文档库 最新最全的文档下载
当前位置:文档库 › 浅谈归纳法在植物分类教学中的应用

浅谈归纳法在植物分类教学中的应用

浅谈归纳法在植物分类教学中的应用
浅谈归纳法在植物分类教学中的应用

安徽林业科技,2016,42(5): 39?40

Anhui Forestry Science and Technology

浅谈归纳法在植物分类教学中的应用

周火明,毛燕* ,尹晓蛟,向莉,章璐(湖北生态工程职业技术学院,武

汉430200)摘要

:本文通过对植物叶、花、果局部特征的归纳,揭示了归纳法在植物分类中的运用和对植物分类特征记忆的巨大作用,掌握归纳法可以在植物分类学习中达到事半功倍的效果。

关键词:归纳法;花;叶;果;植物;分类

中图分类号:S732 文献标识码:A 文章编号:

2095-0152(2016)06-0039-02Application of I nduction in the Teaching of P lant Taxonomy ZHOU Huoming, MAO Yan*, YIN Xiaojiao, XIANG Li, ZHANG Lu (Hubei Ecology Engineering Vocational College, Wuhan 430200, China)Abstract: In this paper an induction was made on the partial features of the plant leaf, flower and fruit to indicate the application of induction in the teaching of plant taxonomy and the significant role induction played in helping learners remember taxonomic features of plants. A good command of induction could help learners yield twice the results with half the effort in studying plant taxonomy. Keywords: Induction; Flower; Leaf; Fruit; Plant; Taxonomy

笔者通过多年的教学经验总结,发现不论是同

科植物还是不同科植物都有部分相同的特征,分别

将多种植物的花、叶、果等不同部位特征进行归纳,

以便于学生记忆。1叶特征归纳1.1单叶对生植物

具有此特征主要科有忍冬科Caprifoliaceae 、茜

草科Rubiaceae 、山莱英科Cornaceae 、虎耳草科 Saxifragaceae 部分种、木厚科Oleaceae 、卫矛科 Celastraceae 、黄杨科Buxaceae 和蜡梅科 Calycanthaceae 等[1]〇 1.2单叶互生植物具有此特征主要科有樟科Lauraceae 、木兰科

Magnoliaceae 、金缕梅科 Hamamelidaceae 、壳斗科 Fagaceae 、杨柳科 Salicaceae 、桑科 Moraceae 、愉科 Ulmaceae 、杜英科 Elaeocarpaceae 、梧桐科 Sterculiaceae 、山茶科 Theaceae 、杜鹃花科 Ericaceae 、柿科Ebenaceae 、悬铃木科Platanaceae 、冬青科 Aquifoliaceae 、枠木科 Betulaceae 、蓝果树科

收稿日期:2016-06-03

修回日期:2016-10-28基金项目:湖北生态工程职业技术学院林木育种与人工林培育团队经费资助。

第一作者简介:周火明(1964-),男,副教授,主要从事植物分类和森林调查技术等教研工作。

*通讯作者:毛燕(1982-),女,工程师,主要从事植物分类和栽培研究。E-mail: 761766918@https://www.wendangku.net/doc/a2362813.html, Nyssaceae 、鼠李科 Rhamnaceae 和蓄薇科 Rosaceae 的大多数植物等%1.3复叶植物

具有此特征主要科有七叶树科 Hippocastanaceae 、棟科 Meliaceae 、含羞草科 Mimosaceae 、蝶形花科Fabaceae 、苦木科 Simaroubaceae 、胡桃科 Juglandaceae 、无患子科 Sapindaceae 、漆树科 Anacardiaceae 和木棉科 Bombacaceae 等[3]。2花特征归纳 2.1圆锥花序植物具有此特征主要植物种类有紫葳科 Bignoniaceae 的梓树(Catalpa ovata )、凌霄(Campsis gmndflora ),蓄薇科的批把(Eriobotrya j aponica ),玄 参科Scrophulariaceae 的泡桐属Paulownia ,樟科的 樟(Cinnomomumcomphora ),豆科 Leguminosae 的铁

刀木(Cassia siamea )、槐(So_phora j aponica ),五加科 Araliaceae 的八角金盘(Fatsia j aponica )和鹅掌柴 (Scheflera octophylla )4]。

