是 50mm 。 ⒈ 启动ADAMS 双击桌面上ADAMS/View 的快捷图标,打开ADAMS/View 。在欢迎对话框中选择“Create a new model ”,在模型名 称(Model name )栏中输入:dingzhouluenxi ;在重力名称(Gravity )栏中选择“Earth Normal (-Global Y)”;在单位名称(Units )栏中选择“MMKS –mm,kg,N,s,deg ”。如图1-1所示。 图1-1 欢迎对话框 ⒉ 设置工作环境 对于这个模型,网格间距需要设置成更高的精度以满足要求。在ADAMS/View 菜单栏中,选择设置(Setting )下拉菜单中的工作网格(Working Grid )命令。系统弹出设置工作网格对话框,将网格的尺寸(Size )中的X 和Y 分别设置成750mm 和500mm ,间距(Spacing )中的X 和Y 都设置成50mm 。然后点击“OK ”确定。如图2-1所表示。 用鼠标左键点击选择(Select )图标,控制面板出现在工 具箱中。 用鼠标左键点击动态放大(Dynamic Zoom )图标,在 模型窗口中,点击鼠标左键并按住不放,移动鼠标进行放大或缩小。 ⒊创建齿轮 在ADAMS/View 零件库中选择圆柱体 (Cylinder )图标 ,参数选择为“New Part ”,长度(Length )选择50mm (齿轮的厚度),半径 ( Radius ) 选 择 100mm (1002 5042z m 1=?=?) 。如图3-1所示。 图 2-1 设 置工作网格对话框 图3-1设置圆柱体选项 在ADAMS/View 工作窗口中先用鼠标任意左键选择点(0,0,0)mm ,然后选择点(0,50,0)。则一个圆柱体(PART_2)创建出来。如图3-2所示。 图3-2 创建圆柱体(齿轮) 在ADAMS/View 中位置/方向库中选择位置旋转(Position: Rotate …)图标,在角度(Angle )一栏中输入 90,表示将对象旋转90度。如图3-3所示。 在ADAMS/View 窗口中用鼠标左键选择圆柱体,将出来一个白 色箭头,移动光标,使白色箭头的位置和指向如图3-4所示。 然后点击鼠标左键,旋转后的圆柱体如图3-5所示。

滚动轴承常见故障及原因分析

滚动轴承常见故障及原因分析 1.故障形式 (1)轴承转动困难、发热; (2)轴承运转有异声; (3)轴承产生振动; (4)内座圈剥落、开裂; (5)外座圈剥落、开裂; (6)轴承滚道和滚动体产生压痕。 2.故障原因分析 (1)装配前检查不仔细,轴承在装配前要先清洗并认真检查轴承的内外座圈、滚动体和保持架,是否有生锈、毛刺、碰伤和裂纹;检查轴承间隙是否合适,转动是否轻快自如,有无突然卡止的现象;同时检查轴径和轴承座孔的尺寸、圆度和圆柱度及其表面是否有毛刺或凹凸不平等。对于对开式轴承座,要求轴承盖和轴承底座接合面处与外座圈的外圆面之间,应留出0.1mm~0.25mm间隙,以防止外座两侧“瓦口”处出现“夹帮”现象导致的间隙减小,磨损加快,使轴承过早损坏。 (2)装配不当。装配不当会导致轴承出现上述的各种故障形式,以及以下的几种情况: A.配合不当 轴承内孔与轴的配合采用基孔制,轴承外圆与轴承座孔的配合采用基轴制。一般在正常负荷情况下工作的离心泵、离心机、减速机、电动机和离心式压缩机的轴与轴承内座圈,采用j5,js5,js6,k5,k6,m6配合,

轴承座孔与轴承外座圈采用j6,j7配合。旋转的座圈(大多数轴承的内座圈为旋转座圈,外座圈不为旋转座圈,少部分轴承则相反),通常采用过盈配合,能在负荷作用下避免座圈在轴径和轴承座孔的配合表面上发生滚动和滑动。 滚动轴承常见故障原因分析 但有时由于轴径和轴承座孔的尺寸测量不精确或配合面粗糙度未达到标准要求,造成过大的过盈配合,使轴承座圈受到很大挤压,从而导致轴承本身的径向间隙减少,使轴承转动困难、发热,磨损加剧或卡死,严重时会造成轴承内外座圈在按装时开裂。不旋转座圈常采用间隙或过盈不大的配合,这样不旋转座圈就有可能产生微小的爬动,而使座圈与滚动体的接触面不断更换,座圈滚道磨损均匀。同时也可以消除轴因热伸长而使轴承中滚动体发生轴向卡住的现象。但过大的间隙配合,会使不旋转座圈随滚动体一同转动,致使轴(或轴承座孔)与内座圈(或外座圈)发生严重磨损,而出现摩擦使轴承发热、振动。 B.装配方法不当 轴承和轴径或轴承座孔的过盈较小时,多采用压入法装配。最简单的方法是利用铜棒和手锤,按一定的顺序对称地敲打轴承带过盈配合的座圈,使轴承顺利压入。另外,也可用软金属制的套管借手锤打入或压力机压入。若操作不当,则会使座圈变形开裂,或者手锤打在非过盈配合的座圈上,则会使滚道和滚动体产生压痕或轴承间接被破坏。 C.装配时温度控制不当 滚动轴承在装配时,若其与轴径的过盈较大,一般采用热装法装配。

