文档库 最新最全的文档下载
当前位置:文档库 › 酸化工艺

酸化工艺

CH8 酸化工艺重点难点:

●酸岩反应机理

●酸岩复相反应过程

●添加剂的作用机理

酸化:通过向地层注入一种或几种酸液,利用酸与地层中可反应矿物的化学反应,溶蚀储层中的岩石矿物成分和堵塞物,连通孔隙、天然裂缝及人造裂缝,增加流体在孔隙、裂缝中的流动空间,达到油气井增产和注水井增注的目的。

§1 酸化增产原理

按施工压力分

基质酸化

压裂酸化

一、酸化分类

按酸液体系分

盐酸

土酸按施工方式分

全井酸化暂堵酸化

分层酸化

二、酸液与地层岩石的化学反应

1 盐酸与碳酸盐岩的化学反应

盐酸与碳酸钙:

2HCl + CaCO

3=CaCl

2

+ H

2

O + CO

2

盐酸与白云岩地层:

4HCl + MgCa(CO

3)

2

=CaCl

2

+ MgCl

2

+

2H

2O + 2CO

2

2 酸液的溶解能力

目的:方便表示化学反应的计算法。定义:单位体积酸液与岩石反应完全后,所能溶解的岩石体积

岩石密度

酸液密度溶解能力系数?=

βX 用途:直接比较各种用酸成本。

溶解能力系数100:单位质量的纯酸反应完全后所能溶解的矿物质量。

式中的摩尔数

酸的在反应方程酸的相对分子质量式中的摩尔数矿物在反应方程矿物相对分子质量 100

??=

β溶解能力的计算:计算溶解能力系数,然后计算溶解能力X 。

表8-4 常用酸对碳酸盐岩的溶解能力(X)m 3/m 3

反应矿物酸液类型

酸液浓度,%

5101530

方解石盐酸

甲酸

乙酸

0.026

0.02

0.016

0.053

0.041

0.031

0.082

0.062

0.047

0.175

0.129

0.096

白云石盐酸

甲酸

乙酸

0.023

0.018

0.014

0.046

0.036

0.627

0.071

0.064

0.041

0.152

0.112

0.083

3 反应生成物的状态

氯化钙的溶解能力:

1m 328%浓度的盐酸和碳酸钙反应,生成486kg 的氯化钙。假设全部溶解于水,则此时氯化钙水溶液的质量浓度X%为:

%

100%?+=氯化钙质量

全部水质量氯化钙质量

X

全部水质量即为1m 328%浓度盐酸溶液中水的质量,与反应生成水的质量之和。

%

35% 100486

79820486

%=?++=X 图8-1 CaCl 2溶解度曲线

二氧化碳的溶解能力:1m328%浓度的盐酸和碳酸钙反应,生成193kg质量的二氧化碳,根据亚佛加德罗定律,这193 kg重的二氧化碳在标准状况下的体积为98m3。这98m3(标准状况)的二氧化碳,在油层条件下,部分溶解于酸液中,部分呈自由气状态。

4 砂岩油气层的土酸处理砂岩的组成:

砂岩=砂粒胶结物

+

砂粒

石英

长石胶接物

硅酸盐类

碳酸盐类

砂岩的土酸处理:

氢氟酸与碳酸钙的反应:

2HF + CaCO

3= CaF

2

↓ + CO

2

+ H

2

O

氢氟酸与硅酸铝钙(钙长石)的反应:

16HF + CaAl

2Si

2

O = CaF

2

↓+ 2AlF

3

↓ +

2SiF

4↑ + 8H

2

O

氢氟酸与石英的反应:

6HF + SiO

2= H

2

SiF

6

+ 2H

2

O

氢氟酸与砂岩中各种成分的反应速度各不相同:

◆氢氟酸与碳酸盐的反应速度最快,

◆其次是硅酸盐(粘土),

◆最慢是石英。

盐酸和碳酸盐的反应速度比起氢氟酸与碳酸盐的反应速度还要快

三、酸岩反应速度

(一)酸岩复相反应

反应性质:多相反应

反应的实质:酸中的氢离子与岩石矿物反应生成金属离子。

酸-岩反应过程:

?酸液中不断地电离出氢离子;

?酸液中的H+不断运动到岩石表面;

?H+在岩面与矿物进行反应;

