文档库 最新最全的文档下载
当前位置:文档库 › 分层土柱法研究石油类污染物在土壤中的迁移_纪学雁

分层土柱法研究石油类污染物在土壤中的迁移_纪学雁

分层土柱法研究石油类污染物在土壤中的迁移_纪学雁
分层土柱法研究石油类污染物在土壤中的迁移_纪学雁

分层土柱法研究石油类污染物在土壤中的迁移

纪学雁,刘晓艳,李兴伟,戴春雷,楚伟华

(大庆石油学院地球科学学院,黑龙江大庆163318)

摘要:经对以往的土柱实验进行改进,通过室内分层土柱实验,揭示了石油烃类污染物在非饱和带的运移规律。分别从不同叠加厚度土柱的对比和不同淋滤水量土柱的对比,可以

更准确地从空间与时间上揭示污染物的迁移情况,实验结果符合已有的研究和野外自然剖面的特征。

关键词:石油烃类污染物;迁移;非饱和土壤;分层土柱实验中图分类号:X53文献标识码:A 文章编号:1006-8759(2005)01-0043-03

SOIL COLUMNS 'EXPERIMENTS BY LAYERS OF THE

MIGRATION OF PETR OLEUM HYDR OCARBONS

CONTAMINANTS IN S OILS

JI Xue -Yan ,LIU Xiao -Yan ,LI Xin g -W ei ,DAI Chun -Lei ,CHU Wei -Hua

(G eoscienc e College ,D aqing Petroleum Institute ,D aqing 163318,China )

Abstract :Labor atory soil column experim ents by layers are used to r eveal the m igration of petroleum

h y dr ocar bons contaminants in unsaturated soils .B y com p ar in g different laminated soil column and different li q uid volum e leachin g soil column ,char acteristics of the mi g ration of contaminants on time and space can be acquired .And the r esults obtained from this study accord with the conclusions from previously study and char acteristics fr om field nature sections .Ke y words :p etroleum h y drocarbons contam inants ;mi g ration ;unsaturated soil ;soil columns 'ex p eri -ments b y la y ers

收稿日期:2004-08-20第一作者简介:纪学雁,1999年毕业于大庆石油学院石油与天然气地质勘察专业,现为大庆石油学院矿物学、矿床学、岩石学在读硕士研究生。

0前言

在石油开采、加工和运输过程中会有许多石

油类污染物进入土层,有关这类有机污染物在土

壤中的迁移的研究很多。目前为止,这些研究中有采用土柱实验的物模的,有采用土槽实验物模的,有采用整体性实验物模的,但已有的这些实验中都存在着这样和那样的问题,如有的土柱实验过

多的人为干扰;土槽实验规模较大,整体移植野外土壤不易开展,处理后的土壤又较难与实际相接近;整体性实验中难解决其内部流体压力与实际一致,其中的离心模型虽可以减小模型尺寸,缩短

实验时间,还可以建立各种非均质模型,但目前这种模型还是倍受争议。

本次实验研究主要针对石油烃类污染物在土壤中的垂向迁移规律进行,为研究石油污染物在土壤中的垂向迁移的研究探索了一种新的土柱实验方法。主要采用分层土柱实验的方法,以土壤的自然分层界限分层,由地表开始自上而下逐层累积装柱进行实验(即两种柱型:自地表向下一层+二层,一层+二层+三层)。

试验研究

能源环境保护

Energy Environmental Protection

Vol .19,No .1Feb .,2005

第19卷第1期2005年2月

1分层土柱淋滤实验

1.1实验材料

本实验选用的是内径为40mm,长为400mm 和800mm两种长度的玻璃管作为实验容器。

因大庆地区主要是黑钙土和盐碱土为主,故本次实验选取未受石油污染的黑钙土和已受污染的盐碱土为实验土样。更准确地了解污染物的迁移,进行实验前对土样有机质背景值进行检测。(其中土柱4-*-*内为已受污染的盐碱土土样,土柱5-*-*内为未受污染的黑钙土土样。如样品号4-2-7,其中“4”代表取样地点,“2”代表装柱层数,“7”代表同地点同层土柱的标号。以下所有样品标号表示意义相同。)

自制污染源是以石油中的正构烷烃和多环芳烃的主要组分组成的混合物,其中包括C6、C16、C17、C24、C27、C28、二甲苯、联苯、萘、蒽等。

1.2实验方法

本次实验采用土柱淋滤的方法进行迁移模拟实验。土样自然风干后研细过18目筛子,再按原地层自然叠加顺序进行填装,且添装后土柱应能尽量保持地层的真实情况相一致。同层系列的土柱进行污染物不同量的横向对比研究。而不同地层高度的系列土柱进行同量污染物的对比研究。本实验添装两种高度的土柱,即土柱高度分别为20cm和50cm。每一种有一组平行的实验土柱,加做一个空白样即无污染源。每次取一个空白样与一个加污染物的样品进行对比看其污染物迁移情况。

装好的土柱以水淋透土柱,直到土柱下部不再流出液体时,加入污染源。因污染物是难溶于水的,所以污染物模拟落地原油被直接加在土柱内的土壤上表面。之后再在土柱上下表面用石英砂作为污染物与水的隔层,上部避免了淋滤水使污染物飞溅,又因石英砂孔隙较大也不影响水的下渗,下部防止了土柱内土壤的流失(其中石英砂为100目,在560℃恒温1h除去砂中的有机质)。

用清水淋滤后,检测淋滤液的理化指标,并且在土柱中不同高度进行土壤取样检测其中的污染物和有机质的含量,进而分析污染物在土壤中的迁移情况和污染程度。为减少外界对土柱的人为干扰,使土柱在封闭的条件下进行。以下为实验设计的装置图(如图1所示)。2结果与讨论

2.1石油烃类垂向运移规律

对于原油本身粘滞性大,溶解度极低,这是影响其在包气带迁移的内在因素。本实验采用石油的主要烃组分作为污染源仍呈现与石油相似的迁移特征,即石油烃类经过渗透和降雨淋滤作用,绝大部分集中在0~30cm深度的表面土壤中,在50cm以下的土层内几乎有机物含量与背景值中相同。结果与已有的研究[2,17,18]是相符合的。并且在一定深度范围内,土壤中含污染物量较多的层位随淋滤水量的增加(即淋滤时间的延长)逐渐向下转移。

从滤液中有机物和污染物含量变化可以看出,淋出液中污染物的总量很少,初始时刻较后来在含量相对多一些,说明开始时土壤中的孔隙度还比较大,孔道比较畅通有利于污染物的下渗,经过一段时间的淋滤后,土壤中的粘土颗粒膨胀以及污染物的迁移逐渐堵塞了部分孔道,从而阻碍了污染物的向下迁移(如图2)。

·44·纪学雁等

分层土柱法研究石油类污染物在土壤中的迁移

能源环境保护

第19卷第1期·45

·

2.2淋滤不同水量(即不同年限)的影响

从本实验中可以看出淋滤的水量越多时(即土壤受污染的时间越长时),土壤中的污染物含量越趋近于土壤对污染物的环境容量。因为土壤受到解吸和微生物降解等作用的影响具有一定的自净能力,达到污染物在土壤中的稳定平衡需要一定的时间(如图3)。