《数学归纳法及其应用举例》教案

《数学归纳法及其应用举例》教案 中卫市第一中学 俞清华 教学目标: 1.认知目标:了解数学归纳法的原理,掌握用数学归纳法证题的方法。 2.能力目标:培养学生理解分析、归纳推理和独立实践的能力。 3.情感目标:激发学生的求知欲,增强学生的学习热情,培养学生辩证唯物主义的世界观 和勇于探索的科学精神。 教学重点: 了解数学归纳法的原理及掌握用数学归纳法证题的方法。 教学难点: 数学归纳法原理的了解及递推思想在解题中的体现。 教学过程: 一.创设情境,回顾引入 师:本节课我们学习《数学归纳法及其应用举例》(板书)。首先给大家讲一个故事:从前有 一个员外的儿子学写字,当老师教他写数字的时候,告诉他一、二、三的写法时,员外儿子很高兴,告诉老师他会写数字了。过了不久,员外要写请帖宴请亲朋好友到家里做客,员外儿子自告奋勇地要写请帖。结果早晨开始写,一直到了晚间也没有写完,请问同学们,这是为什么呢? 生:因为有姓“万”的。 师:对!有姓“万”的。员外儿子万万也没有想到“万”不是一万横,而是这么写的“万”。通过这个故事,你对员外儿子有何评价呢? 生:(学生的评价主要会有两种,一是员外儿子愚蠢,二是员外儿子还是聪明的。) 师:其实员外儿子观察、归纳、猜想的能力还是很不错的,但遗憾的是他猜错了!在数学 上,我们很多时候是通过观察→归纳→猜想,这种思维过程去发现某些结论,它是一种创造性的思维过程。那么,我们在以前的学习过程中,有没有也像员外儿子那样猜想过某些结论呢? 生:有。例如等差数列通项公式的推导。 师:很好。我们是由等差数列前几项满足的规律:d a a 011+=,d a a +=12,d a a 213+=,d a a 314+=,……归纳出了它的通项公式的。其实我们推导等差数列通项公式的方法和员外儿子猜想数字写法的方法都是归纳法。那么你能说说什么是归纳法,归纳法有什么特点吗? 生:由特殊事例得出一般结论的归纳推理方法,通常叫做归纳法。特点:特殊→一般。 师:对。(投影展示有关定义) 像这种由特殊事例得出一般结论的归纳推理方法,通常叫做归纳法。根据推理过程中考察的 对象是涉及事物的一部分还是全部,分为不完全归纳法和完全归纳法。 完全归纳法是一种在研究了事物的所有(有限种)特殊情况后得出一般结论的推理方法,又 叫做枚举法。那么,用完全归纳法得出的结论可靠吗? 生:(齐答)可靠。 师:用不完全归纳法得出的结论是不是也是可靠的呢?为什么?

浅谈数学归纳法

浅谈数学归纳法 国良 井冈山大学数理学院邮编:343009 指导老师:艳华 [摘要]用数学归纳法证明数学问题时,要注意它的两个步骤缺一不可,第一步是命题递推的基础,第二步是命题递推的依据,也是证明的关键和难点,两个步骤各司其职,互相配合.数学归纳法经历无数数学的潜心研究与科学家们的利用,是数学归纳法得以发展和它为数学问题与科学问题的发现做出了极大的贡献。学好归纳法是科学问题研究的最基础的知识. [关键词]理论依据;数学归纳法;表现形式 1 数学归纳法的萌芽和发展过程 数学归纳法思想萌芽可以说长生于古希腊时代。欧几里德在证明素数有无穷多多个时,使用了反证法,通过反设“假设有有限多个”,使问题变成“有限”的命题,其中证明里隐含着:若有n个素数,就必然存在第n+1个素数,因而自然推出素数有无限多个,这是一种是图用有限处理无限的做法,是人们通过过有限和无限的最初尝试。 欧几里德之后直到16世纪,在意大利数学家莫洛克斯的《算术》一书中明确提出一个“递归推理”原则,并用它证明了1+2+3+…+(2n-1)=2n,对任何自然数n都成立。不过他并没有对这原则做出清晰的表述。 对数学归纳法首次作出明确而清晰阐述的是法国数学家和物理学家帕斯卡,他发现了一种被后来成为“帕斯卡三角形”的数表。他在研究证明有关这个“算术三角形”的一些命题时,最先准确而清晰的指出了证明过程且只需的两个步骤,称之为第一条引理和第二条引理:

第一条引理 该命题对于第一底(即(n=1)成立,这是显然的。 第二条引理 如果该命题对任意底(对任意n )成立,它必对其下一底(对n+1)也成立。 由此可得,该命题对所有n 值成立。 因此,在数学史上,认为帕斯卡是数学归纳法的创建人,因其所提出的两个引理从本质上讲就是数学归纳法的两个步骤,在他的著作《论算术三角形》中对此作了详尽的论述。 帕斯卡的思想论述十一例子来述归纳法的,而在他的时代还未建立表示一般自然数的符号。直至十七世纪,瑞士数学家J 。伯努利提出表示任意自然熟的符号之后,在他的《猜度术》一书中,才给出并使用了现代形式的数学归纳法。由此,数学归纳法开始得到世人的承认并得到数学界日益广泛的应用。十九世纪,意大利数学家皮亚若建立自然数的公理体系时,提出归纳公理,为数学归纳法奠定了理论基础。即:对于正整数N +的子集M ,如果满足:①1∈M;②若a ∈M ,则a+1∈M ;则M=N +. 2 数学归纳法的表现形式 2.1 第一数学归纳法 原理1:设()P n 是一个与正整数有关的命题,如果 (1)当00()n n n N +=∈时,()P n 成立; (2)假设0(,)n k k n k N +=≥∈时命题成立,由此推得n=k+1时,()P n 也成立; 那么,对一切正整数n 0n ≥,()P n 成立。 证明:反证法.假设该命题不是对于一切正整数都成立.令S 表示使该命题不成立的正整数作成的集合,那么S ≠?,于是由最小数原理,S 中有最小数a ,

