文档库 最新最全的文档下载
当前位置:文档库 › 数学模型--人在雨中奔跑速度与淋雨量的关系

数学模型--人在雨中奔跑速度与淋雨量的关系

数学模型--人在雨中奔跑速度与淋雨量的关系
数学模型--人在雨中奔跑速度与淋雨量的关系

《数学模型与数学实验》

课程设计任务书

题目雨中漫步

学生姓名学号专业班级

设计内容与要求

生活中的我们常常会遇到下雨而没带雨具的时刻,我们在那时会有很多选择,其中之一就是淋雨,往往好多人会在雨中快走或奔跑而使自己身体淋雨量最小化,但往往很多人会感觉到淋雨量并不会因为快走或奔跑而减少多少,反而有时候淋雨量倒有所增加,淋雨量和速度等有关参数的关系如何,是否人走得越快雨淋得越少,让我们假设一数学模型模拟计算真实情况。

给定的降雨条件下,分别建立相应的数学模型,分析人体在雨中行走时淋雨多少与行走速度、降雨方向等因素的关系。其中文中所涉及到的降雨量是指从天空降落到地面上的雨水,未经蒸发、渗透、流失而在水面上积聚的水层深度,它可以直观地表示降雨的多少。淋雨量,是指人在雨中行走时全身所接收到得雨的体积,可表示为单位时间单位面积上淋雨的多少与接收雨的面积和淋雨时间的乘积。

针对问题一,设降雨淋遍全身不考虑雨的方向,经简化假设得人淋雨面积为前后左右及头顶面积之和。

针对问题二,雨迎面吹来,雨线方向与行走方向在同一平面,人淋雨面积为前方和头顶面积之和。因各个方向上降雨速度分量不同,故分别计算头顶和前方的淋雨量后相加即为总的淋雨量。据此可列出总淋雨量W与行走速度v之间的函数关系。分析表明当行走

速度为m ax

v时,淋雨量最少。

针对问题三,雨从背面吹来,雨线与行走方向在同一平面内,人淋雨量与人和雨相对速度有关。列出函数关系式分析并求解。

学生签名

起止时间

摘要

本文在给定的降雨条件下,分别建立相应的数学模型,分析人体在雨中行走时淋雨多少与行走速度、降雨方向等因素的关系。其中文中所涉及到的降雨量是指从天空降落到地面上的雨水,未经蒸发、渗透、流失而在水面上积聚的水层深度,它可以直观地表示降雨的多少。淋雨量,是指人在雨中行走时全身所接收到得雨的体积,可表示为单位时间单位面积上淋雨的多少与接收雨的面积和淋雨时间的乘积。

针对问题一,设降雨淋遍全身不考虑雨的方向,经简化假设得人淋雨面积为前后左右及头顶面积之和。

针对问题二,雨迎面吹来,雨线方向与行走方向在同一平面,人淋雨面积为前方和头顶面积之和。因各个方向上降雨速度分量不同,故分别计算头顶和前方的淋雨量后相加即为总的淋雨量。据此可列出总淋雨量W与行走速度v之间的函数关系。分析表明当

v时,淋雨量最少。

行走速度为m ax

针对问题三,雨从背面吹来,雨线与行走方向在同一平面内,人淋雨量与人和雨相对速度有关。列出函数关系式分析并求解。

关键词

淋雨量;降雨的大小;降雨的方向(风);路程的远近;行走的速度;

雨滴下落的速度,角度;降雨强度;

一、问题重述

生活中的我们常常会遇到下雨而没带雨具的时刻,我们在那时会有很多选择,其中之一就是淋雨,往往好多人会在雨中快走或奔跑而使自己身体淋雨量最小化,但往往很多人会感觉到淋雨量并不会因为快走或奔跑而减少多少,反而有时候淋雨量倒有所增加,淋雨量和速度等有关参数的关系如何,是否人走得越快雨淋得越少,让我们假设一数学模型模拟计算真实情况。当我们在雨中从一处沿直线跑到另一处时,如果雨速为常数,走的时候身体的动作的大小和暴露在雨中的面积大小影响着淋雨的多少,并且行走速度也同样影响着淋雨量Q,将人体简化成一个长方体,高a=1.5米,宽b=0.5米,厚c=0.2m,行走距离D,雨速u,降雨量I,行走速度为ν。

1、当我们不考虑风,即雨滴垂直下落时,淋雨量和人行走速度之间的关系?

2、当雨滴从前方(斜的)下落时,即雨滴与人体的夹角为θ,建立总淋雨量与速

度v及其它参数之间的关系,此时速度与淋雨量的关系?

3、当雨从人的背面吹来,即雨滴与人体的夹角为θ,建立总淋雨量与速度v之间

的关系?

二、模型的假设与符号说明

2.1 基本假设

1、假设人行走的路线是直线;

2、不考虑风的方向(即假定前后左右都淋雨),这是一种较为理想的假设,主要为了建模的方便,并且假设雨滴的速度为常数;

3、为计算淋雨面积的方便,把人体表面积看成长方体,长用a表示,宽用b表示,厚度用c 表示,且abc都是定值。

2.2 符号说明

a---长方体的长单位:米

b---长方体的宽单位:米

c---长方体的厚度单位:米

Q---淋雨量单位:升

v---人行走的速度单位:米每秒

D---路程单位:米

I---降雨强度单位:厘米每小时

P---雨滴的密度单位:

u---雨滴下落的速度单位:米每秒

θ---雨迎面吹来时与人体的夹角

α---与从后面吹来与人体的夹角

三、问题分析

2.1 问题一分析

当雨滴垂直下落时(即没有风),此时只有顶部淋雨,淋雨量为

Q=??

淋雨面积降雨强度淋雨时间

2.2 问题二分析

雨迎面吹来,雨线方向与跑步方向在同一平面内且与人体夹角为θ,如图1所示。根据实际情况估计人体淋雨可分为头顶和前后左右几个方向上。雨迎面吹来时,由于雨相对于人的速度有变化,因此人单位时间内接收雨量变化,且与相对速度成正比。据此,推算出前后侧上单位时间接受雨量。同理,头顶部位接雨量与雨速垂直于头顶平面的分速度成正比。分别计算出头顶侧与前后侧单位时间接雨量,并分别乘以各自面积以及时

间D

v

,即得到头顶及两侧淋雨的总量。在人体总的淋雨量.据此可得Q与v之间关系。

图1

2.3 问题三分析

雨从背面吹来,雨线与跑步方向在同一平面内且与人体夹角为α,如图2所示。左右方向上淋雨量为0。头顶上单位时间内接收雨的量与雨速垂直方向上的分量成正比,

头顶面积bc与时间的D

v 以及单位时间内接收雨的量之积。当sin

v uθ

<时,前方不受雨,

后方向上单位时间内淋雨量与人前进方向上人相对于雨的速度(usinθ-v)成正比,据此推算出后方向上总淋雨量;而当sin

v uθ

<时,后方不受雨,由于人速已经高于雨速,这时前面会向前撞上雨滴,即前方向上单位时间内淋雨量与sin

v uθ

-成正比,即这时前方淋雨量为人体前面积ab和跑步时间D

v

以及单位时间淋雨量之积。

由此可计算出总的淋雨量。

总的淋雨量=前(后)背淋雨量+顶部淋雨量

据此可得Q与v之间关系。

图2

四、模型的建立与求解

3.1 问题一的求解

总述:当雨滴垂直下落时(即没有风),此时只有顶部淋雨,淋雨量为Q=??