2.3不同叠加厚度土柱的影响

本文涉及的两组土柱分别是自地表向下的两层和三层,从不同厚度土柱的实验情况来看,污染物随水向下迁移过程中,短时间内主要残留在土壤表层,但并非表层饱和后再下渗,而是垂直下渗各层逐渐饱和。残留量与土壤的类型、性质、背景含量有一定的关系,实验中同样表层土样中油污盐碱土污染物含量高于黑钙土,虽盐碱土是已受污染的土壤,但仍未达到土壤容量,故可知油污盐碱土表层土壤对污染物的吸附、截留能力要比黑钙土强。通过本实验可看出,对于以后的实验可以选取不同的间隔时间对土柱进行取样,或针对其它不同的实验需要再对本实验进行进一步改进,以便更详尽地了解污染物在土壤中的迁移特征和规律。

3结论

(1)运用分层土柱实验方法对石油类污染物在土壤中的垂向迁移的研究,从结果可以看出得出的结论与以往的研究相一致且更准确。通过对不同的土柱在不同阶段进行解剖取样,可以对污染物的迁移进行实时监测,以更准确掌握污染物各阶段的迁移状况。

(2)运用此方法对土壤污染的研究可避免室外实验的不可控制因素的干扰,及耗时耗力。

(3)针对不同的实验目的可对本实验方法进行进一步改进,以准确掌握污染物在土壤中的迁移规律。

参考文献:

[1]Guangh e L i,X Zhan g,Z L iu.In situ remed iation technologies on pol-luted g round water.Grou ndwat et in the Urban En vironmen t:Problems, Processes and Mana g emen t,1997:411~416.

[2]郑西来等.包气带中原油的迁移和降解研究[J].水文地质工程地质,1998,第1期:35~37.

[3]Dagan G,Bresler E.Sol ute trans port in u nsaturat ed heterogen eous soil at field scale I,Theon g,Soil Soc Am J,1979,43:461~467.

[4]Abriola,L.M.an d Pin der,G.F.,1985.A multi p h as e a pp roach to the mod elin g of porous med iacon tamin ation b y organ ic compound s, 1.Equation d evelop ment.W at er Resour.R es.,21(1):11~18.

[5]R ams ey,J.L.,1992.Exp erimental in vestigat ion of dense organic con-tamin ant trans p ort t hrou g h hetero g en eous p orous med ia.M.S.Th es is, De p artment of Civil,Environmental and Arch itectural En g ineerin g,Un i-versity of Colorad o,Bould er,CO,91pp.

[6]Faus t,C.R.,Guswa,J.H.and Mercer,J.W.,1989.Simulation of three-d imensional flow of immiscible fluids with in and below the un sat-urat ed zon e.Water R esour.R es.,25(12):2449~2464.

[7]Com p bell,J.H.,1992.Nona q u eous p hase li q uid flow throu g h p orou s med ia:exp erimen tal stu dy an d con ceptu al sh arp-front mod el d evelop-ment.M.S.Thesis,Department of Civil,En vironmen tal an d Architectural En gin eerin g,U niversity of Colorad o,Bou lder,CO,179pp.

[8]Held,R.and Ill an g asekare,T.H.,1995a.Fin g erin g of dens e n on-

a q ueous p h as e li q u id s in p orous media,1.Ex p erimental invest i g ation .Water R es our.Res.,31(5):1213~1222.

[9]赵元慧等.有机物在自然沉积物上的吸附规律[J].环境化学,1990,(1):21~24.

[10]耿春香等.西北地区土壤中石油类污染物的垂直渗透规律[J].环境污染与防治,2003,25(1):61~62.

[11]郑西来等.包气带中原油的迁移和降解研究[J].水文地质工程地质,1998,第1期:35~37.

[12]郑西来等.多孔介质吸附对石油污染物运移的阻滞效应研究[J].长春科技大学学报,1999,29(1):52~54.

[13]章卫华等.包气带土层中石油污染物的微生物降解研究[J].环境科学研究,2002,15(2):60~62.

[14]李广贺等.石油污染包气带中降解微生物的分布特征[J].环境科学,2000,21(4):61~64.

[15]张旭等.包气带土层中石油污染物生物降解的温度效应[J].环境科学,2001,22(4):108~110.

[16]束善治等.包气带非水相污染物迁移离心模型研究中的相似比例关系[J].长春科技大学学报,2000,30(4):371~375. [17]李晓华等.污染土壤中石油组分迁移特征研究[J].中国环境科学,1998,18(Su ppl.):54~58.

[18]赵东风等.石油类污染物在土壤中的迁移渗透规律[J].石油大学学报(自然科学版),2000,24(3):64~66.

石油化工污染土壤的修复技术演示教学

石油化工污染土壤的 修复技术

石油化工污染土壤的修复技术 更新时间:09-8-27 12:51 内容提供:北京建工环境修复有限责任公司 随着经济的发展,人类对能源的需求也不断扩大,而石油是最重要的能源。所以各国都加快了对油气资源的开发利用,从沙漠到海洋、从无人区到人口稠密区,越来越多的油气井出现在世界各地。 石油主要是有烃类化合物组成的一种复杂化合物,包括饱和烃、芳香烃类化合物、沥青质、树脂类等。还含有少量的O、N、S等元素,其中的芳香类物质对人和动物的毒性较大,尤其是双环及三环以上的多环芳烃毒性更大。陆地采油大量的生产设施如油井、集输站、转输站和联合站等,原油会被直接或间接的倾泻于这些设施附近的地面;石化产品的开采和运输也会使石油类物质进入土壤环境,随后发生一系列的物理、化学和生化作用,对环境造成污染。大部分石油类污染物在土壤中都发生吸附/解吸作用,从而影响着它们在土壤中的迁移、生物降解和光降解。 油气的开采和运输过程会对生态环境造成影响。在石油、天然气的开采过程中,会产生大量含油废水、有害的废泥浆以及其他一些污染物,如果处理不好就会污染周边土壤、河流甚至地下水,同时石油、天然气本身就含有对人和动物有害的物质,一旦发生井喷或泄漏,将对生活在油气田附近的人和动物构成致命威胁(如重庆开县发生的井喷,造成将近400人死亡,大面积土壤被污染)。石油管道的泄漏也会严重破坏生态,据一位美国环保人士估算,如果阿拉斯加陆地石油管道发生泄漏,至少会形成半英里宽、30英里长的污染带,由于石油会迅速渗透到土壤中,杀死土壤中的微生物,从而改变土壤成分,改变