?反应生成物离开岩面

图8-3 酸岩复相反应示意图

1 酸-岩反应速度

定义1:单位时间内酸浓度的降低值,mol/m3·S

定义2:单位时间内岩石单位反应面积的溶蚀量,g/cm2·S

影响因素:酸液浓度、系统温度、岩石类型、流动速度、反应面容比及酸液类型和性质。

表面反应速度反应速度控制

离子传质速度

系统反应速度:慢反应控制

石灰岩与盐酸的反应:受传质速度控制

白云岩与盐酸的反应:在低温下主要受表面反应速度控制,随着温度升高逐渐变成受传质速度控制。

2 传质速度

传质速度:在酸岩反应中,氢离子向岩面迁移的速度称为离子传质速度,它包含扩散及对流的形式。

扩散:当溶液中的某种离子存在浓度差时,这种离子就将从高浓度之处向低浓度方向运动。

离子对流:指活性酸与残酸之间的密度差引起的自然对流和酸液在岩石孔隙或裂缝中流动,

(二)影响酸岩反应速度的因素

1 酸的类型

原因:酸中氢离子浓度愈大,反应速度就愈快。

结论:采用强酸时反应速度大,采用弱酸时反应速度慢。

常用酸化工艺

常用酸化工艺 酸化工艺作为增产措施自应用于现场以来,为了满足不同改造对象和措施作业的要求,酸化工艺得到了不断完善和发展,形成了不同的类型酸化工艺。酸化工艺按照岩性主要可分为碳酸盐岩和砂岩储层酸化技术。考虑到水平井酸化的特殊性,本部分对水平井酸化工艺也做了简单介绍。 1. 碳酸盐岩储层酸化工艺 在碳酸盐岩储层酸化改造中,主要形成和发展了基质酸化技术和压裂酸化技术,习惯上用酸化表示基质酸化,用酸压表示压裂酸化。 1) 基质酸化工艺 基质酸化也称为常规酸化或解堵酸化,如前所述,其基本特征是在施工压力小于储层岩石破裂压力的条件下,将酸液注入储层。碳酸盐岩基质酸化的重要特征是酸蚀蚓孔的形成和微裂缝的扩大,其增产机理与蚓孔密切相关。 2) 酸压工艺 控制酸压效果的主要参数是酸蚀裂缝导流能力和酸蚀缝长。影响酸蚀缝长的最大障碍有:一是酸蚀缝长因酸液快速反应而受到限制,其次是酸压流体的滤失影响酸压效果。另外,为产生适足的导流能力,酸必须与裂缝面反应并溶解足够的储层矿物量。因此,为了获得好的酸压效果,提高裂缝导流能力和酸蚀缝长从降低酸压过程中酸液滤失、降低酸-岩反应速度、提高酸蚀裂缝导流能力等几个方面入手。 酸压过程中酸液的滤失问题通常考虑从滤失添加剂和工艺两方面着手;降低酸-岩反应速率也可以缓速剂的使用及工艺上来进行;加入缓速剂,使用胶凝酸、乳化酸、泡沫酸和有机酸并结合有效的酸化工艺可起到较好的缓速效果;提高裂缝导流能力可从选择酸液类型和酸化工艺着手,其原则是有效溶蚀和非均匀刻蚀。 压裂酸化工艺以能否实现滤失控制,延缓酸-岩反应速度形成长的酸蚀裂缝和非均匀刻蚀划分为普通酸压和深度酸压及特殊酸压工艺。 (1)普通酸压工艺普通酸压工艺指以常规酸液直接压开储层的酸化工艺。酸液既是压开储层裂缝的流体,又是与储层反应的流体,由于酸液滤失控制差,反应速度较快,有效作用距离短,只能对近井地带裂缝系统的改造。一般选用于储层污染比较严重、堵塞范围较大,而基质酸化工艺不能实现解堵目标时选用该工艺。 (2)深度酸压工艺以获得较长的酸蚀裂缝为目的而采用的不同于普通酸压工艺的酸压工艺称为深度酸压工艺。 a. 前置液酸压工艺 前置液酸压工艺是先向储层注入高粘非反应性前置压裂液,压开储层形成裂缝,然后注入酸液对裂缝进行溶蚀,从而获得较高导流能力,使油气井增产。 前置液的主要作用表现为:压裂造缝;降低裂缝表面温度;降低裂缝壁面滤失。这些作用能够减缓酸-岩反应速度,增加酸液的有效作用距离。前置液的表观粘度比酸液高几十倍到几百倍,当酸液进入充满高粘前置液的裂缝时,由于两种液体的粘度差异,粘度很小的酸液在前置液中形成指进现象,减小了酸液与裂缝壁面的接触面积,这增强酸液非均匀刻蚀裂缝的条件。 前置液酸压工艺可采用多种酸液类型搭配,除了前置液与常规盐酸搭配使用外,前置液还可与胶凝酸、乳化酸或泡沫酸进行搭配应用。上述搭配有各自的特点和应用范围,现场应用中可根据储层和井的情况进行选择。 b. 缓速酸类酸压工艺 缓速酸酸压技术在工艺特点上与普通酸压技术相同,不同之处在于其采用的酸液是胶凝酸、乳化酸、化学缓速酸或泡沫酸等缓速酸,通过缓速酸的缓速性能达到酸液深穿透的目的。不同缓速酸的特点参见酸液类型部分。 c. 多级交替注入酸压工艺 Coulter&Crowe等人(1976)提出前置液与酸液交替注入的一种酸压工艺,类似前置液酸压工艺,但其降滤失性及对储层的不均匀刻蚀程度优于前置液酸压。80年代中期后开始得到较为广泛的应用,90年代成为实现深度酸压的主流技术。它适用于滤失系数较大的储层,对储层压力小,岩性均一的地层。如果能有好的返排技术,可取得较好的效果。为获得理想的酸液有效作用距离,有时交替次数多达8次。这一工艺在中、低渗孔隙性及裂缝不太发育储层,或滤失性大,重复压裂储层均有较好成效。 美国在棉花谷低渗白云岩储层、卡顿伍注湾油田曾在大型重复酸压中采用了该项技术,油藏模拟表明有效酸蚀裂缝长度达到91-244m,增产效果显著。国内在长庆气田、塔河油田、塔里木轮南油田、普光气田和川东等气田等增产改造中取得了显著效果。 (3)特殊酸压工艺 针对某些特殊类型储层或为实现特定要求,提出了一些不同于上述酸压工艺、具有独特理论及工艺特点的一些特殊酸压工艺,如闭合酸压、平衡酸压、变粘酸酸压及不同酸化技术的复合工艺。限于篇幅,在此简要介绍目前应用较多的闭合酸压工艺。 某些油气层用上述酸压工艺不能创造出满意的必需的流动通道和高导流能力,这类储层主要特征如下: a.酸裂缝面溶解不均一,不能产生明显的流道,也不能获得必需的裂缝导流能力;

水解酸化池的工艺操作规程通用版

操作规程编号:YTO-FS-PD680 水解酸化池的工艺操作规程通用版 In Order T o Standardize The Management Of Daily Behavior, The Activities And T asks Are Controlled By The Determined Terms, So As T o Achieve The Effect Of Safe Production And Reduce Hidden Dangers. 标准/ 权威/ 规范/ 实用 Authoritative And Practical Standards

水解酸化池的工艺操作规程通用版 使用提示:本操作规程文件可用于工作中为规范日常行为与作业运行过程的管理,通过对确定的条款对活动和任务实施控制,使活动和任务在受控状态,从而达到安全生产和减少隐患的效果。文件下载后可定制修改,请根据实际需要进行调整和使用。 一般厌氧发酵过程可分为四个阶段,即水解阶段、酸化阶段、酸衰退阶段和甲烷化阶段。而在水解酸化池中把反应过程控制在水解与酸化两个阶段。在水解阶段,可使固体有机物质降解为溶解性物质,大分子有机物质降解为小分子物质。在产酸阶段,碳水化合物等有机物降解为有机酸,主要是乙酸、丁酸和丙酸等。水解和酸化反应进行得相对较快,一般难于将它们分开,此阶段的主要微生物是水解—酸化细菌。 废水经过水解酸化池后可以提高其可生化性,降低污水的pH值,减少污泥产量,为后续好氧生物处理创造了有利条件。因此,设置水解酸化池可以提高整个系统对有机物和悬浮物的去除效果,减轻好氧系统的有机负荷,使整个系统的能耗相比于单独使用好氧系统大为降低。 本项目水解酸化池的处理效果增强措施: a、水解酸化池底部安装有大阻力布水系统,利用二沉池的回流污泥搅动水解酸化池底部的污泥,使其处于悬浮状态并且与进入的废水充分混合,从而提高了水解酸化池

压裂酸化技术服务中心及特色技术简介

压裂酸化技术服务中心(以下简称“中心”)自1985年成立以来,始终强调发展和创新,长期致力于压裂酸化应用技术与基础理论的研究,努力解决生产中的技术难题,为低渗透油气藏的勘探与开发提出新理论、新工艺、新技术、新方法、新材料,逐渐形成了一系列压裂酸化特色技术。“十五”期间,“中心”在国内外开展了卓有成效的现场技术服务。在国内,为16个油田的450余口重点井或疑难井提供了综合性科研攻关和技术服务,解决了塔里木、玉门等十几个油田的众多压裂酸化改造技术难题,为中石油的增储上产做出了贡献;在国外,为哈萨克斯坦、阿塞拜疆等8个国家(地区),设计施工180余口井,增产效果显著,为中国石油在国际上赢得了声誉。 “中心”获得了50项科研成果,其中获省部级以上科研成果奖14项,2004年获得中国石油天然气股份公司“油气田开发先进技术”金牌,2005年获中国石油天然气集团公司“优秀科技创新团队”等多项荣誉称号。

