文档库 最新最全的文档下载
当前位置:文档库 › 线性二次型最优控制

线性二次型最优控制

线性二次型最优控制
线性二次型最优控制

一、主动控制简介

概念:结构主动控制需要实时测量结构反应或环境干扰,采用现代控制理论的主动控制算法在精确的结构模型基础上运算和决策最优控制力,最后作动器在很大的外部能量输入下实现最优控制力。

特点:主动控制需要实时测量结构反应或环境干扰,是一种需要额外能量的控制技术,它与被动控制的根本区别是有无额外能量的消耗。

优缺点:主动控制具有提高建筑物的抵抗不确定性地面运动,减少输入的干扰力,以及在地震时候自动地调整结构动力特征等能力,特别是在处理结构的风振反应具有良好的控制效果,与被动控制相比,主动控制具有更好的控制效果。但是,主动控制实际应用价格昂贵,在实际应用过程中也会存与其它控制理论相同的问题,控制技术复杂、造价昂贵、维护要求高。

组成:传感器、控制器、作动器

工作方式:开环、闭环、开闭环。

二、简单回顾主动控制的应用与MATLAB应用

1.主动变刚度A VS控制装置

工作原理:首先将结构的反应反馈至控制器,控制器按照事先设定好的控制算法并结合结构的响应,判断装置的刚度状态,然后将控制信号发送至电液伺服阀以操纵其开关状态,实现不同的变刚度状态。

锁定状态(ON):电液伺服阀阀门关闭,双出杆活塞与液压缸之间没有相对位移,斜撑的相对变形与结构层变形相同,此时结构附加一个刚度;

打开状态(OFF):电液伺服阀阀门打开,双出杆活塞与液压缸之间有相对位移,液压缸的压力差使得液体发生流动,此过程中产生粘滞阻尼,此时结构附加一个阻尼。

示意图如下:

2. 主动变阻尼A VD控制装置

工作原理:变孔径阻尼器以传统的液压流体阻尼器为基础,利用控制阀的开孔率调整粘性油对活塞的运动阻力,并将这种阻力通过活塞传递给结构,从而实现为结构提供阻尼的目的。

关闭状态(ON):开孔率一定,液体的流动速度受限,流动速度越小,产生的粘滞阻尼力越大,开孔率最小时,提供最大阻尼力,此时成为ON状态;

打开状态(OFF):控制阀完全打开,由于液体的粘滞性可提供最小阻尼力。

示意图如下:

3.振动实例 已知多自由度有阻尼线性结构的参数:276200027600002300M kg ????=??????,54.406 1.92101.921 3.443 1.52210/0 1.522 1.522K N m -????=--?????-??,阻尼矩阵采用瑞利阻尼C M K αβ=+,,αβ根据前两阶自振频率及阻尼比确定,阻尼比取0.05,该多自由度结构(参数同上)所受地震波数据见dzb.xls 文件,文件第一列为时间,单位s ,文件第2列为加速度,单位m/s 2。

3.1变刚度

对比了刚度分别为K 、10*K 以及0.1*K 时M1的响应时程曲线以及最大位移。

MATLAB 程序如下:

clear

clc

M=diag([2762 2760 2300]); %质量矩阵

K=100000*[4.406 -1.921 0;-1.921 3.443 -1.522;0 -1.522 1.522];

kk={K,10.*K,0.1.*K} %细胞矩阵-变刚度 W=[4.1041;10.4906;14.9514]; %各阶频率

zuni=0.05

area=2*W(1)*W(2)*zuni/(W(1)+W(2));byta=2*zuni/(W(1)+W(2));

C=area*M+byta*K; %阻尼矩阵

num=xlsread('dzb.xls',1,'B1:B1501');P=M*ones(3,1)*num'; %读入外荷载

*********中心差分法**********

h=0.02; %步长

para=[1/h^2,1/(2*h),2/h^2,h^2/2]; %参数向量

Kx=para(1)*M+C*para(2); %x(i+1)前系数

x(:,1)=zeros(3,1); %初位移

v(:,1)=zeros(3,1); %初速度

a(:,1)=-0.00082*num(1)*ones(3,1); %初加速度

for j=1:3

for i=1:1:1501

%差分迭代第一步 if i<2;

x0=x(:,1)-h*v(:,1)+h^2/2*a(:,1);

Px(:,i)=P(:,i)-(kk{j}-para(3)*M)*x(:,i)-(para(1)*M-para(2)*C)*x0;

x(:,i+1)=inv(Kx)*Px(:,i);

a(:,i+1)=para(1)*(x0-2*x(:,i)+x(:,i+1)); %加速度响应

v(:,1)=para(2)*(x(:,i+1)-x0); %速度响应else %差分迭代Px(:,i)=P(:,i)-(kk{j}-para(3)*M)*x(:,i)-(para(1)*M-para(2)*C)*x(:,i-1);

x(:,i+1)=inv(Kx)*Px(:,i);

a(:,i+1)=para(1)*(x(:,i-1)-2*x(:,i)+x(:,i+1)); %加速度响应

v(:,i)=para(2)*(x(:,i+1)-x(:,i-1)); %速度响应end

end

*************中心差分法*************

X=x(:,1:1501);

Y=max(abs(X),[],2);

Z(j)=max(Y);

save X %保存位移相应subplot(3,1,j) %画图

plot(X(1,:))

xlabel('时间t/0.02s')

ylabel('位移X1/m');

end

运行结果如下:

最大位移分别为:0.0085m0.0045m0.0100m

3.2变阻尼

依旧使用上述系统,对比无阻尼,阻尼为C和0.5C三种情况下M1的响应时程曲线和最大位移。

MATLAB程序:

clear

clc

M=diag([2762 2760 2300]); %质量矩阵

K=100000*[4.406 -1.921 0;-1.921 3.443 -1.522;0 -1.522 1.522]; %刚度矩阵

W=[4.1041;10.4906;14.9514]; %各阶频率

zuni=0.05

area=2*W(1)*W(2)*zuni/(W(1)+W(2));byta=2*zuni/(W(1)+W(2));

C=area*M+byta*K;

cc={0*C,C,0.5*C}; %变阻尼

num=xlsread('dzb.xls',1,'B1:B1501');P=M*ones(3,1)*num'; %读入外荷载

**************中心差分法************

h=0.02; %步长

para=[1/h^2,1/(2*h),2/h^2,h^2/2]; %参数向量

Kx=para(1)*M+C*para(2); %x(i+1)前系数

x(:,1)=zeros(3,1); %初位移

v(:,1)=zeros(3,1); %初速度

a(:,1)=-0.00082*num(1)*ones(3,1); %初加速度

for j=1:3

for i=1:1:1501 %差分迭代第一步if i<2;

x0=x(:,1)-h*v(:,1)+h^2/2*a(:,1);