地表生态,遭受污染的地区可能在几十年甚至上百年的时间内都会寸草不生。许多研究表明,一些石油烃类进入动物体内后,对哺乳类动物及人类有致癌、致畸、致突变的作用。土壤的严重污染会导致石油烃的某些成分在粮食中积累,影响粮食的品质,并通过食物链,危害人类健康。 石油化工总体上来说,可分为炼油工艺、乙烯工艺及化纤工艺三部分。 炼油工艺是龙头,以石油炼制为主题,生产燃油及化工原料。主要包括常减压蒸馏、渣油加氢脱硫、蜡油加氢裂化、重油催化裂化、柴油加氢、气体分馏、连续重整—芳烃联合、制氢、PSA、MTBE、丁烯-1、延迟焦化等装置。 乙烯工艺为中间原料生产链,生产各类石化原料及产品。主要包括乙烯裂解、汽油加气、芳烃抽提、丁二烯、环氧乙烷、乙二醇、低密度聚乙烯、高密度聚乙烯、丙烯酸及脂、丁辛醇、聚丙烯、苯酚丙酮、双酚A、苯乙烯、丙烯腈、丁苯橡胶、顺丁橡胶、ABS树脂等装置。 化纤工艺主要以石油化工原料为主来生产化纤产品。主要包括对二甲苯、精对苯二甲酸、聚酯、环已烷、醇酮、己二酸、尼龙66等装置。 以上石油化学工业的污染物除常规的COD、BOD5、SS外,还有其本身的特征污染物,包括石油类、硫化物、挥发酚、氢化物、苯、NH3-N等。乙烯、丙烯、环氧乙烷、甲醛、苯、甲苯、丙烯腈等大量的有机污染物。 石油及其产品对环境的污染越来越严重,已经危及到人类的健康和生存。石油污染治理越来越受到重视,出现了很多的石油污染治理技术和方法,国家也出台了相关的治理措施、政策。 2007年,国务院印发了国家环境保护“十一五”规划,对土壤修复提出更加明确的要求及任务,并启动了全国土壤污染普查。环境保护主管部门强调:做

石油污染土壤的微生物修复原理

石油污染土壤的微生物修复 一、降解石油烃类化合物的微生物种类 自然界中能够降解石油烃类污染物的微生物种类有数百种,70多属,主要是细菌、真菌和藻类三大类型的生物。 表1 石油烃降解微生物种属 细菌真菌藻类 无色杆菌属枝顶孢属双眉藻属 不动杆菌属曲霉属鱼腥藻属 芽孢杆菌属金色担子菌数小球藻属 色杆菌属假丝酵母属衣藻属 诺卡氏菌属镰刀霉属念珠藻属 放线菌属青霉菌属紫球藻属 ……… 按照分子生物学和遗传学分类,可将降解石油污染物的微生物分为土著微生物和基因工程菌两大类。 二、产生表面活性剂的微生物 生物表面活性剂是微生物在一定培养条件下产生的一类集亲水基和疏水基于一体、具有表面活性的代谢产物。 分类典型产物 中性脂类甘油单脂、聚多元醇、其他蜡脂 磷脂/脂肪酸磷脂酰乙醇胺 糖脂糖酯、糖醇酯、糖苷 含氨基酸脂类脂氨基酸、脂多肽、脂蛋白 聚合型脂多糖、脂-糖-蛋白复合物 特殊型全胞、膜载体、Fimbriae 生物表面活性剂优点:1较低的表面张力和界面张力;2无毒或低毒,对环境友好;3可生物降解;4极端环境(温度、pH、盐浓度)下具有很好的专一性和选择性;5不致敏、可消化、可作为化妆品和食品的添加剂;6结构多样,可用于特殊领域 三、微生物降解石油的机制

1.微生物吸收疏水性有机物的机理 图1 微生物吸收疏水性有机污染物的4种摄取途径微生物吸收疏水性有机物的模式有4种:1微生物吸收其附近溶解于水相中的烃类;2细胞直接与石油烃接触。这种作用可以通过改变菌毛或细胞表面的疏水性部分的改造进行调控,提高对有机物的吸附;3通过细胞直接与分散在水相中的石油烃的微米或亚微米液滴接触来吸收;4强化吸收模式,即由于细胞产生的表面活性剂或乳化剂使烃的水溶性增强,微生物表面的疏水性更强,使细胞与烃接触。 丝状真菌主要通过菌丝的吸收作用摄取石油烃。 2.微生物细胞膜转运烃机理 微生物对有机化合物的降解作用是由细胞酶引起,整个过程可分为3个步骤。首先化合物在微生物细胞膜表面吸附(动态平衡过程);其次吸附在细胞膜表面的化合物进入细胞内;最后化合物进入细胞膜内与降解酶结合发生酶促反应(快速过程)。 参与第1个步骤还有表面活性剂。 石油进入细胞方式:非特异性接触,被动运输方式。 3.微生物降解石油的机制 石油类物质+微生物+O 2+营养物质→CO 2 +H 2 O+副产物+微生物细胞生物量 微生物利用石油烃类作为碳源和能源,经过一系列氧化、还原、分解、合成等生化作用,将石油污染物最终矿化为无害的无机物的过程。 途径:烷烃→醇→醛→脂肪酸→β氧化乙酸盐→CO 2+H 2 O+生物量 四、典型石油烃的降解途径

石油污染土壤修复技术

【前言】随着经济的发展,人类对能源的需求也在不断扩大,石油就是最重要的能源之一,被成为“工业的血液”。近些年来各国都加快了对油气资源的开发利用,从沙漠到海洋、从无人区到人口稠密区,越来越多的油气井出现在世界各地。随之土壤污染问题日益突出,石油对土壤的污染危害大,潜伏期厂,涉及面广,有研究者将其比喻为“化学定时炸弹”,已经成为不容忽视的环境问题。 石油主要就是由烃类化合物组成的一种复杂化合物,其组成复杂,含有致畸、致癌、致突变的物质(如卤代烃、苯系物、苯胺类、菲、苯并[a]芘等)。土壤作为人类、动植物与微生物赖以生存的重要环境基础,就是自然界物质与能量参与转化、迁移与积累等循环过程的重要场所,土壤安全事关人类食品安全。石油一旦进人土壤,将对人类健康与生态环境造成严重危害。根据已公布的环境保护部与国土资源部发布的《全国土壤污染状况调查公告》显示,我国土壤总超标率高达16、1%。其中,有机类污染物,尤其就是石油污染物已成为导致土壤安全问题的重要因素之一。据报道在我国,勘探与开发的油气田有4 0 0多个,覆盖面积达3、2 X 105 km2,其中约4、8 X 106 hm2 的土壤受到不同程度的污染。为我国部分油田周边石油污染状况,其周边土壤中的总石油烃( TPH ) 质量分数已经远远超过临界值500 mg/kg,对人居安全与生态环境造成了严重的威胁。由此可见,石油污染土壤形势严峻,修复工作迫在眉睫。 土壤石油污染:就是指原油与石油产品在开采、运输、储存以及使用过程中,进入到土壤环境,其数量与速度超多土壤自净作用的速度,打破了它在土壤环境中的自然动态平衡,使其累积过程占据优势,导致土壤环境正常功能的失调与土壤质量的下降,并通过食物链,最终影响到人类健康的现象。 石油进入土壤的途径: ?石油的泄露与溢油:陆地采油大量的生产设施如油井、集输站、转输站与联合站等,原油 会被直接或间接的倾泻与这些设施附件的地面;产品的开采与运输业会使石油类物质进入土壤环境中;另外发生井喷或泄露,也会污染周围土壤环境。 ?含油固、液体废气无的随意处置:油气的开采与运输过程会产生大量含油、天然气的开 采过程中会产生大量含油废水、有害的废泥浆以及其她的一些污染物,如果处理不好就会污染周边土壤、河流甚至地下水。 ?含油污水的灌溉与农用药剂的使用:一些工业企业产生的含油废水如果不加以回收处理, 直接排入河流、湖泊或海湾,会污染水体,该水体用于农业灌溉,则会导致土壤污染,另外某些农用药剂也会污染土壤。 ?汽车尾气的排放:汽车尾气排放导致交通干线两侧土壤的有机物污染,另外大气沉降也 会导致土壤污染。