水泵常见故障分析及处理方法

水泵常见故障分析及处理方法 不同类型的水泵,其故障的表现形式不一样,但概括起来,有以下5个共同特点。 (1)流量不足。 产生原因:影响水泵流量不足多是吸水管漏气、底阀漏气;进水口堵塞;底阀入水深度不足;水泵转速太低;密封环或叶轮磨损过大;吸水高度超标等。 处理方法:检查吸水管与底阀,堵住漏气源;清理进水口处的淤泥或堵塞物;底阀入水深度必须大于进水管直径的1.5倍,加大底阀入水深度;检查电源电压,提高水泵转速,更换密封环或叶轮;降低水泵的安装位置,或更换高扬程水泵。 (2)功率消耗过大。 产生原因:水泵转速太高;水泵主轴弯曲或水泵主轴与电机主轴不同心或不平行;选用水泵扬程不合适;水泵吸入泥沙或有堵塞物;电机滚珠轴承损坏等。 处理方法:检查电路电压,降低水泵转速;矫正水泵主轴或调整水泵与电机的相对位置;选用合适扬程的水泵;清理泥沙或堵塞物;更换电机的滚珠轴承。 (3)泵体剧烈振动或产生噪音。 产生原因:水泵安装不牢或水泵安装过高;电机滚珠轴承损坏;水泵主轴弯曲或与电机主轴不同心、不平行等。 处理方法:装稳水泵或降低水泵的安装高度;更换电机滚珠轴承;矫正弯曲的水泵主轴或调整好水泵与电机的相对位置。 (4)传动轴或电机轴承过热。 产生原因:缺少润滑油或轴承破裂等。 处理方法:加注润滑油或更换轴承。 (5)水泵不出水。 产生原因:泵体和吸水管没灌满引水;动水位低于水泵滤水管;吸水管破裂等。 处理方法:排除底阀故障,灌满引水;降低水泵的安装位置,使滤水管在动水位之下,或等动水位升过滤水管再抽水;修补或更换吸水管。 污水泵使用的基本常识及叶轮分类介绍 污水泵属于无堵塞泵的一种,具有多种形式:如潜水式和干式二种,目前最常的潜水式为WQ型潜水污水泵,最常见的干式污水泵如W型卧式污水泵和WL型立式污水泵二种。主要用于输送城市污水,粪便或液体中含有纤维。纸屑等固体颗粒的介质,通常被输送介质的温度不大于80℃。由于被输送的介质中含有易缠绕或聚束的纤维物。故该种泵流道易于堵塞,泵一旦被堵塞会使泵不能正常工作,甚至烧毁电机,从而造成排污不畅。给城市生活和环保带来严重的影响。因此,抗堵性和可靠性是污水泵优劣的重要因素。 和其它泵一样,叶轮、压水室、是污水泵的两大核心部件。其性能的优劣,也就代表泵性能的优劣,污水泵的抗堵塞性能,效率的高低,以及汽蚀性能,抗磨蚀性能主要是由叶泵和压水室两大部件来保证。下面分别作一介绍: 1、叶轮结构型式:叶轮的结构分为四大类:叶片式(开式、闭式)、旋流式、流道式、(包括单流道和双流道)螺旋离心式四种,开式半开式叶轮制造方便,当叶轮内造成堵塞时,

轴承故障原因分析及处理方法

轴承故障原因分析及处理方法 [摘要]: 本文介绍了轴承常见故障和处理办法,总结了避免故障发生的几种办法,保证生产的连续性。 [关键字]:轴承;故障率高;处理措施; 一、前言: 轴承是生产线设备上常用的支撑轴零件,它可以引导轴的旋转,也可以承受轴上空转的零件,由于其使用量大,生产过程中经常出现故障,给车间生产的连续性和产品质量的保障带来严重影响。因此,迅速判断故障产生的原因,采取得当的解决措施,保证设备的连续运行是确保产品质量的重要基础和保证。 二、轴承故障原因分析: 导致轴承故障率升高的常见原因: 1、润滑不良,如润滑不足或过分润滑,润滑油质量不符合要求,变质或有杂物。 2、轴承异常,如轴承损坏,轴承装配工艺差,轴承各部位间隙调整不符合要求。 3、振动大,如联轴器找正工艺差不符合要求,转子存在动、静不平衡,基础刚性差、地脚空虚以及旋转失衡,喘振。 三、轴承发生故障时的处理方法: 轴承出现故障时,应从以下几个方面解决问题