Px(:,i)=P(:,i)-(K-para(3)*M)*x(:,i)-(para(1)*M-para(2)*cc{j})*x0;

x(:,i+1)=inv(Kx)*Px(:,i);

a(:,i+1)=para(1)*(x0-2*x(:,i)+x(:,i+1)); %加速度响应

v(:,1)=para(2)*(x(:,i+1)-x0); %速度响应else %差分迭代Px(:,i)=P(:,i)-(K-para(3)*M)*x(:,i)-(para(1)*M-para(2)*cc{j})*x(:,i-1);

x(:,i+1)=inv(Kx)*Px(:,i);

a(:,i+1)=para(1)*(x(:,i-1)-2*x(:,i)+x(:,i+1)); %加速度响应

v(:,i)=para(2)*(x(:,i+1)-x(:,i-1)); %速度响应end

end

**************中心差分法******************

X=x(:,1:1501);

Y=max(abs(X),[],2);

Z(j)=max(Y);

save X %保存位移相应subplot(3,1,j) %画图

plot(X(1,:))

xlabel('时间t/0.02s')

ylabel('位移X1/m');

end

运行结果是:

最大位移分别为:0.0115m0.0085m0.0068m

三、主动控制算法简介

主动控制算法是主动控制的基础,它们是根据控制理论建立的。好的控制理论算法必须在线计算时间短、稳定性及可靠性好、抗干扰能力强。

结构控制算法分为经典控制理论与现代控制理论两类。

1.经典控制理论:

经典控制理论的特点是以输入输出特性(主要是传递函数)为系统数学模型,采用频率响应法和根轨迹法这些图解分析方法,分析系统性能和设计控制装置。经典控制理论的数学基础是拉普拉斯变换,占主导地位的分析和综合方法是频域方法。经典控制理论包括线性控制论、采样控制理论、非线性控制理论三个部分。

2.现代控制理论:

现代算法计算主要用时间域,采用状态空间法(State Space Method) 来描述系统的动力性态,其数学工具为线性代数、矩阵理论和变分法。其主要包括下面一些算法:

(1)经典线性最优控制法

(2)瞬时最优控制法

(3)极点配置法

(4)独立模态空间控制法

(5)随机最优控制法

(6)界限状态控制法

(7)模糊控制法

(8)预测实时控制法

(9)H∞优化控制

(10)变结构控制

3.简要介绍各种算法

最优控制算法

通俗来讲:即对一个受控的动力学系统或运动过程,从一类允许的控制方案中找出一个最优的控制方案,使系统的运动在由某个初始状态转移到指定的目标状态的同时,其性能指标值为最优。

在工程上,最优控制算法以现代控制理论中的状态空间理论为基础,采用极值原理,使用最优滤波或者动态规划等最优化方法,进一步求解结构振动最优控制输入,在振动主动控制领域应用比较普遍。当被控对象结构参数模型可以被精确建模,并且激励和测量信号比较确定时,采用最优算法设计控制器可以较容易地取得控制效果。

最优控制法根据具体算法又可分为经典线性最优控制法、瞬时最优控制法、随机最优控制法等等,下面简单介绍:

A经典线性最优控制法

该算法基于现代控制理论,以线性二次型性能指标为目标函数来确定控制力与状态向量之间

的关系式。目标函数中用权矩阵来协调经济性与安全性之间的关系,需求解Riccati方程。由于该算法忽略了荷载项,严格说来,由它得到的控制不是最优控制;但数值分析和有限的试验证明,这一控制算法虽然不是最优的,但是可行的和有效的。

B瞬时最优控制算法

该算法以瞬时状态反应和控制力的二次型作为目标函数,在动荷载作用的时间范围内,每一瞬

时都实现其目标函数最小化。该算法不需求解Riccati方程,计算量减小;增益矩阵与受控结构的协调特性无关,控制系统的鲁棒性能较好;具有时间步进性,可推广用于非线性、时变结构系统。但该算法只是一种局部最优控制算法,从控制结构最大反应这个意义上讲,仍然不是最优控制。

C随机最优控制法

使随机控制系统的某个性能指标泛函取极小值的控制称为随机最优控制。由于存在随机因素,这种性能指标泛函需要表示为统计平均(求数学期望)的形式:

随机最优控制有两个重要的性质。由于存在不确定性,控制作用常宁可取得弱一些,保守一些。这称为谨慎控制。另一方面为更好和更快地进行估计,必须不断激发系统中各种运动模式,

为此需要加入一些试探作用。试探作用的大小,则根据增加的误差、直接费用和所带来的好处等因素加以折衷权衡进行选择。谨慎和试探已成为设计随机控制策略的两个重要原则。

模态控制法

将系统或结构的振动置于模态空间中考察,无限自由度系统在时间域内的振动通常可以用低阶自由度系统在模态空间内的振动足够近似地描述,这样无限自由度系统的振动控制可转化为在模态空间内少量几个模态的振动控制,亦即控制模态,这种方法称为模态控制法。其中分为模态耦合控制与独立模态控制,后者可实现对所需控制的模态进行独立的控制,不影响其它未控的模态,具有易设计的优点,是目前模态控制中的主流方法。前者的各阶模态的控制力依赖于所有被控模态坐标的值,同时也说明一个作动器对所有模态均有控制作用,因此可以达到减少作动器的目的,减小成本。 独立模态空间控制法是基于振动体系振型分解的概念建立的,多个自由度体系的运动方程由正交原理可分解为个独立的对应不同模态的单自由度运动方程,对各模态可分别进行控制设计。对于求出的模态控制作用通过模态的参与矩阵进行线性变换,由模态控制作用得出结构控制作用。为了节省时间,控制设计可只针对几个主要振型进行该算法的先决条件是结构必须可控而且可观测。在实际结构中,由于模态截断引起控制溢出和观测溢出,前者将影响实际系统的性能,而后者可导致残余模态的不稳定;而且该控制法显然仅对线性系统有效。严格来讲,独立模态控制的必要条件是控制器布满体系的所有自由度,但作为一种近似方法,控制器数目少于体系自由度时,亦可应用此法,只是所截取的振型数目要和控制器的数目相同。

独立模态控制分析过程:

建立控制力下的运动方程:

[]b 为主元杆件的方向余弦矩阵,{}f 为控制力。

令{

}[]{}()X t q ?=,可得:

若记:()

1N i is s is s s F g q h q ==-+∑

可得:

计算得出is g 和is h 即可得到i F ,即得到控制力{

}f 。 耦合模态控制分析过程:

将运动方程用状态方程表示:

[]{}[]{}[]{}[]{}()()()M X t C X t K X t b f ++={}[]{}{}[]{}{}

22T i i i i i i i q diag q diag q b f F ξωω?????++==????{}()211

N N is s is i is s s s q h q g q ωδ==+++=∑∑{}[]{}[]{}P A P B f =+

其中:{}[][][]200,,,,2i i i T q I P A B diag D diag q D b ωξω?????????===Ω==????????-Ω-??????

