文档库 最新最全的文档下载
当前位置:文档库 › 热丝CVD沉积金刚石膜

热丝CVD沉积金刚石膜

热丝CVD沉积金刚石膜
热丝CVD沉积金刚石膜

实验:热丝CVD沉积金刚石膜

一、原理:

在预抽真空的腔体中,碳氢化合物气体和氢气通过高温热丝裂解,在基体上沉积金刚石薄膜。主要特点是:1.热丝提供的高能量密度足够产生一些重要的活性基CH3、C2H2、原子H等;2.使用的碳氢化合物种类并不十分重要,许多碳氢化合物均可作为碳源;3.基体温度约~600-1000℃;4.依靠馈入气相中C,H 或O的比率不同,沉积出具有少量或没有非金刚石相碳的从纳米晶金刚石到单晶金刚石的沉积物,与使用的气相碳源的种类无关。由热力学理论可知,低压沉积的金刚石是在石墨的稳态区、金刚石的亚稳区生成。而在自然状态, 作为碳的一种结晶形态, 金刚石是亚稳态, 石墨是稳态, 由于金刚石和石墨的自由能在常温下的化学位十分接近,二者的自由能差只有0.03eV。然而,二者之间有很高的势垒,由热力学可知,如果活化能垒远高于稳态相,则亚稳相能由具有高化学位的前驱物获得,亚稳相一旦形成,由于缺少必要的能量翻越能垒,亚稳相将不能转变成稳定相。因而在常温下金刚石与石墨之间的热力学相变不能进行。但当碳被活化到其化学位超过石墨与金刚石之间的能垒高度时,就能同时沉积石墨碳与金刚石相碳,因此,金刚石的化学气相沉积过程实际上是一个金刚石沉积与石墨沉积相竞争的过程。金刚石沉积的两个关键问题是气相的活化与石墨相的抑制与刻蚀问题。活化采用热丝方法能使气相活化,而金刚石沉积过程中,石墨相的抑制与刻蚀则主要依靠原子H的作用。由于原子H刻蚀石墨的速率远高于刻蚀金刚石的速率(两者相差约50倍),因此,只要有大量的原子H存在,在基体上最终留下的将是亚稳态的金刚石。在形核和生长过程中可能产生的石墨或其他形式的非金刚石相碳要么被抑制,要么被刻蚀掉了。

二、实验目的:

1 掌握热丝CVD沉积金刚石膜的原理;

2 熟悉热丝CVD装置的原理、构造及操作规程;

3 了解金刚石薄膜的表征方法

三、实验原材料:硅片,丙酮,氢气,钽丝

四、主要实验设备:热丝CVD沉积装置,扫描电子显微镜,光学显微镜,光学高温计

本实验采用电子增强热丝化学气相沉积装置,直径为

300mm的不锈钢钟罩作为反应室,基片台是边长100mm

的不锈钢水冷基片台,其上放置厚石墨盘,为保护石墨盘

在金刚石薄膜生长过程中不被原子氢刻蚀,在石墨盘上放

等直径的厚4mm的钼板,钼板上再放置一片厚度为2mm,

直径6mm的铜板,样品放置其上。热丝为直径为0.4mm

的Ta丝,Ta丝温度采用光学高温计测量。

四、实验步骤:

1、热丝(Ta丝)碳化

热丝(Ta丝)在使用前先进行碳化,碳化的目的主要是清

洁钽丝表面,使钽丝碳化为碳化钽,防止在金刚石形核时,

消耗碳源,有利于稳定实验参数,此外,高温碳化还可让

钽丝拉直以便准确的测定钽丝与刀具的距离。

2、样品预处理

样品经过金刚石粉研磨表、清洗,然后干燥备用;或表面

清洗以及金刚石粉超声波处理、清洗、干燥;

3、形核

形核时选择较低的气压及较高的碳源浓度,以便碳原子在

基体表面迁移、聚集而形核;典型的形核条件:21V、H2:(H2+CH3COCH3)=160:70,气压:1.0kPa,时间:3-4分钟,

4、金刚石膜生长

生长时选择较高的气压及较低的碳源浓度,提高生长速度,同时控制金刚石膜质量. 典型的生长条件:20V 、H 2:(H 2+ CH 3COCH 3)=160:50,气压:3-6kPa ,时间: 3~4小时。

5、质量检测

使用扫描电子显微镜,光学显微镜观察金刚石膜的结晶情况以及显露的晶型,Raman 光谱检测金刚石膜的质量。

02004006008001000120014001600180020000

2000

4000

6000

80001000012000

14000

16000

I n t e n s i t y (a .u .)Raman shift(cm-1)

图1 SEM 图 图2 Raman 谱

图片是实验结果,要自己分析,报告中不能没有结果。

分析要点:分析时参考下面知识点,自己分析,严禁相互抄袭。

光学观察:肉眼观察膜呈表面灰色,光学显微镜观察有反光亮点,为晶面反光

Raman :金刚石特征峰峰位为1332cm -1,压应力使峰位向高波数方向移动,根据峰位移动大小可判断沉积的金刚石膜的内应力大小。内应力包括热应力和本征应力,本征应力主要由夹杂、晶体缺陷等产生。 1580 cm -1附近峰是非金刚石相碳的特征峰,Raman 谱对其灵敏度是金刚石的50倍。

SEM :主要分析结晶质量和主要显露晶面。金刚石键能高,主要显露(100)和(111)面,(100)面呈正方形;(111)面呈三角形。很多情况下,受生长条件影响,晶面发育不全,不是标准的三角或正方形,但可以大致看出其轮廓,上图主显(111)面

与其他材料一样,金刚石膜中的内应力σ也是热应力σ

th 和本征应力σin 的和,即

σ=σth +σin

热应力可以有金刚石基底的热膨胀系数求出: 0

()1T th f s T E dT σααμ=--? 式中:μ是金刚石的弹性模量,E/1-μ为金刚石的双轴弹性模量,T 为沉积温度,T 0为测量时的沉积温度(一般为室温),αf 和αs 分别为金刚石薄膜和基底的热膨胀系数。在制备金

刚石薄膜的温度范围内,热应力值变化不大,较稳定。本征应力主要是由膜中的杂质等引起的,而张应力是由膜中的空位、位错、晶粒间失配等缺陷形成的。膜中的非金刚石的碳、石墨相及氢的存在形成压应力,而晶格失配、空位等引起张应力,从广义上讲凡是会影响到金刚石薄膜质量和微观结构的因素,都会影响到其内应力。

但目前,国内外的研究者主要研究了金刚石膜的制备工艺对膜内应力的影响,如:碳源浓度、衬底温度、晶粒线度、偏压等。结果表明:内应力与制备条件密切相关,为使CVD 金刚石膜内应力尽量减小,应对制备工艺参数进行总结和优化。

金刚石内应力分析

化学气相沉积金刚石薄膜Raman 谱一般包含以下三部分:(1)位于1332.5cm -1附近的金刚石特征峰,具有明锐的峰形。(2)非金刚石相的贡献,当石墨相的含量足够低的时候,表现为由SP 2结构无定形碳而形成的1550cm -1附近峰包。(3)还有一个涉及整个测量范围的光致发光背景叠加在Raman 光谱之上。