1、加油不恰当,润滑油加的过多或过少。应当按工作的的要求定期给轴承加油。轴承加油后有时也会出现温度高的情况,这主要是加油过多。 2、轴承所加油脂不符号要求或被污染。润滑油脂选用不合适,不易形成均匀的润滑油膜。无法减少轴承内部的摩擦和磨损,润滑不足,轴承温度升高。当不同型号的油脂混合时可能发生化学反应,造成油脂变质,结块,降低润滑效果。加注油脂的过程中落入灰尘,造成油脂污染,会导致油脂劣化破坏轴承润滑,进而使轴承损坏。因此应选用合适的油脂,检修中对轴承清洗,对加油油嘴进行检查疏通,不同型号的油脂不能混合使用,若更换其他型号的油脂时,应先将原来的油脂清理干净;运行维护中定期加油,油脂应妥善保管做好防潮防尘措施。 3、确认不存在上面的问题后再检查联轴器找正情况和轴承质量。联轴器的找正要符合工艺标准。在设备维修检查时看轴承有无咬坏和磨损;检查轴承的内外圈,滚动体,保持架其表面光洁度以及有无裂痕和锈蚀,凹坑,过热变色等现象。检查轴承的游隙是否超标,若有以上情况要立即更换新的轴承。轴承的配合,轴承在安装时内径与轴,外径与外壳的配合非常重要,配合过松时,配合面会产生相对滑动称做蠕变。蠕变一但产生会磨损破坏面,损伤轴或外壳,而且磨损粉末会侵入轴承内部,造成发热,振动或损坏轴承。过盈过大时,会导致外圈外径变小或内圈内径变大,减少轴承内部的游隙。轴承各部配合间隙的调整,间隙过小时由于油脂在间隙内摩擦损失过大也会引起轴承发热。同时,间隙过小时,油量减小,来不及带走摩擦产生的热

深沟球轴承设计方法

深沟球轴承设计方法 1 外形尺寸 1.1 轴承的基本尺寸d 、D 、B 按GB/T 273.3的规定 1.2 装配倒角r 1、r 2按GB/T 274的规定 2 主参数的设计方法 2.1 钢球直径Dw Dw=Kw (D-d ) 取值精度0.001 为保证钢球不超出端面,要考虑轴承宽度B 。 Kw 取值见表1 表1 Kw 值 2.1.1 常见钢球直径可查GB/T 308 2.1.2 计算出Dw 后,应从中选取最接近计算值的标准钢球值,优先选非英制。 2.2 钢球中心圆直径P P=0.5(D+d ) 取值精度0.01 2.3 球数z 式中ψ为填球角,计算时按表2取值 直径系列 公称内径 8、9、1 2 3 4 ≤35 0.24~0.31 0.29~0.31 0.28~0.32 0.25~0.31 超过 35~120 0.25~0.32 0.31~0.32 0.32 0.25~0.32 超过120~120 0.24~0.30 0.26~0.31 0.29~0.31 0.25~0.30

表2 ψ值 2.4额定载荷的计算 2.5最后确定Dw、P、z的原则 2.5.1满足额定载荷的要求。 2.5.2应最大限度的通用化和标准化,对基本尺寸相同或相近的 承应尽可能采用相同的球径、球数。 2.5.3保证保持架不超出端面,对D≤200mm的1、2、3系列轴承要考虑安 防尘盖与密封圈的位置。优化设计时轴承兜孔顶点至端面的距离a b应满足如下要求: D≥52~120 ,a b≥2 ;D≤50 ,a b≥1.50 D>125~200,a b≥2.5。 2.5.4填球角ψ的合理性。大批生产并需自动装球的轴承ψ角宜取 186°左右,为了使z获得整数并控制ψ角,允许钢球中心径适当加大至最大不得大于P+0.03P。 2.6 实取填球角ψψ=2(z-1)sin-1 (Dw/P) 实取填球角ψ下限不得小于180°,上限应满足下列要求: 8、9、1系列ψ≤195°2系列ψ≤194° 3系列ψ≤193°4系列ψ≤192°

ADAMS-Vibration模块在悬置系统振动性能分析中的应用知识讲解

ADAMS/Vibration模块在悬置系统振动性能分析中的应用 作者:Simwe 来源:MSC发布时间:2012-05-04 【收藏】【打印】复制连接【大中小】我来说两句:(2) 逛逛论坛 一、动力总成悬置系统的建模 1) 动力总成的主要参数 a) 动力总成的质量 b) 质心位置 c) 动力总成的转动惯量、惯性积 d) 发动机的参数,如发动机在怠速、最大扭矩、额定转速工况下的转速、输出扭矩等。 2) 悬置系统的主要参数 a) 悬置点坐标 b) 悬置刚度 c) 阻尼

d) 安装角度。 图1 动力总成质量特性参数输入 图2 ADAMS动力总成悬置系统示意图 根据动力总成和悬置系统的质量特性参数、几何特性参数、力学特性参数输入,在ADAMS/view中建立动力总成悬置系统虚拟样机模型。 二、动力总成悬置系统的分析 评价悬置系统性能主要从系统的避频、解耦、限位、隔振率等几个方面考察。分为时域、频域下激励信号输入分析。 1) 悬置系统固有频率分析 在ADAMS/Vibration模块下对动力总成悬置系统进行振动模态分析。