控制性能指标可表示为:

相应的最优控制力为 (){}[][][]{}1T

f t R B G P -=-

其中i G 为下面Ricaati 方程的解

从以上各式可以看出,在采用耦合模态控制时,第i 阶模态控制力的大小依赖于所有被控模态坐标的值,同时一个作动器对所有的模态均有控制作用,因此可以用较少的作动器控制较多的模态。

界限状态控制法

根据结构的安全性、适用性和舒适性要求,预先给定结构反应的限值。一旦实际结构反应超出限值,则控制系统启动,利用外加控制力减低结构反应,这就是界限状态。该算法控制目标明确,实施简便,在线计算量小,适用于线性和非线性系统。界限状态控制法尽管在控制力计算中建立了目标函数,但脉冲控制力的施加在本质上仍是试探性和直接推断的,因此,它不是最优控制法。

自适应控制法

自适应算法是指处理和分析过程中,根据处理数据的数据特征自动调整处理方法、处理顺序、处理参数、边界条件或约束条件,使其与所处理数据的统计分布特征、结构特征相适应,以取得最佳的处理效果。

自适应控制算法不要求结构参数模型严格精确,因此具有更强的适应性。通常,自适应控制算法需要大量估计参数,与一般常规控制器相比,自适应控制器变得特别复杂。自适应控制器由参考模型和对象间输出误差反馈等信号的线性组合构成。若选择一个低阶参考模型,那么,自适应控制器中需要计算的参数就会减少。这种即类似于模型参考自适应控制(MRAC )又有简洁的结构和算法,易于工程实现的新型自适应控制算法就是简单自适应控制(SAC )。

自适应控制大致可分为自适应前馈控制、自校正控制和模型参考自适应控制三大类。结构振动自校正控制是一种将受控结构参数在线辨识与控制器参数整定相结合的控制方式。控制时辨识器根据系统的输入输出信息,在线地辩识系统的模型参数或状态,并自动校正控制律。这样,结构可以根据状态和干扰特性的变化自动校正控制动作,达到输出方差最小的控制目的。

智能控制算法

现代控制理论虽然从理论上解决了系统的可控性、可观测性、稳定性及许多复杂系统的控制问题,但其各种控制方法都是以控制对象精确的数学模型为基础的,而土木工程结构是非线性、强耦合、多变量、不确定性的复杂系统。土木工程结构包括受力的结构构件和不受力的非结构构件,结构构件设计计算和控制建模时通常不考虑非结构构件的效应,因此,建成后的实际结构非{}[]{}{}[]{}()

T T J P Q P f R f dt =+?10T T i i i i i i i i i i G A A G Q G B R B G -++-=

结构构件和质量变化都将影响结构振动控制的计算模型;此外,实际结构在诸如地震那样的强烈动力作用下可能进入非线性,结构构件的强度和刚度可能发生退化,实际结构的模型修正将是结构振动控制一个突出的问题。因此,研究不依赖精确计算模型、调节简单的模糊控制算法以及具有很强的学习和逼近非线性映射能力的神经网络建模和控制算法是结构振动控制发展的一个热点问题。

智能控制是一门新兴的理论和技术,具有能对复杂系统进行有效的全局控制,并有较强的容错能力,同时具有以知识表示的非数学广义模型和以数学模型表示的混合控制等特点。智能控制还具备学习功能、适应功能和组织功能。智能控制的控制器是数学解析形式和知识系统相结合的广义模型。目前,智能控制的研究主要集中在模糊逻辑控制、神经网络控制、进化计算及三者的相互结合上。

A模糊控制法

模糊控制规则不需要对象的精确数学模型,模糊控制是为了解决其他控制算法需要精确模型,并且精确模型获取后,对扰动有时候鲁棒性差的问题而提出的。模糊控制是近代控制理论中建立在模糊集合论基础上的一种基于语言规则与模糊推理的控制理论,它是智能控制的一个重要分支。与传统控制理论相比,模糊控制有两大不可比拟的优点:第一,模糊控制在许多应用中可以有效且便捷的实现人的控制策略和经验,这一优点自从模糊控制诞生以来就一直受到人们密切的关注;第二,模糊控制不需要被控对象的数学模型即可实现较好的控制,这是因为被控对象的动态特性已隐含在模糊控制器输入、输出模糊集及模糊规则中。所以模糊控制被越来越多的应用于各个领域,尤其是被广泛应用于家电系列中,基于模糊控制的洗衣机就是其中的一个典型实例。因为模糊控制不需要对系统模型进行精确地计算,直接根据系统的输入输出特性给出控制指令,因此其控

制虽然不是最优的,但是是有效的。

B 神经网络控制法

人工神经网络具有很强的非线性逼近、自学习和自适应、数据融合以及并行分布处理等能力,在多变量、强非线性、大滞后系统的辨识、建模和控制中显示出了明显的优势和应用前景。大量研究结果表明,神经神经网络可以很好实现对多变量非线性系统模型的辨识与预测,进而实现系统的自适应控制。在土木工程结构的模糊辨识和控制方面,Masri等人(1992,1994)研究了非线性结构的神经网络辨识与自适应控制;Joghataie等人(1994)、Venini等人(1994)以及Amini等人(1994)在弹性、弹塑性结构的神经网络主动控制等方面做了初步的研究工作。

神经网络具有很强的非线性建模和预测能力,但推理和控制的能力较弱,而模糊控制具有很强的不精确语言表达和推理的能力,能有效地控制难以建立精确模型的系统,两者结合不仅相互弥补了各自的不足,而且可以实现复杂系统模型的定性知识表达和定量数值处理,进而更好地实现系统的控制。

在神经网络控制算法中,利用神经网络学习掌握被控结构的动力性能,当建筑结构遭遇地震时,由神经网络根据所掌握的结构动力性能以及结构的动力反应和结构所受的外部激励之间的关系,对结构控制驱动器输出一个控制信号,由驱动器提供动力对结构振动进行控制,神经网络控制算法的步骤为:首先,训练神经网络根据机构系统已有的反应时程和控制信号预测结构以后的

反应,采用训练好的神经网络模仿器模仿结构反应并评估控制信号与系统反应之间的敏感程度,在模仿的过程的每一小时段均对控制信号加以校正,使控制器产生所需的控制力,其大小是由控制目标决定的;然后,在神经网络模仿器的帮助下训练一个神经网络控制系统来学习结构反应与控制信号和校正后控制信号之间的关系。这样,经过训练的控制系统可以根据结构已有的反应时程和控制信号的时程,给出一个当前的控制信号,从而对结构振动反应进行有效的控制。

由于神经网络在学习结构动力性能时,自动学习了结构控制系统中时滞等因素的影响,因此,在神经网络控制系统中不存在传统控制系统具有时滞的问题,而且神经网络控制系统也适用于非线性结构系统。应当指出,采用神经网络对结构反应进行控制时,应注意神经网络结构的确定、神经网络输入变量的选择等问题

四、线性二次型最优控制

1.基本原理

在控制系统中,为了达到同一个控制目的,可以有多种方案(如多输入系统的极点配置状态反馈控制器是不唯一的),但是具有最小能量的控制方式更具实际意义。对于

Bu Ax x += Cx y = (4-1)

系统性能和控制能量的要求可以由下列二次型性能指标来描述:

?∞+=0d ][t Ru u Qx x J T T (4-2)

Q 是对称正定(半正定)加权矩阵,R 是对称正定加权矩阵,他们反映了设计者对状态x 和控制u 中各分量重要性的关注程度。第一项反映控制性能,这一项越小,状态衰减到0的速度越快,振荡越小,控制性能越好;第二项反映对控制能量的限制。通常状态x 衰减速度越快,控制能量越大,这是一个矛盾,最优控制的目的就是寻找Q 、R ,调和上述矛盾,问题归结为,对给定系统(4-1)和保证一定性能指标(4-2)的前提下,,设计一个控制器u ,使J 最小。