一、低渗透油藏开发压裂技术

二、复杂岩性储层酸压技术 研究对象:复杂岩性储层——碎屑岩、碳酸盐岩、粘土矿物各占1/3;以砂砾岩为主,交互白云质细砂岩、白云质泥岩。 累产113000吨,有效期2060天,目前41m 3/d。 累产123000吨,有效期910天,目前167.9m 3/d。 0.01 0.11101001000100000 10 20 30 40 50 60 70 闭合压力(MPa) 导流能力(μm 2.c m ) 复杂岩性:碎‘屑岩、碳酸盐岩、粘土矿物各占1/3

三、低渗油藏重复压裂技术 ●研究对象:针对低渗透油气藏前次压裂失效的井层,以增产稳产、提高开发效果为目的。 ●技术内容:该技术主要包括重复压裂井油藏与工程研究(复压前储层物性评价、剩余可采储量及地层能量评估、原有水力裂缝及其工艺技术评估等)、重复压裂前地应力场及重复压裂时机研究,转向重复压裂优化设计及其实施工艺技术,选井选层研究,中高含水期油藏重复压裂的油藏数值模拟技术,重复压裂材料与施工参数的研究、高砂比压裂施工工艺技术,重复压裂诊断与压后效果评价等技 主应力差值为3MPa 重复压裂选井

酸化措施工艺流程的描述

一、酸化措施前的准备工作: 1 根据我厂生产实际情况,根据厂、所领导的措施工作量安排。上报药品材料计划,包括药品数量、名称、规格、型号、生产厂家、预计价格。 2 药品进来后由物资管理部门负责验收。按油田有关部门的有关规定通知采油院进行药品检测,经检验合格后,方可进行施工准备。 3严格按工艺措施要求,围绕“三个清楚”和“三关”即酸化目的清楚,对结垢井分布规律、程度、部位认识清楚,酸化的潜力清楚;把住酸洗前选井关、酸化中的监督关、酸化后的管理关。 三个清楚: 1、酸化目的清楚: 酸化的目的:维持油井正常生产需要、解除近井地带堵塞,发挥油井最大产能,延长油井免修期,实现经济效益最大化。 2、结垢成因及分布规律、结垢程度、结垢部位认识清楚: 扶余采油厂经历了三十多年的注水开发,存在着注入水与地层水配伍性不好、水质差等问题,且频繁的井下作业,使大量的压裂液、洗井液及其它措施的工作液注入油层,在采油过程中,流体由地层、井底、井筒的温度、压力等条件的变化,促成油水混合物中的Ca2+和Mg2+在油层中、套管、油管外壁、泵筒等部位形成化合物CaCO3、MgCO3等沉淀,原油中的重组分与垢共同析出,使油井产量下降。注水见效越好的区块、越容易造成结垢。即酸化目的清楚,对结垢井分布规律、程度、部位认识清楚,酸化的潜力清楚;把住酸洗前选井关、酸化中的监督关、酸化后的管理关。 二、酸化措施目的: 维持油井正常生产需要、解除近井地带堵塞,恢复油井生产能力,延长油井免修期、实现经济效益最大化。 三、选井方向: 从全厂结垢现状,酸化的适应性等分析看,选井方向还要放在主力区块和注采完善区块,对其它区块进行控制。主力区块含油饱和度高,注采井网完善,地层能量补充及时,地层压力稳定,酸化后增产幅度大,并且有效期较长,有效率也高,80%以上的结垢井适合酸化。接替区块和其他区块注采井网完善程度差,能量补充不及时,增产效果较差,有效率也低,只有小部分井适合酸化。所以我们要合理分配资金,争取以最小的投入,获得最大的经济效益。 四、选井原则: 以增产为目的,调整区块开发平面和纵向矛盾为主导思想, 优化酸化井。 具体原则如下: (1)为了维护油井正常生产,对结垢特别严重的,在修井作业过程中,油管和套管被垢粘连在一起,导致油管拔不动,甚至不能进行各类措施的井,实施酸化处理。 (2)对结垢速度较快,每次修井都发现滤网堵这样的井,选择适当的时机,进行酸化,这样即维护了油井正常生产,延长了油井免修期,又解除近井地带堵塞,达到了增产的目的。 (3)对已到结垢周期、或对结垢认识清楚,有结垢描述或处在结垢区的近期产量下降的井实施酸化。 (4)物质基础好,投产初期产能发挥好,经压裂改造后有过高产历史,目前油井产量下降,动静不符的井进行酸化。 (5)酸化井最好是处在一线的油井,周围水井的注水状况好。 (6)、近两年产量下降幅度较大又没有进行酸化,地下注水效益好,地层压力高的井,应考

水解酸化池的工艺概述

水解酸化池的工艺概述 ——高众 在回用水处理工艺中水解酸化池的作用是重要的一个环节。水解——是大分子有机物降解的必经过程,大分子有机物想要被微生物所利用,必须先水解为小分子有机物,这样才能进入细菌细胞内进一步降解。酸化——是有机物降解的提速过程,因为它将水解后的小分子有机物进一步转化为简单的化合物并分泌到细胞外。这是回用水废水处理工艺中水解酸化作为预处理单元的原因。 水解酸化池的两个最基本作用是:一是提高废水可生化性,将大分子有机物转化为小分子;二是去除废水中的COD,部分有机物降解合成自身细胞。 本岗位的水解酸化池采用下进上出的翻流运作型态,上升流速取0.765 m/h,有效水深为6.5m。设计进水流量为900m3/h,水力停留时间按8.5h,总有效容积为7600m3。水解酸化池共4座,每座9格,共36格。每格水解酸化池设置有4个梯形泥斗,在泥斗下部采用水平喷射布水方式能使布水均匀。每格池顶部沿四周池壁设置集水槽,用于产水导流,以及排泥。每格水解酸化池内除了一根布水管外,还设有一根排泥管和供气管,其采用负压气提排泥方式,可使泥排至水解酸化池出水槽,与水解酸化池出水一起流至接触氧化池。 水解酸化池内采用了立体弹性组合填料,填料高度 3m,上部1m保护区,底部2.4m布水区,每座池子组合填料为972m3。池内采用的立体弹性填料的丝条呈立体均匀排列辐射状态,使气、水、生物膜得到充分混渗接触交换,生物膜不仅能均匀地着床在每一根丝条上,保持良好的活性和空隙可变性,而且能在运行过程中获得愈来愈大的比表面积。 填料的作用事实上就是给微生物提供一个生长平台,微生物附着再填料上可增加污水与微生物的接触面

关于水解酸化工艺的详解

关于水解酸化工艺的详解! 1、水解酸化法的机理 厌氧生物反应包括水解、酸化和甲烷化三个大的阶段,将反应控制在水解和酸化两个阶段的反应过程,可以将悬浮性有机物和大分子物质(碳水化合物、脂肪和脂类等)通过微生物胞外酶水解成小分子,小分子有机物在酸化菌作用下转化成挥发性脂肪酸的过程。在这一过程中同时可以将悬浮性固体水解为溶解性有机物、将难生物降解的大分子物质转化为易生物降解的小分子物质。 首先,水解反应器中大量微生物将进水中颗粒状颗粒物质和胶体物质迅速截留和吸附,这是一个物理过程的快速反应。一般只要几秒钟到几十秒即可完成。因此,反应是迅速的。截留下来的物质吸附在水解酸化污泥的表面,慢慢地被分解代谢,其在系统内的污泥停留时间要大于水力停留时间。在大量水解酸化细菌的作用下,大分子、难于生物降解物质转化为易于生物降解的小分子物质后,重新释放到液体中。在较高的水力负荷下随水流出系统。由于水解和产酸菌世代期较短,往往以分钟和小时计,因此,这一降解过程也是迅速的。在这一过程中溶解性 BOD、COD 的去除率虽然从表面上讲只有