淋雨面积降雨强度淋雨时间

=

淋雨面积bc

=pu

降雨强度

=D v

淋雨时间

D Q bcpu

v =

3.2 问题二的求解

雨迎面吹来,雨线方向与行走方向在同一平面内且与人体夹角为θ,如图1所示。根据实际情况估计人体淋雨可分为头顶和前左右几个方向上。雨迎面吹来时,由于雨相对于人的速度有变化,因此人单位时间内接收雨量变化,且与相对速度成正比。据此,推算

出前后侧上单位时间接受雨量。同理,头顶部位接雨量与雨速垂直于头顶平面的分速度成正比。分别计算出头顶侧与前侧单位时间接雨

量,并分别乘以各自面积以及时间D v

,即得到头顶及两侧淋雨的总量。在人体总的

淋雨量.据此可得Q 与v 之间关系。

图1

=??顶部淋雨量淋雨面积降雨强度淋雨时间

=cos D

bcpu v

θ

=??前方淋雨量淋雨面积降雨强度淋雨时间

=(sin )D bap u v v

θ+

=+cos (sin )[cos (sin )]

D D Q bcpu bap u v v

v

bpD uc a u v v

θθθθ=++=++

总淋雨量顶部淋雨量前方淋雨量

3.3 问题三的求解

雨从背面吹来,雨线与行走方向在同一平面内且与人体夹角为α,如图2所示。左右方向上淋雨量为0。

先考虑sin v u θ≤的情形,也就是说人走的速度慢于雨滴的水平分速度。这是雨滴淋在顶部和后背上,

且淋在后背的雨量为:(sin )D abp u v v

θ-

其顶部淋雨量为: cos D bcpu v

θ

所以总的淋雨量=后背淋雨量+顶部淋雨量 即(sin )+cos D

D

Q abp u v bcpu v

v

θθ=-

=[cos (sin )]bpD uc a u v v

θθ+-

图2

当sin v u α>时,人速大于垂直于人前后面的雨速,雨会沾到人的前面

顶部淋雨量: cos D bcpu v

α

前面淋雨量:

(s i n )D

a b p v u v α-

总的淋雨量:cos (sin )D D

Q bcpu abp v u v v

αα=+-

所以[]

[]

cos (sin )sin (sin )+cos sin D D bcpu abp v u u v v v

Q D D abp u v bcpu u v v v αααθθα?

+-???=?

?-?≤??

>

五、结果表示与分析

4.1问题一

因为假设人体表面积是定的,且降雨强度也是一定的,所以由D Q bcpu

v

=可以看出,

降雨强度Q 只与人的行走速度v 有关,且成反比,即人走得越快淋雨量越少。

4.2 问题二

上式应用了雨滴速度的分解及相对运动速度的概念,所以总的淋雨量

Q

[cos (sin )]bpD

uc a u v v

θθ=

++ cos sin bpD uc bpD au bpD a v

θθ

+=

+ 其中假设夹角θ一定,淋雨量Q 随着v 的变大而变小,即人走的越快淋雨量越少

4.3 问题三

[][][]

cos (sin )sin (cos )

sin (sin )+cos sin D D bcpu abp v u u v v v pbD Q uc v u v

D D abp u v bcpu u v v v αααααθθα

?

+-???

?==???

-?≤?

?

> 此时表明:当sin v u α=时,(cos )pbD Q uc v

α=

,人仅仅只有头顶被雨水淋了,意

味着身体前后都没被雨水淋到,当人的速度低于sin u α时,则由于雨水落在背上,

使得淋雨量增加;而人的速度大于sin u α时,人的前面亦要淋到雨;所以人以可能的速度sin v u α=走是最优策略。

六、模型评价

通过对本题的分析求解,可知道人在雨中奔跑的淋雨量不仅与跑步速度有关,还与雨线与人跑步方向的夹角,雨速以及人跑步速度等因素有关。本文忽略了降雨密度不均匀,风向不稳定等次要因素,以便更好的对问题进行分析和研究。但在实际问题中的限制性因素远远超过这些,因此此文的分析方法仍存在一定的局限性,有待改进和提高。如果能结合MATLAB来分析模型就更好了,虽然没学过那个软件,但从这次作业中看到自己的不足,在以后的学习中一定要多多了解有关软件。

七、参考文献

【1】数学建模,刘锋,葛照强,南京:南京大学出本社2005

【2】全国大学生数学建模竞赛组委会,全国大学生数学建模竞赛优秀论文汇编,北京:中国物价出版社,2002

【3】数学建模简明教程,党林立,孙晓群主编,西安电子科技大学出版社

数学建模-淋雨模型

淋雨量模型 一、问题概述 要在雨中从一处沿直线跑到另一处,若雨速为常数且方向不变,试建立数学模型讨论是否跑得越快,淋雨量越少。 将人体简化成一个长方体,高a=1.5m(颈部以下),宽b=0.5m,厚c=0.2m,设跑步的距离d=1000m,跑步的最大速度v m=5m/s,雨速u=4m/s,降雨量ω=2cm/h,及跑步速度为v,按以下步骤进行讨论[17]: (1)、不考虑雨的方向,设降雨淋遍全身,以最大速度跑步,估计跑完全程的总淋雨量; (2)、雨从迎面吹来,雨线与跑步方向在同一平面内,且与人体的夹角为θ,如图1.建立总淋雨量与速度v及参数a,b,c,d,u,ω,θ之间的关系,问速度v多大,总淋雨里最少。计算θ=0,θ=30°的总淋雨量. (3)、雨从背面吹来,雨线方向跑步方向在同一平面内,且与人体的夹角为α,如图2.建立总淋雨量与速度v及参数a,b,c,d,u,ω,α之间的关系,问速度v多大,总淋雨量最小。计算α=30°的总淋雨量.(说明:题目中所涉及的图形为网上提供)

(4)、以总淋雨量为纵轴,速度v为横轴,对(3)作图(考虑α的影响),并解释结果的实际意义. (5)、若雨线方向跑步方向不在同一平面内,试建立模型 二、问题分析 淋雨量是指人在雨中行走时全身所接收到得雨的体积,可表示为单位时间单位面积上淋雨的多少与接收雨的面积和淋雨时间的乘积。 可得: 淋雨量(V)=降雨量(ω)×人体淋雨面积(S)×淋浴时间(t)① 时间(t)=跑步距离(d)÷人跑步速度(v)② 由①②得:淋雨量(V)=ω×S×d/v