土壤石油污染现状与治理技术研究进展

土壤石油污染现状与治理技术研究进展 摘要:本文首先对土壤石油污染现状及危害做了扼要的叙述,对土壤石油污染治理的物理、化学、生物技术进行了评述,结合我国的具体情况,提出了土壤石油污染的生物修复技术,并对该技术的前景及存在的问题进行了阐述。 关键词:石油污染;土壤污染;治理技术 随着工业的发展,石油的需求量大幅度增加,并且在开采、运输、贮藏、加工过程中,由于意外事故或管理不当,导致石油排放到农田、地下水、海洋,使环境遭受污染,直接危害人类生产与生活。据资料统计,目前每年有800多万吨石油进入世界环境,污染土壤、地下水、河流和海洋,其中石油对土壤的污染主要是破坏土壤结构影响土壤通透性,损害植物根部,阻碍根的呼吸与吸收,最终导致植物死亡。其次,被污染到土壤的石油芳香烃类物质对人及动物的毒性较大,其中的苯、甲苯、二甲苯、酚类等物质,如果经较长时间较大浓度接触,会引起恶心、头疼、眩晕等症状[1]。此外,石油中的多环芳烃类物质具有强烈的三致作用,能通过食物链在动植物体内逐渐富集,它在土壤中的富集更具危害。鉴于土壤污染的严重危害,治理土壤石油污染势在必行,已引起许多国家高度重视,不断采取措施,治理石油污染。 1.土壤石油污染现状及危害 1.1 土壤石油污染现状 石油工业是国家综合国力的重要组成部分,但石油开采石油化工行业的发展及石油产品的广泛使用,使石油污染成为世界性公害之一。当今世界石油总产量每年约22×108t。其中17.5×108t是由陆地油田生产的。仅石油污染一项每年全世界就有8×106t进入环境。美国环 保署报道,在20世纪90年代已有10万个地下油罐存在不同程度的泄漏。 中国作为世界上最大的发展中国家及石油生产和消费大国,由于生产条件、环保技术等方面相对落后,石油污染问题相当突出,尤其是土壤的石油污染问题日益严重。在有机污染土壤中,石油污染占相当比例。我国自1978年原油产量突破1×108t大关而成为世界十大产油国之一以来,勘探开发的油气田和油气藏己有400多个,年产石油污染土壤近1×105t,累计堆放量近5×105t。以油田为例,每口油井污染土地面积为200~500m2,全国共有油井2×105t 口,由此造成的土壤污染可达8×107m2,这一数字每年还在增长中。1998年,全国石油、炼化企业生产含油固体废物量达4.29×106t,利用率低于50%,由此造成土壤污染可达3.3×106hm2,我国每年有6×105t石油经跑、冒、滴、漏等途径进入环境,造成土壤污染。据不完全统计,全国因使用污水灌溉而导致土壤污染面积达9.3×103hm2,全国类似农田有1×105 hm2。在北方产油地区原油污染面积逐年扩大,在辽河油田的重污染区,土壤原油含量达到1×104mg/kg,是临界值(200mg/kg)20的倍。研究结果显示,当土壤原油含量为3100mg/kg时,玉米减产10%,若原油含量达到500mg/kg,则苯并芘在玉米中的残留量超 标,玉米不能食用[2]。 综上所述,石油污染物对环境造成污染和破坏,危害人体健康和生存环境。因此,石油污染治理是当前急需解决的问题,对人类生存和社会可持续发展具有重要的意义。 1.2 土壤石油污染的主要危害 1.2.1破坏土壤 石油物质进入土壤后,会引起土壤理化特性的变化,如堵塞了土壤的孔隙结构,破坏土壤结构,使土壤的透水性降低;其富含的反应基能够与土壤中的无机氮、磷结合并限制硝化作用和脱磷酸作用,从而使土壤的有效磷、氮含量减少,导致土壤有机质的碳氮比(C / N)

石油污染土壤现状与治理技术研究

石油污染土壤现状与治理技术研究 【摘要】对石油污染土壤现状及危害的叙述,对石油污染土壤治理的物理、化学、生物技术进行了评述,结合我国的具体情况,提出了石油污染土壤的生物修复技术,并对该技术的前景及存在的问题进行了阐述。 【关键词】石油污染;治理技术 随着工业的发展,石油的需求量大幅度增加,并且在开采、运输、贮藏、加工过程中,由于意外事故或管理不当,导致石油排放到农田、地下水、海洋,使环境遭受污染,直接危害人类生产与生活。据资料统计,目前每年有800多万吨石油进入世界环境,污染土壤、地下水、河流和海洋,其中石油对土壤的污染主要是破坏土壤结构影响土壤通透性,损害植物根部,阻碍根的呼吸与吸收,最终导致植物死亡。其次,被污染到土壤的石油芳香烃类物质对人及动物的毒性较大,其中的苯、甲苯、二甲苯、酚类等物质,如果经较长时间较大浓度接触,会引起恶心、头疼、眩晕等症状。此外,石油中的多环芳烃类物质具有强烈的三致作用,能通过食物链在动植物体内逐渐富集,它在土壤中的富集更具危害。鉴于土壤污染的严重危害,治理土壤石油污染势在必行,已引起许多国家高度重视,不断采取措施,治理石油污染。 1.土壤石油污染现状及危害 1.1 土壤石油污染现状 石油工业是国家综合国力的重要组成部分,但石油开采石油化工行业的发展及石油产品的广泛使用,使石油污染成为世界性公害之一。当今世界石油总产量每年约22×108t。其中17.5×108t是由陆地油田生产的。仅石油污染一项每年全世界就有8×106t进入环境。美国环保署报道,在20世纪90年代已有10万个地下油罐存在不同程度的泄漏。 中国作为世界上最大的发展中国家及石油生产和消费大国,由于生产条件、环保技术等方面相对落后,石油污染问题相当突出,尤其是土壤的石油污染问题日益严重。在有机污染土壤中,石油污染占相当比例。我国自1978年原油产量突破1×108t大关而成为世界十大产油国之一以来,勘探开发的油气田和油气藏己有400多个,年产石油污染土壤近1×105t,累计堆放量近5×105t。以油田为例,每口油井污染土地面积为200~500m2,全国共有油井2×105t口,由此造成的土壤污染可达8×107m2,这一数字每年还在增长中。1998年,全国石油、炼化企业生产含油固体废物量达4.29×106t,利用率低于50%,由此造成土壤污染可达3.3×106hm2,我国每年有6×105t石油经跑、冒、滴、漏等途径进入环境,造成土壤污染。据不完全统计,全国因使用污水灌溉而导致土壤污染面积达9.3×103hm2,全国类似农田有1×105 hm2。在北方产油地区原油污染面积逐年扩大,在油田的重污染区,土壤原油含量达到1×104mg/kg,是临界值(200mg/kg)20的倍。研究结果显示,当土壤原油含量为3100mg/kg时,玉米减产10%,若原油含量达到500mg/kg,则苯并芘在玉米中的残留量超标,玉米不能食用。 综上所述,石油污染物对环境造成污染和破坏,危害人体健康和生存环境。因此,石油污染治理是当前急需解决的问题,对人类生存和社会可持续发展具有重要的意义。 1.2 土壤石油污染的主要危害 1.2.1破坏土壤