图3 模态分析对话框 经仿真分析得到动力总成刚体六阶模态固有频率,如下表所示。表中第二列为系统无阻尼固有频率,它是把系统看作保守系统的前提下得到的,即系统没有阻尼;第三列为系统的阻尼比,也叫相对阻尼系数,即系统阻尼系数与临界阻尼的比值。 图4 模态分析固有频率分布表 根据发动机隔振理论,发动机激振频率与系统固有频率之比大于√2,才能起到隔振的效果;不平路面的激励频率是客观存在,一般小于2.5HZ。 2) 悬置系统振动模态能量解耦分析 能量解耦法是从能量的角度来解释发动机总成悬置系统的振动解耦。如果发动机总成悬置系统作某个自由度的振动,而其他自由度是解耦的,那么系统的振动能量只集中在该自由度上。从能量角度来说,耦合就是沿着某个广义坐标方向的力(力矩)所作的功,转化为系统沿多个广义坐标的动能和势能。 采用能量法解耦的依据是, 当系统在作某个方向的振动而和其它方向解耦时, 则能量只集中于该自由度方向上。

深沟球轴承设计

深沟球轴承设计计算 Ⅰ.编制说明: 1.沟道曲率半径必须满足Rimax<,Remax<,且Rimax

9. JB/T 10239-2001 滚动轴承零件冲压保持架技术条件 10. CSBTS 滚动轴承零件深沟和角接触球轴承套圈公差 11. CSBTS 深沟和角接触球轴承套圈沟形公差 12. CSBTS 深沟及角接触球轴承套圈沟道圆形偏差 设计轴承型号:6020 一. 轴承的基本(外形)尺寸的确定 依据型号算d,查GB(GB 276-1994,GB 274-2000) 可知D、B、r 轴承公称内径d=(mm) 轴承公称外径D=(mm) 轴承公称宽度T=(mm) 轴承单向最小倒角rsmin=(mm) 二、滚动体直径的设计 钢球直径Dw按下式计算: Dw=Kw (D-d) Kw分档取值见表1,Dw的取值精度为. 计算出Dw后,应从表2中选取接近计算值的标准钢球尺寸. 表1 Kw值 直径系列 100200300400 d(mm) d≤35~~~~ 35<d≤120~~~~ 20<d≤240~~~~ 标准钢球直径Dw mm 见GB/T 308-2002 滚动轴承钢球钢球与保持架中心圆直径Dwp

滚动轴承故障诊断与分析..

滚动轴承故障诊断与分析Examination and analysis of serious break fault down in rolling bearing 学院:机械与汽车工程学院 专业:机械设计制造及其自动化 班级:2010020101 姓名: 学号: 指导老师:王林鸿

摘要:滚动轴承是旋转机械中应用最广的机器零件,也是最易损坏的元件之一, 旋转机械的许多故障都与滚动轴承有关,轴承的工作好坏对机器的工作状态有很大的影响,其缺陷会产生设备的振动或噪声,甚至造成设备损坏。因此, 对滚动轴承故障的诊断分析, 在生产实际中尤为重要。 关键词:滚动轴承故障诊断振动 Abstract: Rolling bearing is the most widely used in rotating machinery of the machine parts, is also one of the most easily damaged components. Many of the rotating machinery fault associated with rolling bearings, bearing the work of good or bad has great influence to the working state of the machine, its defect can produce equipment of vibration or noise, and even cause equipment damage. Therefore, the diagnosis of rolling bearing fault analysis, is especially important in the practical production. Key words: rolling bearing fault diagnosis vibration 引言:滚动轴承是机器的易损件之一,据不完全统计,旋转机械的故障约有30% 是因滚动轴承引起的,由此可见滚动轴承故障诊断工作的重要性。如何准确判断出它的末期故障是非常重要的,可减少不必要的停机修理,延长设备的使用寿命,避免事故停机。滚动轴承在运转过程中可能会由于各种原因引起损坏,如装配不当、润滑不良、水分和异物侵入、腐蚀和过载等。即使在安装、润滑和使用维护都正常的情况下,经过一段时间运转,轴承也会出现疲劳剥落和磨损。总之,滚动轴承的故障原因是十分复杂的,因而对作为运转机械最重要件之一的轴承,进行状态检测和故障诊断具有重要的实际意义,这也是机械故障诊断领域的重点。 一滚动轴承故障诊断分析方法 1滚动轴承故障诊断传统的分析方法 1.1振动信号分析诊断 振动信号分析方法包括简易诊断法、冲击脉冲法(SPM法)、共振解调法(IFD 法)。振动诊断是检测诊断的重要工具之一。 (1)常用的简易诊断法有:振幅值诊断法,反应的是某时刻振幅的最大值,适用于表面点蚀损伤之类的具有瞬时冲击的故障诊断;波峰因素诊断法,表示的