10%左右,但是由于颗粒状有机物发生水解增加了系统中溶解性有机物的浓度,因此,溶解性BOD、COD 去除率远大于10%。但是由于酸化过程的控制不能严格划分,在污泥中可能仍有少量甲烷菌的存在,可能产生少量的甲烷,但甲烷在水中的溶解度也相当可观,故以气体形成释放的甲烷量很少。可以看出,水解反应器集沉淀、吸附、网捕和生物絮凝等物理化学过程,与水解、酸化和甲烷化过程等生物降解功能于一体。 2、水解酸化法的反应器类型 水解酸化反应器主要包括升流式水解反应器、复合式水解反应器及完全混合式水解反应器。此外,水解反应器还可以包括采用其他厌氧反应器型式实现水解酸化的反应器,如厌氧折流板反应器、厌氧接触反应器等。 1、升流式水解反应器 升流式水解反应器的示意图见图 1,水解酸化微生物与悬浮物形成污泥层,污水通过布水装置自反应器底部均匀上升至顶部出水堰排出过程中,污泥层可截留污水中悬浮物,并在水解酸化菌作用下降解有机物、提高污水可生化性等。 图 1 升流式水解反应器示意图

压裂酸化技术手册

《压裂酸化技术手册》 前言 近几年来,随着新压裂设备机组、连续油管设备和液氮泵车设备的引进以及对外合作的加强,施工工艺技术呈现出多样化,施工作业难度加大,施工技术要求较高,为了满足工程技术人员对装备的深入了解,提高施工技术、保证施工质量,组织技术人员历经两年时间编写了这本《压裂酸化技术手册》。该手册收集了井下作业处压裂酸化主要设备、液氮设备、连续油管设备等的性能规范和作业技术要求,井下工具、油套管、添加剂、支撑剂等的常用数据,以及单位换算、常用计算公式、摩阻曲线,地面工艺流程等内容。该手册目前仅在处内发行,请大家在使用中多提精品文档,知识共享,下载可修改编辑!

宝贵意见,以便今后修订。谢谢!精品文档,知识共享,下载可修改编辑!

目录 第一章压裂酸化设备 (1) 一、车载式设备 (1) (一) HQ2000型压裂车 (1) (二) BL1600型压裂车(1650型) (3) (三) SMT型管汇车 (7) (四) FBRC100ARC型混砂车 (9) (五) CHBFT 100ARC型混砂车 (14) (六) FARCVAN-Ⅱ型仪表车 (19) (七) GZC700/8型供液车 (22) (八) NC5200TYL70型压裂车 (23) (九) HR10M型连续油管作业机组 (24) (十) TR6000DF15型液氮泵车 (42) (十一) NTP400F15型液氮泵车 (44) (十二) NC-251-F型液氮泵车 (46) (十三) 赫洛ZM443液氮槽车 (48) (十四) 东风日产液氮槽车 (48) (十五) 赫洛ZM403运砂车 (49) (十六) YY10型运液车 (50) (十七) CTA12型运酸车 (50) (十八) NC5151ZBG/2500Y型背罐车 (51) (十九) CYPS-Ⅱ型配酸车 (51) 精品文档,知识共享,下载可修改编辑!

水解酸化池工艺详解精选文档

水解酸化池工艺详解精 选文档 TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-

水解酸化池工艺详解 在回用水处理工艺中水解酸化池的作用是重要的一个环节。水解——是大分子有机物降解的必经过程,大分子有机物想要被微生物所利用,必须先水解为小分子有机物,这样才能进入细菌细胞内进一步降解。酸化——是有机物降解的提速过程,因为它将水解后的小分子有机物进一步转化为简单的化合物并分泌到细胞外。这是回用水废水处理工艺中水解酸化作为预处理单元的原因。 水解酸化池的两个最基本作用是:一是提高废水可生化性,将大分子有机物转化为小分子;二是去除废水中的COD,部分有机物降解合成自身细胞。 本岗位的水解酸化池采用下进上出的翻流运作型态,上升流速取 m/h,有效水深为。设计进水流量为900m3/h,水力停留时间按,总有效容积为7600m3。水解酸化池共4座,每座9格,共36格。每格水解酸化池设置有4个梯形泥斗,在泥斗下部采用水平喷射布水方式能使布水均匀。每格池顶部沿四周池壁设置集水槽,用于产水导流,以及排泥。每格水解酸化池内除了一根布水管外,还设有一根排泥管和供气管,其采用负压气提排泥方式,可使泥排至水解酸化池出水槽,与水解酸化池出水一起流至接触氧化池。 水解酸化池内采用了立体弹性组合填料,填料高度3m,上部1m保护区,底部布水区,每座池子组合填料为972m3。池内采用的立体弹性填料的丝条呈立体均匀排列辐射状态,使气、水、生物膜得到充分混渗接触交换,生物膜不仅能均匀地着床在每一根丝条上,保持良好的活性和空隙可变性,而且能在运行过程中获得愈来愈大的比表面积。 填料的作用事实上就是给微生物提供一个生长平台,微生物附着再填料上可增加污水与微生物的接触面积提高水解酸化池的处理效率。简单的说填料就是细菌的附着床,就是增加生物量和提高微生物与废水接触面。 水解和酸化是厌氧消化过程的两个阶段,水解是指有机物进入微生物细胞前、在胞外进行的生物化学反应。微生物通过释放胞外自由酶或连接在细胞外壁上的固定酶来完成生物催化反应;酸化是一类典型的发酵过程,微生物的代谢产物主要是各种有机酸。在不同的工艺中水解酸化的处理目的也不同。水解酸化在好氧生物处理工艺中的水解目的主要是将原有废水中的非溶解性有机物转变为溶解性有机物,主要将其中难生物降解的有机物转变为易生物降解的有机物,提高废水的可生化性,以利于后续的好氧处理;而在混合厌氧消化工艺中的水解酸化的目的是为混合厌氧消化过程的甲烷发酵提供底物。而两相厌氧消化工艺中的产酸相是将混合厌氧消化中的产酸相和产甲烷相分开。 水解酸化处理方法是一种介于好氧和厌氧处理法之间的方法,可以将其视作厌氧处理第一和第二个阶段,即在大量水解细菌、酸化菌作用下将不溶性有机物水解为溶解性有机物,将难生物降解的大分子物质转化为易生物降解的小分子物质,或者说是使较大的难降解的物质开环断链的反应过程。因此从严格意义上来说水解酸化池实属兼氧池。 水解酸化池在当前调试阶段的重要工作就是污泥的培养,活性污泥培养采用间歇式培养方式,设定了临时进水管,根据需要以及营养物质投加设施或人工投加培养,进水采用前段污水处理厂预培养的污泥液,进水量按照池容积负荷递增投加。因为水解酸化池的污泥培养比较慢,所以要保证营养物质的均衡。由于该岗位水解酸化池的污泥来自污水处理站SBR 的,而污水站SBR的污泥是外接其他厂家的。虽说这种方法可以缩短污泥的驯化周期,但如果不及时检测,使得池内营养物质匮乏,很可能造成微生物不能适应环境或饿死。因此要及时分析COD、氨氮、总磷的含量,低于要求值时要及时投加营养剂。而且每天进行两次提气污泥循环也是一项必要的工作。总的来说水解酸化加生物接触氧化处理工艺中的水解酸化目的,主要是将原有废水中非溶解性有机物转变为易生物降解的有机物,提高废水的可生化