高中数学数学归纳法教案新人教A版选修

第一课时 4.1 数学归纳法 教学要求:了解数学归纳法的原理,并能以递推思想作指导,理解数学归纳法的操作步骤,能用数学归纳法证明一些简单的数学命题,并能严格按照数学归纳法证明问题的格式书写. 教学重点:能用数学归纳法证明一些简单的数学命题. 教学难点:数学归纳法中递推思想的理解. 教学过程: 一、复习准备: 1. 分析:多米诺骨牌游戏. 成功的两个条件:(1)第一张牌被推倒;(2)骨牌的排列,保证前一张牌倒则后一张牌也必定倒. 回顾:数学归纳法两大步:(i )归纳奠基:证明当n 取第一个值n 0时命题成立;(ii )归纳递推:假设n =k (k ≥n 0, k ∈N *)时命题成立,证明当n =k +1时命题也成立. 只要完成这两个步骤,就可以断定命题对从n 0开始的所有正整数n 都成立. 2. 练习:已知()*()13521,f n n n N =++++-∈L ,猜想()f n 的表达式,并给出证明? 过程:试值(1)1f =,(2)4f =,…,→ 猜想2()f n n = → 用数学归纳法证明. 3. 练习:是否存在常数a 、b 、c 使得等式132435......(2)n n ?+?+?+++= 21()6 n an bn c ++对一切自然数n 都成立,试证明你的结论. 二、讲授新课: 1. 教学数学归纳法的应用: ① 出示例1:求证*111111111,234212122n N n n n n n - +-+???+-=++??+∈-++ 分析:第1步如何写?n =k 的假设如何写? 待证的目标式是什么?如何从假设出发? 关键:在假设n =k 的式子上,如何同补? 小结:证n =k +1时,需从假设出发,对比目标,分析等式两边同增的项,朝目标进行变形. ② 出示例2:求证:n 为奇数时,x n +y n 能被x +y 整除. 分析要点:(凑配)x k +2+y k +2=x 2·x k +y 2·y k =x 2(x k +y k )+y 2·y k -x 2·y k =x 2(x k +y k )+y k (y 2-x 2)=x 2(x k +y k )+y k ·(y +x )(y -x ). ③ 出示例3:平面内有n 个圆,任意两个圆都相交于两点,任何三个圆都不相交于同一点, 求证这n 个圆将平面分成f (n )=n 2-n +2个部分. 分析要点:n =k +1时,在k +1个圆中任取一个圆C ,剩下的k 个圆将平面分成f (k )个部分,而圆C 与k 个圆有2k 个交点,这2k 个交点将圆C 分成2k 段弧,每段弧将它所在的平 面部分一分为二,故共增加了2k 个平面部分.因此,f (k +1)=f (k )+2k =k 2-k +2+2k =(k +1)2- (k +1)+2. 2. 练习: ① 求证: 11(11)(1)(1)321 n ++???+-g g n ∈N *). ② 用数学归纳法证明: (Ⅰ)2274297n n --能被264整除; (Ⅱ)121(1)n n a a +-++能被21a a ++整除(其中n ,a 为正整数) ③ 是否存在正整数m ,使得f (n )=(2n +7)·3n +9对任意正整数n 都能被m 整除?若存在, 求出最大的m 值,并证明你的结论;若不存在,请说明理由. 3. 小结:两个步骤与一个结论,“递推基础不可少,归纳假设要用到,结论写明莫忘掉”;从n =k 到n =k +1时,变形方法有乘法公式、因式分解、添拆项、配方等. 三、巩固练习: 1. 练习:教材50 1、2、5题 2. 作业:教材50 3、4、6题.

数学归纳法及其应用举例1

数学归纳法及其应用举例 【本章学习目标】 人们在研究数量的变化时,常常会遇到有确定变化趋势的无限变化过程,这种无限变化过程就是极限的概念与思想,极限是人们研究许多问题的工具。以刘微的“割圆术”为例,圆内接正n 边形的边数无限增加时,正n 边形的周长P n 无限趋近于圆周长2πR 。这里的是个有限多项的数列,人们可以从这个有限多项的数列来探索无穷数列的变化趋势。不论n 取多么大的整数,n P 都是相应的圆周长的近似值,但是我们可以从这些近似值的精确度的无限提高中(限n 无限增大)找出圆周长的精确值2πR 。随着n 的增加,n P 在变化,这可以认为是量变(即只要n 是有限数,n P 都是圆内接正多边形的周长);但是我们可以从这些量变中来发现圆周长。一旦得出2πR ,就是质的变化(即不再是正多边形的周长)。这种从有限中认识无限,从近似中认识精确,从量变中认识质变的思想就是极限的思想。 本章重点内容是: (1)数学归纳法及其应用。 (2)研究性课题:杨辉三角。 (3)数列的极限。 (4)函数的极限。 (5)极限的四则运算。 (6)函数的连续性。 本章难点内容是: (1)数学归纳法的原理及其应用。 (2)极限的概念。 【基础知识导引】 1.了解数学推理中的常用方法——数学归纳法。 2.理解数学归纳法的科学性及用数学归纳法来证明与正整数有关命题的步骤。 3.掌握数学归纳法的一些简单应用。 【教材内容全解】 1.归纳法