基于ADAMS车辆随机振动的模拟仿真研究

10.16638/https://www.wendangku.net/doc/9a19046401.html,ki.1671-7988.2017.08.032 基于ADAMS车辆随机振动的模拟仿真研究 彭永旗 (长安大学汽车学院,陕西西安710064 ) 摘要:论文以某轿车为研究对象,基于机械系统动力学仿真软件ADAMS/CAR建立包括前后悬架子系统、转向子系统和前后轮胎子系统的车辆整车模型。运用ADAMS/CAR路面建模器建立B级随机路面模型,通过ADAMS/CAR/Ride对整车模型在所建立的随机路面上进行模拟仿真研究,以底盘的加权加速加速度均方根为评价指标,对其进行平顺性评价。 关键词:随机振动;仿真;平顺性;ADAMS 中图分类号:U462.2 文献标识码:A 文章编号:1671-7988 (2017)08-93-03 Simulation and analysis of Vehicle under random vibration input Peng Yongqi ( University of changan automobile institute, Shaanxi Xi 'an 710064 ) Abstract:This paper takes a car as the research object. The multi-body dynamic model of a commercial vehicle is established in which suspensions tires and the vehicle body the steering system are considered. Through the road-builder of the software ADAMS/CAR establish the B random vibration ride and simulation the model through the ADAMS/ CAR/Ride in this B random vibration road. Based on the weighted acceleration root mean square value of the chassis, the ride comfort evaluation is carried out. Keywords: random vibration; simulation; ride comfort; ADAMS CLC NO.: U462.2 Document Code: A Article ID: 1671-7988 (2017)08-93-03 引言 随着经济的发展,人们的生活水平也越来越好,汽车也逐渐走进了千家万户,人们从刚开始对车要求具有良好的动力性和经济性逐渐开始注重车的舒适性,因此,汽车的车辆系统动力学性能越来越值得深入的研究[1]。汽车的平顺性主要是来自路面的随机振动激励的响应,也叫做乘坐舒适性[2]。因此,如何得到一个好的整车模型和真是的随机振动路面模型城为了车辆平顺性评价的关键。 随着计算机技术的迅猛发展,虚拟样机技术也随之发展开来。ADAMS集建模、仿真、运算和分析的机械系统仿真软件,自开发以来,其在汽车、机械和航空领域得到广泛应用。本论文以某小型轿车为研究对象,基于机械系统动力学仿真软件ADAMS/CAR建立包括前后悬架子系统、转向子系统和前后轮胎子系统的车辆整车模型。运用ADAMS/CAR路面建模器建立B级随机路面模型,通过ADAMS/CAR/Ride对整车模型在所建立的随机路面上进行模拟仿真研究,以底盘处的加权加速加速度均方根为评价指标,对其进行平顺性评价。 1、整车仿真模型的建立 汽车是一个由成千上万的零部件组装而成,结构复杂。本论文根据随机振动的平顺性要求,对其进行简化模型,得到了一个包含前后悬架子系统、转向子系统和前后轮胎子系统的车辆整车模型。 作者简介:彭永旗,就读于长安大学。

轴承故障及原因

轴承故障及原因 目录 简介 轴承故障及其原因 轴承的使用寿命 滑道类型及其说明 轴承损坏的类型 磨损 研磨颗粒引起的磨损 不充分润滑引起的磨损 振动引起的磨损 缺口/凹痕 错误安装或过载引起的缺口/凹痕 外来颗粒引起的缺口/凹痕 脏污 滚子末端或导轨边缘的脏污 滚子和滑道的脏污 与滚子间距对应的滑道的脏污 外表面的脏污 止推球轴承的脏污 表面损坏

深层生锈 摩擦腐蚀 电流通过引起的损坏 散裂 预载引起的散裂 椭圆挤压引起的散裂轴挤压引起的散裂 未对准引起的散裂 缺口/凹痕引起的散裂脏污引起的散裂 深层生锈引起的散裂摩擦腐蚀引起的散裂槽/坑引起的散裂 裂缝 粗糙处理引起的裂缝过分驱动引起的裂缝脏污引起的裂缝 摩擦腐蚀引起的裂缝支撑架损坏 振动 超速

阻塞 其他 简介 轴承故障及其原因 轴承是大多数机器的最重要组成部分, 因而对其工作能力和稳定性有严格要求. 因此, 非常重要的滑动轴承近年来一直是人们广泛研究的对象, 滑动轴承技术也已成为一特殊的科学分枝. SKF从一开始就一直站在这一领域的前沿. 进行此项研究, 可以相当精确地计算轴承寿命, 从而更好地与有关机器寿命相匹配. 然而, 轴承有时达不到它的额定寿命. 原因可能有很多, 比如负载比预期大, 不充分润滑, 粗糙处理, 无效密封, 安装过紧从而导致不能彻底清洁轴承内部. 不同类型的原因会造成不同类型的损坏. 因此, 如果可能的话, 应检查损坏的轴承, 在大多数情况下查明损坏原因并采取必要的措施以防止损坏的再次发生. 轴承的使用寿命 一般说来, 旋转轴承不可能永远旋转下去, 除非达到理想怕操作条件, 或者达不到疲劳极限, 但材料迟早会出现疲劳. 出现疲劳前的阶段有助于确定轴承旋转圈数和负载大小. 剪切应力循环出现于支