三、模型假设 (1)、将人体简化成一个长方体,高a=1.5m(颈部以下),宽b=0.5m,厚c=0.2m.设跑步距离d=1000m,跑步最大速度v m=5m/s,雨速u=4m/s,降雨量ω=2cm/h,记跑步速度为v;(参考) (2)、假设降雨量到一定时间时,应为定值; (3)、此人在雨中跑步应为直线跑步; (4)、问题中涉及的降雨量应指天空降落到地面的雨,而不是人工,或者流失的水量,因为它可以直观的表示降雨量的多少; 四、模型求解: (一)、模型Ⅰ建立及求解: 设不考虑雨的方向,降雨淋遍全身,则淋雨面积: S=2ab+2ac+bc 雨中奔跑所用时间为: t=d/v 总降雨量 V=ω×S×d/v

雨中奔跑问题数学建模

题目:一个雨天,你有件急事需要从家中到学校去,学校离家不远,仅一公里,况且事情紧急,你来不及花时间去翻找雨具,决定碰一下运气,顶着雨去学校。假设刚刚出发雨就大了,但你不打算再回去了,一路上,你将被大雨淋湿。一个似乎很简单的事情是你应该在雨中尽可能地快走,以减少雨淋的时间。但如果考虑到降雨方向的变化,在全部距离上尽力地快跑不一定是最好的策略。试建立数学模型来探讨如何在雨中行走才能减少淋雨的程度。 1 建模准备 建模目标:在给定的降雨条件下,设计一个雨中行走的策略,使得你被雨水淋湿的程度最小。 主要因素:淋雨量, 降雨的大小,降雨的方向(风),路程的远近,行走的速度 2 模型假设及符号说明 1)把人体视为长方体,身高h 米,宽度w 米,厚度d 米。淋雨总量用C 升来记。 2)降雨大小用降雨强度I 厘米/时来描述,降雨强度指单位时间平面上的降下水的厚度。在这里可视其为一常量。 3)风速保持不变。 4)你一定常的速度v 米/秒跑完全程D 米。 3 模型建立与计算 1)不考虑雨的方向,此时,你的前后左右和上方都将淋雨。 淋雨的面积 )( 222米wd dh wh S ++= 雨中行走的时间 )(秒v D t = 降雨强度 )/()3600/01.0()/(01.0)/(s m I I I ==时米时厘米 (升) 米S I v D S I t C ??=???=3600/)/(10)(01.0)3600/(3 模型中为变量。为参数,而v S I D ,, 结论,淋雨量与速度成反比。这也验证了尽可能快跑能减少淋雨量。 。米即米米米小时厘米米若取参数22.2,20.0,50.0,50.1,/2,1000======S d w h I D 秒。分秒,即你在雨中行走了每秒,则计算得 米度你在雨中行走的最大速472167/6=v

数学建模数学建模之雨中行走问题模型

数学建模 雨 中 行 走 模 型 系别: 班级: 姓名: 学号:

正文: 数学建模之雨中行走问题模型 摘要: 考虑到降雨方向的变化,在全部距离上尽力地快跑不一定是最好的策略。试建立数学模型来探讨如何在雨中行走才能减少淋雨的程度。若雨是迎着你前进的方向向你落下,这时的策略很简单,应以最大的速度向前跑; 若雨是从你的背后落下,你应控制你在雨中的行走速度,让它刚好等于落雨速度的水平分量。 ① 当 α sin r v <时,淋在背上的雨量为 []v vh rh pwD -αsin ,雨水总量 ()[]v v r h dr pwD C -+=ααsin cos . ② 当α sin r v =时,此时0 2 =C .雨水总量α cos v pwDdr C = ,如0 30 =α ,升 24.0=C 这表明人体仅仅被头顶部位的雨水淋湿.实际上这意味着人体刚好跟着雨滴向前走,身体前后将不被淋雨. ③ 当α sin r v >时,即人体行走的快于雨滴的水平运动速度αsin r .此时将不断地赶上 雨滴.雨水将淋胸前(身后没有),胸前淋雨量()v r v pwDh C α sin 2 -= 关键词: 淋雨量, 降雨的大小,降雨的方向(风),路程的远近,行走的速度 1.问题的重述 人们外出行走,途中遇雨,未带雨伞势必淋雨,自然就会想到,走多快才会少淋雨呢?一个简单的情形是只考虑人在雨中沿直线从一处向另一处进行时,雨的速度(大小和方向)已知,问行人走的速度多大才能使淋雨量最少? 2.问题的分析. 由于没带伞而淋雨的情况时时都有,这时候大多人都选择跑,一个似乎很简单的事情是你应该在雨中尽可能地快走,以减少雨淋的时间。但如果考虑到降雨方向的变化,在全部距离上尽力地快跑不一定是最好的策略。, 一、我们先不考虑雨的方向,设定雨淋遍全身,以 最大速度跑的话,估计总的淋雨量; 二、再考虑雨从迎面吹来,雨线与跑步方向在同一平面内,且与人体的夹角为 ,如图1,建立总淋雨量与速度v 及参数a,b,c,d,u,w,θ之间的关系,问速度v 多大,总淋雨量最少,计算=0,=0 90时的总淋雨量; θθθ

雨中跑步数学模型(蒋伟)

雨中跑步的数学模型 摘要:本模型建立了在雨中奔跑时淋雨最少与奔跑速度,雨量,降雨方向,路程远近的关系,从而得出在雨中如何奔跑才会淋雨最少的方法。 关键词:淋雨量,降雨的大小,降雨的方向,路程的远近,奔跑的速度 问题重述:要在雨中从一处沿直线跑到另一处,若雨速为常数且方向不变,试建立数学模型讨论是否跑得越快,淋雨量越少。 模型假设及符号说明 1)把人体视为长方体,身高h 米,宽度w 米,厚度d 米。淋雨总量用C 升来记。 2)降雨大小用降雨强度I 厘米/时来描述,降雨强度指单位时间平面上的降下水的厚度。在这里可视其为一常量。 3)降雨方向保持不变。 4)你以一定常的速度v 米/秒跑完全程D 米。 模型建立与计算 1)不考虑雨的方向,此时,你的前后左右和上方都将淋雨。 淋雨的面积 )( 222米wd dh wh S ++= 雨中行走的时间 )(秒v D t = 降雨强度 )/()3600/01.0()/(01.0)/(s m I I I ==时米时厘米 (升) 米S I v D S I t C ??=???=3600/)/(10)(01.0)3600/(3 模型中为变量。 为参数,而v S I D ,, 结论:淋雨量与速度成反比。这也验证了尽可能快跑能减少淋雨量。 。米即米米米小时厘米米若取参数22.2,20.0,50.0,50.1,/2,1000======S d w h I D 秒。分秒,即你在雨中行走了每秒,则计算得 米度你在雨中行走的最大速472167/6=v 从而可以计算被淋的雨水的总量为2.041(升)。 经仔细分析,可知你在雨中只跑了2分47 秒,但被淋了2 升的雨水。这是不可思议的。 表明:用此模型描述雨中行走的淋雨量不符合实际。 原因:不考虑降雨的方向的假设, 使问题过于简化。 2)考虑降雨方向。 若记雨滴下落速度为r (米/秒)雨滴的密度为1 ,≤p p 表示在一定的时刻在单位体积的空间内,由雨滴所占的空间的比例数,也称为降雨强度