Raman 光谱是一种利用光于与分子之间发生非弹性散射获得散射光谱,从而研究分子或物质微观结构的光谱技术,是目前表征金刚石薄膜质量最为有效的分析方法之一。天然金刚石单晶的一阶Raman 谱约在l332cm -1处有一尖锐峰。受到应力时,金刚石的Raman 峰发生移动,张应力使1332cm -1峰向低波数漂移,压应力使1332cm -1峰向高波数移动。H.Boppart [27]等和

A.Tardieu [28]等的研究结果表明,金刚石薄膜中金刚石拉曼峰的偏移量△ν与其内应力。的关系分别为:

△ν(cm)=(2.87土0.10)σ(GPa) ( 1 )△ν(cm)=(2.64土0.10)σ(GPa) ( 2 )

类金刚石薄膜 资料介绍

类金刚石膜技术基础 一、类金刚石薄膜发展史: 金刚石、类金刚石薄膜技术,是指利用各种光学薄膜制作技术制作接近天然金刚石和人造单晶金刚石特性(如在较宽光谱内均具有很高的光透过率--在2~15μm(微米)范围光的吸收率低到1%;具有很高的硬度、良好的导热性、耐腐蚀性以及化学稳定性高--1000℃(摄氏度)以上仍保持其化学稳定性等)的人造多晶金刚石薄膜、类金刚石薄膜(又称为硬碳膜、离子碳膜、或透明碳膜)的一种技术。 光学应用金刚石、类金刚石薄膜主要采用低压化学汽相沉积(CVD)技术制备。低压CVD 技术包括热丝CVD法、等离子体CVD法、离子束蒸镀法、光/激光CVD法附加活性氢激光CVD 法等。 目前,CVD法制作金刚石薄膜已取得丰硕成果,但作为红外光学薄膜应用还需进一步解决金刚石薄膜对红外光学材料的粘着性和光散射的问题。CVD法制作的金刚石薄膜与硅基片的粘着性是不错的,但是与其他材料(如锗、硫化锌等)基片的粘着性就甚差,或是根本就粘着不到一起去。对于光散射的问题,则是要求如何更好地控制金刚石薄膜表面形态和晶粒结构。理想的CVD法制造的红外光学应用的金刚石薄膜或许是一种单晶结构的膜,但是,目前使用CVD法还不能制造单晶结构的金刚石薄膜。此外,大面积薄膜的制作、膜的光洁度等技术课题以及金刚石薄膜的制作成本问题,都有待于继续研究解决。 1.1金刚石、类金刚石薄膜研究进程 自1963年在一次偶然的机会出现了不寻常的硬度和化学性能好的化学汽相沉积(CVD)碳形式的薄膜后,国外有不少研究单位开始研究金刚石薄膜的沉积工艺.1971年,艾森伯格(Aisenberg)和沙博(Chabot)等人,利用离子束蒸镀法,以石墨作薄膜材料,通过氩气弧光放电使石墨分解电离产生碳离子。碳离子经磁场聚焦成束,在比较高的真空条件下,在低压沉积室内的室温下的基片上沉积出了硬碳膜。这种硬碳膜具有近似于金刚石的一些特性-如透明度高、电阻抗大、硬度高等。当时,这种膜被人们称作i形碳。直到1976年,斯潘塞(Spencer)等人对这种应碳膜的结构进行了探讨,结果确认膜中有金刚石等数种碳系结晶,后才被人们称之为类金刚石膜。就在这一年,德贾吉恩(Derjaguin)等人利用化学转变法合成出了金刚石薄膜。从此之后,低压CVD金刚石薄膜工艺引起了人们的注意。70年代中期,前苏联的科学家,论证了实用的CVD金刚石薄膜技术,接下来日本人又模仿和发展了此项技术。进入80年代后,低压CVD金刚石薄膜研究在日本蓬勃开展起来。在从1963~1987年的25年中,各国相继发表的有关金刚石薄膜制作技术及其相关材料的专利,共有672篇。其中美国

发明专利 一种类金刚石涂层褪镀工艺

本发明公开一种类金刚石涂层褪镀工艺,该工艺包括以下步骤:将被褪镀件置于超声波槽中,依次经过除油、漂洗、除蜡、漂洗工序,去除表面的宏观污渍;将清洗后的被褪镀件置于烘箱中烘烤;将被褪镀件置于真空镀膜设备中,利用Ar离子辉光清洗去除表面的微观污渍;在Ar离子辉光清洗之后,直接向真空室充入O2;将被褪镀件再次置于超声波槽中,使用溢流高纯水进行清洗。本发明不使用化学药剂褪镀,在不改变工件表面粗糙度和精度的前提下实现原位褪镀,可以满足类金刚石涂层工业化批量褪镀的要求;褪镀快,依据涂层种类和厚度不同,一般只需要0.5-3小时。 1

1

1、一种类金刚石涂层褪镀工艺,其特征在于:该工艺包括以下步骤: (1)超声波清洗:将被褪镀件置于超声波槽中,依次经过除油、漂洗、除蜡、漂洗工序,去除表面的宏观污渍; (2)烘干:将清洗后的被褪镀件置于烘箱中烘烤; (3)Ar等离子体轰击:将被褪镀件置于真空镀膜设备中,利用Ar离子辉光清洗去除表面的微观污渍; (4)O2等离子体原位褪镀:在Ar离子辉光清洗之后,直接向真空室充入O2,继续褪镀; (5)超声波二次清洗:将被褪镀件再次置于超声波槽中,使用溢流高纯水进行清洗。 2、根据权利要求1所述的一种类金刚石涂层褪镀工艺,其特征在于:步骤(1)中所述的除油工序为:在除油槽中加入质量分数为3~5%的碱性溶液,在温度为50~70℃条件下,清洗2~5分钟;所述的漂洗工序为:使用溢流高纯水室温下操作漂洗,溢流高纯水电阻率>15MΩ.cm;所述的除蜡工序为:使用质量分数为1%的表面活性剂溶液,在温度为50℃条件下,清洗2~5分钟;除蜡后漂洗工序和除油后漂洗一致,漂洗后用高压气枪去除表面水渍。 3、根据权利要求2所述的一种类金刚石涂层褪镀工艺,其特征在于:所述的碱性溶液为NaOH溶液;所述的溢流高纯水电阻率>15MΩ.cm;所述的表面活性剂溶液为Alconox溶液。 4、根据权利要求1所述的一种类金刚石涂层褪镀工艺,其特征在于:步骤(2)中所述的烘箱温度为120℃,烘烤20分钟。 5、根据权利要求1所述的一种类金刚石涂层褪镀工艺,其特征在于:步骤