离心泵故障案例

《化工单元操作》教学案例 ------离心泵故障 【案例课题】离心泵故障 [案例背景] 某乙二醇装置G920B泵振动严重超标,直接原因是转子摩擦出现不平衡。解体发现,泵靠联轴器端的轴套已严重磨损,各级叶轮口环均有不同程度的磨损,磨损最大处总间隙达1.5mm(按技术要求为≤0.5mm) 。电机功率P=275kW,转速n=2960r/min,电压 U=6OOOV,电机轴承型号6218C3/6218C3;泵轴承型号为NSK6312/SKF7312,叶轮级数10级;联轴器为金属叠片挠性联轴器。 【案例描述】 一、教学目标: 1、明确离心泵的故障现象 2、掌握离心泵的维修方法 二、教学重点、难点 离心泵的故障维修方法 三、教学方法 小组讨论、项目教学、教学做一体化等 四、案例设计方案 【导入】 我们学习了离心泵的工作原理及特性曲线、流量调节、选型、安装高度等。 离心泵出现故障时怎样维修处理呢? 【任务实施及步骤】 1.故障现象 可以看出,4H(水平)和4V(垂直)位置振动有效值超出规定范围。依据ISO10816标准,该机组的振动速度有效值最大不应超过11.2mm/s,而目前这两点的振动值分别为14.95 mm/s和18.31mm/s,属严重超标。其它测点的振动值在较短的时间内增幅也很大,一般来说,在13个月或更短的时间内,振动总量值变化30%50%,通常说明机器发生了故障,而目前(仅半个月)最小增幅也达263.8%,可见故障蔓延迅速、程度严重。 2.故障性质分析 (1)故障所反映的振动特性 首先分析频谱图中摩擦故障所反映的特性。 当旋转体与静止件相接触时,转子摩擦产生与机械松动类似的频谱,一般在奇工频区;当一旋转体中有局部摩擦或整圈摩擦时,会产生许多频率,往往激起一个或几个共振,有较多的亚谐波倍频(0.25x、0.5x、1x、1.5x、2x、2.5x等),这与转子自然频

adams振动分析实例

Getting Started Using ADAMS/Vibration Overview ADAMS/Vibration, part of the MSC.ADAMS? suite of software, performs frequency-domain analyses. ADAMS/Vibration is a plugin to the interface products ADAMS/Aircraft, ADAMS/Car, ADAMS/Engine, ADAMS/Rail, and ADAMS/View. It can also be used standalone with an ADAMS/Solver model. Using ADAMS/Vibration, you can study forced vibrations within your MSC.ADAMS models. You can also use the results from ADAMS/Vibration in noise/vibration/harshness (NVH) studies to predict the impact of vibrations in automobiles, trains, planes, and so on. ADAMS/Vibration can run in two modes: interactive and batch. This guide focuses on using ADAMS/Vibration in our MSC.ADAMS interface products, such as ADAMS/View (interactive mode). For information on batch mode analysis, refer to the ADAMS/Vibration online help. This guide includes the following sections: ■Introducing the Problem,3 ■Building the Model,9 ■T esting the Model,19 ■Reviewing the Model,23 ■Improving Y our Design,39 ■Optimizing the Model,45

滚动轴承常见故障的原因分析

滚动轴承常见故障的原因分析 滚动轴承是一些企业中比较经常使用的产品,在产品使用过程中总会有些故障的出现影响我们的生产,所以下面天拓四方的技术工程师就来给大家介绍一下滚动轴承常见故障的原因是哪些? 2.故障原因分析 (1) 装配前检查不仔细,轴承在装配前要先清洗并认真检查轴承的内外座圈、滚动体和保持架,是否有生锈、毛刺、碰伤和裂纹;检查轴承间隙是否合适,转动是否轻快自如,有无突然卡止的现象;同时检查轴径和轴承座孔的尺寸、圆度和圆柱度及其表面是否有毛刺或凹凸不平等。对于对开式轴承座,要求轴承盖和轴承底座接合面处与外座圈的外圆面之间,应留出0.1mm~0.25mm间隙,以防止外座两侧"瓦口"处出现"夹帮"现象导致的间隙减小,磨损加快,使轴承过早损坏。 (2) 装配不当。装配不当会导致轴承出现上述的各种故障形式,以及以下的几种情况: A.配合不当 轴承内孔与轴的配合采用基孔制,轴承外圆与轴承座孔的配合采用基轴制。一般在正常负荷情况下工作的离心泵、离心机、减速机、电动机和离心式压缩机的轴与轴承内座圈,采用j5,js5,js6,k5,k6,m6配合,轴承座孔与轴承外座圈采用j6,j7配合。旋转的座圈(大多数轴承的内座圈为旋转座圈,外座圈不为旋转座圈,少部分轴承则相反),通常采用过盈配合,能在负荷作用下避免座圈在轴径和轴承