数学建模_淋雨模型

专业及班级土木10班 学号20136452 姓名杨昌友 淋雨量模型 一摘要:本文主要研究人在雨中行走的淋雨量问题。在给定的降雨条件下,分别建立相应的数学 模型,分析人体在雨中奔跑时淋雨多少与奔跑速度、降雨方向等因素的关系。得出结论:若雨迎面落下,则以最大的速度跑完全程淋雨量最少;若雨从背后落下,则以降雨速度的水平分量时奔跑时淋雨量最少。 关键词:淋雨量雨速大小雨速方向跑步速度路程远近 二、问题概述 要在雨中从一处沿直线跑到另一处,若雨速为常数且方向不变,试建立数学模型讨论就是否跑得越快,淋雨量越少。 将人体简化成一个长方体,高a=1、5m(颈部以下),宽b=0、5m,厚c=0、2m,设跑步的距离d=1000m,跑步的最大速度v m=5m/s,雨速u=4m/s,降雨量ω=2cm/h,及跑步速度为v,按以下步骤进行讨论[17]: (1)、不考虑雨的方向,设降雨淋遍全身,以最大速度跑步,估计跑完全程的总淋雨量; (2)、雨从迎面吹来,雨线与跑步方向在同一平面内,且与人体的夹角为θ,如图1、建立总淋雨量与速度v及参数a,b,c,d,u,ω,θ之间的关系,问速度v多大,总淋雨里最少。计算θ=0,θ=30°的总淋雨量、 (3)、雨从背面吹来,雨线方向跑步方向在同一平面内,且与人体的夹角为α,

如图2、建立总淋雨量与速度v及参数a,b,c,d,u,ω,α之间的关系,问速度v多大,总淋雨量最小。计算α=30°的总淋雨量、(说明:题目中所涉及的图形为网上提供) (4)、以总淋雨量为纵轴,速度v为横轴,对(3)作图(考虑α的影响),并解释结果的实际意义、(5)、若雨线方向跑步方向不在同一平面内,模型会有什么变化? 三、问题分析 淋雨量就是指人在雨中行走时全身所接收到得雨的体积,可表示为单位时间单位面积上淋雨的多少与接收雨的面积与淋雨时间的乘积。 可得: 淋雨量(V)=降雨量(ω)×人体淋雨面积(S)×淋浴时间(t) ① 时间(t)=跑步距离(d)÷人跑步速度(v) ②由①②得: 淋雨量(V)=ω×S×d/v 四模型假设 (1)、将人体简化成一个长方体,高a=1、5m(颈部以下),宽b=0、5m,厚c=0、2m、设跑步距离d=1000m,跑步最大速度v m=5m/s,雨速u=4m/s,降雨量ω=2cm/h,记跑步速度为v; (2)、假设降雨量到一定时间时,应为定值; (3)、此人在雨中跑步应为直线跑步; (4)、问题中涉及的降雨量应指天空降落到地面的雨,而不就是人工,或者流失的水量,因为它可以直观的表示降雨量的多少; 五、符号 淋雨量V 降雨量ω 人体淋雨面积S 淋浴时间t 跑步距离 d 跑步速度v 人高 a 人宽 b 人厚 c 六、模型求解: (一)、模型Ⅰ建立及求解: 设不考虑雨的方向,降雨淋遍全身,则淋雨面积: S=2ab+2ac+bc

数学建模中的图论方法

数学建模中的图论方法 一、引言 我们知道,数学建模竞赛中有问题A和问题B。一般而言,问题A是连续系统中的问题,问题B是离散系统中的问题。由于我们在大学数学教育内容中,连续系统方面的知识的比例较大,而离散数学比例较小。因此很多人有这样的感觉,A题入手快,而B题不好下手。 另外,在有限元素的离散系统中,相应的数学模型又可以划分为两类,一类是存在有效算法的所谓P类问题,即多项式时间内可以解决的问题。但是这类问题在MCM中非常少见,事实上,由于竞赛是开卷的,参考相关文献,使用现成的算法解决一个P类问题,不能显示参赛者的建模及解决实际问题能力之大小;还有一类所谓的NP问题,这种问题每一个都尚未建立有效的算法,也许真的就不可能有有效算法来解决。命题往往以这种NPC问题为数学背景,找一个具体的实际模型来考验参赛者。这样增加了建立数学模型的难度。但是这也并不是说无法求解。一般来说,由于问题是具体的实例,我们可以找到特殊的解法,或者可以给出一个近似解。 图论作为离散数学的一个重要分支,在工程技术、自然科学和经济管理中的许多方面都能提供有力的数学模型来解决实际问题,所以吸引了很多研究人员去研究图论中的方法和算法。应该说,我们对图论中的经典例子或多或少还是有一些了解的,比如,哥尼斯堡七桥问题、中国邮递员问题、四色定理等等。图论方法已经成为数学模型中的重要方法。许多难题由于归结为图论问题被巧妙地解决。而且,从历年的数学建模竞赛看,出现图论模型的频率极大,比如: AMCM90B-扫雪问题; AMCM91B-寻找最优Steiner树; AMCM92B-紧急修复系统的研制(最小生成树) AMCM94B-计算机传输数据的最小时间(边染色问题) CMCM93B-足球队排名(特征向量法) CMCM94B-锁具装箱问题(最大独立顶点集、最小覆盖等用来证明最优性) CMCM98B-灾情巡视路线(最优回路) 等等。这里面都直接或是间接用到图论方面的知识。要说明的是,这里图论只是解决问题的一种方法,而不是唯一的方法。 本文将从图论的角度来说明如何将一个工程问题转化为合理而且可求解的数学模型,着重介绍图论中的典型算法。这里只是一些基础、简单的介绍,目的在于了解这方面的知识和应用,拓宽大家的思路,希望起到抛砖引玉的作用,要掌握更多还需要我们进一步的学习和实践。

关于淋雨数学建模

合肥学院数学与物理系 建模与优化模块II 综合实验 题目淋雨量数学建模 班级16数学与应用数学(1) 学号1607021006 姓名陈静 合肥学院数学与物理系制

淋雨量数学建模 摘要:本文通过对人在雨中直线行走时雨垂直降落、从前吹来、从后吹来这三种情况的分析讨论,得到了在不同情况下淋雨总量与人的行走速度的数学模型。并发现,当雨垂直落下和迎面吹来时,跑的速度越快淋雨越少;而当雨从背面吹来时,当人跑的速度大于等于雨速的水平分量的大小且此时夹角α满足tan c a α<时,跑得越快淋雨越少,除此之外的其它情况下有当αsin u v =时,淋雨量最小。 关键词:淋雨量,降雨方向,降雨大小,直线行走 正文 一 问题重述 人在雨中从一处沿直线跑到另一处,若雨速为常数且方向不变。试建立数学模型讨论是否跑得越快,淋雨量越少,并用MATLAB 编程实现。 假设跑步距离d=100米,跑步最大速度为m v =5 m/s ,雨速u=4m/s ,降雨量为w=2cm/h 。 (1)不考虑雨的方向,设降雨淋遍全身,以最大速度跑步,估计跑完全程的淋雨量。 (2)雨从迎面吹来,雨线与跑步方向在同一平面内,且与人体夹角为θ,问跑步速度v 为多大?淋雨量最少。 二 问题的分析 人在雨中行走时可能出现以下三种情形: 情形一:雨垂直下落,人以速度v 前行,此时降雨淋遍全身(如图1所示)