金刚石薄膜的性能研究

金刚石薄膜的性能研究 金刚石薄膜的应用 由于金刚石的优异性质,加上CVD法大大降低了金刚石的生产成本而CVD金刚石薄膜的品质逐渐赶上甚至在一些方面超过天然金刚石而使得金刚石薄膜广泛地用于工业的许多领域: 1 工具领域 随着汽车、航空和航天工业的发展以及对材质轻量化、高比强度的要求日益提高,有色金属、碳纤维增强塑料(CFRP)、玻璃纤维增强塑料(GFRP)、纤维增强金属(FRM)以及石墨、陶瓷等新材料在工业中的应用日益广泛,因而对加工这些材料的刀具提出了更高的要求,金刚石的高硬度,耐磨损,高热导,低热膨胀系数,低摩擦系数,化学惰性等优点使得金刚石是加工非铁系材料的理想工具材料。HTHP金刚石在二十世纪60年代就被用于刀具领域,但由于其制备工艺复杂,价格昂贵,刀具种类受限而限制了其在工业上的广泛应用;将金刚石薄膜直接沉积在刀具表面,能极大地延长刀具的使用寿命,加工质量也大为提高。 2 热沉领域 目前国内半导体功率器件采用铜作热沉,在同时要求绝缘的场合采用氧化铍陶瓷。但氧化铍在制备过程中有剧毒物质产生,在发达国家已禁止使用。金刚石在室温下具有最高的热导率,是铜、银的5倍,又是良好的绝缘体,因而是大功率激光器件、微波器件、高集成电子器件的理想散热材料 采用金刚石热沉(散热片)的大功率半导体激光器已经用于光通信,在激光二极管、功率晶体管、电子封装材料等方面都有应用;金刚石热沉商品也已在国外市场出现。金刚石热沉的另一应用前景是用于正在发展之中的多芯片技术(MCMs,Multi Chip Modules),这一技术的目标是把许多超大规模集成电路芯片以三维的方式紧密排列结合成为超小型的超高性能器件,而这些芯片的散热则是该技术的关键,显然金刚石薄膜是解决这一技术难题最理想的材料。 3 光学应用领域 金刚石的光学吸收在0.22μm左右,相当于真空紫外光波段,从此位置直到毫米波段,除位于~5μm附近由于双声子吸收而造成的微弱吸收峰(吸收系数~12.3cm-1)外,不存在任何吸收峰。 金刚石膜作为光学涂层的应用前景非常好。在军事可用作红外光学窗口和透镜的涂层。在民用方面可用作在恶劣环境(如冶金,化工等)下工作的红外在线监测和控制仪器的光学元件涂层。CVD金刚石膜通常沉积温度在800~1000℃左右,大多数光学材料衬底都不允许在这样高的温度下沉积金刚石膜,因此在低温下沉

金刚石材料的功能特性研究与应用

陶瓷专题 金刚石材料的功能特性研究与应用 高 凯,李志宏 (天津大学材料科学与工程学院,天津 300072) Study and Application on Functional Properties of Diamond Materials GAO Kai,LI Zhi hong (S chool of M ater ial S cience and Engineer ing,T ianj in Univer sity,T ianj in300072,China) Abstract:Functional properties of diamo nd mater ials and its study and application recent years on w ide bandg ap semiconducto rs,ultraviolet detectors,sing le pho to n source for quantum computer,so nic surface diffusion and electronic encapsulatio n w ere reviewed in this paper,and other po tential application on func tional proper ties of the diamond materials w ere expected. Key words:Diamo nd,Functional proper ty,Study,Application 摘要:本文综述了金刚石的功能特性及其近年来在宽禁带半导体、紫外探测器、量子计算机用单光子源、声波材料和电子封装等方面的研究与应用进展,并对金刚石材料在其它功能特性方面的开发与应用前景提出了展望。 关键词:金刚石;功能特性;研究;应用 中图分类号:TB33 文献标识码:A 文章编号:1002-8935(2010)04-0009-05 金刚石是目前工业化生产的最硬材料,其前通常利用其硬度特性广泛地作为加工、研磨材料。但它除了具有高硬度之外,其许多优异特性被逐渐发现和挖掘,如室温下高热导率、极低的热膨胀系数、低的摩擦系数、良好的化学稳定性、大的禁带宽度(5 5eV)、高的声传播速度、掺杂诱导的半导体特性以及高的光学透过率,使其在机械加工、微电子器件、光学窗口及表面涂层等许多领域有着广阔的应用前景。因此,金刚石材料的功能特性研究与应用引起了人们极大的兴趣,并在很多领域取得了突破和进展。 1 在宽禁带半导体方面的研究与应用 金刚石作为一种宽禁带半导体,在光电子学中的应用前景无疑是最引人注目的。但是由于n型金刚石半导体掺杂存在着一定的困难,使制备同质结的困难加大,目前领先的依然是麻省理工学院有关于金刚石薄膜p n结的研究[1],2001年麻省理工学院的Koizumi等第一次制备了金刚石薄膜p n结,在金刚石单晶的(111)面上以同质外延生长的方法制备了两层金刚石薄膜,p型半导体使用B元素掺杂金刚石薄膜而成,n型半导体则以P元素掺杂制备,然后他们对这个装置进行了改进,在施加20V 偏压电路的情况下,装置被激发出了紫外光,并且指出,该装置可以在高温下运作。Alexo v A等[2]则在掺杂B元素后的金刚石薄膜上用同质外延法制备了一层掺杂N元素的金刚石薄膜,但是并没有详细报道此p n结的电致发光等特性。之后有关同质结的报道很不常见,估计主要是还是因为金刚石n型半导体掺杂的可重复性存在着一定的困难所致,目前报道都集中于金刚石半导体异质结上,比如,已在Si晶片上生长含B金刚石薄膜[3],或者是制备肖特基二极管(Schottky diodes)和场效应晶体管(Field effect transisto rs,FET)。 1987年化学气相沉积(CVD)法制备含B金刚石薄膜的方法并不完善,所以Geis等[4]用合成含B 金刚石单晶的方法制备了由W元素接触的首个金刚石肖特基二极管,并在700下考察了样品的性能,确定了样品具有很高的击穿场强。同一课题组的相关人员进一步考察了不同金属元素接触对金刚石肖特基二极管性能的影响[5],大量的工作表明,使用Al,Au,H g元素作为含B金刚石的表面接触元

薄膜与涂层现代表面技术

材料表面技术分类 材料表面技术:材料表面涂镀技术、材料表面改性技术、材料表面微细加工技术、表面检测分析与质量评估。 材料表面涂镀技术:物理气相沉积PVD、化学气相沉积CVD、电镀及阳极氧化、化学镀、热喷涂喷焊、电刷镀、电泳涂层、涂镀(喷塑油漆)、表面复合处理技术、材料纳米化表面工程技术。 材料表面改性技术:活性气体离子处理、气体扩渗、液体扩渗、固体扩渗、机械强化、激光表面处理、电子束表面改性、离子束表面改性。 材料表面微细加工技术:光刻加工、电子束微细加工、离子束微细加工、激光束微细加工、微细电火花加工、微细喷粉加工、超声波加工、微细电解加工、微电铸加工、LIGA技术加工。 表面检测分析与质量评估:表面分析技术、表面物化特性、表面几何特性、表面力学特性、质量标准与质量评估。 表面工程学 现代材料表面工程学:材料表面工程基础理论、材料表面工程技术、材料表面检测技术、材料表面工程技术设计、材料表面工程应用。 材料表面工程基础理论:腐蚀与防护理论,表面磨擦与磨损理论,表面完整性与界面理论,表面物理化学,表面装饰与美学,表面机、力、热、光、声、电、磁等功能膜层设计理论,表面功能特性间耦合转换、复合性能理论,表面失效理论及其分析理论,低维材料的结构理论。 材料表面工程技术:材料表面改性技术、薄膜技术、涂层技术、材料表面复合处理技术、材料表面纳米化工程技术。 材料表面改性技术:表面形变强化,表面相变强化,表面扩散渗入,化学转化,电化学转化,等离子表面强化,离子束、电子束、激光束表面改性。 薄膜技术:光学薄膜沉积技术,电子学薄膜沉积技术,光电子薄膜沉积技术,集成光学薄膜沉积技术,传感器用薄膜沉积技术,金刚石薄膜(含类金刚石薄膜)沉积技术,防护用(耐蚀、耐磨、抗高温氧化、防潮、高强高硬、装饰等)薄膜沉积技术。 涂层技术:热喷涂技术、电化学沉积技术、有机涂层技术、无机涂层技术、热浸镀技术、防锈技术。 材料表面复合处理技术:镀覆层——热处理,表面热处理——表面化学处理,热处理——表面形变强化,镀膜——注入——扩渗,离子注入——镀膜,激光——气相沉积,电子束——气相沉积,等离子喷涂——激光。 材料表面纳米化工程技术:纳米颗粒复合电刷镀技术,纳米热喷涂技术,纳米涂装技术,纳米减摩自修复添加剂技术,纳米固体润滑干膜技术,纳米粘涂技术,纳米薄膜沉积技术。 材料表面检测技术:表面微观结构分析技术,表面化学分析技术,表面物理性能测试技术,表面力学性能测试技术,表面几何特性测试技术,表面无损检测技术。 材料表面工程技术设计:表面层成分结构设计,表面复合功能层设计,表面选择与应用设计,表面涂镀层制备工艺设计,表面工程施工设计,表面工程设备与工艺流程设计,表面工程车间设计。 材料表面工程应用:表面层特性及其综合利用,表面层原料及加工技术,表面层标准及检验,表面界面维修与再造,表面质量与工艺过程控制,表面工程管理与经济分析。 薄膜功能分类