前面我们在学习等差数列时,通过等差数列的前几项满足的关系式归纳出等差数列的通项公式。再如根据三角形、四边形、五边形、六边形等的内角和归纳出凸n 边形内角和公式。像这样由一系列有限的特殊事例得出一般结论的推理方法,叫做归纳法。 对于归纳法我们可以从以下两个方面来理解。 (1)归纳法可以帮助我们从具体事列中发现事物的一般规律。 (2)根据考察的对象是全部还是部分,归纳法又分完全归纳法与不完全归纳法。显然等差数列通项公式,凸n 边形内角和公式都是通过不完全归纳法得出的,这些结论是正确的。但并不是所有由不完全归纳法得出的结论都是正确的。这是因为不完全归纳只考察了部分情况,结论不具有普遍性。例如课本62P 数列通项公式22)55(+-=n n a n 就是一个典型。 2.数学归纳法 在生活与生产实践中,像等差数列通项公式这样与正整数有关的命题很多。由于正整数有无限多个,因而不可能对所有正整数一一加以验证。如果只对部分正整数加以验证就得出结论,所得结论又不一定正确,要是找到把所得结论递推下去的根据,就可以把结论推广到所有正整数。这就是数学归纳法的基本思想:即先验证使结论 有意义的最小正整数0n ,如果当0n n =时,命题成立,再假设当 ),(*0N k n k k n ∈≥=时,命题成立(这时命是否成立不是确定的),根据这个假设,如能推出当n=k+1时,命题也成立,那么就可以递推出对所有不小于0n 的正整数命题都成立。 由此可知,用数学归纳法证明一个与正整数有关的命题时,要分两个步骤,且两个步骤缺一不可。 第一步递推的基础,缺少第一步,递推就缺乏正确的基础,一方面,第一步再简单,也不能省略。另一方面,第一步只要考察使结论成立的最小正整数就足够了,一般没有必要再多考察几个正整数。 第二步是递推的根据。仅有这一步而没有第一步,就失去了递推的基础。例如,假设n=k 时,等式 成立,就是。那么, 。这就是说,如果n=k 时等式成立, 那么n=k+1时等式也成立。但仅根据这一步不能得出等式对于任何n ∈N*都成立。因为当n=1时,上式左边=2,右边31112=++=,左边≠右边。这说明了缺少第一步这个基础,第二步的递推也就没有意义了。只有把第一步的结论与第二步的结论结合在一起,才能得出普遍性结论。因此,完成一、二两点后,还要做一个小结。 在证明传递性时,应注意: (1)证n=k+1成立时,必须用n=k 成立的假设,否则就不是数学归纳法。应当指出,n=k 成立是假设的,这一步是证明传递性,正确性由第一步可以保证,有了递推这一步,联系第一步的结论(命题对0n n =成立),就可以知道命题对10+n 也成立,进而再由第二步可知1)1(0++=n n ,即20+=n n 也成立。这样递推下去,就可以知道命题对所有不小于0n 的正整数都成立。 (2)证n=k+1时,可先列出n=k+1成立的数学式子,作为证明的目标。可以作为条件加以运用的有n=k 成立的假设,已知的定义、公式、定理等,不能直接将n=k+1代入命题。 3.这一节课本中共安排了五个例题,例1~例3是用数学归纳法证明等式。其步骤是先证明当0n n =(这里10=n )时等式成立。再假设当n=k 时等式成立,利用这一条件及已知的定义、公式、定理证明当n=k+1时等式也成立。注意n=k+1时的等式是待证明的,不能不利用假设。例如:求证:。

浅谈数学归纳法在高考中的应用

1、数学归纳法的理论基础 数学归纳法,人类天才的思维、巧妙的方法、精致的工具,解决无限的问题。它体现的是利用有限解决无限问题的思想,这一思想凝结了数学家们无限的想象力和创造力,这无疑形成了数学证明中一道绚丽多彩的风景线。它的巧妙让人回味无穷,这一思想的发现为后来数学的发展开辟了道路,如用有限维空间代替无限维空间(多项式逼近连续函数)用有限过程代替无限过程(积分和无穷级数用有限项和答题,导数用差分代替)。 1.1数学归纳法的发展历史 自古以来,人们就会想到问题的推广,由特殊到一般、由有限到无限,可人类对无限的把握不顺利。在对无穷思考的过程中,古希腊出现了许多悖论,如芝诺悖论,在数列中为了确保结论的正确,则必须考虑无限。还有生活中一些现象,如烽火的传递,鞭炮的燃放等,触动了人类的思想。 安提丰用圆周内接正多边形无穷地逼近圆的方法解决化圆为方;刘徽、祖冲之用圆内接正多边形去无穷地逼迫圆,无穷的问题层出不穷,后来古希腊欧几里得对命题“素数的个数是无穷的”的证明,通过了有限去实现无限,体现了数学归纳法递推思想。但要形成数学归纳法中明确的递推,清晰的步骤确是一件不容易的事,作为自觉运用进行数学证明却是近代的事。 伊本海塞姆(10世纪末)、凯拉吉(11世纪上叶)、伊本穆思依姆(12世纪末)、伊本班纳(13世纪末)等都使用了归纳推理,这表明数学归纳法使用较普遍,尤其是凯拉吉利用数学归纳法证明 22 333 (1)124n n n +++??????+= 这是数学家对数学归纳法的最早证明。 接着,法国数学家莱维.本.热尔松(13世纪末)用"逐步的无限递进",即归纳推理证明有关整数命题和排列组合命题。他比伊斯兰数学家更清楚地体现数学归纳法证明的基础,递进归纳两个步骤。 到16世纪中叶,意大利数学家毛罗利科对与全体和全体自然数有关的命题的证明作了深入的考察在1575年,毛罗利科证明了 21n n a a n ++= 其中1231,2k a k =+++?????? =?????? 他利用了逐步推理铸就了“递归推理”的思路,成为了较早找到数学归纳中“递 归推理”的数学家,为无限的把握提供了思维。 17世纪法国数学家帕斯卡为数学归纳法的发明作了巨大贡献,他首先明确而清晰地阐述数学归纳法的运用程序,并完整地使用数学归纳法,证明了他所发