若系统的状态是可以直接测量的,且考虑的控制器是状态反馈控制器,则可以证明,使性能指标(4-2)最小化的最优控制器具有以下线性状态反馈形式:

Kx u -= (4-3) 将控制器(7-3)代入系统方程(4-1)可得

x BK A x )(-= (4-4)

若系统是渐近稳定的,矩阵BK A -所有特征值均具有负实部,根据线性时不变系统的

Lyapunov 稳定性定理,(4-4)一定存在一个正定对称矩阵P 的二次型Lyapunov 函数

Px x x T =)V(,利用系统的稳定性可得

??∞∞?-??????++=00d )(V d d d )(V d d t x t t x t Ru u Qx x J T T

[]{}∞==∞--+-++=?t t T T T T t x t x P BK A BK A P x Ru u Qx x 00

)]([V d )()( []000d Px x t x P B K PBK P A PA RK K Q x T T T T T T +--+++=?∞

对上式“下划线”部分“+”“-”P B PBR T 1-进行配平方得到

P B PBR P B PBR P B K PBK RK K T T T T T 11---+--

P B PBR P B R K R P B R K T T T T 111)()(------=

可得

[]0001d Px x t x P B PBR P A PA Q x J T T T T +-++=?∞-

?∞----+011d )()(t x P B R K R P B R K x T T T T (4-5)

求解最优控制问题,就是选取一个适当的增益矩阵K ,是性能指标J 最小化。

由(4-5)只有第三项依赖于矩阵K ,而且是非负的,只有当第三项等于零J 才能最小,当且仅当

P B R K T 1-= (4-6)

K 依赖于正定对称矩阵P ,特别是当可以找到一个P ,满足Riccati 方程

01=+-+-Q P B PBR P A PA T T (4-7) 此时

00Px x J T = (4-8) 闭环系统方程为

x P B BR A x T )(1--= (4-9) 最优状态反馈控制器为 Px B R u T 1--= (4-10)

可以证明,确实有

x P P B BR A P B BR A P x Px x x P x t x T T T T T T ])()([d )dV(11---+-=+=

x

P B PBR P A P B PBR PA x T Q T T T ][1)77(1---=--+-= (利用了P 的对称性)

0][1<+-=-x P B PBR Q x T T (利用了Q 、R 、P 的正定对称性) 这就证明了最优状态反馈控制器(7-10)

Px B R u T 1--=是稳定的。 2.MATLAB 实例

在MATLAB 中,lqr 函数

R)Q,B,lqr(A,]E P,K,[= (4-11)

给出了相应二次型最优控制问题的解。函数输出变量中的K 是最优反馈增益矩阵,

P 是Riccati 方程(4-7)的对称正定解矩阵,E 是最优闭环系统的极点。

实例:对系统

u x x x x x

x ????? ??+????? ??????? ??---=????? ??10092735100010321321 ,设计一个最优状态反馈控制器)()(t Kx t u -=,使系统性能指标?∞==????????+=0123d t u x I x J R Q T 最小(Q 为3阶单位矩阵)。

解:系统为能控标准型,存在状态反馈控制器,执行以下m 文件

]9-27-35-1;000;10[A =;

]10;0;[B =;

]1000;100;01[Q =;

[1]R =;

R)Q,B,lqr(A,]E P,K,[=

可得:K =

0.0143 0.1107 0.0676

P =

4.2625 2.4957 0.0143

2.4957 2.8150 0.1107

0.0143 0.1107 0.0676

E =

-5.0958 + 0.0000i

-1.9859 + 1.7110i

-1.9859 - 1.7110i

因此,系统的最优状态反馈控制器为:[]0.01430.11070.0676u x

=-

检验最优闭环系统对初始状态T

x ]001[0=的响应,执行以下m 文件

]9-27-35-1;000;10[A =;

]10;0;[B =;

]0.06760.11070.0143[K =

))3(eye ),3(eye ),3(eye K,*B -A (ss sys =;

8:01.0:0t =

)t ]0;0;1[sys (initial x ,,=

x *]001[1x '=;

x *]010[2x '=;

x *]100[x3'=;

subplot(2,2,1); plot(t,x1);grid

x label(…t(sec)?);ylabel(…x1?)

subplot(2,2,2); plot(t,x2);grid

x label(…t(sec)?);ylabel(…x2?)

subplot(2,2,3); plot(t,x3);grid

x label(…t(sec)?);ylabel(…x3?)

得到如图响应曲线

状态空间就是以状态变量为坐标轴构成的n维空间。

状态方程法讲解:状态方程:X A X B U Y C X D U =+

=+

补充知识:

瞬时最优控制:目标函数和具体求解方式与经典线性最优控制不同

线性二次型高斯问题(LQR):离散状态方程的两个式子后面都加了噪声,即干扰时求解目标函数

拍现象:频率比在1~2之间时会出现。

泛函:简单的说,泛函就是定义域是一个函数集,而值域是实数集或者实数集的一个子集,推广开来,泛函就是从任意的向量空间到标量的映射。也就是说,它是从函数空间到数域的映射。

参考文献

[1]丁少春等.振动主动控制技术应用现状与研究进展综述[D].海军工程大学动力工程学院,2014,430033.

[2]孙国春等.振动主动控制技术的研究与发展[J].机床与液压,2004,NO.3

[3]杜园芳等.基于耦合模态控制算法对空间结构主动控制的试验研究[J].华中科技大学学报(城市科学版),

2010,Vol.27.No.4

[4]王亮敏等.基于模糊控制规则的建筑物结构主动控制的研究[J].计算机与现代化,2012,No.205

[5]毛克阳等.基于遗传算法的结构主动控制作动器优化布置[J].中山大学学报(自然科学版),2013,

Vol.152.No.2

[6]杜永峰等.结构主动控制最优极点配置算法研究[J].振动与冲击,2012,Vol.31.No.19

[7]安世奇等. 简单自适应控制的算法与发展[J]. 电击与控制学报,2004,Vol.8.N0.3

[8]张文首等.基于精细积分的瞬时最优控制算法[J].振动工程学报,2006,Vol.19.No.4

[9]刘惠超,孔庆忠. 基于MATLAB的倒立摆LQR控制方法的研究[J].机械工程与自动化,2014,No.185

[10] 廖晓昕. 漫谈Lyapunov稳定性的理论、方法和应用[D].南京信息工程大学学报(自然科学版),2009.