座孔的配合表面上发生滚动和滑动。 但有时由于轴径和轴承座孔的尺寸测量不精确或配合面粗糙度未达到标准要求,造成过大的过盈配合,使轴承座圈受到很大挤压,从而导致轴承本身的径向间隙减少,使轴承转动困难、发热,磨损加剧或卡死,严重时会造成轴承内外座圈在按装时开裂。不旋转座圈常采用间隙或过盈不大的配合,这样不旋转座圈就有可能产生微小的爬动,而使座圈与滚动体的接触面不断更换,座圈滚道磨损均匀。同时也可以消除轴因热伸长而使轴承中滚动体发生轴向卡住的现象。但过大的间隙配合,会使不旋转座圈随滚动体一同转动,致使轴(或轴承座孔)与内座圈(或外座圈)发生严重磨损,而出现摩擦使轴承发热、振动。 B.装配方法不当 轴承和轴径或轴承座孔的过盈较小时,多采用压入法装配。最简单的方法是利用铜棒和手锤,按一定的顺序对称地敲打轴承带过盈配合的座圈,使轴承顺利压入。另外,也可用软金属制的套管借手锤打入或压力机压入。若操作不当,则会使座圈变形开裂,或者手锤打在非过盈配合的座圈上,则会使滚道和滚动体产生压痕或轴承间接被破坏。 C.装配时温度控制不当 滚动轴承在装配时,若其与轴径的过盈较大,一般采用热装法装配。即将轴承放入盛有机油的油桶中,机油桶外部用热水或火焰加热,工艺要求加热的油温控制在80℃~90℃,一般不会超过100℃,最多

ADAMS 柔性体运动仿真分析及运用

ADAMS 柔性体运动仿真分析及运用 焦广发,周兰英 (北京理工大学机械与车辆工程学院100081) 摘要介绍了ADAMS柔性体基本理论及在ADAMS中生成柔性体的几种方法,并构建机械系统仿真模型.通过一个实例验证了ADAMS 柔性体运动仿真分析的实效. 关键词:ADAMS 柔性体运动仿真继电器 Application of ADAMS flexible body kinetic simulation Jiao guangfa Zhou lanying (Beijing institute of technology ,school of mechanical and vehicular engineering , Beijing 100081 ) Abstract Introduced the basic theory of ADAMS flexible body and some methods of adding flexible bodies to a model to study the dynamic characteristics of the mechanical system1,constructed mechanical system simulation model1 Tested the validity of the ADAMS flexible kinematical simulation through an example1. Key words :ADAMS Flexible body Kinetic simulation relay ADAMS全称是机械系统自动动力学分析软件,它是目前世界范围内最广泛使用的多体1系统仿真分析软件,其建模仿真的精度和可靠性在现在所有的动力学分析软件中也名列前茅.机械系统动力学仿真分析是机械设计的重要内容,过去分析时建立的模型,其构件都是属于刚体,在作运动分析时不会发生弹性变形.而实际上,在较大载荷或加、减速的情况下,机构受力后会有较大的变形和位移变化,产生振动.ADAMS的分析对象主要是多刚体,但ADAMS提供了柔性体模块,运用该模块可以实现柔性体运动仿真分析,以弹性体代换刚体,可以更真实地模拟出机构动作时的动态行为,同时还可以分析构件的振动情况[1]. 一、ADAMS柔性体理论及生成柔性体的几种方法 ADAMS柔性模块是采用模态来表示物体弹性的,它基于物体的弹性变形是相对于连接物体坐标系的弹性小变形,同时物体坐标系又是经历大的非线性整体移动和转动这个假设建立的.其基本 基金项目:北京市重点学科建设(XK100070424);北京理工大学基金(0303E10) 作者简介:焦广发(1982—),男,河北人,硕士,主要研究方向为动力学仿真,有限元分析和表面涂层技术. 思想是赋予柔性体一个模态集,采用模态展开法,用模态向量和模态坐标的线性组合来表示弹性位移,通过计算每一时刻物体的弹性位移来描述其变形运动.ADAMS柔性模块中的柔性体是用离散化的若干个单元的有限个结点自由度来表示物体的无限多个自由度的.这些单元结点的弹性变形可近似地用少量模态的线性组合来表示. ADAMS提供了四种生成柔性体的方法,对于外形简单的构件,可以采用直接生成柔性件的方法,即拉伸模式;对于外形复杂的构件,可以采用先建刚性件, 再进行网格划分的模式, 即构件网格模式(Solid). 1) 拉伸法生成柔性体:首先要确定拉伸中心线,再定义截面半径、单元尺寸、材料属性等,最后定义好柔性体跟其它构件的连接点即外连点,就可以生成柔性体.模型生成柔性件的同时生成模态中性文件,该模态中性文件中包含了柔性件的质量、质心、转动惯量、频率、振型以及对载荷的参数因子等信息.将模型中原有的刚体件上的运动副修改在柔性件上,使柔性件与模型上的其它构件连接起来,同时删除无效的刚性件.这样可以使模型保持原有的自由度,从而实现柔性构件的运动仿真运算.