数学归纳法教学设计电子教案

数学归纳法教学设计

授课日期: 2016 年 4 月 8 日授课班级:高二年级2 班

【教学难点】 (1)对数学归纳法原理的理解,即理解数学归纳法证题的严密性与有效性; (2)假设的利用,即如何利用假设证明当n=k+1时结论正确. 教法、学法分析 教法: 学习数学归纳法的过程紧扣多米诺骨牌是怎样倒下的,通过对科技节活动中多米诺骨牌倒下的分析类比得出数学归纳法的应用步骤,尤其是在引导学生理解数学归纳法由n=k得出n=k+1时必要性和有效性中,类比“后一块骨牌必须是被前一块骨牌砸倒的”起到重要作用。在教师的组织启发下,师生之间、学生之间共同探讨,平等交流;既强调独立思考,又提倡团结合作;既重视教师的组织引导,又强调学生的主体性、主动性、平等性、开放性、合作性。这节课主要选择以合作探究式教学法组织教学. 学法: 本课以问题为中心,以解决问题为主线展开,学生主要采用“探究式学习法”进行学习.本课学生的学习主要采用下面的模式进行: 教学设计中注意激发起学生强烈的求知欲望,使得他们能积极主动地观察、分析、归纳,以形成认识,参与到课堂活动中,充分发挥他们作为认知主体的作用. 教学资源 导学案、PPT 教学过程 教学环 节 教师活动学生活动设计意图 课前复习准备 1、布置导学案内容; 2、批改纠正学生出现的错误; 3、及时了解学生学习情. 完成学案内容 1、归纳推理: 2、回忆等差数列,等比数 列的通项公式;思考等 差、等比数列通项公式的 得出过程,你能证明该公 式吗? 3、已知数列{}n a中, 1 1 = a, ) (* + ∈ + =N n a a a n n n2 2 1 , 试猜想这个数列的通项公 式并证明你的猜想. 复习公式及 其得出过 程,为本节 学习做好铺 垫. 使学生发现 不能解决的 问题,激发 学生学习新 知的愿望. 创设问题情景,引出新课问题情景:引导学生共同回顾学案 第3小题数列{}n a通项公式的得出过 程,提问:你的猜测正确吗?如何证 明? 学生回忆第3小题数列 {} n a通项公式的得出过 程,并思考老师的问题. 发现问题, 突出矛盾. 合作探索解决问题的方法1. 多媒体演示多米诺骨牌游戏. 引导学生共同探讨多米诺骨牌全 部依次倒下的条件: (1)第一块要倒下; 学生类比多米诺骨牌依顺 序倒下的原理,探究出证 明有关正整数命题的方 播放视频活 跃课堂氛 围,激发学 生的兴趣. 提 出 问 分 析 问 猜想与 置疑 论证 观察 情景 应用

高中数学《数学归纳法及其应用举例》教学设计附反思

课题:数学归纳法及其应用举例 【教学目标】 知识与技能: 1. 了解由有限多个特殊事例得出的一般结论不一定正确,使学生深入认识归纳法, 理解数学归纳法的原理与实质; 2. 掌握数学归纳法证题的两个步骤;初步会用“数学归纳法”证明简单的与自然数有关的命题(如恒等式等). 3. 培养学生观察、分析、论证的能力, 进一步发展学生的抽象思维能力和创新能力,让学生经历数学归纳法原理的构建过程, 体会类比的数学思想.过程与方法: 1.努力创设和谐融洽的课堂情境,使学生处于积极思考、大胆质疑氛围,提高学生学习的兴趣和课堂效率.让学生体验知识的构建过程, 体会源于生活的数学思想; 2. 通过对数学归纳法的学习、应用,逐步体验观察、归纳、猜想、论证的过程,培养学生由特殊到一般的思维方式和严格规范的论证意识,并初步掌握论证方法; 3. 让学生经历发现问题、提出问题、分析问题、解决问题的过程,培养学生创新能力. 情感、态度、价值观: 1. 通过对数学归纳法原理的探究,培养学生严谨的、实事求是的科学态度和不怕困难,勇于探索的精神; 2. 让学生通过对数学归纳法原理和本质的理解,感受数学内在美的震撼力,从而使学生喜欢数学,激发学生的学习热情,使学生初步形成做数学的意识和科学精神; 3. 学生通过置疑与探究,培养学生独立的人格与敢于创新的精神; 4. 持续增进师生互信,生生互助,共创教学相长的教与学的氛围和习惯. 【教学重点】 归纳法意义的认识和数学归纳法产生过程的分析,初步理解数学归纳法的原理并能简单应用. 【教学难点】 数学归纳法中递推思想的理解,初步明确用数学归纳法证明命题的两个步骤. 【教学方法】师生互动讨论、共同探究的方法 【教学手段】多媒体辅助课堂教学 【教学过程】 一、创设情境,启动思维 情境一、财主儿子学写字的笑话、“小明弟兄三个,大哥叫大毛……”的脑筋急转弯等; 教师总结:财主的儿子很傻很天真,但他懂一样思想方法,是什么?以上都是由特殊情况归纳出一般情况的方法---归纳法,这就是今天的课题. 人们通常