随机控制理论

随机控制理论的一个主要组成部分是随机最优控制,这类随机控制问题的求解有赖于动态规划的概念和方法。 简介 随机控制理论 随机控制理论的目标是解决随机控制系统的分析和综合问题。维纳滤波理论和卡尔曼-布什滤波理论是随机控制理论的基础之一。 内容 控制理论中把随机过程理论与最优控制理论结合起来研究随机系统的分支。随机系统指含有内部随机参数、外部随机干扰和观测噪声等随机变量的系统。随机变量不能用已知的时间函数描述,而只能了解它的某些统计特性。自动控制系统分为确定性系统和不确定性系统两类,前者可以通过观测来确定系统的状态,后者则不能。随机系统是不确定性系统的一种,其不确定性是由随机性引起的。严格地说,任何实际的系统都含有随机因素,但在很多情况下可以忽略这些因素。当这些因素不能忽略时,按确定性控制理论设计的控制系统的行为就会偏离预定的设计要求,而产生随机偏差量。 涉及领域 飞机或导弹在飞行中遇到的阵风,在空间环境中卫星姿态和轨道测量系统中的测量噪声,各种电子装置中的噪声,生产过程中的种种随机波动等,都是随机干扰和随机变量的典型例子。随机控制系统的应用很广,涉及航天、航空、航海、军事上的火力控制系统,工业过程控制,经济模型的控制,乃至生物医学等。 研究课题 随机控制理论研究的课题包括随机系统的结构特性和运动特性(如动 态特性、能控性、能观测性、稳定性)的分析,随机系统状态的估计,以及随机控制系统的综合(即根据期望性能指标设计控制器)。随机系统中含有随机变量,所以在研究中需要使用随机过程的基本概念和概率统计方法。严格实现随机最优控制是很困难的。对于线性二次型高斯(LQG)随机过程控制问题,包括它的特例最小方差控制问题,可以应用分离原理把随机最优控制问题分解成状态估计问题和确定性最优控制问题,最终能得到全局最优的结果。但对于一般的随机控制问题应用分离原理只能得到次优的结果。随机状态模型

线性二次型最优控制

一、主动控制简介 概念:结构主动控制需要实时测量结构反应或环境干扰,采用现代控制理论的主动控制算法在精确的结构模型基础上运算和决策最优控制力,最后作动器在很大的外部能量输入下实现最优控制力。 特点:主动控制需要实时测量结构反应或环境干扰,是一种需要额外能量的控制技术,它与被动控制的根本区别是有无额外能量的消耗。 优缺点:主动控制具有提高建筑物的抵抗不确定性地面运动,减少输入的干扰力,以及在地震时候自动地调整结构动力特征等能力,特别是在处理结构的风振反应具有良好的控制效果,与被动控制相比,主动控制具有更好的控制效果。但是,主动控制实际应用价格昂贵,在实际应用过程中也会存与其它控制理论相同的问题,控制技术复杂、造价昂贵、维护要求高。 组成:传感器、控制器、作动器 工作方式:开环、闭环、开闭环。 二、简单回顾主动控制的应用与MATLAB应用 1.主动变刚度A VS控制装置 工作原理:首先将结构的反应反馈至控制器,控制器按照事先设定好的控制算法并结合结构的响应,判断装置的刚度状态,然后将控制信号发送至电液伺服阀以操纵其开关状态,实现不同的变刚度状态。 锁定状态(ON):电液伺服阀阀门关闭,双出杆活塞与液压缸之间没有相对位移,斜撑的相对变形与结构层变形相同,此时结构附加一个刚度; 打开状态(OFF):电液伺服阀阀门打开,双出杆活塞与液压缸之间有相对位移,液压缸的压力差使得液体发生流动,此过程中产生粘滞阻尼,此时结构附加一个阻尼。 示意图如下: 2. 主动变阻尼A VD控制装置 工作原理:变孔径阻尼器以传统的液压流体阻尼器为基础,利用控制阀的开孔率调整粘性油对活塞的运动阻力,并将这种阻力通过活塞传递给结构,从而实现为结构提供阻尼的目的。 关闭状态(ON):开孔率一定,液体的流动速度受限,流动速度越小,产生的粘滞阻尼力越大,开孔率最小时,提供最大阻尼力,此时成为ON状态; 打开状态(OFF):控制阀完全打开,由于液体的粘滞性可提供最小阻尼力。 示意图如下:

线性二次型最优控制应用举例与仿真

线性二次型最优控制 一、最优控制概述 最优控制,又称无穷维最优化或动态最优化,是现代控制理论的最基本,最核心的部分。它所研究的中心问题是:如何根据受控系统的动态特性,去选择控制规律,才能使得系统按照一定的技术要求进行运转,并使得描述系统性能或品质的某个“指标”在一定的意义下达到最优值。最优控制问题有四个关键点:受控对象为动态系统;初始与终端条件(时间和状态);性能指标以及容许控制。 一个典型的最优控制问题描述如下:被控系统的状态方程和初始条件给定,同时给定目标函数。然后寻找一个可行的控制方法使系统从输出状态过渡到目标状态,并达到最优的性能指标。系统最优性能指标和品质在特定条件下的最优值是以泛函极值的形式来表示。因此求解最优控制问题归结为求具有约束条件的泛函极值问题,属于变分学范畴。变分法、最大值原理(最小值原理)和动态规划是最优控制理论的基本内容和常用方法。庞特里亚金极大值原理、贝尔曼动态规划以及卡尔曼线性二次型最优控制是在约束条件下获得最优解的三个强有力的工具,应用于大部分最优控制问题。尤其是线性二次型最优控制,因为其在数学上和工程上实现简单,故其有很大的工程实用价值。 二、线性二次型最优控制 2.1 线性二次型问题概述 线性二次型最优控制问题,也叫LQ 问题。它是指线性系统具有二次型性能指标的最优控制问题。线性二次型问题所得到的最优控制规律是状态变量的反馈形式,便于计算和工程实现。它能兼顾系统性能指标的多方面因素。例如快速性、能量消耗、终端准确性、灵敏度和稳定性等。线性二次型最优控制目标是使性能指标J 取得极小值, 其实质是用不大的控制来保持比较小的误差,从而达到所用能量和误差综合最优的目的。 2.2 线性二次型问题的提法 给定线性时变系统的状态方程和输出方程如下: ()()()()()()()() X t A t X t B t U t Y t C t X t ?=+? =? (2.1)