图 1 情形二:雨迎面吹来,雨线与跑步方向在同一平面内,与人的正面夹角为θ,此时后背淋不到雨(如图2所示) 图2 情形三:雨从背面吹来,雨线方向与跑步方向在同一平面内,与人的背后夹角为α,此时正面淋不到雨(如图3所示) 图 3 我们知道当人在雨中前行的时候,人和雨相对地面都是运动的,故知人与雨是相对运动的。为此我们选择人作为参考系,再考虑雨的相对速度及其与人体方向(即与人体夹角θ、α)对总淋雨量的影响。 三合理的假设 3.1 将人体看成一个长方体; 3.2 雨速为常数且方向不变;

数学建模中常见的十大模型

数学建模常用的十大算法==转 (2011-07-24 16:13:14) 转载▼ 1. 蒙特卡罗算法。该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟来检验自己模型的正确性,几乎是比赛时必用的方法。 2. 数据拟合、参数估计、插值等数据处理算法。比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用MA TLAB 作为工具。 3. 线性规划、整数规划、多元规划、二次规划等规划类算法。建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo 软件求解。 4. 图论算法。这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备。 5. 动态规划、回溯搜索、分治算法、分支定界等计算机算法。这些算法是算法设计中比较常用的方法,竞赛中很多场合会用到。 6. 最优化理论的三大非经典算法:模拟退火算法、神经网络算法、遗传算法。这些问题是用来解决一些较困难的最优化问题的,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用。 7. 网格算法和穷举法。两者都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具。 8. 一些连续数据离散化方法。很多问题都是实际来的,数据可以是连续的,而计算机只能处理离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的。 9. 数值分析算法。如果在比赛中采用高级语言进行编程的话,那些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用。 10. 图象处理算法。赛题中有一类问题与图形有关,即使问题与图形无关,论文中也会需要图片来说明问题,这些图形如何展示以及如何处理就是需要解决的问题,通常使用MA TLAB 进行处理。 以下将结合历年的竞赛题,对这十类算法进行详细地说明。 以下将结合历年的竞赛题,对这十类算法进行详细地说明。 2 十类算法的详细说明 2.1 蒙特卡罗算法 大多数建模赛题中都离不开计算机仿真,随机性模拟是非常常见的算法之一。 举个例子就是97 年的A 题,每个零件都有自己的标定值,也都有自己的容差等级,而求解最优的组合方案将要面对着的是一个极其复杂的公式和108 种容差选取方案,根本不可能去求解析解,那如何去找到最优的方案呢?随机性模拟搜索最优方案就是其中的一种方法,在每个零件可行的区间中按照正态分布随机的选取一个标定值和选取一个容差值作为一种方案,然后通过蒙特卡罗算法仿真出大量的方案,从中选取一个最佳的。另一个例子就是去年的彩票第二问,要求设计一种更好的方案,首先方案的优劣取决于很多复杂的因素,同样不可能刻画出一个模型进行求解,只能靠随机仿真模拟。 2.2 数据拟合、参数估计、插值等算法 数据拟合在很多赛题中有应用,与图形处理有关的问题很多与拟合有关系,一个例子就是98 年美国赛A 题,生物组织切片的三维插值处理,94 年A 题逢山开路,山体海拔高度的插值计算,还有吵的沸沸扬扬可能会考的“非典”问题也要用到数据拟合算法,观察数据的

数学建模淋雨量与跑步速度

淋雨量与跑步速度关系探究 摘要当大雨来临时,人们总是习惯于拔腿就跑。摆脱困境的本能迫使我们加快速度,与此同时,日常经验又让我们很多人对跑得越快淋雨就越少这一点深信不疑。事实是否正如大多数人所想的呢?本文就“淋雨量与跑步速度关系”的问题建立了数学模型,从实际情况出发对不同条件下速度和淋雨量关系做出分析探究。 在问题一中,因为已经假设雨淋遍全身,且速度为最大,所以由题目的已知条件,直接列方程求解。 在问题二中,我们利用最优化原理,建立出一个动态规划模型。并将该问题分为两部分解答,即:(1)雨从迎面吹来;(2)雨从背面吹来。同时绘制出第二部分的“淋雨量—速度”图像,方便于快速直观地得到两者关系。解决该问题的过程中,本文利用了几何中的面积公式及物理中速度的分解等知识,结合题目中的已知条件,列出方程求解。 问题三是问题二的深入,将简单的平面问题升华为空间问题,但处理方法和问题二基本相同,只是增加了空间角,本质没有区别。 本文的特点是在建立模型的基础上层层深入,配合图形,简单明了。同时,基于本文是建立在严谨的计算之上的,具有一定的可靠性,在很大程度上具有参考价值。 关键词最优化原理动态模型速度选择淋雨量 1.问题的重述 要在雨中从一处沿直线跑到另一处,若雨速为常数且方向不变,试建立数学模型是否跑得越快,淋雨量越少。 将人体简化成一个长方体,高a=1.5米(颈部以下),宽b=0.5米,厚c=0.2米。设跑步距离d=1000米,跑步最大速度 v=5m/s,雨速u=4m/s,降雨量ω=2cm/h, m 记跑步速度为v,讨论以下问题: (1)不考虑雨的方向,设降雨淋遍全身,以最大速度奔跑,估计跑完全程的总淋雨量。 (2)雨从迎面吹来,雨线与跑步方向在同一平面内,且与人体的夹角为θ,如图1.建立总淋雨量与速度v及参数a,b,c,d,u,ω,θ之 间的关系,问速度v多大,总淋雨量最少。计算θ=0?,30?时 的总淋雨量;雨从背面吹来,雨线方向与跑步方向在同一平面内, 且与人体的夹角是α,如图2。建立总淋雨量与速度 v及参数 a,b,c,d,u,ω,α之间的关系,问速度v多大,总淋雨量最少, 计算α=30?时的总淋雨量。

数学建模-淋雨模型

淋雨量模型 摘要 步入雨季,降雨天气逐渐开始在人们的日常生活中频繁出现起来,与此同时,突如其来的雨水也常常带给无准备的人们淋成落汤鸡的窘境。面对骤雨,大多数人在通常情况下会选择快速奔跑以希求淋雨最少。然而这样真的能淋雨最少吗?以此日常情景为背景提出了四个问题,本文运用几何知识、物理知识等方法成功解决了这四个问题,得到了在不同的降雨条件下人体在雨中奔跑时淋雨多少与奔跑速度、降雨方向等因素的关系。并针对不同降雨条件给出了淋雨量最少的方法。 针对问题一,条件给出:不考虑雨的方向,降雨淋遍全身;确定淋雨量为人体表面积与单位面积降雨量及淋雨时间之积 针对问题二,根据已知条件(雨从迎面吹来,雨线与跑步方向在同一平面内,且与人体的夹角为θ),对雨线的速度分别沿水平、竖直方向正交分解,并综合考虑人的速度与雨线速度的制约关系,建立模型,得出函数模型。并对函数求导分析最小淋雨量对应速度。