pvd和cvd是有区别的

CVD与PVD的区别及比较 2009年03月06日 17:17 www.elecfans.co 作者:本站用户评论(0) 关键字: CVD与PVD的区别及比较 (一)选材:化学蒸镀-装饰品、超硬合金、陶瓷物理蒸镀-高温回火之工、模具钢(二)蒸镀温度、时间及膜厚比较:化学蒸镀-1000℃附近,2~8小时,1~30μm(通常5~10μm)物理蒸镀-400~600℃,1~3小时,1~10μm (三) 物性比较:化学蒸镀皮膜之结合性良好,较复杂之形状及小孔隙都能蒸镀;唯若用于工、模具钢,因其蒸镀温度高于钢料之回火温度,故蒸镀后需重施予淬火-回火,不适用于具精密尺寸要求之工、模具。不需强度要求之装饰品、超硬合金、陶瓷等则无上述顾虑,故能适用。物理蒸镀皮膜之结合性较差,且背对金属蒸发源之处理组件会产生蒸镀不良现象;但其蒸镀温度可低于工、模具钢的高温回火温度,且其蒸镀后之变形甚微,故适用于经高温回火之精密工具、模具。 (4) 半导体制程概要-离子布植郑硕贤 4.1前言 在半导体组件工业中,常在半导体晶体中加入杂质以控制带电载子数目,来增加导电性。这种加入杂质的方法称为掺入杂质(Doping) 。 一般来说,掺入杂质的方法有两种: 1. 化学蒸镀法 2. 扩散法 3. 离子布植法 其中1、3两项在微电子组件工业中已普遍使用,这两种方法虽简易实用,但却牺牲了完整晶型的要求。如化学蒸镀法在较低温度下进行,则蒸镀层常为非晶质或是多晶质。离子布植则造成许多表面有许多点缺陷,甚至使表面层变成非晶质;因此一般均须经一道恢复完整晶格的退火处理,使表面层能回复晶型的样子。4.2原理 离子布植是将高能量带电粒子射入硅基晶中。离子进入硅靶材后,会和硅原子发生碰撞而逐渐损失能量;直到能量耗损殆尽,即停止在该深度。在与硅原子碰撞过程中,离子会传递部份能量给硅原子,若此能量大于硅和硅间的键结能量,则可使其产生位移而产生新的入射粒子;这新获得动能的粒子,也会与其它硅原子产生碰撞。这个连锁碰撞过程会随着不断进入的入射离子与碰撞所产生的移动粒子,因不断重新发生而继续进行,进而达到布植的效果。

类金刚石薄膜制备和应用

类金刚石膜调研 类金刚石薄膜发展史: 金刚石、类金刚石薄膜技术,是指利用各种光学薄膜制作技术制作接近天然金刚石和人造单晶金刚石特性(如在较宽光谱内均具有很高的光透过率--在2~15μm(微米)范围光的吸收率低到1%;具有很高的硬度、良好的导热性、耐腐蚀性以及化学稳定性高--1000℃(摄氏度)以上仍保持其化学稳定性等)的人造多晶金刚石薄膜、类金刚石薄膜(又称为硬碳膜、离子碳膜、或透明碳膜)的一种技术。 光学应用金刚石、类金刚石薄膜主要采用低压化学汽相沉积(CVD)技术制备。低压CVD 技术包括热丝CVD法、等离子体CVD法、离子束蒸镀法、光/激光CVD法附加活性氢激光CVD 法等。 目前,CVD法制作金刚石薄膜已取得丰硕成果,但作为红外光学薄膜应用还需进一步解决金刚石薄膜对红外光学材料的粘着性和光散射的问题。CVD法制作的金刚石薄膜与硅基片的粘着性是不错的,但是与其他材料(如锗、硫化锌等)基片的粘着性就甚差,或是根本就粘着不到一起去。对于光散射的问题,则是要求如何更好地控制金刚石薄膜表面形态和晶粒结构。理想的CVD法制造的红外光学应用的金刚石薄膜或许是一种单晶结构的膜,但是,目前使用CVD法还不能制造单晶结构的金刚石薄膜。此外,大面积薄膜的制作、膜的光洁度等技术课题以及金刚石薄膜的制作成本问题,都有待于继续研究解决。 1.1金刚石、类金刚石薄膜研究进展 自1963年在一次偶然的机会出现了不寻常的硬度和化学性能好的化学汽相沉积(CVD)碳形式的薄膜后,国外有不少研究单位开始研究金刚石薄膜的沉积工艺.1971年,艾森伯格(Aisenberg)和沙博(Chabot)等人,利用离子束蒸镀法,以石墨作薄膜材料,通过氩气弧光放电使石墨分解电离产生碳离子。碳离子经磁场聚焦成束,在比较高的真空条件下,在低压沉积室内的室温下的基片上沉积出了硬碳膜。这种硬碳膜具有近似于金刚石的一些特性-如透明度高、电阻抗大、硬度高等。当时,这种膜被人们称作i形碳。直到1976年,斯潘塞(Spencer)等人对这种应碳膜的结构进行了探讨,结果确认膜中有金刚石等数种碳系结晶,后才被人们称之为类金刚石膜。就在这一年,德贾吉恩(Derjaguin)等人利用化学转变法合成出了金刚石薄膜。从此之后,低压CVD金刚石薄膜工艺引起了人们的注意。70年代中期,前苏联

类金刚石薄膜的性能与应用

学科前沿知识讲座论文

类金刚石薄膜的性能与应用 摘要: 类金刚石膜(Diamond-like Carbon)简称DLC,是一类性质类似于金刚石如具有高硬度、高电阻率、耐腐蚀、良好的光学性能等,同时其又具有自身独特摩擦学特性的非晶碳膜。作为功能薄膜和保护薄膜,其广泛应用于机械、电子、光学、医学、航天等领域中。类金刚石膜制备方法比较简单,易实现工业化,具有广泛的应用前景。 关键词:超硬材料类金刚石薄膜制备气象沉积表面工程技术引言 磨损是工程界材料功能失效的主要形式之一,由此造成的资源、能源的浪费和经济损失可用“巨大”来表示。然而,磨损是发生于机械设备零部件表面的材料流失过程,虽然不可避免,但若采取得力措施,可以提高机件的耐磨性。材料表面工程主要是利用各种表面改性技术,赋予基体材料本身所不具备的特殊的力学、物理或化学性能,如高硬度、低摩擦系数、良好的化学及高温稳定性、理想的综合机械性能及优异的摩擦学性能,从而使零部件表面体系在技术指标、可靠性、寿命和经济性等方面获得最佳效果。硬质薄膜涂层因能减少工件的摩擦和磨损,有效提高表面硬度、韧性、耐磨性和高温稳定性,大幅度提高涂层产品的使用寿命,而广泛应用于机械制造、汽车工业、纺织工业、地质钻探、模具工业、航空航天等领域。