通信信道的随机线性控制

通信信道的随机线性控制 Sekhar Tatikonda 会员IEEE Anant Sahai, 会员IEEE Sanjoy Mitter 终身会员IEEE 摘要我们研究线性随机控制系统时,有一个通信信道连接传感器到控制器。问题由信道编码器和解码器以及控制器满足某些给定的控制目标的设计。特别是,我们检查的作用传播对经典的线性二次高斯问题。我们给的条件下,估计和控制之间的持有和确定性等价控制律优化经典的分离性能。然后我们提出了连续的率失真框架。我们目前所能达到的性能界限和显示控制和通信成本之间固有的权衡。特别是,我们证明了最优二次型成本分解为两个方面:一个完整的知识成本与顺序的率失真成本。 指数条款确定性等价控制,通信约束的网络控制,顺序,分离,率失真,线性随机系统。 一、引言 最近的技术进步已经引导网络控制系统的设计活动的增加。在本文中,我们研究一个随机控制问题,那里是一个通信信道连接传感器到控制器。这个问题出现时,控制器和设备,在地理位置上是分离的,有一个带限和可能是嘈杂的通信信道连接。此外,出现时,控制器和设备之间没有大的地理分离的通信约束,但有一个共享的通信介质,被用在在同一地区的其他用户,或作为更大的系统的一部分。虽然我们不明确地检查每一本文的网络问题,我们认为,通信约束的作用,一个基本的了解,将是一个更完整的网络控制理论的本质。 我们考虑的系统是由一个设备,一个编码器,信道,解码器,和一个控制器。设备和信道是直接给我们的。我们的任务是设计的编码器,解码器,控制器,以满足某些给定的控制目标。因为我们有一个分布式信息系统模式的选择,[ 26 ],可以有显着的影响控制性能是可以实现的。我们讨论了在编码器的信息模式的选择上需要实现控制目标的通信要求的影响。尤其是,我们研究的对象,传播对经典的线性二次高斯(LQG)问题。为此我们提出的顺序的率失真(SRD)框架。我们得到的边界上所能达到的性能和显示控制和通信成本之间固有的权衡。特别是,我们将最优LQG成本分解为两个方面:一个完整的知识成本与顺序的率失真成本。 手稿收到2003年6月4日;2003年12月19日修订。由客座编辑P. antsaklis和J. Baillieul推荐。这项工作是由美国陆军研究办公室在穆里格兰特:传感器数据融合在大的daad19-00-1-0466阵列,并由国防部在穆里格兰特:协同控制subaward复杂自适应网络03-132。 S. Tatikonda,美国耶鲁大学,纽黑文,CT 06520 USA(电子邮件:ekhar.tatikonda@https://www.wendangku.net/doc/ad724779.html,)。 A. Sahai ,加利福尼亚大学伯克利分校,CA 94720 USA。 S. Mitter,美国麻省理工大学,剑桥,MA 02139 USA。 数字对象标识符10.1109/tac.2004.834430。 有两个经典的概念,在本文中我们研究的分离。第一个概念是状态估计和控制之间的控制理论的分离。我们目前的条件下,确保确定性等价控制律的最优性。这些工作是建立在Bar-Shalom and Tse [3]的基础上。第二个是信源编码和信道编码之间的信息理论的分离。特别是,在长时间的延迟的限制下,它是已知的可以不失一般性的,设计的信源编码器和信道编码器分别[ 11 ]。这种分离是众所周知的应用广泛,[ 25 ],但是,在一般情况下,失败的短期延迟和不稳定的过程。在大量的延迟限制下,[ 18 ]表明不稳定过程的估计可以适当修改分离定理,但这个信息理论的结果并不延伸到有限的延迟的情况下。由于延迟是一个重要的问题,在控制中的应用我们不能用信息理论的分离效果,去解决我们的问题。处理这种延迟的问题,我们提出了连续的率失真框架首先介绍[ 13 ]和进一步发展[ 19] ,[ 20 ],和[ 23 ]。

连续线性二次型最优控制的MATLAB实现

连续线性二次型最优控制的MATLAB 实现 1.绪 论 最优控制问题就是在一切可能的控制方案中寻找一个控制系统的最优控制方案或最优控制规律,使系统能最优地达到预期的目标。随着航海、航天、导航和控制技术不断深入研究,系统的最优化问题已成为一个重要的问题。 本文介绍了最优控制的基本原理,并给定了一个具体的连续线性二次型控制系统,利用MATLAB 软件对其最优控制矩阵进行了求解,通过仿真实验,设计得到最优控制效果比较好,达到了设计的目的。 2.最优控制理论介绍 2.1最优控制问题 设系统状态方程为: ]00)(,),(),()(x t x t t u t x f t x ==? (2—1) 式中,x(t)是n 维状态向量;u(t)是r 维控制向量;n 维向量函数[]t t u t x f ),(),(是x(t)、u(t)和t 的连续函数,且对x(t)与t 连续可微;u(t)在[]f t t ,0上分段连续。所谓最优控制问题,就是要寻求最优控制函数,使得系统状态x(t)从已知初态0 x 转移到要求的终态)(f t x ,在满足如下约束条件下: (1)控制与状态的不等式约束 []0),(),(≥t t u t x g (2—2) (2)终端状态的等式约束 []0),(=f f t t x M (2—3) 使性能指标 [][]?+Θ=f f t t t t t u t x F t t x J f 0 d ),(),(),( (2—4) 达到极值。式中[]t t u t x g ),(),(是m 维连续可微的向量函数,r m ≤;[]f f t t x M ),(是s 维连续可微的向量函数,n s ≤;[]f t t x f ),(Θ和[]t t u t x F ),(),(都是x(t)与t 的连续可

线性二次型最优控制的MATLAB实现

线性二次型最优控制的MATLAB实现 一理论依据 应用经典控制理论设计控制系统,能够解决很多简单、确定系统的实际设计问题。但对于多输入多输出系统与阶次较高的系统,往往得不到满意的结果,这时就需要有在状态空间模型下建立的最优控制策略。 最优控制是现代控制理论的核心。最优控制理论的实现,离不开一系列的最优化方法,主要包括两个方面就是如何将最优化问题表示为数学模型,如何根据数学模型尽快求出其最优解。线性二次型最优控制设计是基于状态空间技术来设计一个优化的动态控制器,其目标函数是状态和控制输入的二次型函数。二次型问题就是在线性系统约束条件下选择控制输入使二次型目标函数达到最小。由于线性二次型最优控制问题的性能指标具有鲜明的物理意义,其最优解具有统一的解析表达式,且可导致一个简单的线性状态反馈控制律,易于构成闭环最优反馈控制,便于工程实现,因而在实际工程问题中得到了广泛的应用。 二MATLAB程序 >> clear >> syms x1 x2 x3; >> x=[x1;x2;x3]; >> A=[0 1 0;0 0 1;0 -2 -3]; >> B=[0;0;1]; >> R=1; >> Q=[1000 0 0;0 1 0;0 0 1]; >> N=0; >> [K,P,E]=lqr(A,B,Q,R) >> u=-inv(R)*B'*P*x

K = 31.6228 19.0661 3.9377 P = 666.1690 219.3906 31.6228 219.3906 108.5284 19.0661 31.6228 19.0661 3.9377 u = -(5366634056803559*x2)/281474976710656 - (4433500461210591*x3)/1125899906842624 - 10*10^(1/2)*x1 三Simulink仿真图及其响应曲线 利用simulink仿真,画出系统反馈前后的仿真图、输出图像和性能指标图。分析分析反馈前后关系曲线。 图1 反馈前系统的仿真图

使用神经网络对随机线性二次型奇异系统的最优控制

Optimal control for stochastic linear quadratic singular system using neural networks N. Kumaresan *, P. Balasubramaniam Journal of Process Control 19 (2009) :Page482–488 使用神经网络对随机线性二次型奇异系统的最优控制N.库玛瑞森博士,P.巴拉苏布拉马尼亚姆过程控制杂志19期(2009年):引用482—488页

摘要 在本文中,最优控制随机线性奇异系统与二次型已经在神经网络领域获得使用。其目的是提供最优控制和努力通过比较矩阵Riccati微分方程(MRDE)的解减少微积分获得了从众所周知的传统Runge-Kutta(RK)方法和传统神经网络 方法。为了获得最优控制,MRDE的解可以通过前向神经网络(FFNN)计算得到。更接近神经网络方法得到的精确解来解决这一问题性能更好。该方法的优点是,一旦网络运行起来,它可以瞬时计算出评估方案在任意点和任意少量的时间和记忆的支出,其计算时间的方法比传统RK方法更快、耗时更短。下面一个数值算例给出了该方法。 关键词:矩阵微分方程;神经网络;最优控制;龙格库塔法;随机奇异线性系统