油田分层压裂(酸化)工艺技术探讨

油田分层压裂(酸化)工艺技术探讨 摘要:在油田勘探开采的发展中,常规石油中有诸多工艺技术,而分层压裂液液、酸化液工艺是中国油田试油作业中不可缺少的过程,也是从钻井步骤一直到油田生产过程中承上启下的关键工艺,同时也是油田开发工程中工艺技术服务的重要组成部分。本文阐述了我国油田的压裂液工艺技术以及酸化液工艺技术,并进一步研究这两种技术在油田施工过程中的应用、效果分析。 关键词:油田分层压裂液酸化液工艺技术效果分析 油田试油技术在广义上就是指试油施工的整个过程,其中包括了各方面的工艺技术例如:地层的测试、常规试油的工艺技术程序、试井测试和技术改造措施,这些工作全部是为了取得油田实际储油参数而进行的,压裂液工艺技术以及酸化液工艺技术,在中国石油集团渤海钻探工程技术研究院的工作学习中,我对石油技术做过颇多分析,本文就针对油田分层压裂酸化工艺技术展开探讨,分析压裂液技术与酸化液技术在我国油田种的应用、效果。 一、压裂技液术与酸化液技术的概述 1.压裂液技术 油田压裂液工艺技术应用上主要是压力将地层压开,形成裂缝并用支撑剂将它支撑起来,以减小流体流动阻力的增产、增注措施。 压裂液主要有前置液、携砂液、顶替液组成的。压裂液的性能要求:黏度高,润滑性好,滤失量小,低摩阻,对被压裂的流体层无堵塞及损害,对流体矿无污染,热稳定性及剪切稳定性能好、低残渣、配伍性好、破胶迅速、货源广,便于配制,经济合理。 压裂液主要作用在概括来说有以下几方面:1、携带支撑剂到地层;2、压开裂缝;3、降低地层温度。 2.酸化液技术 酸化液技术分为压裂酸化工艺技术和基质酸化工艺技术两种,主要是利用酸液解决生产井和注水井周围污染问题,进一步的清除缝隙中的堵塞物质,达到扩大地层裂缝,提高渗透率的一种工艺技术。压裂酸化技术指的是在酸化的基础上压裂,将天然裂缝加宽、扩大、延伸,或是通过压裂岩石形成新的岩缝。形成之后的岩缝凹凸不平,在施工后形成槽油、沟油等流通道,改善了之前的汽油景田流渗状况,提高产油量。还有一种普通盐酸的酸化工艺称之为解堵酸技术,用以压裂压力低于破裂压力时的酸化处理的工艺。这种技术用途不如前类宽泛,只能解除汽油井眼周围小范围的堵塞,但该技术具有低成本、工艺技术操作简单、对地层的溶解度高的优点;目前的酸化技术主要分为:酸洗酸化;解堵酸化;压裂

水解酸化池的工艺操作规程

水解酸化池的工艺操作规程 一般厌氧发酵过程可分为四个阶段,即水解阶段、酸化阶段、酸衰退阶段和甲烷化阶段。而在水解酸化池中把反应过程控制在水解与酸化两个阶段。在水解阶段,可使固体有机物质降解为溶解性物质,大分子有机物质降解为小分子物质。在产酸阶段,碳水化合物等有机物降解为有机酸,主要是乙酸、丁酸和丙酸等。水解和酸化反应进行得相对较快,一般难于将它们分开,此阶段的主要微生物是水解—酸化细菌。 废水经过水解酸化池后可以提高其可生化性,降低污水的pH值,减少污泥产量,为后续好氧生物处理创造了有利条件。因此,设置水解酸化池可以提高整个系统对有机物和悬浮物的去除效果,减轻好氧系统的有机负荷,使整个系统的能耗相比于单独使用好氧系统大为降低。 水解酸化池的处理效果增强措施: a、水解酸化池底部安装有大阻力布水系统,利用二沉池的回流污泥搅动水解酸化池底部的污泥,使其处于悬浮状态并且与进入的废水充分混合,从而提高了水解酸化池的处理效果,减轻后续好氧处理的负荷。二沉池的污泥回流水解酸化池,可以增加水解酸化池内的污泥浓度、提高处理效果,同时使污泥得到消化,减少了剩余污泥的排放量、降低污泥处理费用,从而减少了运行费用。 b、在水解酸化池内安装弹性填料,对搅动的废水进行水力切割,

使悬浮状态的污泥与水充分混合。为水解酸化菌的生长提供有利条件。 c、水解酸化池底部还装有排泥管道系统,是由UASB厌氧反应器排泥系统改进而成,可以保证水解酸化池长期稳定的运行。 为保证设施的稳定运行,必须保证均匀进水!根据车间的日产生污水量,分次分阶段的从调节池提升至水解酸化池。 污泥回流量控制在总污泥量为池容的1/3即可。