一、超硬薄膜材料 随着材料科学和现代涂层技术的发展,应用超硬材料涂层技术改善零部件表面的机械性能和摩擦学性能是21世纪表面工程领域重要的研究方向之一。超硬薄膜是指维氏硬度在40GPa以上的硬质薄膜。到目前为止,主要有以下几种超硬薄膜: 1 金刚石薄膜 金刚石薄膜的硬度为50~100GPa(与晶体取向有关),从20世纪80年代初开始,一直受到世界各国的广泛重视,并曾于20世纪80年代中叶至90年代末形成了一个全球范围的研究热潮。金刚石膜所具有的最高硬度、最高热导率、极低摩擦系数、很高的机械强度和良好化学稳定性的优异性能组合使其成为最理想的工具和工具涂层材料。金刚石薄膜在摩擦学领域应用的突出问题,就是在载荷条件下薄膜与基体之间的粘附强度以及薄膜本身的粗糙度问题,目前,己经有针对性地开展了大量的研究工作。随着研究工作的不断深入,金刚石薄膜将会为整个人类社会带来巨大的经济效益。 2 立方氮化硼(c-BN)薄膜 立方氮化硼(c-BN)薄膜的硬度为50~80GPa,它具有与金刚石相类似的晶体结构,其物理性能也与金刚石十分相似。与金刚石相比,c-BN的显著优点是具有良好的热稳定性和化学稳定性,适用于作为超硬刀具涂层,特别是用于加工铁基合金的刀具涂层。 3 碳氮膜 碳氮膜是新近开发的超硬薄膜材料,理论预测它具有达到和

PVD与CVD表面处理技术

1. PVD简介 PVD是英文Physical Vapor Deposition(物理气相沉积)的缩写,是指在真空条件下,采用低电压、大电流的电弧放电技术,利用气体放电使靶材蒸发并使被蒸发物质与气体都发生电离,利用电场的加速作用,使被蒸发物质及其反应产物沉积在工件上。 2. PVD技术的发展 PVD技术出现于二十世纪七十年代末,制备的薄膜具有高硬度、低摩擦系数、很好的耐磨性和化学稳定性等优点。最初在高速钢刀具领域的成功应用引起了世界各国制造业的高度重视,人们在开发高性能、高可靠性涂层设备的同时,也在硬质合金、陶瓷类刀具中进行了更加深入的涂层应用研究。与CVD工艺相比,PVD工艺处理温度低,在600℃以下时对刀具材料的抗弯强度无影响;薄膜内部应力状态为压应力,更适于对硬质合金精密复杂刀具的涂层;PVD工艺对环境无不利影响,符合现代绿色制造的发展方向。目前PVD涂层技术已普遍应用于硬质合金立铣刀、钻头、阶梯钻、油孔钻、铰刀、丝锥、可转位铣刀片、异形刀具、焊接刀具等的涂层处理。 PVD技术不仅提高了薄膜与刀具基体材料的结合强度,涂层成分也由第一代的TiN发展为TiC、TiCN、ZrN、CrN、MoS2、TiAlN、TiAlCN、TiN-AlN、CNx、DLC和ta-C等多元复合涂层。 3. 星弧涂层的PVD技术 增强型磁控阴极弧:阴极弧技术是在真空条件下,通过低电压和高电流将靶材离化成离子状态,从而完成薄膜材料的沉积。增强型磁控阴极弧利用电磁场的共同作用,将靶材表面的电弧加以有效地控制,使材料的离化率更高,薄膜性能更加优异。 过滤阴极弧:过滤阴极电弧(FCA )配有高效的电磁过滤系统,可将离子源产生的等离子体中的宏观粒子、离子团过滤干净,经过磁过滤后沉积粒子的离化率为100%,并且可以过滤掉大颗粒,因此制备的薄膜非常致密和平整光滑,具有抗腐蚀性能好,与机体的结合力很强。 磁控溅射:在真空环境下,通过电压和磁场的共同作用,以被离化的惰性气体离子对靶材进行轰击,致使靶材以离子、原子或分子的形式被弹出并沉积在基件上形成薄膜。根据使用的电离电源的不同,导体和非导体材料均可作为靶材被溅射。 离子束DLC:碳氢气体在离子源中被离化成等离子体,在电磁场的共同作用下,离子源释放出碳离子。离子束能量通过调整加在等离子体上的电压来控制。碳氢离子束被引到基片上,沉积速度与离子电流密度成正比。星弧涂层的离子束源采用高电压,因而离子能量更大,使

化学气相沉积金刚石薄膜及其应用进展

化学气相沉积金刚石薄膜及其应用进展 摘要:化学气相淀积是近几十年发展起来的制备无机材料的新技术。化学气相淀积法已经广泛用于提纯物质、研制新晶体、淀积各种单晶、多晶或玻璃态无机薄膜材料。本文简单综述了化学气相淀积金刚石薄膜,又简单介绍了金刚石薄膜在各工业领域内的应用进展情况,并对其发展前景作了展望。 关键词:金刚石薄膜热灯丝CVD法微波等离子体CVD法 前言金刚石在所有已知物质中具有最高的硬度,室温下有最高的热导率,对光线而言从远红外区到深紫外区完全透明,有最低的可压缩性,极佳的化学惰性,其生物兼容性超过了钛合金等等。然而由于天然金刚石数量稀少,价格昂贵,尺寸有限等因素,人们很难利用金刚石的上述优异的性能。根据天然金刚石存在的事实以及热力学数据,人们一直想通过碳的另一同素异形体——石墨来合成金刚石。但由于金刚石与石墨之间存在着巨大的能量势垒,要将石墨转化为金刚石,必须使用高温高压技术来人工合成,使得人工高温高压合成的金刚石价格昂贵。 20世纪80年代初开发的化学气相沉积(CVD)制备的金刚石薄膜,不仅成本低,质量高,而又可大面积制备,使人们大规模应用金刚石优异性质的愿望,通过CVD法合成金刚石薄膜得以实现。金刚石膜具有极其优异的物理和化学性质,如高硬度、低磨擦系数、高弹性模量、高热导、高绝缘、宽能隙和载流子的高迁移率以及这些优异性质的组合和良好的化学稳定性等,因此金刚石薄膜在各个工业领域有极其广泛的应用前景。 1金刚石薄膜制备 在低温低压下利用化学气相沉积CVD技术生长金刚石膜;含碳化合物和氢气是最主要的原料,前者提供碳源,后者提供原子态的氢,促使更多的碳转变为sp3的金刚石结构,除去未转变为金刚石的其它形态碳(sp2石墨碳或非晶碳、sp1碳)。 金刚石薄膜制备的主要CVD方法:(1)热灯丝CVD(HFCVD);(2)微波等离子体CVD(MWPCVD);(3)直流等离子体CVD(DC-CVD);(4)直流电弧等离子体射流CVD(DC-JET);(5)电子增强CVD(EACVD);(6)磁微波等离子体