1 简介 众多学者一直在研究随机线性二次型调节器(LQR)问题[文献2、6、8、15、34]。陈等人[文献12]的研究表明对于随机LQR问题是如果Riccati方程有解,那么可以得到最优反馈控制。关于LQR方面的问题,相关的研究Riccati方程,这是很自然的。然而,对于Riccati方程解的存在性和唯一性,一般来说,由于存在复杂的非线性项,这似乎成为一个很困难的问题。朱和李[文献36]采用迭代方法求解随机LQR问题中Riccati方程的随机性。常规Riccati方程有几种数值方法解,这些可能发生非线性过程基本误差积累。为了使误差最小,最近传统的Riccati方程分析了利用神经网络方法[文献3-5]。本文阐述了扩展的神经网络方法求解随机Riccati方程。 神经网络或简单的神经网络都是计算机系统,它可以通过训练学习两个或多个变量的某种复杂关系或数据集。具有类似于他们的生物学配对物的结构,经过神经网络处理信息和并行分布式简单处理节点连接的计算模型的组成形式[文献33]。神经网络技术已被成功地应用于许多领域,如函数逼近、信号处理和自适应或非线性系统的学习控制。利用神经网络,各式各样的对非线性系统离线学习控制算法已经开发出来[文献21,25]。为求解代数Riccati方程,各种数值算法[文献11]也已经随之开发出来。近年来,神经网络问题已经引起了越来越多的重视,许多研究人员进行了数值代数Riccati方程等方面的研究,见[文献16,17,32]。 奇异系统包含一个混合代数和微分方程组。从这个意义上说,代数方程组代表代数方程限定解的微分部分。这些系统也被称为退化、描述或半状态和广义状态空间系统。奇异系统的复杂本质导致在分析及数值处理这样的系统会遇到许多困难,尤其是在需要对它们的控制时。该系统自然演变成一个线性系统模型或者在许多领域应用的线性系统模型,如:电网、飞机动力学、中立型时滞系统、化学、热扩散过程、大型系统、机器人学、生物等。见[文献9,10,23]。 许多实际过程可以被建成为描述系统模型,如约束控制问题模型,电路模型,某些人口增长模型和奇异扰动模型。由于这样的事实,在过去的几年中,描述系统的稳定性问题以及控制问题已被广泛地研究,即描述系统能够比状态空间系统更好的描述某个物理系统。与状态空间系统相比,描述系统结构更复杂更完善。此外,由于描述系统通常有三种模式,即有限的动态模式、脉冲模式和非动态模式[文献13],研究描述系统的动态性能比对状态空间系统研究困难,而后者两个不出现在状态空间系统。 由于标准二次型性能线性系统的最优控制理论发展迅速,其结果在许多实际设计问题中是最完整、最接近使用。该理论的二次成本控制问题被视为一个更有趣的问题,最小成本最优反馈控制一直是用于求解Riccati方程。Da Prato 和

基于MATLAB的线性二次型最优控制设计

基于M A T L A B的线性二次型最优控制设计 The Standardization Office was revised on the afternoon of December 13, 2020

基于MATLAB 的线性二次型最优控制设计 1. 引 言 最优控制问题就是寻找一个控制系统的最优控制方案或最优控制规律,使系统能最优地达到预期的目标。以状态空间理论为基础的最优控制算法是当前振动控制中采用最为普遍的控制器设计方法。本文所讨论的系统是完全可观测的,所以可以用线性二次型最优控制。 本实验介绍了线性二次型最优控制的基本原理,并给定了一个具体的控制系统,利用MATLAB 软件对其最优控制矩阵进行了求解,通过仿真实验,设计所得到的线性二次型最优控制效果比较好,达到了设计的目的。 2. 最优控制理论介绍 假设线性时不变系统的状态方程模型为 x ‘(t)=Ax(t)+Bu(t) y(t)=Cx(t)+Du(t) 引入一个最优控制的性能指标,即设计一个输入量u,使得 J = 为最小。其中Q 和R 分别为对状态变量和输入变量的加权矩阵; t f 为控制作用的终止时间。矩阵S 对控制系统的终值也给出某种约束,这样的控制问题称为线性二次型(Linear Quadratic ,简称LQ )最优控制问题。 为了求解LQ 问题,我们取Hamilton 函数 其中一种较为简便的解法为: 令λ(t)=P(t)x(t) 而将对λ(t)的求解转化到对函数矩阵P(t)的求解`,特别的,将λ(t)=P(t)x(t)代入上述式子中可得函数矩阵P(t)因满足的微分方程是 1'()()()()()()()()()()(); ().T T P t P t A t A t P t P t B t R t B t P t Q t P tf S -=--+-= (1) 对它的求解可应用成熟的Euler 方法。假定方程(1)的唯一对称半正定解P(t),则LQ 问题的解u(t)由下式给出: '(,(),(),())0.5(()()()()()())()(()()()());LQ ()(()()()());0(()()()()));()()()()(); T T T H t x t u t t x t Q t x t u t R t u t t A t x t B t u t H t Q t x t A t t H Q t x t A t t u x t A t x t B t u t λλδλλδλδλδ=+++=-=-+=+=+并应用变分原理推导出问题解满足的必要条件: ^1()()()()(). LQ u t)=-Kx(t). K T u t R t B t P t x t -=-上述问题的一个特例是动态方程为定常的情形,即 相应的控制向量取为(其中,为才是矩阵,而二次性能指标为

线性二次型最优控制

Chapter7 线性二次型最优控制 稳定性是控制系统的一个重要指标,还要考虑诸如调节时间、超调、振荡等动态特性以及控制器所消耗的能量等因素。通过极点配置可使系统具有期望的稳定性和动态性能,然而并没有考虑控制的能量代价。用Lyapunov 稳定性理论解决“参数优化问题”,通过选取一个适当的参数,可以在保证系统稳定的前提下,使二次型性能指标最小化,从而使系统的过渡过程具有较好的性能,有必要将这种方法推广到控制器设计。 7.1 二次型最优控制 在控制系统中,为了达到同一个控制目的,可以有多种方案(如多输入系统的极点配置状态反馈控制器是不唯一的),具有最小能量的控制方式更具实际意义。对于 Bu Ax x += Cx y = (7-1) 系统性能和控制能量的要求可以由下列二次型性能指标来描述: ?∞ +=0d ][t Ru u Qx x J T T (7-2) Q 是对称正定(半正定)加权矩阵,R 是对称正定加权矩阵,他们反映了设 计者对状态x 和控制u 中各分量重要性的关注程度。第一项反映控制性能,这一项越小,状态衰减到0的速度越快,振荡越小,控制性能越好;第二项反映对控制能量的限制。通常状态x 衰减速度越快,控制能量越大,这是一个矛盾,最优控制的目的就是寻找Q 、R ,调和上述矛盾,问题归结为,对给定系统(7-1)和保证一定性能指标(7-2)的前提下,,设计一个控制器u ,使J 最小。 若系统的状态是可以直接测量的,且考虑的控制器是状态反馈控制器,则可以证明,使性能指标(7-2)最小化的最优控制器具有以下线性状态反馈形式: Kx u -= (7-3) 将控制器(7-3)代入系统方程(7-1)可得 x BK A x )(-= (7-4) 若系统是渐近稳定的,矩阵BK A -所有特征值均具有负实部,根据线性时不变系统的Lyapunov 稳定性定理,(7-4)一定存在一个正定对称矩阵P 的二次