土壤石油污染概述

博士□基地班硕士□ 硕博连读研究生□兽医硕士专业学位□ 学术型硕士□工程硕士专业学位□ 农业推广硕士专业学位□全日制专业学位硕士□√ 同等学力在职申请学位□中职教师攻读硕士学位□ 高校教师攻读硕士学位□风景园林硕士专业学位□ 西北农林科技大学 研究生课程考试试卷封面 (课程名称:土壤污染与防治) 学位课□选修课□√ 研究生年级、姓名孙富强 研究生学号 2012051516 所在学院(系、部)资源环境 专业学科环境工程 任课教师姓名曲东(教授) 考试日期 考试成绩

评卷教师签字处 土壤石油污染现状概论 孙富强1 (1西北农林科技大学资源环境学院,陕西杨凌 712100) 摘要:随着石油资源的深化利用,石油污染加剧,其利用过程中大面积的土壤一般都受到严重的污染。文章主要介绍了石油污染的来源、类型、污染特征,为研究土壤污染治理方法提供依据。 关键词:石油土壤污染现状 随着我国社会经济的繁荣和发展,人们对石油的需求越来越大,从而推动了石油开采事业的发展。然而由于技术与管理的缺陷,大量的原油直接或间接流入土壤,从而将土壤污染,以致于石油灌满一定深度土壤的空隙,影响土壤的通透性,破坏原油的土壤水、气和固的三相结构,影响土壤中微生物的生长,也影响土壤中植物根系的呼吸及水分养料的吸收,甚至使植物根系腐烂坏死,严重危害植物的生长。且土壤中的石油随土壤中水的运行而运行,不断地扩散到它处或深处。土壤是人类赖以生存、生产的自然资源,人们在石油开采和提炼过程中,导致石油对土壤的污染,其一方面是主要能源物质的损失,另一方面严重影响人们对土壤的利用面和利用效率。 石油是现代社会的最主要能源之一,被称作“工业的血液”“黑色的金子”。同样石油工业在国民经济中占有十分重要的地位,也是国家综合国力的重要组成部分,因此世界各国十分重视石油工业的发展。全世界大规模开采石油是从20世纪初开始的,1900年全世界消费量约2000万吨,100年来这一数量已增长百余倍,现在,产油的国家和地区己有150多个,发现的油气田已有4万多个,目前世界石油年产总量达22亿吨,其中17.5亿吨是由陆地油田生产的。我国目前已在25个省和自治区中找到了400多个油气田或油气藏,自1978年以来我国石油年产量突破一亿吨大关从而成为世界十大产油国,现在年产石油近1.83亿吨。 石油是由上千种化学特性不同的化合物组成的复杂混合体,石油的主要成分是烃类(烷烃、环烷烃和芳香烃),约占97-99%;非烃类化合物(含氧化合物、含硫化合物、含氮化合物、胶质和沥青质)通常只占石油成分的1-2%[1]。石油污染泛指原油和石油初加工产品(包括汽油、煤油、柴油、重油、润滑油等)及各类油的分解产物所引起的污染。石油污染主要是在勘探、开采、运输以及储存过程中引起的,在石油利用过程中大面积的土壤一般都受到严重的污染,石油对土壤的污染多集中在20 cm左右的表层[2 - 3 ]。 1 土壤石油污染来源 目前,我国油田区土壤污染面积约有4.8×1010m2,占油田开采区面积的20-30%。有的油田区长期积存未经处理的含油污泥为主的石油固体废物,堆放量超过300万t,成为油田区污染的主要来源[4]。石油的开采、冶炼、使用和运输过程的污染和遗漏事故以及含油废水的排放、污水灌溉,各种石油制品的挥发、不完全燃烧物飘落等引起一系列土壤石油污染问题。 1.1开采过程产生的落地原油污染 据报道,我国石油企业每年产生落地原油约为700万吨,各油田每作业一次遗留于井场的落地原油有几十到几百公斤。一些油井口周围5mx5m范围为高污染区,地面呈黑色;50mx30m范围为严重污染区,有原油、油泥散落[5-6]。 1.2含油矿渣、污泥、垃圾的堆置

土壤中石油污染-苏文杰

CHANGZHOU INSTITUTE OF TECHNOLOGY 技能培训(3) 题目:土壤中石油污染物的脱附过程的研究 二级学院(直属学部):理学院 专业:化学工程与工艺班级:08化学Y2 学生姓名:苏文杰学号:08124711 2011 年12 月

[摘要]了解土壤中石油类污染物来源及危害。采用批实验法考察了土壤- 有机溶剂体系中高浓度石油污染物的脱附行为, 包括脱附动力学、脱附等温线和平衡参数。结果表明土壤中石油污染物的脱附过程是一个快速反应过程, 在5 min 内大约80%的污染物得到脱附, 30min 达到平衡, 脱附平衡过程符合Freundlich 模型, 烷烃类有机溶剂的脱附效果更佳. [关键词]有机溶剂,石油,土壤污染,脱附过程

目录 1 前言 (1) 2土壤中石油类污染物来源及危害 ................................ 错误!未定义书签。 2.1石油类污染物产生方式 (3) 2.2石油类污染物对土壤生态环境的危害 (3) 3石油类污染物在土壤中的环境行为及存在状态 ... 错误!未定义书签。 3.1石油类污染物在土壤中的环境行为 ..................................... 错误!未定义书签。 4.1.1脱附动力学实验 .............................................................. 错误!未定义书签。 3.2石油类污染物在土壤中的存在状态 ..................................... 错误!未定义书签。4实验部分 .. (3) 4.1实验方法 (3) 4.1.1脱附动力学实验 .............................................................. 错误!未定义书签。 4.1.2等温脱附实验................................................................... 错误!未定义书签。 4.2计算方法 (3) 4.3结果与分析 (3) 4.3.1脱附平衡时间................................................................... 错误!未定义书签。 4.3.2等温脱附模型和平衡参数确定................................... 错误!未定义书签。 4.3.3SSR 对等温脱附线的影响........................................... 错误!未定义书签。5结论 (3) 参考文献 ..................................................................................... 错误!未定义书签。

3.2水中无机污染物的迁移转化(3)