类金刚石薄膜

类金刚石薄膜材料 班级:材料物理081401 姓名:谭旭松 学号:200714020124

1.1类金刚石薄膜材料的概述 类金刚石薄膜(Diamond Like Carbon)简称DLC,它是一类性质近似于金刚石,以sp3和 sp2键杂化的碳原子空间网络结构的亚稳态非晶碳膜。依据制备方法和工艺不同,DLC的性质可以在非常大的范围变化,既可能非常类似与金刚石,也可能非常类似与石墨。其硬度、摩擦系数、导热率、光学带隙、光学透光率、电阻率等都可以依据需要进行“调制”。一般类金刚石薄膜沉积温度较低、膜面平整光滑,因而在机械电子光学声学计算机的很多领域得到应用,如耐磨层、高频扬声器振膜、光学保护膜等,因此对DLC的开发研究引起很多材料工作者的极大关注。自从1971年Aisenberg 和Chabot 两位科学家利用碳离子束沉积出DLC 薄膜以来,人们已经成功地研究出了许多物理气相沉积、化学气相沉积以及液相法制备DLC 薄膜的新方法和新技术。这之中有两个法分别为气相法和沉积法。 1.2类金刚石薄膜材料的结构和分类 常态下碳有三种键和方式:sp1,sp2,sp3。在sp3态碳原子的四个电子按四面体形状分布成sp3杂化轨道,形成强σ键;在sp2态,碳原子的四个电子中的三个形成在同一平面内的三次轴对称的sp2杂化轨道,它们可形成强σ键第四个电子轨道与该平面垂直,形成π键;在sp1态,仅两个电子形成σ键,另两个电子形成π键。金刚石(diamond)—碳碳以 sp3键的形式结合;石墨(graphite)—碳碳以sp2键的形式结合;而类金刚石(DLC)—碳碳则是以sp3和 sp2键的形式结合,生成的无定形碳的一种亚稳定形态,它没有严格的定义,可以包括很宽性质范围的非晶碳,因此兼具了金刚石和石墨的优良特性;所以由类金刚石而来的DLC膜同样是一种亚稳态长程无序的非晶材料,碳原子间的键合方式是共价键,主要包含sp2和sp3两种杂化键,因而类金刚石薄膜的结构和性能介于金刚石和石墨之间,收沉积环境和沉积方式影响类金刚石薄膜中还可能含有H等杂质,形成一定数量的C-H键。 类金刚石薄膜(DLC)是1种非晶薄膜,可分为无氢类金刚石碳膜(a-C)和氢化类金刚石碳膜(a-C:H)两类。无氢类金刚石碳膜有a-C膜(主要由sp3和sp2键碳原子相互混杂的三维网络构成),以及四面体非晶碳(tetrahedral carbon,简称ta-C)(主要由超过80%的sp3键碳原子为骨架构成);氢化类金刚石碳膜(a-C:H)又可分为类聚合物非晶态碳(polymer—like carbon,简称PLC)、类金刚石碳、类石墨碳3种,其三维网络结构中同时还结合一定数量的氢. 类金刚石碳膜(diamond-like carbon films,简称DLC膜),的基本成分是碳,由于其碳的来源和制备方法的差异,DLC膜可分为含氢和不含氢两大类。DLC膜是一种亚稳态长程无序的非晶材料,碳原子间的键合方式是共价键,主要包含sp2和sp3两种杂化键,在含氢DLC膜中还存在一定数量的C-H键。我们从1996年起开始磁过滤真空弧及沉积DLC膜研究,正在完善工业化技术。如等离子体源沉积法、离子束源沉积法、孪生中频磁控溅射法、真空阴极电弧沉积法和脉冲高压放点等。不同的制备方法,DLC膜的成分、结构和性能不同。类金刚石碳膜作为新型的硬质薄膜材料具有一系列优异的性能,如高硬度、高耐磨性、高热导率、高电阻率、良好的光学透明性、化学惰性等,可广泛用于机械、电子、光学、热学、声学、医学等领域,具有良好的应用前景。我们开发了等离子体-

oDLC类金刚石镀膜技术知识介绍

oDLC类金刚石镀膜技术知识介绍 DLC(类金刚石薄膜)定义: 类金刚石薄膜是近年兴起的一种以sp3和 sp2键的形式结合生成的亚稳态材料,兼具了金刚石和石墨的优良特性,而具有高硬度.高电阻率.良好光学性能以及优秀的摩擦学特性。类金刚石薄膜通常又被人们称为DLC薄膜,是英文词汇Diamond Like Carbon的简称,它是一类性质近似于金刚石,具有高硬度.高电阻率.良好光学性能等,同时又具有自身独特摩擦学特性的非晶碳薄膜。 DLC薄膜性能 机械性能:高硬度和高弹性模量、优异的耐磨性、低摩擦系数 电学性能:表面电阻高化学惰性大 光学性能:DLC膜在可见光区通常是吸收的,在红外去具有很高的透过率稳定性:亚稳态的材料、热稳定性很差,400摄氏度 oDLC镀膜技术解析: oDLC镀膜技术,是指通过纳米镀膜技术将DLC(类金刚石薄膜)均匀地沉积于钢化玻璃或者物质表面,形成一层独特的保护膜。借助类金刚石薄膜自身的高硬度优势提高钢化玻璃的表面硬度,改善其防刮抗压性能。、 oDLC镀膜技术的应用 由于DLC类金刚石有着和金刚石几乎一样的性质,因此,它的产品被广泛应用到机械、电子、光学和医学等各个领域。同时类金刚石膜有着比金刚石膜更高的新能价格比,所以相当广泛的领域内可以代替金刚石膜。 1、机械领域的应用 ①用于防止金属化学腐蚀和划伤方面 ②磁介质保护膜 2、电子领域的应用 ①UISI芯片的BEOL互联结构的低K值的材料 ②碳膜和DLC薄膜交替出现的多层结构构造共振隧道效应的多量子阱结构 3、光学领域的应用 ①塑料和聚碳酸酯等低熔点材料组成的光学透镜表面抗磨损保护层 ②DLC膜为性能极佳的发光材料之一:光学隙带范围宽,室温下光致发光和

金刚石涂层

化学气相沉积法制备金刚石涂层 金刚石是硬度最高的固体物质(HV= 100GPa),性质稳定,耐磨,但却难以加工成各种所需的零件和制品。采用气相沉积法制备金刚石涂层,可以使金刚石性质得以从分利用,同时也节约了成本。下面以金刚石涂层拉拔模具的制备为例,简单介绍化学气相沉积法金刚石涂层的制备方法。 金属线材行业是我国的主要传统产业,而金属线材生产企业重要的易消品就是拉拔模具,其使用方式如图1所示,拉拔模具的性能决定了金属线材的质量、生产效率和生产成本。目前线材行业所用的模具主要为硬质合金模具和聚晶金刚石模具两大类。硬质合金模具寿命短,易粘料,生产效率低;聚晶金刚石模具价格高,制作较大尺寸模具和异形模具非常困难,且韧性较差。本文应用化学气相沉积 (chemicMvaperdepsdition,CVD)金刚 石涂层技术,制成金刚石涂层拉拔模 具,克服了硬质合金拉拔模具不耐磨 和聚晶金刚石拉拔模具韧性较差的缺 点,成为新一代的拉拔模具。 金刚石涂层拉拔模具的制备过 程:金刚石涂层拉丝模具是以YG6 硬质合金模具为基体,经过特殊的表 面处理后,用气相沉积方法,在硬质合金拉丝模具基体工作区域表面沉积10—30p,m的多晶金刚石膜。经修整、抛光、镶套后制作成成品,具体过程如图2所示。 (1)准备工作 选择YG6牌号硬质合金模具,坯料孔型和尺寸与所要制备的成品模具相适应,通过内孔研磨修整工艺将模具坯料修整为合适的形状,预留30u m 左右的尺寸余量,以配合涂层厚度尺寸。将修整完毕的硬质合金模具进行喷砂处理,去除表面的污染物和疏松层,再使用蒸馏水、酒精在超声波清洗机中清洗。最后将模具在配制好的酸、碱液中进行表面腐蚀处理,并采用蒸馏水、酒精超声波清洗,完毕后将试件装入自制的热丝CVD金刚石沉积设备中。 (2)涂层沉积