针对问题三,在雨从背面吹来,雨线方向跑步方向在同一平面内,且与人体的夹角为α的条件下,对雨线的速度分别沿水平、竖直方向正交分解,并综合考虑人的速度与雨线速度的制约关系,建立模型,得出函数模型。并对函数分析最小淋雨量对应速度。以总淋雨量为纵轴,速度v为横轴,对函数用Excel作图(考虑α的影响),并解释结果的实际意义。 针对问题四,综合考虑前三种情况的共同作用,并基于前三种模型进行修正。 最后,对所建立的模型和求解方法的方法的优缺点给出了客观的评价,并指出误差所在。 关键字:淋雨量雨速大小雨速方向跑步速度路程远近 一、问题重述 要在雨中从一处沿直线跑到另一处,若雨速为常数且方向不变,试建立数学模型讨论是否跑得越快,淋雨量越少。 将人体简化成一个长方体,高a=1.5m(颈部以下),宽b=0.5m,厚c=0.2m,设跑步的距离d=1000m,跑步的最大速度v m=5m/s,雨速u=4m/s,降雨量ω =2cm/h,及跑步速度为v,按以下步骤进行讨论]: (1)、不考虑雨的方向,设降雨淋遍全身,以最大速度跑步,估计跑完全程的总淋雨量; (2)、雨从迎面吹来,雨线与跑步方向在同一平面内,且与人体的夹角为θ,如图1.建立总淋雨量与速度v及参数a,b,c,d,u,ω,θ之间的关系,问速度v多大,总淋雨里最少。计算θ=0,θ=30°的总淋雨量. (3)、雨从背面吹来,雨线方向跑步方向在同一平面内,且与人体的夹角为α,如图2.建立总淋雨量与速度v及参数a,b,c,d,u,ω,α之间的关系,问速度v多大,总淋雨量最小。计算α=30°的总淋雨量.

数学建模淋雨量模型

数学建模淋雨量模型文档编制序号:[KK8UY-LL9IO69-TTO6M3-MTOL89-FTT688]

重庆大学本科学生论文 数学模型的淋雨量模型 学生:谭昕宇、杨龙顺 学号: 指导教师:黄光辉 专业:通信工程专业 重庆大学通信工程学院 二O一七年十月 摘要 本文针对淋雨量最小问题,采用matlab仿真等方法,得到不同风向下淋雨量与跑步速度的关系。 针对问题一,可以得到淋雨量最小是2.44L 针对问题二,通过matlab仿真可以得到迎面淋雨时跑步速度最大,淋雨量最小。且淋雨量大小与跑步方向和雨线夹角有关。 针对问题三,通过matlab仿真可以知道背面淋雨时,跑步方向和雨线夹角不太小时,当跑步速度与雨速在同一方向分量相等时淋雨量最小,此时只有顶面淋雨。 在本文的最后,对模型的优缺点进行分析,并提出一些改进。 关键字:淋雨量最小,跑步速度,雨线与跑步方向夹角,matlab

目录 一、问题描述 要在雨中从一处沿直线跑到另一处,若雨速为常数且方向不变。讨论淋雨量与人体跑步速度的关系。 二、问题分析 这是一个简单优化问题,根据雨速大小和方向、人速度大小进行合理分析,使得人淋雨量最小。淋雨面积与雨的方向有关,淋雨时间与跑步速度与雨速相对速度大小有关,所以在不同情况下有不同的最优解。 三、模型假设 1.人体简化成一个长方体,高a=1.5m(颈部以下),宽b=0.5m,厚 c=0.2m;

2.雨速u是常数(4m/s),在跑步过程中降雨量w是常数(2cm/h); =5m/s; 3.在整个过程中人跑步速度v是常数,且有最大速度V max 4.雨线的方向是确定的; 5.跑步距离一定d=1000m. 四、符号说明 五、模型的建立与求解 根据题意,按以下步骤进行讨论: 5.1 不考虑雨的方向,设雨淋遍全身,以最大速度跑步,估计跑完全程的总淋雨量。 淋雨面积s=2ab+2ac+ab=2.2m2,跑完时间t=d/v=200 s,降雨量 w=2cm/h=1/1.8X105m/s, 淋雨量 Q=swt=2.44X10-3 m3。

关于淋雨数学建模

淋雨数学建模 摘要:本文通过对人在雨中直线行走时雨垂直降落、从前吹来、从后吹来这三 种情况的分析讨论,得到了在不同情况下淋雨总量与人的行走速度的数学模型。并发现,当雨垂直落下和迎面吹来时,跑的速度越快淋雨越少;而当雨从背面吹 来时,当人跑的速度大于等于雨速的水平分量的大小且此时夹角α满足tan c a α< 时,跑得越快淋雨越少,除此之外的其它情况下有当αsin u v =时,淋雨量最小。 关键词:淋雨 直线行走 一 问题重述 人在雨中从一处沿直线跑到另一处,若雨速为常数且方向不变。试建立数学模型讨论是否跑得越快,淋雨量越少,并用MATLAB 编程实现。 假设跑步距离d=100米,跑步最大速度为m v =5 m/s ,雨速u=4m/s ,降雨量为w=2cm/h 。 (1)不考虑雨的方向,设降雨淋遍全身,以最大速度跑步,估计跑完全程的淋雨量。 (2)雨从迎面吹来,雨线与跑步方向在同一平面内,且与人体夹角为θ,问跑步速度v 为多大?淋雨量最少。 二 问题的分析 人在雨中行走时可能出现以下三种情形: 情形一:雨垂直下落,人以速度v 前行,此时降雨淋遍全身(如图1所示) 图 1 情形二:雨迎面吹来,雨线与跑步方向在同一平面内,与人的正面夹角为θ,此 时后背淋不到雨(如图2所示)

图2 情形三:雨从背面吹来,雨线方向与跑步方向在同一平面内,与人的背后夹角为α,此时正面淋不到雨(如图3所示) 图 3 我们知道当人在雨中前行的时候,人和雨相对地面都是运动的,故知人与雨是相对运动的。为此我们选择人作为参考系,再考虑雨的相对速度及其与人体方向(即与人体夹角θ、α)对总淋雨量的影响。 三合理的假设 3.1 将人体看成一个长方体; 3.2 雨速为常数且方向不变; 3.3 降雨量为一定值; 3.4 考虑雨的方向与人体前进的方向在同一平面内; 3.5 符号的假定: a: 身高(颈部以下) b: 身宽 c: 身厚 v: 跑步最大速度d: 跑步距离 v: 跑步速度 m w: 降雨量 u: 雨速 Q: 总淋雨量 θ: 雨迎面吹来与人的夹角α: 雨背面吹来与人的夹角 s:有效淋雨面积v:以人为参考系时的相对雨速 四模型的建立 我们先考虑如下情形,现有一块土地面积为s,雨垂直降落,雨速及方向不变,且降雨量为一常数w ,则有时间t内该土地的淋雨量为Q stw =。若雨速发生变化,则降雨量也会相对发生改变,设雨速从u变为u u +?,则降雨量相对变