工程案例—机器人Adams虚拟实验详细步骤(精)

一.ADAMS软件简介 虚拟样机仿真分析软件ADAMS(Automatic Dynamic Analysis of Mechanical Systems)是对机械系统的运动学与动力学进行仿真的商用软件,由美国MDI (Mechnical Dynamics Inc.)开发,在经历了12个版本后,被美国MSC公司收购。ADAMS集建模、计算和后处理于一体,ADAMS有许多个模块组成,基本模块是View模块和Postprocess模块,通常的机械系统都可以用这两个模块来完成,另外在ADAMS中还针对专业领域而单独开发的一些专用模块和嵌入模块,例如专业模块包括汽车模块ADAMS/Car、发动机模块ADAMS/Engine、火车模块ADAMS/Rail、飞机模块ADAMS/Aircraft等;嵌入模块如振动模块ADAMS/Vibration、耐久性模块ADAMS/Durability、液压模块ADAMS/Hydraulic、控制模块ADAMS/Control和柔性体模块ADAMS/AutoFlex等[3]。 1.1ADAMS软件概述 ADAMS是以计算多体系统动力学(Computational Dynamics of Multibody Systems)为基础,包含多个专业模块和专业领域的虚拟样机开发系统软件,利用它可以建立复杂机械系统的运动学和动力学模型,其模型可以是刚体的,也可以是柔性体,以及刚柔混合体模型。如果在产品的概念设计阶段就采取ADAMS 进行辅助分析,就可以在建造真实的物理样机之前,对产品进行各种性能测试,达到缩短开发周期、降低开发成本的目的。 ADAMS,即机械系统动力学自动分析(Automatic Dynamic Analysis of Mechanical Systems)该软件是美国MDI公司(Mechnical Dynamics Inc.)开发的虚拟样机分析软件。目前,ADAMS已经被全世界各行各业的数百家主要制造商采用。根据1999年机械系统动态分析软件国际市场份额的统计资料,ADAMS 软件销售总额近八千万美元、占据了51%的份额。 ADAMS软件使用交互式图形环境和零件库、约束库、力库,创建完全参数化的机械系统几何模型,其求解器采用多刚体系统动力学理论中的拉格朗日方程方法,建立系统动力学方程,对虚拟机械系统进行静力学、运动学和动力学分析,

滚动轴承常见故障原因分析

增刊 西 山 科 技 Supp lem en t 2001年8月 X ishan Science&T echno logy A ug.2001  技术经验 滚动轴承常见故障原因分析 王 建 国① (华化制药集团公司) 摘 要 介绍了滚动轴承的故障形式,分析了产生的原因,并提出了相应的解决方法。 关键词 滚动轴承 故障 原因 滚动轴承一般由外座圈、内座圈、滚动体和保持架等四部分组成。滚动轴承属于标准件,其类型很多,用量很大,凡是运转设备几乎都有不同类型和不同精度的滚动轴承。在生产实际中,由于各种原因,滚动轴承常出现故障,影响设备的正常运行,现对滚动轴承在运行中的常见故障作一分析,并简要介绍消除故障的方法。 1 故障形式 1)轴承转动困难、发热;2)轴承运转有异声;3)轴承产生振动;4)内座圈剥落、开裂;5)外座圈剥落、开裂;6)轴承滚道和滚动体产生压痕。 2 故障原因分析 2.1 检查不细致 轴承在装配前,要先清洗并认真检查轴承的内外座圈、滚动体和保持架,是否有生锈、毛刺、碰伤和裂纹;检查轴承间隙是否合适,转动是否轻快自如,有无突然卡住的现象;同时检查轴颈和轴承座孔的尺寸、圆度和圆柱度及其表面是否有毛刺或凹凸不平等。对于对开式轴承座,要求轴承盖和轴承底座接合面处与外座圈的外圆面之间,应留出0.1mm~0.25mm间隙,以防止外座两侧的“瓦口”处出现“夹帮”现象。若装配前检查不细致,会导致装配后的轴承运转情况不良,出现由于原始间隙太小导致的转动困难、发热;由于“夹帮”现象导致的间隙减小,磨损加快,使轴承过早损坏。 2.2 装配不当 装配不当会导致轴承出现上述的各种故障形式。装配不当有以下几种情况: 1)配合不当。轴承内孔与轴的配合采用基孔制,轴承外圆与轴承座孔的配合采用基轴制。一般在正常负荷情况下工作的离心泵、离心机、减速机、电动机和离心式压缩机的轴与轴承内座圈,采用j5、js5、js6、k5、k6、m6配合,轴承座孔与轴承外座圈采用J6、J7配合。旋转的座圈(大多数轴承的内座圈为旋转座圈,外座圈为不旋转座圈,少部分轴承则相反),通常采用过盈配合,能在负荷作用下避免座圈在轴颈或轴承座孔的配合表面上发生滚动或滑动。但有时由于轴颈和轴承座孔的尺寸测量不精确或配合面粗糙度未达到标准要求,造成过大的过盈配合,使轴承座圈受到很大剂压,从而导致轴承本身的径向间隙减少,使轴承转动困难、发热,磨损加剧或卡死,严重时会造成轴承内外座圈在安装时开裂。不旋转座圈常采用间隙或过盈不大的配合,这样不旋转座圈就有可能产生微小的爬动,而使座圈与滚动体的接触面不断更换,座圈滚道磨损均匀。同时也可以消除轴因热伸长而使轴承中滚动体发生轴向卡住的现象。但过大的间隙配合,会使不旋转座圈随滚动体一同转动,致使轴(或轴承座孔)与内座圈(或外座圈) ①作者简介:王建国 男 1963年出生 1984年毕业于太原工学院 工程师 太原 030021

相关文档
相关文档 最新文档