第三章:水环境化学——污染物存在形态 第二节、水中无机污染物的迁移转化 一、颗粒物与水之间的迁移、二、水中胶体颗粒物聚集的基本原理和方式 三、溶解和沉淀 四、氧化—还原 1、概述 2、天然环境中的氧化剂和还原剂 3、氧化还反应概念回顾 4、电子活度和氧化还原电位 5、天然水体的pE-pH 关系图 ● 在氧化还原体系中,往往有H +或OH -离子参与转移,因此,pE 除了与氧化态和还原 态浓度有关外,还受到体系pH 的影响,这种关系可以用pE-pH 图来表示。该图显示了水中各形态的稳定范围及边界线。 ● 由于水中可能存在物类状态繁多,于是会使这种图变得非常复杂。例如一个金属, 可以有不同的金属氧化态、羟基配合物、金属氢氧化物、金属碳酸盐、金属硫酸盐、金属硫化物等。 (1)水的氧化-还原限度 绘制pE —pH 图时,必须考虑几个边界情况。首先是水的氧化还原反应限定图中的区域边界。选作水氧化限度的边界条件是1.0130×105Pa 的氧分压,水还原限度的边界条件是1.0130×105Pa 的氢分压(此时P H2=1,P O2=1),这些条件可获得把水的稳定边界与pH 联系起来方程。 天然水中本身可能发生的氧化还原反应分别是: 水的还原限度(还原反应):22 1H e H ? ++ pE 0 =0.00 pE = pE 0 – lg((P H2)1/2/[H +]) pE = –pH 水的氧化限度(氧化反应):O H e H O 222 1 41?+++ pE 0 = +20.75 ]}[lg{4 1 20 ++=H po pE pE pE=20.75—pH

(2)pE—PH图 假定溶液中溶解性铁的最大浓度为1.0×10-7mol/L,没有考虑Fe(OH) 2+及FeCO 3 等形态 的生成,根据上面的讨论,Fe的pE—pH图必须落在水的氧化还原限度内。下面将根据各组分间的平衡方程把pE—pH的边界逐一推导。 ①Fe(OH) 3(s)和Fe(OH) 2 (s)的边界。Fe{OH} 3 (s)和Fe(OH) 2 (s)的平衡方程为: Fe(OH) 3(s)+H+ + e→Fe(OH) 2 (s)+H 2 O lgK = 4.62 ] ][ [ 1 e H K + =,所以 pE =4.62–pH 以pH对pE作图可得图3—17中的斜线①,斜线上方为Fe(OH) 3 (s)稳定区。斜线下 方为Fe(OH) 2 (s)稳定区。 ②Fe(OH) 2 (s)和FeOH+的边界。根据平衡方程: Fe(OH) 2(s)+H+→FeOH++ H 2 O lgK = 4.6 可得这两种形态的边界条件:pH = 4.6–lg[FeOH+] 将[FeOH+]=1.0×10-7mol/L代人,得:pH= 11.6 故可画出一条平行pE轴的直线,如图3—17中②所示,表明与pE无关。直线左边为FeOH+稳定区,直线右边为Fe(OH) 2 (s)稳定区。 ③Fe(OH) 3 (s)与Fe2+的边界。根据平衡方程: Fe(OH) 3(s) +3H+ +e→Fe2+ + 3H 2 O lgK=17.9 可得这二种形态的边界条件:pE=17.9–3pH–lg[Fe2+] 将[Fe2+]以1.0×10-7mol/L代入,得:pE=24.9–3pH 得到一条斜率为–3的直线,如图3—17中③所示。斜线上方为Fe(OH) 3 (s)稳定区,斜 线下方为Fe(OH) 2 (s)稳定区。 ④Fe(OH) 3 (s)与FeOH+的边界。 根据平衡方程:Fe(OH) 3(s)+2H+ +e→FeOH++2H 2 O lgK=9.25 将[FeOH+]以1.0×10-7mol/L代入,得:pE=16.25-2pH 得到一条斜率为–2的直线,如图3—17中④所示。斜线上方为Fe(OH) 3 (s)稳定区,下方为FeOH+稳定区。 ⑤Fe3+与Fe2+的边界。根据平衡方程:Fe3++e →Fe2+ lgK = 13.1

石油污染对黄河三角洲土壤的影响

生命科学系 学年论文 题目:石油污染对黄河三角洲土壤的影响 姓名:刘真真 专业:生物技术 年级:2011级 学号:1114120222 指导教师:王彦美 导师职称:讲师 2013 年6 月20 号

目录 摘要 (3) ABSTRACT (3) 引言.................................................................................................... 错误!未定义书签。 1.黄河三角洲状况概述. (8) 2.土壤污染物概况 ............................................................................ 错误!未定义书签。 2.1土壤污染物的来源 (12) 2.2石油污染物的存在状态 (13) 3.黄河三角洲土壤性状及背景值 (20) 4.石油污染对黄河三角洲土壤性状的影响 (24) 4.1重金属污染 (20) 4.2土壤含水量 (21) 4.3土壤有机质 (22) 5.小结 (24) 参考文献 (25) 谢辞 (26)

本论文针对石油污染对黄河三角洲土壤的影响,通过分析石油污染物的状况、存在状态以及对黄河三角洲土壤含水量有机质的分析,石油开发对周围土壤的理化性状产生较大影响。土壤重金属含量表层高于底层土壤有机质的含量。石油是一种含碳的有机物,石油同时也会导致土壤板结。 关键词:黄河三角洲,石油污染,土壤,影响

In this paper, the effects of oil pollution on Soil in the Yellow River Delta, the state and the analysis of the soil in the Yellow River Delta water content of organic matter in analysis of oil pollutants, status, affects the physicochemical properties of oil exploitation on the surrounding soil. The content of heavy metal in soil.The surface is higher than the bottom of the content of soil organic matter, and the organic matter content of surface soil is higher than the underlying soil. Oil is a kind of organic compounds containing carbon, oil will also leads to soil compaction. Key words:The Yellow River delta, Oil pollution, Soil, The influence

石油污染土壤修复技术(总3页)

石油污染土壤修复技术 (总3页) -CAL-FENGHAI.-(YICAI)-Company One1 -CAL-本页仅作为文档封面,使用请直接删除

【前言】随着经济的发展,人类对能源的需求也在不断扩大,石油是最重要的能源之一,被成为“工业的血液”。近些年来各国都加快了对油气资源的开发利用,从沙漠到海洋、从无人区到人口稠密区,越来越多的油气井出现在世界各地。随之土壤污染问题日益突出,石油对土壤的污染危害大,潜伏期厂,涉及面广,有研究者将其比喻为“化学定时炸弹”,已经成为不容忽视的环境问题。 石油主要是由烃类化合物组成的一种复杂化合物,其组成复杂,含有致畸、致癌、致突变的物质(如卤代烃、苯系物、苯胺类、菲、苯并[a]芘等)。土壤作为人类、动植物和微生物赖以生存的重要环境基础,是自然界物质和能量参与转化、迁移和积累等循环过程的重要场所,土壤安全事关人类食品安全。石油一旦进人土壤,将对人类健康和生态环境造成严重危害。根据已公布的环境保护部和国土资源部发布的《全国土壤污染状况调查公告》显示,我国土壤总超标率高达16.1%。其中,有机类污染物,尤其是石油污染物已成为导致土壤安全问题的重要因素之一。据报道在我国,勘探和开发的油气田有4 0 0多个,覆盖面积达 3. 2 X 105 km2,其中约4. 8 X 106 hm2 的土壤受到不同程度的污染。为我国部分油田周边石油污染状况,其周边土壤中的总石油烃( TPH ) 质量分数已经远远超过临界值500 mg/kg,对人居安全和生态环境造成了严重的威胁。由此可见,石油污染土壤形势严峻,修复工作迫在眉睫。 土壤石油污染:是指原油和石油产品在开采、运输、储存以及使用过程中,进入到土壤环境,其数量和速度超多土壤自净作用的速度,打破了它在土壤环境中的自然动态平衡,使其累积过程占据优势,导致土壤环境正常功能的失调和土壤质量的下降,并通过食物链,最终影响到人类健康的现象。 石油进入土壤的途径: ?石油的泄露和溢油:陆地采油大量的生产设施如油井、集输站、转输站和联合站等,原油会 被直接或间接的倾泻与这些设施附件的地面;产品的开采和运输业会使石油类物质进入土壤环境中;另外发生井喷或泄露,也会污染周围土壤环境。 ?含油固、液体废气无的随意处置:油气的开采和运输过程会产生大量含油、天然气的开采过 程中会产生大量含油废水、有害的废泥浆以及其他的一些污染物,如果处理不好就会污染周边土壤、河流甚至地下水。 ?含油污水的灌溉和农用药剂的使用:一些工业企业产生的含油废水如果不加以回收处理,直 接排入河流、湖泊或海湾,会污染水体,该水体用于农业灌溉,则会导致土壤污染,另外某些农用药剂也会污染土壤。 ?汽车尾气的排放:汽车尾气排放导致交通干线两侧土壤的有机物污染,另外大气沉降也会导 致土壤污染。 石油污染土壤修复技术 石油污染土壤的物理修复方法:

污染物在环境中的迁移和转化(1)

污染物在环境中的迁移和转化 第一节概述 一、污染物的迁移和转化的定义 污染物在环境中发生的各种变化过程称之为污染物的迁移和转化(transport and transformation of pollutants),有时也称之为污染物的环境行为(environmental behavior)或环境转归(environmental fate)。 二、研究污染物在环境中迁移和转化过程及其规律性的意义 1. 可阐明污染物种类,接触的浓度、时间、途径、方式和条件,从而研究相关毒作用。 研究污染物在环境中的迁移和转化的过程及其规律性,对于阐明人类在环境中接触的是什么污染物,接触的浓度、时间、途径、方式和条件等都具有十分重要的环境毒理学意义,否则就不能阐明有预谋中接触而导致的一系列毒作用。 2. 环境毒理学的许多基本问题在一定程度上也取决于对污染物在环境中的迁移和转化规律的认识。 例如:污染物的物质形态、联合作用、毒作用的影响因素、剂量效应关系等,都要涉及到接触污染物的真实情况的确定。 第二节环境污染物的迁移 一、概念 污染物的迁移(transport of pollutants)是指污染物在环境中发生的空间位置的相对移动过程。迁移的结果导致局部环境中污染物的种类、数量和综合毒性强度发生变化。 二、机械性迁移 根据污染物在环境中发生机械性迁移的作用力,可以将其分为气的、水的、和重力机械性迁移三种作用。 1.气的机械性迁移作用,包括污染物在大气中的自由扩散作用和被气流搬运的作用。 其影响因素有:气象条件、地形地貌、排放浓度、排放高度。 一般规律:污染物在大气中的排放量成正比,于平均风速和垂直混合高度成反比。 2.水的机械性迁移作用,包括污染物在水中的自由扩散作用和被水流的搬运作用。 一般规律:污染物在水体中的浓度与污染源的排放量成正比,与平均流速和距污染源的距离成反比。3.重力的机械迁移作用,主要包括悬浮物污染物的沉降作用以及人为的搬运作用。 三、物理化学迁移 物理化学迁移是污染物在环境中最基本的迁移过程。污染物以简单的离子或可溶性分子的形势发生溶解-沉淀、吸附-解吸附。同时还会发生降解等作用。 1.风化淋溶作用风化淋溶作用是指环境中的水在重力作用下运动时通过水解作用使岩石、矿物中的化学元素溶入水中的过程,其作用的结果是产生游离态的元素离子。 2.溶解挥发作用降水、固体废弃物水溶性成份的溶解;VOC 3.酸碱作用(常表现为环境pH值的变化) ①酸性环境促进了污染物的迁移,使大多数污染物形成易溶性化学物质。如酸雨:加速岩石和矿物风化、淋溶的速度;促使土壤中铝的活化。 ②环境pH值偏高时,许多污染物就可能沉淀下来,在沉积物中,形成相对富集。 4.络合作用(改变毒物吸附和溶解的能力)络合物的形成大大改变了污染物的迁移能力和归宿。 例如:当含有Hg2+的河水流入海洋时,水中氯离子浓度逐渐增高,河口水体中的Hg2+逐次形成Hg(OH)2→Hg(OH)Cl →HgCl2→HgCl3- →HgCl42-。其中的Hg(OH)Cl与水体中的悬浮态黏土矿物和氧化物吸附力最强,而HgCl2的吸附力最差。因而,Hg(OH)Cl部分的汞大量转移到悬浮态固相或沉积物中,而部分的汞仍留在水体中。

石油污染的土壤修复技术

石油污染的土壤修复技术 指导教师: 学院: 专业: 班级: 姓名: 学号:

石油污染的土壤修复技术 摘要:概述了土壤污染的工程修复技术,主要包括土壤气相抽吸方法、土壤清洗方法、土壤淋洗方法、热解吸方法、生物通风方法、土壤耕作法、生物堆肥方法、生物泥浆方法、植物修复方法,并指出了各自的优缺点。 关键词:土壤;污染;修复技术 前言:当今石油工业飞速发展,2003年世界石油的总产量已达到37亿t。石油的 开采、冶炼、使用和运输过程的污染和遗漏事故,以及含油废水的排放、污水灌溉,各种石油制品的挥发、不完全燃烧物飘落等引起一系列土壤石油污染问题。多数加油站、化工厂的贮油设施由于腐蚀、地震、长期使用维护不力等原因会造成罐内油品的泄漏,形成对土壤的污染。据美国EPA (2000年)资料表明:在美国有I.8亿个地下储油罐,其中28万个存在不同程度的泄漏。在我国,随着国民经济的发展,汽车数量剧增,加油站和地下储油罐已星罗棋布,并仍有继续增加的趋势。近几年来,由于管理不善,这些地下储油罐在埋设时,对现场条件、罐体强度及渗漏防护措施都未作严格规定,地下储油罐泄漏事故时有发生,而且随着罐体的逐渐老化,这一问题将日益突出.20世纪80年代中期以来,土壤污染逐步得到重视,一些发达国家开始在土壤修复技术开发方面投入大量的资金进行研究。20世纪末,土壤环境的保护与治理开始引起人们的广泛关注,各种关于地下储罐污染区的土壤修复技术应运而生。本文将土壤污染的各种修复技术进行介绍和总结 正文。 1 修复技术 目前,理论上和技术上可行的石油污染土壤的修复方法从功能载体上分主要有生物修复技术、物理化学修复技术、综合修复技术等几种,根据污染土壤处理是否改变位置,又可分为异位修复方法与原位修复方法,部分方法已进入现场应用阶段并取得了较好的修复效果。 1.1物化修复方法 1.1.1土壤气相抽吸方法 土壤气相抽吸方法(Soil Vapor Extraction,SVE)是原位修复技术,用来修复被