数据建模目前有两种比较通用的方式

数据建模目前有两种比较通用的方式1983年,数学建模作为一门独立的课程进入我国高等学校,在清华大学首次开设。1987年高等教育出版社出版了国内第一本《数学模型》教材。20多年来,数学建模工作发展的非常快,许多高校相继开设了数学建模课程,我国从1989年起参加美国数学建模竞赛,1992年国家教委高教司提出在全国普通高等学校开展数学建模竞赛,旨在“培养学生解决实际问题的能力和创新精神,全面提高学生的综合素质”。近年来,数学模型和数学建模这两个术语使用的频率越来越高,而数学模型和数学建模也被广泛地应用于其他学科和社会的各个领域。本文主要介绍了数学建模中常用的方法。 一、数学建模的相关概念 原型就是人们在社会实践中所关心和研究的现实世界中的事物或对象。模型是指为了某个特定目的将原型所具有的本质属性的某一部分信息经过简化、提炼而构造的原型替代物。一个原型,为了不同的目的可以有多种不同的模型。数学模型是指对于现实世界的某一特定对象,为了某个特定目的,进行一些必要的抽象、简化和假设,借助数学语言,运用数学工具建立起来的一个数学结构。 数学建模是指对特定的客观对象建立数学模型的过程,是现实的现象通过心智活动构造出能抓住其重要且有用的特征的表示,常常是形象化的或符号的表示,是构造刻画客观事物原型的数学模型并用以分析、研究和解决实际问题的一种科学方法。 二、教学模型的分类 数学模型从不同的角度可以分成不同的类型,从数学的角度,按建立模型的数学方法主要分为以下几种模型:几何模型、代数模型、规划模型、优化模型、微分方程模型、统计模型、概率模型、图论模型、决策模型等。 三、数学建模的常用方法 1.类比法 数学建模的过程就是把实际问题经过分析、抽象、概括后,用数学语言、数学概念和数学符号表述成数学问题,而表述成什么样的问题取决于思考者解决问题的意图。类比法建模一般在具体分析该实际问题的各个因素的基础上,通过联想、归纳对各因素进行分析,并且与已知模型比较,把未知关系化为已知关系,

数学建模淋雨问题论文

淋雨问题论文 摘要 本文在给定的降雨条件下,分别建立相应的数学模型,分析人在雨中奔跑时淋雨的多少与奔跑速度、降雨的方向以及雨线的方向与跑步的方向是否在同一平面内等因素的关系,得出结论:若雨迎面落下,则以最大速度跑完全程淋雨量最少;如果雨从背面吹来,分两种情况: (雨从背面吹来时与人体夹角为α)当tan2/15 α>时,跑步 α<时,跑得越快越好;当tan2/15 速度,则以降雨速度的水平分量奔跑时淋雨量最少。若雨线方向与跑步方向不在同一平面内,则可将雨速方向分解为与人跑速度同向的速度和与人跑速度方向垂直的速度. 同向速度即平面共面,可看成模型二、三的情况,垂直速度可看成模型一的情况。 关键词 淋雨量,雨速大小与方向,跑步速度。 正文 1.问题概述 要在雨中从一处沿直线跑到另一处,若雨速为常数且方向不变,试建立数学模型讨论是否跑得越快,淋雨量就越少。 将人体简化成一个长方体,搞a=1.5m(颈部以下),宽b=0.5m,厚

c=0.2m 。设跑步距离d=1000m ,跑步最大速度5/m v m s =,雨速u=4m/s ,降雨量w=2cm/h,记得跑步速度为v ,按以下步骤进行讨论: (1)不考虑雨的方向,设降雨淋遍全身,以最大的速度跑步,估计跑完全程的总淋雨量。 (2)雨从迎面吹来,雨线与跑步方向在同一平面内,且与人体的夹角为x ,如图1,建立总淋雨量与速度v 以及参数a 、b 、c 、d 、u 、w 、θ之间关系,问速度v 多大,总淋雨量最少,计算0θ=,30θ=时的总淋雨量 (3)雨从背面吹来,雨线方向与跑步方向在同一平面内,且与人体的夹角为α,如图2,建立总淋雨量与速度v 以及参数a 、d 、c 、d 、u 、w 、α之间的关系,问速度v 多大,总淋雨量最少,计算30α=时的总淋雨量。 (4)以总淋雨量为纵轴,速度v 为横轴,对(3)进行作图(考虑α的影响),并解释结果的实际意义。 (5)若雨线方向与跑步方向不在同一平面内,模型会有什么变化。 2.模型假设 2.1将人体简化成一个长方体,高a=1.5m,宽b=0.5m.厚c=0.2m ;设跑

数学建模常用算法模型

数学模型的分类 按模型的数学方法分: 几何模型、图论模型、微分方程模型、概率模型、最优控制模型、规划论模型、马氏链模型等 按模型的特征分: 静态模型和动态模型,确定性模型和随机模型,离散模型和连续性模型,线性模型和非线性模型等 按模型的应用领域分: 人口模型、交通模型、经济模型、生态模型、资源模型、环境模型等。 按建模的目的分: 预测模型、优化模型、决策模型、控制模型等 一般研究数学建模论文的时候,是按照建模的目的去分类的,并且是算法往往也和建模的目的对应 按对模型结构的了解程度分: 有白箱模型、灰箱模型、黑箱模型等 比赛尽量避免使用,黑箱模型、灰箱模型,以及一些主观性模型。 按比赛命题方向分: 国赛一般是离散模型和连续模型各一个,2016美赛六个题目(离散、连续、运筹学/复杂网络、大数据、环境科学、政策) 数学建模十大算法 1、蒙特卡罗算法 (该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,比较好用的算法) 2、数据拟合、参数估计、插值等数据处理算法 (比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用Matlab作为工具) 3、线性规划、整数规划、多元规划、二次规划等规划类问题 (建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo软件实现) 4、图论算法 (这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备)

5、动态规划、回溯搜索、分治算法、分支定界等计算机算法 (这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中) 6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法 (这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用) 7、网格算法和穷举法 (当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具) 8、一些连续离散化方法 (很多问题都是从实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的) 9、数值分析算法 (如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用) 10、图象处理算法 (赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片的这些图形如何展示,以及如何处理就是需要解决的问题,通常使用Matlab进行处理) 算法简介 1、灰色预测模型(必掌握) 解决预测类型题目。由于属于灰箱模型,一般比赛期间不优先使用。 满足两个条件可用: ①数据样本点个数少,6-15个 ②数据呈现指数或曲线的形式 2、微分方程预测(高大上、备用) 微分方程预测是方程类模型中最常见的一种算法。近几年比赛都有体现,但其中的要求,不言而喻。学习过程中 无法直接找到原始数据之间的关系,但可以找到原始数据变化速度之间的关系,通过公式推导转化为原始数据的关系。 3、回归分析预测(必掌握) 求一个因变量与若干自变量之间的关系,若自变量变化后,求因变量如何变化; 样本点的个数有要求: ①自变量之间协方差比较小,最好趋近于0,自变量间的相关性小; ②样本点的个数n>3k+1,k为自变量的个数;