闭合泡沫酸化技术研究

龙源期刊网 https://www.wendangku.net/doc/a9454633.html, 闭合泡沫酸化技术研究 作者:孙铭泽 来源:《中国化工贸易·下旬刊》2017年第04期 摘要:碳酸盐岩储层一般采用压裂酸化进行改造,利用酸液溶蚀压开的裂缝,从而形成 具有一定导流能力的“蚓孔”通道,当裂缝闭合后,这些“蚓孔”被保留,从而达到改造碳酸盐岩储层的目的,但往往事与愿违,在裂缝闭合的同时岩石碎屑会堵塞在“蚓孔”中,从而大大降低压裂酸化改造效果,本文研究的闭合泡沫酸化技术可有效降低压裂后二次污染,提高压裂酸化改造效果。 关键词:碳酸岩盐;蚓孔;裂缝;导流能力;岩石碎屑;压裂酸化 碳酸岩盐储层为裂缝性油藏,受到裂缝发育的限制,该类储层必须采用压裂改造措施才能见到较好的工业产能,而该类储层最常用的改造措施为压裂酸化,通过压裂酸化沟通远井微裂缝,从提高储层导流能力,增加单井产量。但该储层往往在压裂后不一定取得理想的措施效果,主要是因为常规的压裂酸化具有较强的二次伤害,措后大部分裂缝通道被堵塞。 1 闭合泡沫酸化技术原理 针对较软以及均质程度较高储层(如白云岩)的一种工艺技术,尤其适合经过酸压或者水力压裂后裂缝导流能力不高的储层。其特点是:让酸液在低于储层破裂压力的条件下流过储层内“闭合”裂缝,在低排量下注入酸液,溶蚀裂缝壁面,产生不均匀溶蚀的沟槽,在施工压力消除及裂缝闭合后,使酸蚀通道仍然具有较好的导流能力。泡沫酸酸化技术就是在常规酸液体系中加入起泡剂和稳泡剂,通过泡沫发生器与气体混合,形成以酸为连续相、气泡为分散相的泡沫体系,使得配制的酸化体系兼有泡沫流体性质和酸化能力,然后注入地层进行酸化。将两者的特点进行结合,最终形成了既可提高酸化作业距离又可溶蚀压裂后形成的裂缝堵塞物的闭合泡沫酸化技术。 2 闭合泡沫酸化技术配方体系研究 闭合泡沫酸化技术为闭合酸化和泡沫酸化的复合技术,目前两种技术相对比较成熟,本项目主要是在以往压裂过的井进行实施,并配合以泡沫酸化技术实施,主要目的:一是对以往压裂形成的裂缝通道进行溶蚀达到闭合酸化的功能;二是利用泡沫酸化调整酸化剖面实现均匀酸化和利用泡沫酸酸化作用距离远的特性,提高酸化处理半径,以达到沟通远井裂缝的目的。 2.1 配方体系确定 针对碳酸岩盐储层特点和流体性质,并借鉴以往酸化经验确定出酸化配方体系: 清洗液:清洗地层有机堵塞物,隔离酸液与地层水,冷却地层。

水解酸化原理介绍

水解酸化原理介绍 作者:钱进 1. 水解酸化反应机理 水解在化学上指的是化合物与水进行的一类反应的总称。在废水处理中,水解指的是有机底物进入细胞之前,在胞外进行的生物化学反应。水解是复杂的非溶解性的聚合物被转化为简单的溶解性单体或二聚体的过程。高分子有机物因相对分子量巨大,不能透过细胞膜,因此不可能为细菌直接利用。他们首先在细菌胞外酶的水解作用下转变为小分子物质。这一阶段最为典型的特征是生物反应的场所发生在细胞外,微生物通过释放胞外自由酶或连接在细胞外壁上的固定酶完成生物催化氧化反应(主要包括大分子物质的断链和水溶)。 酸化则是一类典型的发酵过程,即产酸发酵过程。酸化是有机底物即作为电子受体也是电子供体的生物降解过程。在酸化过程中溶解性有机物被转化以挥发酸为主的末端产物。 在厌氧条件下的混合微生物系统中,即使严格地控制条件,水解和酸化也无法截然分开,这是因为水解菌实际上是一种具有水解能力的发酵细菌,水解是耗能过程,发酵细菌付出能量进行水解是为了取得能进行发酵的水溶性底物,并通过胞内的生化反应取得能源,同时排出代谢产物(厌氧条件下主要为各种有机酸)。如果废水中同时存在不溶性和溶解性有机物时,水解和酸化更是不可分割地同时进行。如果酸化使pH值下降太多时,则不利于水解的进行。 厌氧发酵产生沼气过程可分为水解阶段、酸化阶段、乙酸化阶段和甲烷阶段等四个阶段。水解酸化工艺就是将厌氧处理控制在反应时间较短的第一和第二阶段,即将不溶性有机物水解为可溶性有机物,将难生物降解的大分子物质转化为易生物降解的小分子有机物质的过程。 1.2水解酸化的影响因素

a)基质的种类和颗粒粒径 基质不同,其水解难易亦不同。基质的种类对水解酸化过程的速率有重要影响。如脂肪、蛋白质、多糖在其他条件相同的条件下,水解速率逐渐增大;对同类型有机物来说,分子量大的要比分子量小的更难水解;从分子结构来说,水解难易程度为直链结构>支链结构>环状结构,且单环化合物易于杂环化合物。污染物的颗粒的大小对水解速率的影响也很大。颗粒粒径越大,单位重量的比表面积就小,越难于水解。因此,对于颗粒大有机污染物浓度较高的废水或污泥,先破碎后再进入水解池,加速水解(酸化)速率。 b)容积负荷 容积负荷是水解过程的重要工艺参数之一,它反映了进水浓度与停留时间对厌氧过程的综合影响。对于水解反应器,容积负荷设计取值较低,提高水力停留时间,使污染物质与水解微生物接触时间加长,溶解出COD 浓度变高,水解也越完全。对于对于城市污水,水解反应可在很短时间内完成,容积负荷可取相对较高值;而对于工业废水比例较大的的污水,容积负荷需根据废水性质进行设计。 c)配水系统 水解池良好运行的重要条件之一是保障污泥和废水之间的充分接触,因此系统底部的布水系统应该尽可能地均匀。水解反应器的配水系统是一个关键的设计系统,为了使反应器底部进水均匀,有必要采用将进水均匀分配到多个进水点的分配装置。 d)上升流速 为确保水解反应器中泥水的充分接触及出水水质,水解池的上升流速应控制在一定的范围内。当上升流速偏低时,大量的较密实的活性污泥沉积在水解池的底部,在污水上升的过程中,泥水不能充分接触反应,从而导致了去除效果较差。当上升流速偏高时,会造成水解池的活性污泥大量流失。出水带泥,一方面对后续好氧生化处理的微生物造成毒性,另一方面无法保证水解池的去除效果。 1.3水解酸化工艺优点 水解酸化阶段主要利用的是发酵细菌,这类细菌的种类繁多,代谢能力强,繁殖速度快,对外界环境适应能力强等特点。