石油类污染物在土壤和地下水中的污染模拟

2、土壤污染模拟 土壤是一个多相的疏松的多孔介质,固相中有大量的有机和无机胶体。石油是一种天然的粘油状液体,主要成分为烃类化合物(占80%一90%)。烃类化合物是非极性有机物,其偶极矩<1,介电常数<3,在土壤中有一定的吸附作用。地表的石油可以在重力作用下入渗,也可能随地面水或雨水沿着土壤毛细管孔隙向下渗透污染土壤,甚至进一步向下淋滤污染地下水。石油类污染物质在土壤入渗过程中,由于土壤中存在着大量的有机和无机的胶体,使得进入土壤中的污染物不断地被吸附。吸附能力与土壤的质地、石油的性质有密切联系。通常,石油烃类在土壤介质吸附程度以分配系数Kd来表示。 式中:Cs为平衡时固相中的浓度(mg/kg);Ce为平衡时液相中的浓度(mg/l)根据土壤中溶质运移模型和石油类污染物质在土壤中的迁移转化过程,考虑吸附作用而忽略石油的挥发,建立石油类污染物质在土壤中迁移转化二维综合模型。它包括水运动方程和石油运动方程。 土壤中水运动方程: 土壤中石油类运动方程: 式中:C(h)为比水容量(cm-1);K x、K z分别为横向纵向水力传导系数(cm/d);Dxx、Dzz分别为横向纵向弥散系数(cm2/d);Rd为滞留因子;c为液相中石油的浓度(mg/l);qx、qz分别为x和z方向的达西流速(cm/d);θ为含水量(%);λ为降解系数(d-1);h为土壤中压力水头(cm)。 初始条件和边界条件 根据监测的结果和落地油的分布特征,预测石油类在土壤中迁移过程及石油是否会对地下水造成污染,选择预测范围为:长80m,深6m剖面区域。并对部分问题可进行简化处理,作一些基本假设。假设土壤水最初不含石油,即未受到污染,但土壤中存在一定的本底值,经取样测定取平均值为40.3mg/kg。在土壤的预测范围内,土壤被认为是均质的。 对水运动方程上边界确定为Cauchy边界,下边界为Neumann边界。

土壤石油污染

基于土壤石油污染目前状况和治理技术探 究进展-生命环境论文 logo设计 分享到:本站编辑:admin 日期:2010-05-09 19:57 点击:次 摘要摘要:本文首先对土壤石油污染目前状况及危害做了扼要的叙述,对土壤石油污染治理的物理、化学、生物技术进行了评述,结合我国的具体情况,提出了土壤石油污染的生物修复技术,并对该技术的远景及存在的新题目进行了阐述。 摘要:石油污染;土壤污染;治理技术 随着产业的发展,石油的需求量大幅度增加,并且在开采、运输、贮躲、加工过程中,由于意外事故或治理不当,导致石油排放到农田、地下水、海洋,使环境遭受污染,直接危害人类生产和生活。据资料统计,目前每年有800多万吨石油进进世界环境,污染土壤、地下水、河流和海洋,其中石油对土壤的污染主要是破坏土壤结构影响土壤通透性,损害植物根部,阻碍根的呼吸和吸收,终极导致植物死亡。其次,被污染到土壤的石油芳香烃类物质对人及动物的毒性较大,其中的苯、甲苯、二甲苯、酚类等物质,假如经较长时间较大浓度接触,会引起恶心、头疼、眩晕等症状[1。此外,石油中的多环芳烃类物质具有强烈的三致功能,能通过食品链在动植物体内逐渐富集,它在土壤中的富集更具危害。鉴于土壤污染的严重危害,治理土壤石油污染势在必行,已引起很多国家高度重视,不断采取办法,治理石油污染。 1.土壤石油污染目前状况及危害 1.1 土壤石油污染目前状况

石油产业是国家综合国力的重要组成部分,但石油开采石油化工行业的发展及石油产品的广泛使用,使石油污染成为世界性公害之一。当今世界石油总产量每年约22×108t。其中17.5×108t是由陆地油田生产的。仅石油污染一项每年全世界就有8×106t进进环境。美国环保署报道,在20世纪90年代已有10万个地下油罐存在不同程度的泄漏。 中国作为世界上最大的发展中国家及石油生产和消费大国,由于生产条件、环保技术等方面相对落后,石油污染新题目相当突出,尤其是土壤的石油污染新题目日益严重。在有机污染土壤中,石油污染占相当比例。我国自1978年原油产量突破1×108t大关而成为世界十大产油国之一以来,勘探开发的油气田和油气躲己有400多个,年产石油污染土壤近1×105t,累计堆放量近5×105t。以油田为例,每口油井污染土地面积为200~500m2,全国共有油井2×105t口,由此造成的土壤污染可达8×107m2,这一数字每年还在增长中。1998年,全国石油、炼化企业生产含油固体废物量达4.29×106t,利用率低于50%,由此造成土壤污染可达3.3×106hm2,我国每年有6×105t石油经跑、冒、滴、漏等途径进进环境,造成土壤污染。据不完全统计,全国因使用污水浇灌而导致土壤污染面积达9.3×103hm2,全国类似农田有1×105 hm2。在北方产油地区原油污染面积逐年扩大,在辽河油田的重污染区,土壤原油含量达到1×104mg/kg,是临界值 (200mg/kg)20的倍。探究结果显示,当土壤原油含量为3100mg/kg时,玉米减产10%,若原油含量达到500mg/kg,则苯并芘在玉米中的残留量超标,玉米不能食用[2。

石油化工污染土壤

石油化工污染土壤 石油主要是有烃类化合物组成的一种复杂化合物,包括饱和烃、芳香烃类化合物、沥青质、树脂类等。还含有少量的o、n、s等元素,其中的芳香类物质对人和动物的毒性较大,尤其是双环及三环以上的多环芳烃毒性更大。 对污染土壤的影响:陆地采油大量的生产设施如油井、集输站、转输站和联合站等,原油会被直接或间接的倾泻于这些设施附近的地面;石化产品的开采和运输也会使石油类物质进入土壤环境,随后发生一系列的物理、化学和生化作用,对环境造成污染。大部分石油类污染物在土壤中都发生吸附/解吸作用,从而影响着它们在土壤中的迁移、生物降解和光降解。油气的开采和运输过程会对生态环境造成影响。 在石油、天然气的开采过程中,会产生大量含油废水、有害的废泥浆以及其他一些污染物,如果处理不好就会污染周边土壤、河流甚至地下水,同时石油、天然气本身就含有对人和动物有害的物质,一旦发生井喷或泄漏,将对生活在油气田附近的人和动物构成致命威胁(如重庆开县发生的井喷,造成将近400人死亡,大面积土壤被污染)。 石油管道的泄漏也会严重破坏生态,据一位美国环保人士估算,如果阿拉斯加陆地石油管道发生泄漏,至少会形成半英里宽、30英里长的污染带,由于石油会迅速渗透到土壤中,杀死土壤中的微生物,从而改变土壤成分,改变地表生态,遭受污染的地区可能在几十年甚至上百年的时间内都会寸草不生。许多研究表明,一些石油烃类进入动物体内后,对哺乳类动物及人类有致癌、致畸、致突变的作用。土壤的严重污染会导致石油烃的某些成分在粮食中积累,影响粮食的品质,并通过食物链,危害人类健康。 修复技术 其中治理石油化工污染土壤的修复技术最主要的有:一是微生物修复技术,按修复的地点又可分为原位生物修复和异位生物修复;二是植物修复法。 微生物修复技术:包括生物注气法、生物通气法、土地耕作法

相关文档