数学建模常用算法模型

按模型的数学方法分: 几何模型、图论模型、微分方程模型、概率模型、最优控制模型、规划论模型、马氏链模型等 按模型的特征分: 静态模型和动态模型,确定性模型和随机模型,离散模型和连续性模型,线性模型和非线性模型等 按模型的应用领域分: 人口模型、交通模型、经济模型、生态模型、资源模型、环境模型等。 按建模的目的分: 预测模型、优化模型、决策模型、控制模型等 一般研究数学建模论文的时候,是按照建模的目的去分类的,并且是算法往往也和建模的目的对应 按对模型结构的了解程度分: 有白箱模型、灰箱模型、黑箱模型等 比赛尽量避免使用,黑箱模型、灰箱模型,以及一些主观性模型。 按比赛命题方向分: 国赛一般是离散模型和连续模型各一个,2016美赛六个题目(离散、连续、运筹学/复杂网络、大数据、环境科学、政策) 数学建模十大算法 1、蒙特卡罗算法 (该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,比较好用的算法) 2、数据拟合、参数估计、插值等数据处理算法 (比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用Matlab作为工具)

3、线性规划、整数规划、多元规划、二次规划等规划类问题 (建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo软件实现) 4、图论算法 (这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备) 5、动态规划、回溯搜索、分治算法、分支定界等计算机算法 (这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中) 6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法 (这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用) 7、网格算法和穷举法 (当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具) 8、一些连续离散化方法 (很多问题都是从实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的) 9、数值分析算法 (如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用)10、图象处理算法 (赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片的这些图形如何展示,以及如何处理就是需要解决的问题,通常使用Matlab进行处理) 算法简介 1、灰色预测模型(必掌握)

数学建模方法归类(很全很有用)

在数学建模中常用的方法:类比法、二分法、量纲分析法、差分法、变分法、图论法、层次分析法、数据拟合法、回归分析法、数学规划(线性规划,非线性规划,整数规划,动态规划,目标规划)、机理分析、排队方法、对策方法、决策方法、模糊评判方法、时间序列方法、灰色理论方法、现代优化算法(禁忌搜索算法,模拟退火算法,遗传算法,神经网络)。 用这些方法可以解下列一些模型:优化模型、微分方程模型、统计模型、概率模型、图论模型、决策模型。拟合与插值方法(给出一批数据点,确定满足特定要求的曲线或者曲面,从而反映对象整体的变化趋势):matlab可以实现一元函数,包括多项式和非线性函数的拟合以及多元函数的拟合,即回归分析,从而确定函数;同时也可以用matlab实现分段线性、多项式、样条以及多维插值。 在优化方法中,决策变量、目标函数(尽量简单、光滑)、约束条件、求解方法是四个关键因素。其中包括无约束规则(用fminserch、fminbnd实现)线性规则(用linprog实现)非线性规则、(用fmincon实现)多目标规划(有目标加权、效用函数)动态规划(倒向和正向)整数规划。 回归分析:对具有相关关系的现象,根据其关系形态,选择一个合适的数学模型,用来近似地表示变量间的平均变化关系的一种统计方法(一元线性回归、多元线性回归、非线性回归),回归分析在一组数据的基础上研究这样几个问题:建立因变量与自变量之间的回归模型(经验公式);对回归模型的可信度进行检验;判断每个自变量对因变量的影响是否显著;判断回归模型是否适合这组数据;利用回归模型对进行预报或控制。相对应的有线性回归、多元二项式回归、非线性回归。 逐步回归分析:从一个自变量开始,视自变量作用的显著程度,从大到地依次逐个引入回归方程:当引入的自变量由于后面变量的引入而变得不显著时,要将其剔除掉;引入一个自变量或从回归方程中剔除一个自变量,为逐步回归的一步;对于每一步都要进行值检验,以确保每次引入新的显著性变量前回归方程中只包含对作用显著的变量;这个过程反复进行,直至既无不显著的变量从回归方程中剔除,又无显著变量可引入回归方程时为止。(主要用SAS来实现,也可以用matlab软件来实现)。 聚类分析:所研究的样本或者变量之间存在程度不同的相似性,要求设法找出一些能够度量它们之间相似程度的统计量作为分类的依据,再利用这些量将样本或者变量进行分类。 系统聚类分析—将n个样本或者n个指标看成n类,一类包括一个样本或者指标,然后将性质最接近的两类合并成为一个新类,依此类推。最终可以按照需要来决定分多少类,每类有多少样本(指标)。 系统聚类方法步骤: 1.计算n个样本两两之间的距离 2.构成n个类,每类只包含一个样品 3.合并距离最近的两类为一个新类 4.计算新类与当前各类的距离(新类与当前类的距离等于当前类与组合类中包含的类的距离最小值), 若类的个数等于1,转5,否则转3 5.画聚类图 6.决定类的个数和类。 判别分析:在已知研究对象分成若干类型,并已取得各种类型的一批已知样品的观测数据,在此基础上根据某些准则建立判别式,然后对未知类型的样品进行判别分类。 距离判别法—首先根据已知分类的数据,分别计算各类的重心,计算新个体到每类的距离,确定最短的距离(欧氏距离、马氏距离) Fisher判别法—利用已知类别个体的指标构造判别式(同类差别较小、不同类差别较大),按照判别式的值判断新个体的类别 Bayes判别法—计算新给样品属于各总体的条件概率,比较概率的大小,然后将新样品判归为来自概率最大的总体 模糊数学:研究和处理模糊性现象的数学(概念与其对立面之间没有一条明确的分界线)与模糊数学相关的问题:模糊分类问题—已知若干个相互之间不分明的模糊概念,需要判断某个确定事物用哪一个模糊概念来反映更合理准确;模糊相似选择—按某种性质对一组事物或对象排序是一类常见的问题,但是用来比

数学建模淋雨量模型新编

数学建模淋雨量模型新 编 GE GROUP system office room 【GEIHUA16H-GEIHUA GEIHUA8Q8-

重庆大学本科学生论文 数学模型的淋雨量模型 学生:谭昕宇、杨龙顺 学号: 指导教师:黄光辉 专业:通信工程专业 重庆大学通信工程学院 二O一七年十月 摘要 本文针对淋雨量最小问题,采用matlab仿真等方法,得到不同风向下淋雨量与跑步速度的关系。 针对问题一,可以得到淋雨量最小是2.44L 针对问题二,通过matlab仿真可以得到迎面淋雨时跑步速度最大,淋雨量最小。且淋雨量大小与跑步方向和雨线夹角有关。 针对问题三,通过matlab仿真可以知道背面淋雨时,跑步方向和雨线夹角不太小时,当跑步速度与雨速在同一方向分量相等时淋雨量最小,此时只有顶面淋雨。在本文的最后,对模型的优缺点进行分析,并提出一些改进。

关键字:淋雨量最小,跑步速度,雨线与跑步方向夹角, matlab 目录 摘要........................................................... 一、问题描述................................................... 二、问题分析................................................... 三、模型假设................................................... 四、符号说明.................................................. 五、模型的建立与求解.......................................... 六、模型评价 ................................................ 6.1 模型优点................................................... 6.2 模型缺点................................................... 6.3 模型改进................................................... 七、参考文献.................................................. 一、问题描述 要在雨中从一处沿直线跑到另一处,若雨速为常数且方向不变。讨论淋雨量与人体跑步速度的关系。

相关文档