酸化液及酸化工艺的技术进展 张炳杰 2014

酸化液及酸化工艺的技术进展 张炳杰 (长江大学化学与环境工程学院,湖北荆州,434023) 摘要:酸化是通过油水井向底层注入酸液,溶解钻井、完井、修井等作业过程中产生的堵塞物(如粘土、无机矿物质等)及储集层岩石矿物,恢复和提高储集层的渗透性能,从而达到油气田的增产、增注措施。同时,酸化液和酸化用添加剂作用下,对于地层及采油设备的腐蚀及防腐缓蚀措施等研究内容也是油气田发展研究的重要方向。目前,国内外应用的酸化液类型油井酸化用的酸液主要有盐酸、土酸、乙酸、甲酸、多组分酸、粉状有机酸以及近几年来发展起来各种缓速酸体系等作为特殊酸化也使用硫酸、碳酸、磷酸等。 关键词:酸化;解堵;酸化添加剂;酸化工艺;增注增产 Key words:Acidification;Broken down;Additives for Acidizing Fluids;Acidizing technology;Stimulation 作者简介:张炳杰(1992—),男,湖北黄石市,现长江大学在读本科生 前言:近年来,随着石油勘探开发技术的不断发展,特别是深井、超深井及特殊工艺井钻探越来越多对钻井液提出了更高的要求。安全健康高效的钻井液技术标志着钻井液技术研究和应用进入了一个全新的发展阶段,围绕钻井液工程技术和安全健康高效这一发展主题,国外一些公司相继投入大量的人力和财力以满足复杂条件的钻探技术、油气层保护、油气测录井与评价环保要求以及提高油气勘探开发综合效益等为目标【1】,开展了大量基础理论和应用技术研究,取得了一系列的研究成果和应用技术。当前国内外酸化作业的技术进步,主要反映在箍工设计、施工技术和酸化工作液质量3个方面。酸化工作滚的质量大致分为酸化反应、残酸返捧和设备防腐等方面,原则上它们都可以通过使用各种化学添加剂得以改善。 1.油气田地层结构及性质 能够生成石油和天然气的岩层,称为生油气岩或生油气母岩、生油气源岩(简称生油岩【2】)。由生油气岩组成的地层,即为生油气层(简称生油层),这是自然界生成石油和天然气的实际场所。沉积岩中的泥岩、页岩、砂质泥岩、泥质粉砂岩、碳酸盐岩等细粒均可组成良好的生油层。 岩性主要为砂砾岩、砂岩和粉砂岩。其中基性、中性、酸性火山岩岩块含量较高,粒度为0.01~0.9mm;圆度为次棱、次园;胶结物以泥质为主,其次为硅质与灰质,胶结类型为接触、接触—孔隙、孔隙式。粘土矿物总含量平均为10.49%,主要粘土矿物为水云母、绿泥石及蒙脱石或水云母混层。水云母平均含量为3.19%,呈丝缕状与片状;绿泥石平均含量1.53%,最高达4.91%,呈绒球状;蒙脱石与水云母混层平均含量为5.07%,其中蒙脱石占混层比的12%~20%。硅质胶结物,以石英次生加大较普遍,结构牢固,堵塞了部分喉道;其次是脱玻化产生的石英晶粒以衬垫形式包于颗粒表面;还有碳酸盐、沸石、长石等胶结物。孔隙类型以次生孔为主,有粒间溶孔、粒内溶孔、铸模孔等。孔隙度为6.08%~18.44%,平均14.47%;渗透率为0.069×10-3~63.3×10-3μm2,平均18.29×10-3μm2。孔径中值大部分小于4μm。

水解(酸化)工艺与厌氧发酵的区别

水解(酸化)工艺与厌氧发酵的区别 从原理上讲,水解(酸化)是厌氧消化过程的第一、二两个阶段。但水解(酸化)-好氧处理工艺中的水解(酸化)段和厌氧消化的目标不同,因此是两种不同的处理方法。 水解(酸化)-好氧处理系统中的水解(酸化)段的目的,对于城市污水是将原水中的非溶解态有机物截留并逐步转变为溶解态有机物;对于工业废水处理,主要是将其中难生物降解物质转变为易生物降解物质,提高废水的可生化性,以利于后续的好氧生物处理。水解工艺的开发过程是从低浓度城市污水开始的,与高浓度废水的厌氧消化中的水解、酸化过程是不同的。在连续厌氧过程中水解、酸化的目的是为混合厌氧消化过程中的甲烷化阶段提供基质。而两相厌氧消化中的产酸段(产酸相)是将混合厌氧消化中的产酸段和产甲烷段分开,以便形成各自的最佳环境。因此,尽管水解(酸化)-好氧处理工艺中的水解(酸化)段、两相法厌氧发酵工艺中的产酸相和混合厌氧消化工艺中的产酸过程均产生有机酸,但是由于三者的处理目的的不同,各自的运行环境和条件有着明显的差异,主要表现在以下几个方面。 (1)氧化还原电位(Eh)不同 在混合厌氧消化系统中,由于完成水解、酸化的微生物和产甲烷微生物共处于同一个反应器中,整个反应器的氧化还原电位(Eh)的控制必须首先满足对Eh要求严格的甲烷菌,一般为300mV以下,因此,系统中的水解(酸化)微生物也是在这一电位值下工作的。而两相厌氧消化系统中,产酸相的氧化还原电位一般控制在-300—-100mV之间。水解(酸化)-好氧处理工艺中的水解(酸化)段为一典型的兼性过程,只要Eh控制在0mV左右,该过程即可孙里进行。 (2)pH值不同 在厌氧消化系统中,消化液的pH值控制在甲烷菌生长的最佳pH值范围,一般为6.8-7.2。在两相厌氧消化系统中,产酸相的pH值一般控制在6.0-6.5之间,在酸化反应器pH值降低时,丙酸的相对含量增大,而丙酸对后续的甲烷相中的产甲烷菌将产生强烈的抑制作用。对于水解(酸化)-好氧处理系统来说,由于浓度低不存在酸的抑制问题,因此,可以不控制pH值的范围,一般pH在6.5-7.5之间。 (3)温度不同 三种工艺对温度的控制也不同,通常厌氧消化系统以及两相厌氧消化系统的温度均严格控制,要么中温消化(30-35℃),要么高温消化(50-55℃)。而水解处理工艺对温度无特殊要求,通常在常温下运行,也可获得较为满意的水解(酸化效果)。 由于反应条件不同,三种工艺系统种优势菌群也不相同。在厌氧消化系统种,由

酸化工艺在油田中的应用

酸化工艺在油田中的应用 【摘要】地层具有不均一性,往往有渗透率极低的地层。为了改善生产层位的地层物性,提高渗透性,油田中经常往地层中注入酸液与地层岩石反应。随着酸化技术的不断发展,这种技术措施也越来越多的被应用与地层解堵中。 【关键词】酸化;措施;原理;酸化液;添加剂 酸处理通常称作酸化,就是用一定的设备将能与地层中某种成分反应的酸液注入到地层中,使地层的渗透率得以恢复或增加,达到增加产油量或注水量的目的。本文主要是从酸的原理、酸的分类、设计施工、配制、各类添加剂等几方面作简单介绍。 一、酸化原理 1、碳酸盐岩地层酸化 碳酸盐地层主要矿物成分是方解石(caco3)和白云石 (camg(co3)2),hcl与其反应如下: caco3+2hcl=cacl2+h2o+co2↑ camg(co3)2+2hcl= cacl2+mgcl2+h2o+co2↑ 碳酸盐地层的储集空间主要分为孔隙和裂缝两种类型,对其进行酸处理,就是要解除孔隙和裂缝中的堵塞物或扩大、沟通地层原有的孔隙和裂缝,提高地层的渗透性能。 2、砂岩地层的酸化 砂岩是由砂粒和粒间胶结物所组成,砂粒主要是石英和长石,胶

结物主要为粘土和碳酸盐类,砂岩的油气储集空间和渗透通道就是砂粒与砂粒之间未被胶结物完全充填的孔隙。 砂岩酸化一般用土酸,由hcl和hf混合而成,反应式如下: 2hf+caco3=caf2↓+co2+h2o 16hf+caal2si2o8=caf2↓+2alf3+2sif4↑+8h2o 6hf+sio2=h2sif6+2h2o 砂岩地层的酸处理,就是通过酸液溶解砂粒之间的胶结物和部分砂粒,或者溶解孔隙中的泥质堵塞物,或其它结垢物的恢复,提高井底附近地层的渗透率。 二、酸化分类 1、经典分类 (1)酸浸:亦称酸洗,是一种清除井筒中的酸溶性结垢或疏通射孔孔眼的工艺。 (2)基质酸化:就是在低于岩石破裂压力下,将酸注入地层孔隙(晶间,孔隙或裂逢),主要是扩大孔隙空间,溶解空间内的颗粒堵塞物。 (3)压裂酸化:就是在足以压开地层形成裂逢或张开地层原有裂缝的压力下,对地层挤酸的一种工艺。 2、酸液分类 (1)普通酸液酸化:主要是指用hcl、hcl/hf直接作为工作液进行施工。