数学归纳法优秀教学设计

数学归纳法 【教学目标】 1.进一步理解“数学归纳法”的含意和本质;掌握数学归纳法证题的两个步骤一个结论;会用“数学归纳法”证明简单的恒等式;理解为证n=k+1成立,必须用n=k成立的假设;掌握为证n=k+1成立的常见变形技巧。 2.掌握归纳与推理的方法;培养大胆猜想,小心求证的辩证思维素质;培养学生对于数学内在美的感悟能力。 【教学重点】 使学生理解数学归纳法的实质,掌握数学归纳法的证题步骤 【教学难点】 如何理解数学归纳法证题的有效性;递推步骤中如何利用归纳假设 【授课类型】 新授课 【课时安排】 1课时 【教学准备】 多媒体、实物投影仪 【教学过程】 一、复习引入: 1.归纳法:由一些特殊事例推出一般结论的推理方法。特点:特殊→一般 2.不完全归纳法:根据事物的部分(而不是全部)特例得出一般结论的推理方法叫做不完全归纳法。 3.完全归纳法:把研究对象一一都考查到了而推出结论的归纳法称为完全归纳法。 完全归纳法是一种在研究了事物的所有(有限种)特殊情况后得出一般结论的推理方法,又叫做枚举法。与不完全归纳法不同,用完全归纳法得出的结论是可靠的。通常在事物包括的特殊情况数不多时,采用完全归纳法。 4.数学归纳法:对于某些与自然数n有关的命题常常采用下面的方法来证明它的正确性: )时命题成立,证明当n=k+1先证明当n取第一个值n0时命题成立;然后假设当n=k(k N*,k≥n 时命题也成立这种证明方法就叫做数学归纳法

5. 数学归纳法的基本思想:即先验证使结论有意义的最小的正整数n 0,如果当n=n 0时,命题成立,再假设当n=k(k ≥n0,k ∈N*)时,命题成立。(这时命题是否成立不是确定的),根据这个假设,如能推出当n=k+1时,命题也成立,那么就可以递推出对所有不小于n 0的正整数n 0+1,n 0+2,…,命题都成立。 6.用数学归纳法证明一个与正整数有关的命题的步骤: (1)证明:当n 取第一个值n 0结论正确; (2)假设当n=k(k ∈N*,且k ≥n 0)时结论正确,证明当n=k+1时结论也正确。 由(1),(2)可知,命题对于从n 0开始的所有正整数n 都正确 二、讲解范例: 例1用数学归纳法证明 6 )12)(1(3212222++=++++n n n n 例2用数学归纳法证明 2)1()13(1037241+=+++?+?+?n n n n 三、课堂练习: 1.用数学归纳法证明:().125312n n =-++++ 证明:(1)当1=n ,左边=1,右边=1,等式成立。 (2)假设当k n =时,等式成立,就是(),125312k k =-++++ 那么()()[]11212531-++-++++k k ()[]1122-++=k k 122++=k k ().12+=k 这就是说,当1+=k n 时等式也成立。 根据(1)和(2),可知等式对任何的*N n ∈都成立。 2.用数学归纳法证明()()(),1121531n n n n -=--+-+- 当1=n 时,左边应为_____________。 3.判断下列推证是否正确,并指出原因。 用数学归纳法证明:126422++=++++n n n 证明:假设k n =时,等式成立 就是 126422++=++++k k k 成立 那么()122642++++++k k ()1212++++=k k k =()()1112++++k k 这就是说当1+=k n 时等式成立, 所以*N n ∈时等式成立。

《身边的植物》教学设计

《身边的植物》教学设计 教学目的: (一)科学探究目标: 1、在观察活动中,能够调动各种感官识别常见植物,描述常见植物的特征,会依据不同标准对不同植物进行简单的分类和比较。 2、能做一份植物的观察记录。 (二)情感态度与价值观目标: 1、在具体的实践活动中运用多种感官多角度观察植物,激发学生参与科学学习的兴趣和热情。 2、想了解与植物有关的事情。 (三)科学知识目标: 1、能说出周围常见植物的名字。 2、知道植物的特征,包括顔色、气味、外形等内容。 教学重点: 识别常见植物,描述常见植物的特征 教学难点: 会依据不同标准对不同植物进行简单的分类和比较 教学准备: 观察记录表、放大镜、植物卡片、各种奇异植物的资料 教学时间:二课时 教学过程: 第一课时 l 教学导入 提问:同学们,你们知道地球上有多少种植物?那你知道咱们校园里有多少种植物吗? l 教学新课 一、认识周围的植物 1、谁能说说我们周围有哪些植物?向同学们介绍它的名字及其特征。

2、看教材活动图例,让学生了解可以通过手摸、鼻闻、眼看来掌握植物特征,认识植物。 3、提出课外观察的任务及注意事项,并填写好观察记录表。 4、分小组进行课外观察活动,教师巡视。 5、学生汇报,检查观察记录表的记载情况。 5、教师小结。 l 拓展延伸 继续了解认识本地的一些植物。 第二课时 l 教学导入 1、介绍我国明代医学家和药学家李时珍。 2、李时珍认识了上千种植物,在《本草纲目》里还给植物进行了分类。 l 教学新课 一、给身边的植物分类 1、请同学们按照不同的标准,试着给下面这些植物分类,将同一类植物做上相同的记号。 2、与同学们交流自己的分类标准。 3、把自己上节课观察到的植物按照自己的分类标准进行分类。 4、学生汇报,教师记录。 5、教师小结。 二、有趣的植物 1、学生了解书中介绍的四种有趣的植物。 2、学生展示搜集的有趣植物的资料并相互交流。 3、教师补充、小结。 l 拓展延伸 课后继续搜集了解植物的有关资料。 板书设计: 身边的植物