PVD和CVD涂层方法

. PVD和CVD涂层方法 涂层方法目前生产上常用的涂层方法有两种:物理气相沉积(PVD) 法和化学气相沉积(CVD) 法。 前者沉积温度为500℃,涂层厚度为2~5μm;后者的沉积温度为900℃~1100℃,涂层厚度可达5~10μm,并且设备简单,涂层均匀。因PVD法未超过高速钢本身的回火温度,故高速钢刀具一般采用PVD法,硬质合金大多采用CVD法。硬质合金用CVD法涂层时,由于其沉积温度高,故涂层与基体之间容易形成一层脆性的脱碳层(η相),导致刀片脆性破裂。 近十几年来,随着涂覆技术的进步,硬质合金也可采用PVD法。国外还用PVD/CVD相结合的技术,开发了复合的涂层工艺,称为PACVD法(等离子体化学气相沉积法)。即利用等离子体来促进化学反应,可把涂覆温度降至400℃以下(目前涂覆温度已可降至180℃~200℃),使硬质合金基体与涂层材料之间不会产生扩散、相变或交换反应,可保持刀片原有的韧性。据报道,这种方法对涂覆金刚石和立方氮化硼(CBN)超硬涂层特别有效。用CVD法涂层时,切削刃需预先进行钝化处理(钝圆半径一般为0.02~0.08mm,切削刃强度随钝圆半径增大而提高),故刃口没有未涂层刀片锋利。所以,对精加工产生薄切屑、要求切削刃锋利的刀具应采用PVD法。 涂层除可涂覆在普通切削刀片上外,还可涂覆到整体刀具上,目前已

发展到涂覆在焊的硬质合金刀具上。据报道,国外某公司在焊接;. . 式的硬质合金钻头上采用了PCVD法,结果使加工钢料时的钻头寿命比高速钢钻头长10倍,效率提高5倍。 涂层成份又有哪些呢?各自的区别在哪里,应用面怎样。 通常使用的涂层有:TiC、TiN、Ti(C.N)、Gr7O3、Al2O3等。以上几种CVD的硬质涂层基本具备低的滑动摩擦系数,高的抗磨能力,高的抗接触疲劳能力,高的表面强度,保证表面具有足够的尺寸稳定性与基体之间有高的粘附强度。 PVD与CVD涂层工艺比较

金刚石薄膜

金刚石薄膜 类金刚石薄膜是近来兴起的一种以sp3和sp2键的形式结合生成的亚稳态材料,兼具了金刚石和石墨的优良特性,而具有高硬度。高电阻率。良好光学性能以及优秀的摩擦学特性。 结构 类金刚石薄膜通常又被人们称为DLC薄膜,是英文词汇DiamondLikeCarbon的简称,它是一类性质近似于金刚石,具有高硬度.高电阻率.良好光学性能等,同时又具有自身独特摩擦学特性的非晶碳薄膜。碳元素因碳原子和碳原子之间的不同结合方式,从而使其最终产生不同的物质:金刚石(diamond)-碳碳以sp3键的形式结合;石墨(graphite)-碳碳以sp2键的形式结合;而如同绪论里所述类金刚石(DLC)-碳碳则是以sp3和sp2键的形式结合,生成的无定形碳的一种亚稳定形态,它没有严格的定义,可以包括很宽性质范围的非晶碳,因此兼具了金刚石和石墨的优良特性;所以由类金刚石而来的DLC膜同样是一种亚稳态长程无序的非晶材料,碳原子间的键合方式是共价键,主要包含sp2和sp3两种杂化键,而在含氢的DLC膜中还存在一定数量的C-H键。 由两个相同或不相同的原子轨道沿轨道对称轴方向相互

重叠而形成的共价键,叫做σ键。σ键是原子轨道沿轴方向重叠而形成的,具有较大的重叠程度,因此σ键比较稳定。σ键是能围绕对称轴旋转,而不影响键的强度以及键跟键之间的角度(键角)。根据分子轨道理论,两个原子轨道充分接近后,能通过原子轨道的线性组合,形成两个分子轨道。其中,能量低于原来原子轨道的分子轨道叫成键轨道,能量高于原来原子轨道的分子轨道叫反键轨道。以核间轴为对称轴的成键轨道叫σ轨道,相应的键叫σ键。以核间轴为对称轴的反键轨道叫σ*轨道,相应的键叫σ*键。分子在基态时,构成化学键的电子通常处在成键轨道中,而让反键轨道空着。 σ键是共价键的一种。它具有如下特点: 第一点,σ键有方向性,两个成键原子必须沿着对称轴方向接近,才能达到最大重叠;第二点,成键电子云沿键轴对称分布,两端的原子可以沿轴自由旋转而不改变电子云密度的分布;第三点,σ键是头碰头的重叠,与其它键相比,重叠程度大,键能大,因此,化学性质稳定。共价单键是σ键,共价双键有一个σ键,π键,共价三键由一个σ键,两个π键组成。 分类 类金刚石薄膜(DLC)是1种非晶薄膜,可分为无氢类金刚石碳膜(a-C)和氢化类金刚石碳膜(a-C:H)(图2)两类。无氢类金刚石碳膜有a-C膜(主要由sp3和sp2键碳原子相互混杂