水解酸化,好氧生物处理

实用水处理技术丛书 城市污水生物处理新技术 开发与应用 ——水解-好氧生物处理工艺 王凯军贾立敏编著 化学工业出版社

环境科学与工程出版中心 北京 2001年10月第一版2001年1月北京第1次印刷

目录 第一节水解(酸化)工艺与厌氧工艺 (5) 一、基本原理 (5) 二、水解-好氧工艺的开发 (6) 三、水解(酸化)工艺与厌氧发酵的区别 (6) 第三节水解-好氧生物处理工艺特点 (8) 1、水解池与厌氧UASB工艺启动方式不同 (8) 2、水解池可取代初沉池 (9) 3、较好的抗有机负荷冲击能力 (9) 4、水解过程可改变污水中有机物形态及性质,有利于后续好氧处理 (10) 5、在低温条件下仍有较好的去除效果 (10) 6、有利于好氧后处理 (11) 7、可以同时达到对剩余污泥的稳定 (11) 第四节水解-好氧生物处理工艺的机理 (12) 一、有机物形态对水解去除率的影响 (12) 二、有机物降解途径 (12) 三、水解池动态特性分析 (13) 四、难降解有机物的降解 (15) 第五节水解工艺对后续好氧工艺的影响 (20) 1、有机物含量显著减少 (20) 2、B/C比值和溶解性有机物比例显著增加 (21) 3、BOD5降解动力学 (21) 4、污泥和COD去除平衡 (22) 第六节水解工艺的污泥处理 (23)

一、传统污泥处理的目的和手段 (23) 二、污泥有机物的降解表 (24) 三、污泥脱水性能及处理 (24) 第七节水解池的启动和运行 (26) 一、水解池的启动方式 (26) 二、配水系统 (27) 三、排泥 (30) 四、负荷变化对水解池处理效果的影响 (30) 第八节水解工艺的进一步开发和应用 (32) 一、芳香类化合物的去除 (32) 二、奈的去除 (32) 三、卤代烃的去除 (32) 四、难生物降解工业废水处理的实际应用 (32) 五、高悬浮物含量废水的水解处理工艺 (33) 六、水解工艺的适用范围及要求 (34) 第九节水解-好氧工艺技术经济分析 (36) 一、厌氧处理应用的经济分析 (36) 二、水解-好氧系统设计参数 (36) 第十节水解-好氧生物处理工艺设计指南 (38) 一、预处理设施 (38) 二、水解池的详细设计要求 (39) 三、反应器的配水系统 (40) 四、管道设计 (42) 五、出水收集设备 (42) 六、排泥设备 (42)

压裂酸化技术难点和挑战

压裂酸化技术难点和挑战 正如在我国石油工业“十五”规划报告指出的一样:现在我国石油工业面临的形势是新区勘探开发困难,老区的增产挖潜还有大量的工作要做。其中,常规的井网加密已经效果不大,对酸化压裂措施的认识不够。同时,增产措施改造的对象越来越复杂,改造目标已经从低渗、单井发展到了中、高渗和油田整体主要的难题集中在以下几个方面: 1.复杂岩性油气藏 指的是陆源碎屑岩、碳酸盐岩和粘土矿物以一定比例均匀存在,没有任何一种成份在主导地位。典型的代表是玉门酒西盆地的清溪油田,该油田储量高、品位好,但是储层矿物组成十分复杂。由于矿物的不连续分布,酸压后只能形成均匀、低强度的刻蚀;而水力压裂由于发生支撑剂嵌入和粘土矿物的水敏、碱敏现象严重,因此目前酸压和水力压裂技术对这类储层多为低效或无效。只能考虑从液体体系上改进工艺措施。 2.高温、超高温、深层、超深层和异常高压地层 以准葛尔盆地、克拉玛依、塔里木和吐鲁番为代表,如柯深101井,压力系数为2.0,温度135摄氏度,千米桥潜山地区井深4000m—5700m,温度在150摄氏度到180度之间。这种地层的技术难点往往是需要的施工压力和压裂酸化液体不能达到要求;酸液的反应时间短,酸蚀作用距离短。 3.低渗、低压、低产、低丰度“四低”储层 如中石油的长庆苏里格气田压力系数在0.8—0.9,渗透率为0.5—3.0达西,中石化的大牛地油田压力系数0.67—.0.98,渗透率仅为0.3—0.9达西。类似的这种储层在我国占很大的比例,由于产生水锁现象进而产生很难解除的水相圈闭,如果不采用特殊的工艺手段,很难得到高效开发。 4.凝析气藏 代表有千亿方的塔里木迪那气田和中原白庙深层凝析气藏。这类油田酸化压裂最大的问题是由于压力降低后凝析油的析出产生凝析油环,大大降低了天然气的产量。 5.高含硫,高含二氧化碳油田 这类油田有被誉为“南方海相勘探之光”的普光气田(储量高达1144亿立方米);580亿立方米的罗家寨气田。这两个气田的含硫量都在10%—12%,远远超过3%的行业标准。硫化氢的高还原性和化学反应活性容易产生单质硫和硫化亚铁沉淀,在酸化压裂施工中造成二次伤害。同时,高含硫还会加大钻、采、集、输、外运的困难,尤其是在地形复杂,自然条件恶劣的四川丘陵地区。 6.异常破裂压力油藏 这种油藏埋藏深度和破裂压力不成正比,以川西致密须家河组和赤水地区为例:2000多米的井深破裂压力高达90多兆帕,现场经预处理措施之后,施工压力仍然高达80多兆帕。造成的直接后果就是压不开地层,酸液不能进入,对设备的损害比较大。 7.缝洞型、裂隙型碳酸盐岩 我国“九五”规划最大的整装油田——塔河油田就是这类油田的代表。塔河油田560万吨产量中有80%是依靠压裂酸化措施取得的。而压裂酸化中最大的难题是注入液体的滤失,因为这种缝洞型、裂隙型油藏已经并非常规意义上的裂缝和孔隙,而是体积巨大的溶洞和裂隙。 8.低渗稠油 这类油田由于稠油的流动性差,向井流动困难,导致初期增产效果差或无效,酸化压裂有效期短。 9.水平井、多分支等复杂结构井 我国从80年代中期在海上应用水平井,水平井的采油工艺远远落后于钻井技术的发展。水平井等复杂结构井压裂核心问题是起裂裂缝条数和裂缝方位的控制,水平井酸化存在的问题主要是酸液的均匀置放和长时间浸泡下酸岩反应机理。目前,在这方面已经作了大量的研究工作。 酸化压裂技术发展现状及创新 1.压裂裂缝延伸数学模型研究

相关文档