数学归纳法的应用习题

第2课时数学归纳法的应用双基达标(限时20分钟) 1.利用数学归纳法证明1 n+ 1 n+1 + 1 n+2 +…+ 1 2n<1(n∈N *,且n≥2)时,第二步 由k到k+1时不等式左端的变化是 (). A.增加了 1 2k+1 这一项 B.增加了 1 2k+1 和 1 2k+2 两项 C.增加了 1 2k+1 和 1 2k+2 两项,同时减少了 1 k这一项 D.以上都不对 解析不等式左端共有n+1项,且分母是首项为n,公差为1,末项为2n 的等差数列,当n=k时,左端为1 k+ 1 k+1 + 1 k+2 +…+ 1 2k;当n=k+1时, 左端为 1 k+1 + 1 k+2 + 1 k+3 +…+ 1 2k+ 1 2k+1 + 1 2k+2 ,对比两式,可得结论. 答案 C 2.用数学归纳法证明“当n为正奇数时,x n+y n能被x+y整除”的第二步是 ().A.假使n=2k+1时正确,再推n=2k+3正确 B.假使n=2k-1时正确,再推n=2k+1正确 C.假使n=k时正确,再推n=k+1正确 D.假使n≤k(k≥1),再推n=k+2时正确(以上k∈N*) 解析因为n为正奇数,据数学归纳法证题步骤,第二步应先假设第k个正奇数也成立,本题即假设n=2k-1正确,再推第(k+1)个正奇数即n=2k+1正确. 答案 B 3.已知平面内有n条直线(n∈N*),设这n条直线最多将平面分割成f(n)个部分,则f(n+1)等于

().A.f(n)+n-1 B.f(n)+n C.f(n)+n+1 D.f(n)+n+2 解析要使这n条直线将平面所分割成的部分最多,则这n条直线中任何两条不平行,任何三条不共点.因为第n+1条直线被原n条直线分成n+1条线段或射线,这n+1条线段或射线将它们所经过的平面区域都一分为二,故f(n+1)比f(n)多了n+1部分. 答案 C 4.已知S n=1 1·3+ 1 3·5+ 1 5·7+…+ 1 (2n-1)(2n+1) ,则S1=________,S2=________, S3=________,S4=________,猜想S n=________. 解析分别将1,2,3,4代入观察猜想S n=n 2n+1 . 答案1 3 2 5 3 7 4 9 n 2n+1 5.用数学归纳法证明“当n为正偶数时x n-y n能被x+y整除”第一步应验证n =________时,命题成立;第二步归纳假设成立应写成________________.解析因为n为正偶数,故第一个值n=2,第二步假设n取第k个正偶数成立,即n=2k,故应假设成x2k-y2k能被x+y整除. 答案2x2k-y2k能被x+y整除 6.用数学归纳法证明: 1+1 22+ 1 32+…+ 1 n2<2- 1 n(n≥2). 证明:(1)当n=2时,1+1 22= 5 4<2- 1 2= 3 2,命题成立. (2)假设当n=k时命题成立,即1+1 22+ 1 32+…+ 1 k2<2- 1 k,当n=k+1时, 1+1 22+ 1 32+…+ 1 k2+ 1 (k+1)2 <2- 1 k+ 1 (k+1)2 <2- 1 k+ 1 k(k+1) =2- 1 k+ 1 k- 1 k+1=2- 1 k+1 ,命题成立. 由(1)、(2)知原不等式在n≥2时均成立. 综合提高(限时25分钟)

高中数学 2.3数学归纳法教学设计 新人教A版选修22

数学归纳法教学设计 【教学目标】 (1)知识与技能: ①理解数学归纳法的原理与实质,掌握数学归纳法证题的两个步骤; ②会用数学归纳法证明某些简单的与正整数有关的命题; ③能通过“归纳、猜想”的过程得出结论并用数学归纳法证明结论。 (2)过程与方法: 努力创设愉悦的课堂气氛,使学生处于积极思考,大胆质疑的氛围中,提高学生学习兴趣和课堂效率,让学生经历知识的构建过程,体会归纳递推的数学思想。 (3)情感态度与价值观: 通过本节课的教学,使学生领悟数学归纳法的思想,由生活实例,激发学生学习的热情,提高学生学习的兴趣,培养学生大胆猜想,小心求证,以及发现问题、提出问题,解决问题的数学能力。 【教学重点】 借助具体实例了解数学归纳法的基本思想,掌握它的基本步骤,能熟练运用它证明一些简单的与正整数n 有关的数学命题; 【教学难点】 数学归纳法中递推关系的应用。 【辅助教学】 多媒体技术辅助课堂教学。 【教学过程】 一、创设问题情境,启动学生思维(说明引入数学归纳法的必要性) (情景一)问题1:大球中有5个小球,如何证明它们都是绿色的? 问题2: 如果{}n a 是一个等差数列,怎样得到()11n a a n d =+-? (情境二)数学家费马运用不完全归纳法得出费马猜想的事例。 【设计意图:】以上两个情境分别是完全归纳法和不完全归纳法的体现,发现其结论正确性不同,而这里实际上体现了数学中的归纳思想。归纳法分为“不完全归纳法(只验证几个个体成立,得到一般性结论,但结论不一定正确)”和“完全归纳法(验证每个个体都成立,得到一般性结论,其结论一定正确)”。 (情景三)问题:如何解决不完全归纳法存在的问题呢? 如何保证骨牌一一倒下?需要几个步骤才能做到? 二、搜索生活实例,激发学生兴趣