DLC涂层

酷SP及酷SP+系列--DLC涂层(类金刚石)涂层 类金刚石涂层(Diamond-like Carbon)或简称DLC 涂层是含有金刚石结构(sp3键)和石墨结构(sp2 键)的亚稳非晶态物质,碳原子主要以sp3和sp2杂 化键结合。类金刚石涂层或简称DLC涂层是一种非 晶态膜,基本上可分为含氢类金刚石(a-C:H)涂层 和无氢类金刚石涂层两种。含氢DLC涂层中的氢含 量在20at.% ~ 50at.%之间,sp3成分小于70%。无 氢DLC涂层中常见的是四面体非晶碳(ta-C)膜。ta-C 涂层中以sp3键为主,sp3含量一般高于70%。不同种类的类金刚石涂层的共同点是碳原子在空间结构上长程无序自然界中碳有两种存在形式:金刚石和石墨。在金刚石结构中,每个碳原子都以sp3杂化轨道与另外四个碳原子形成共价键,形成一个正四面体,所有价电子参与形成共价键,无自由电子。石墨结构中的每个碳原子外层电子以sp2杂化轨道和相邻的三个碳原子形成共价键并排列成六角平面的网状结构,这些网状结构又构成互相平行的片层结构,每个碳原子还剩下一个电子目前世界上有各种各样的DLC涂层(类金刚石涂层)的制备方法,所得到的DLC涂层(类金刚石涂层)的成份,性能及适用范围有着相当大的差别 胜倍尔超强镀膜---酷SP 和酷SP+系列DLC涂层(类金刚石涂层)的优点 我们运用独特的工艺方法制备出的DLC涂层(类金刚石涂层),具备质量稳定,与基体结合力好,耐磨性好,摩擦系数低,耐腐蚀性好等综合优良性能。 1. 涂层硬度:~8000HV 2. 摩擦系数:0.05~0.2 3. 涂层厚度:0.5~10μm 4. 最高耐热:~800℃ 针对不同的行业,我们运用不同的工艺及制备方法来制备出适合此行业的DLC涂层(类金刚石涂层),以满足客户的需要。根据客户不同的要求及材料,我们的DLC涂层(类金刚石涂层)工艺温度控制在80 ℃~150 ℃度之间,从而使客户的选材具有更大的灵活性 酷SP及酷SP+系列DLC涂层(类金刚石涂层)的运用: 精密模具 ?注塑成型模具 ?冲压模具 ?光学级模具 ?光盘模具 ?玻璃成型模具 ?铝镁合金加工模具 ?粉末治金模具 ?空调器翻边模具

几种CVD制备金刚石薄膜的方法.

几种CVD制备金刚石薄膜的方法 1.热丝CVD法 此法又称为热解CVD法,Matsumoto等人采用热丝CVD法成功地生长出了金刚石薄膜。该法是把基片(Si、Mo、石英玻璃片等放在石英玻璃管做成的反应室内,把石英管内抽成真空后,把CH4和H2的混合气体输人到装在管中的钨丝附近(两种气体的流量比为0.5%-5%。用直流稳压电源加热钨丝到约2000℃,反应室内温度为700~900℃,基片温度为900℃左右,室内气体压力为1×103-1×105Pa。在这样的反应条件下,CH4和H2混合气中的H2被热解,产生原子态氢,原子态氢与CH4反应生成激发态的甲基,促进了碳化氢的热分解,促使金刚石SP3杂化C-C键的形成,使金刚石在基片上沉积,获得立方金刚石多晶薄膜。沉积速率为8-10μm/h 我国的金曾孙等人也用热丝CVD法生长出质量很好的金刚石薄膜。实验表明,基片温度和甲烷的浓度是薄膜生长最为重要的参数,它们对金刚石薄膜的结构、晶形、膜的质量和生长速率影响甚大。该法的特点是装置结构简单、操作方便、容易沉积出质量较好的金刚石膜。 2.电子加速CVD法 此法是在用热丝CVD法沉积金刚石薄膜过程中,用热电子轰击基片表面,加速金刚石在基片上沉积。与热丝CVD法不同的是,该法把电压正极接在用铝制成的基片架上,经加热的钨丝发射电子,电子在电场作用下轰击阳极的基片。CH4和H2的混合气体被输送到基片表面,由于热反应和热电子轰击的双重作用,使气体发生分解,形成各种具有活性的碳氢基团,促使具有双键和三键的碳离解,加速金刚石的成核和生长。基片可选用Si、SiC、Mo、WC、A12O3等材料。一般的工艺参数是:甲烷为ψ(CH4=0.5%~2.0%;气体流速为5-50cm3/min;基片温度在500~750℃之间;钨丝温度为2000℃;基片支架的电流密度为10mA/cm2,电压150V。用此法沉积出的金刚石薄膜的性质与天然金刚石基本相同,晶形完整,生长速率一般为3~5μm/h。此法的特点是通过电子轰击基片,从而加速了CH4和H2的分解,增加了基片表面上金刚石的

CVD合成金刚石简介

检测方法FT-IR,XRR,拉曼 这个方法是一个俄罗斯人首先提出的,由此可见俄罗斯人的确很牛。 这种方法可以合成大面积金刚石薄膜,大面积哦,这是由于现在可以得到很大规模的等离子体,所以这种方法在研究领域可谓不可多得,只用甲烷就可以得到大面积的金刚石。 CVD金刚石可以用各种方法合成,其中晶粒生长速度最快的则为热等离子体CVD工艺。我们试验室过去曾试图用DC等离子体CVD工艺合成金刚石厚膜,并就膜与基底的附着强度和膜的性质作过探讨。但是,热等离子体工艺存在沉积面积和膜质量都不如其它CVD工艺等问题。CVD金刚石薄膜应用中对扩大沉积面积有着强烈的需求。 金刚石在所有已知物质中具有最高的硬度、高耐磨率、良好的抗腐蚀性、低的摩擦系数、高的光学透射率(对光线而言从远红外区到深紫外区完全透明) 、高的光学折射率、高空穴迁移率、极佳的化学惰性,既是热的良导体,又是电的绝缘体,掺杂后可形成P和N型的半导体。金刚石有如此多优异性能,因而在国民经济上有着广泛的用途。金刚石从真空紫外光波段到远红外光波段对光线是完全透明的,因此金刚石膜作为光学涂层的应用前景非常好,可用作红外光学窗口和透镜的保护性涂层。以及在恶劣环境下工作的红外在线监测和控制仪器的光学元件涂层。在工业制造领域,需要大量轻量化、高强度的材料,用具有高硬度、高耐磨性的金刚石制成的刀具有长寿命、高加工精度、高加工质量等优异特性,而将金刚石薄膜直接沉积在刀具表面不仅价格大大低于聚晶金刚石刀具,而且可以制备出具有复杂几何形状的金刚石涂膜刀具,在加工非铁系材料领域具有广阔的应用前景。金刚石在室温下具有最高的热导率,又是良好的绝缘体,因而是大功率激光器件、微波器件、高集成电子器件的理想散热材料。金刚石能掺杂为P和N型的半导体,与现有半导体材料相比,具有最低的介电常数,最高的禁带宽度,较高稳定性,很高的电子及空穴迁移率和最高的热导率,性能远优于Si半导体,是替代Si的理想材料。它有可能用于制备微波甚至于毫米波段超高速计算机芯片,高电压高速开关及固体功率放大器,而工作温度更可达600摄氏度。金刚石制备电子器件的应用已取得了初步的结果,如金刚石薄膜发光管、金刚石薄膜场效应管、金刚石薄膜热敏电阻等金刚石制备电子器件的应用。但天然金刚石价格昂贵、数量稀少,人们一直在寻求人工合成金刚石的方法。传统上,依据热力学原理,人们利用石墨在高温高压下合成金刚石。但这种传统方法需要高温高压,对设备要求比较高,条件比较苛刻,导致合成的金刚石价格较贵。在20世纪80年代初,一种新的方法出现了,那就是微波等离子体化学气相法合成金刚石薄膜(CVD)制备金刚石薄膜,它成本低,质量高,有利于大规模合成利用,且装置简单,能量集中,反应条件易于控制,产物比较纯净,成为当前研究的主要方向和热点。现在该领域的最新进展是用微波化学气相合成法合成纳米级的金刚石薄膜,纳米级金刚石薄膜除了有普通微米级金刚石薄膜的性质外,还具有高光洁度,高韧性,低场放射电压,是具有广阔应用前景的新材料。摩擦系数低,光洁度高,颗粒极细,硬度高,耐磨度高,可广泛应用医疗,交通,航空航天,工业制造

相关文档