线性二次型最优控制器的实现

南京师范大学 最优化与最优控制 题目:最优化与最优控制 学院:电气与自动化工程学院 专业:控制理论与控制工程 专业方向:基于ARM的太阳跟踪系统 班级:学号: 131802030 姓名:魏骁 指导教师:孙骥职称:教授 填写日期: 2014年6月21 日

一、前言 应用经典控制理论设计控制系统,能够解决很多简单、确定系统的实际设计问题。但是对于诸多新型而复杂的控制系统,例如多输入多输出系统与阶次较高的系统,往往得不到满意的结果。这时就需要有在状态空间模型下建立的最优控制策略。 最优控制是现代控制理论的核心。所谓最优控制,就是在一定条件下,在完成所要求的控制任务时,使系统的某种性能指标具有最优值。根据系统不同的用途,可提出各种不用的性能指标。最优控制的设计,就是选择最优控制,以使某一种性能指标为最小。 二、线性二次型最优控制概述 线性二次型最优控制设计是基于状态空间技术来设计一个优化的动态控制器。系统模型是用状态空间形式给出的线性系统,其目标函数是状态和控制输入的二次型函数。二次型问题就是在线性系统约束条件下选择控制输入使二次型目标函数达到最小。 线性二次型最优控制一般包括两个方面:线性二次型最优控制问题(LQ 问题),具有状态反馈的线性最优控制系统;线性二次型Gauss 最优控制问题,一般是针对具体系统噪声和量测噪声的系统,用卡尔曼滤波器观测系统状态。 三、最优控制理论 假设线性时不变系统的状态方程模型为 x ‘(t)=Ax(t)+Bu(t) y(t)=Cx(t)+Du(t) 引入一个最优控制的性能指标,即设计一个输入量u,使得 J= 为最小。其中Q 和R 分别为对状态变量和输入变量的加权矩阵; t f 为控制作用的终止时间。矩阵S 对控制系统的终值也给出某种约束,这样的控制问题称为线性二次型(Linear Quadratic ,简称LQ )最优控制问题。 为了求解LQ 问题,我们取Hamilton 函数 其中一种较为简便的解法为: 令λ(t)=P(t)x(t) 而将对λ(t)的求解转化到对函数矩阵P(t)的求解,特别的,将λ(t)=P(t)x(t)代入上述式子中可得函数矩阵P(t)因满足的微分方程是 '(,(),(),())0.5(()()()()()())()(()()()());LQ ()(()()()()); 0(()()()()));()()()()(); T T T H t x t u t t x t Q t x t u t R t u t t A t x t B t u t H t Q t x t A t t H Q t x t A t t u x t A t x t B t u t λλδλλδλ δλδ=+++=-=-+=+=+并应用变分原理推导出问题解满足的必要条件:

线性二次型最优控制问题

线性二次型最优控制问题
2. 线性二次型最优控制问题
如果所研究系统为线性,所取性能指标为状态变量与控制变 量的二次型函数,称这种动态系统最优化问题为线性二次型最
概念
优控制问题.
问题的提法 设线性时变系统的状态方程为:
x ( t ) = A( t ) x ( t ) + B( t )u( t ) y( t ) = C ( t ) x ( t )
假设控制向量u(t)不受约束 ,用yr(t)表示期望输出,则误差向量为
e( t ) = yr ( t ) ? y( t )
求最优控制u*(t) ,使下列二次型性能指标极小。
1 T 1 tf e ( t f )Fe ( t f ) + ∫ [e T ( t )Q( t )e( t ) + u( t )T R( t )u( t )]dt 2 2 t0 F —半正定 q × q常数矩阵 , Q ( t ) —半正定 q × q时变矩阵 J ( u) =
R ( t ) —正定 p × p时变矩阵 t 0 及 t f 固定
NORTHWESTERN POLYTECHNICAL UNIVERSITY
NWPU

线性二次型最优控制问题
2. 线性二次型最优控制问题
各项指标物理意义
1 T 1 tf T J ( u) = e ( t f )Fe ( t f ) + ∫ [e ( t )Q( t )e( t ) + u( t )T R( t )u( t )]dt 2 2 t0
(1) 第一积分过程项 0.5∫t
tf
0
[e T ( t )Q ( t )e( t )]dt 是对动态跟踪误差加权平方和的积
分要求,是系统在运动过程中动态跟踪误差的总度量. t (2) 第二积分过程项 0.5∫t [u( t )T R( t )u( t )]dt 表示系统在控制过程中对系统加权
f 0
后的控制能量消耗的总度量. (3) 末值项 0.5eT (t f )Fe( t f ) 表示末态跟踪误差向量与希望的零向量之间的距 离加权平方和. 整个性能指标物理意义: 使系统在控制过程中的动态误差与能量消耗,以及控制结束时的系统 终端跟踪误差综合最优。
NWPU
NORTHWESTERN POLYTECHNICAL UNIVERSITY

线性二次型最优控制的MATLAB实现概述

线性二次型最优控制的MATLAB实现 摘要 线性二次型最优控制是一种普遍采用的最优控制系统设计方法。使用MATLAB 软件设计的GUI控制界面实现最优控制,有较好的人机交互界面,便于使用。线性二次型最优控制又叫做LQ最优控制或者称为无限长时间定常系统的状态调节控制器。本文分别从连续系统线性二次型最优控制的MATLAB实现,离散系统相形二次型最优控制的MATLAB实现,最优观测器的MATLAB实现,线性二次性Guass 最优控制的MATLAB实现四个研究方案。本论文就是从这四个方面分别以不同的性能指标设计不同的GUI界面以及不同的程序实现其功能并说明其各自的应用范围。 关键词:线性二次型,最优控制, GUI控制界面,最优观测器,Guass最优控制

The Linear Quadratic Optimal Control of MATLAB Abstract Linear quadratic optimal control is a widely used to optimal control system design method. Use of MATLAB software design GUI interface control to realize the optimal control, Have good man-machine interface, easy to use. The linear quadratic optimal control and called LQ optimal control or an infinite long time of the system state regulation and constant controller. This paper respectively from the continuous system linear quadratic optimal control MATLAB, Discrete system in quadratic optimal control MATLAB, The optimal observer MATLAB, sexual Guass linear quadratic optimal control MATLAB four research plan. This paper is from the four aspects of the performance index respectively in different design different GUI interface and Different programs that realize its function and their application scope. Keywords:Linear quadratic, The optimal control, GUI control interface, The best Guass observer, the optimal control

相关文档