归纳法和演绎法的优势和劣势

Advantages and disadvantages of the deductive and inductive grammar teaching methods The deductive approach of teaching: The deductive approach of teaching English grammar refers to the style of teaching students by introducing the grammatical rules first. and then applying them by the students . This means that a teacher works from the more general to the more specific in a deductive approach called informally a " top down”approach. The deductive methods seem to work best if you want students to be able to quickly and accurately solve problems like those worked out in class or in the work.The deductive approach is more predictable because the teacher selects the information and the sequence of presentation.The deductive approach clarifying that the problem many students have applying these various rules indicates that they may not fully understand the concepts involved and that the deductive approach tends to emphasize grammar at the expense of meaning and to promote passive rather than active participation of the students . The inductive approach of teaching: The approach refers to the style of introducing language context containing the target rules where students can induce such rules through the context and practical examples.in other words . the sequence in this approach goes from creating a situation and giving examples to the generalization where students should discover such generalization by themselves or with the teacher ' s help. Teachers show their students a series of examples and non - examples , and then guide them toward noticing a pattern and coming up with the generalization or concept rule.The inductive approach was difficult for weaker or slower students , and that only brighter students were capable of discovering the underlying patterns of a structure. Comparison : the deductive and inductive approaches Teacher ' approaches of teaching English grammar play an important role in classrooms where students should understand what they are taught and how to use it correctly here , we are interested in the deductive and inductive approaches . this interest leads us to review some previous studies which compared between the two of them , or focused on their advantages and disadvantages.

浅谈数学归纳法及其在中学数学中的应用2

目录 1、数学归纳法---------------------------------------------------------- 3 1.1 归纳法定义-------------------------------------------------------- 3 1.2 数学归纳法体现的数学思想----------------------------------------- 4 1.2.1 从特殊到一般------------------------------------------------ 4 1.2.2 递推思想---------------------------------------------------- 4 2、数学归纳法在中学数学中的应用技巧------------------------------------- 5 2.1 强调------------------------------------------------------------- 5 2.1.1 两条缺一不可------------------------------------------------ 5 2.2 技巧------------------------------------------------------------- 5 2.2.1 认真用好归纳假设-------------------------------------------- 5 2.2.2 学会从头看起------------------------------------------------ 6 2.2.3 在起点上下功夫---------------------------------------------- 7 2.2.4 正确选取起点和过渡------------------------------------------ 8 2.2.5 选取适当的归纳假设形式-------------------------------------- 9 3、数学归纳法在中学数学中的应用 ---------------------------------------- 9 3.1 证明有关自然数的等式--------------------------------------------- 9 3.2 证明有关自然数的不等式------------------------------------------ 11 3.3 证明不等式------------------------------------------------------ 11 3.4 在函数迭代中的应用---------------------------------------------- 12 3.5 在几何中的应用-------------------------------------------------- 14 3.6 在排列、组合中的应用-------------------------------------------- 16 3.7 在数列中的应用-------------------------------------------------- 16 3.8 有关整除的问题-------------------------------------------------- 17

数学归纳法教学内容

数学归纳法

收集于网络,如有侵权请联系管理员删除 数学归纳法及其应用举例单元练习(二) 一、选择题(本大题共6小题,每小题3分,共18分) 1.在应用数学归纳法证明凸n 边形的对角线为 21n (n -3)条时,第一步验证n 等于 A. 1 B.2 C.3 D.0 2.等式12+22+32+…+n 2=2 4752+-n n A.n 为任何自然数时都成立;B.仅当n =1,2,3时成立 C.n =4时成立,n =5时不成立; D.仅当n =4时不成立 3.用数学归纳法证明不等式312111+++++n n n +…+24 1321>n (n ≥2,n ∈N *)的过程中,由n =k 逆推到n =k +1时的不等式左边 A. 增加了1项 )1(21+k ; B.增加了“)1(21121+++k k ”,又减少了“1 1+k ” C.增加了2项 )1(21121+++k k D.增加了)1(21+k ,减少了11+k 4.用数学归纳法证明(n +1)(n +2)…(n +n )=2n ·1·3·5·…(2n -1)(n ∈N *)时,假设n =k 时成立,若证n =k +1时也成立,两边同乘 A.2k +1 B.112++k k C.1)22)(12(+++k k k D.1 32+-k k

收集于网络,如有侵权请联系管理员删除 5.证明1+413121+++…+2 121n n >- (n ∈N *),假设n =k 时成立,当n =k +1时,左端增加的项数是 A. 1项 B.k -1项 C.k 项 D.2k 项 6.上一个n 级台阶,若每步可上一级或两级,设上法总数为f (n ),则下列猜想中正确的是 A.f (n )=n B.f (n )=f (n -1)+f (n -2) C.f (n )=f (n -1)·f (n -2) D.f (n )=???≥-+-=3 )2()1(2,1,n n f n f n n 二、填空题(本大题共5小题,每小题3分,共15分) 7.凸n 边形内角和为f (k ),则凸k +1边形的内角和 f (k +1)=f (k )+___________. 8.观察下列式子:1+23212<,1+223121+<35,1+474 13121222<++,…则可归纳出:___________. 9.设f (n )=(1+)11()111)(1n n n n ++???++,用数学归纳法证明f (n )≥3.在“假设n =k 时成立”后,f (k +1)与f (k )的关系是 f (k +1)=f (k )·___________. 10.有以下四个命题:(1)2n >2n +1(n ≥3) (2)2+4+6+… +2n =n 2+n +2(n ≥1) (3)凸n 边形内角和为f (n )=(n -1)π(n ≥3) (4)凸n 边形对角线条数f (n )=2 )2(-n n (n ≥4).其中满足“假设n =k (k

相关文档