文档库 最新最全的文档下载
当前位置:文档库 › (整理)地图投影参数说明

(整理)地图投影参数说明

(整理)地图投影参数说明
(整理)地图投影参数说明

地图投影参数说明

2.4.1 地图投影的基本要素

●假东、假北

地球椭球面或圆球面是不可展开的曲面,而地图又是一个平面,所以如何将地球表上的点或线表示在地图平面上,就是地图投影的基本问题。地图投影就是建立地球表面上点(地理坐标经度λ,纬度φ)和地图平面上的点(直角坐标x,y)之间的函数关系式:x = F1(φ,λ)

y = F2(φ,λ)

实际工作中,为了避免横坐标出现负值,将其起算原点向西移动FalseEast距离,单位为米(Metre);为了避免纵坐标出现负值,将其起算原点向南移动FalseNorth距离。所以投影关系函数可表示为:

x = F1(φ,λ) + FalseEast

y = F2(φ,λ) + FalseNorth

其中FalseEast为投影参数中的“假东”数值,单位为米(Metre);FalseNorth为投影参数中的“假北”数值,单位为米(Metre)。

●椭球体模型

大地测量中,大地水准面所包围的球体称为大地球体。可以一个大小和形状同它极为接近的旋转椭球面来代替:以椭圆的短轴(地轴)为轴旋转而成的椭球面称为地球椭球面。椭球体的元素与公式如下:

扁率: f=(a-b)/a 第一偏心率 e2=(a2-b2)/a2 第二偏心率: ep2=(a2-b2)/b2

其中:长半径a 为赤道半径,短半径b 为极轴半径。

表1 地球椭球体模型参数表

地球椭球体的大小因采用的资料不同,推算的椭球体的元素值也不同。世界各国采用和曾用的地球椭球体模型不下30种。本程序中列出的椭球体数据见表1。

最后,本程序还提供了“用户设定椭球模型"项,供用户指定地球椭球体的长、短半径。

我国1952年以前采用海福特椭球(该椭球1924年被定为国际椭球)。从1953年起,改用克拉索夫斯基(Krassovsky)椭球,形成了1954年北京坐标系。1978年起开始采用国际大地测量协会(IUGG)所推荐的“1975年基本大地数据”中给定的椭球(IUGG 1975)参数,形成了1980年西安坐标系。因此,地球模型通常应选择Krassovsky或IUGG 1975(China 1980)模型。

2.4.2 地图投影的分类

由地球椭球面投影到地图平面,必然引起变形和误差。根据投影前后的变形性质,将投影分为:

①等角投影——即保角投影,或称正形投影,地球上任意两线段所组成的角度,在投影后仍保持不变。

②等面积投影——即保面积投影,地球面上的图形在投影后保持面积不变。

③等距离投影——沿某一主方向的长度(距离)保持不变。

根据投影时投影平面的类型,可将投影分为:

①圆锥投影——纬线投影为同心圆圆弧,经线为圆半径,经线间的夹角与经差成正比。该投影按变形性质可分为等角、等面积或等距离圆锥投影;按投影锥面与椭球体的相对位置关系可以分为正轴、横轴或斜轴圆锥投影;按投影锥面与椭球体相切或相割分为单标准纬线

和双标准纬线圆锥投影。通常,等角圆锥投影称为兰勃特(Lambert)正形圆锥投影,双标准纬线;而正轴等面积割圆锥投影也曾叫亚尔勃斯(Albers)投影。

正轴圆锥投影中,“中央经线”为投影纵轴所在的经线;“极点”是指中央经线上,投影坐标原点对应的纬度数值;当采用双标准纬线时,“割线1”、“割线2”分别为北、南两条标准纬线;当采用单标准纬线时,“切线”为椭球体上与锥面相切的纬线。

②圆柱投影——纬线投影为一组平行直线,经线为垂直于纬线的另一组平行直线,且两相邻线之间的距离相等。圆柱投影需指定“中央经线”作为投影纵轴所在的经线,而赤道通常则作为投影的横轴。等角圆柱投影亦叫墨卡托投影;而等角横切椭圆柱投影即是著名的高斯一克吕格(Gauss-Kruger)投影;等角横割椭圆柱投影也称通用横轴墨卡托(UTM)投影。

③方位投影——纬线投影为同心圆,经纬为圆的半径,且经线间的夹角等于地球面上相应的经差。通常,等面积方位投影称为兰勃特等面积方位投影;等距离方位投影称为波斯托投影。

通常,投影类型是由投影面类型和变形性质等参量共同限定;投影参数则因投影类型不同而不同。本程序提供的投影类型(见表2)有:

⑴高斯投影,即高斯-克吕格(Gauss-Kruger)投影,在美国又称为横向墨卡托(Transverse Mercator, TM)投影,属于等角横轴切椭圆柱投影。该投影以中央经线和赤道投影后为坐标轴,中央经线和赤道交点为坐标原点,纵坐标由坐标原点向北为正,向南为负,规定为X轴,横坐标从中央经线起算,向东为正,向西为负,规定为Y轴。

为了控制变形,高斯投影采用分带技术。通常采用6度分带:从180oW经线起,向东每6度经差为一个投影带,将全球划分为60个投影带,编号为1至60,各投影带的中央经线由L0=6n-3-180计算(n为投影带带号)。一般从80oS向北至84oN的范围内使用该投影,对于两极地区则采用通用球面极(Universal Polar Stereographic, UPS)投影。该投影常用来制作大比例尺的地图,已被许多国家作为地形图的数学基础。我国1:2.5—1:50万地形图均采用6度分带高斯投影;1:1万及更大比例尺地形图则采用3度分带,以保证必要的精度。

由于高斯投影每一个投影带的坐标都是相对本带坐标原点的相对值,即带内坐标,因此,在跨投影带使用时需指明带号。在高斯投影坐标系中,为了避免横坐标Y出现负值,将其起算原点向西移动500公里,即对横坐标Y值加上500000米。此外,在计算出来值前面加上带号,以便标识该点位于何带。例如位于50带之某点,其带内横坐标值Y=-126568.24米,根据上面的规定,完整的横坐标值Y=50373431.76米。

用户需注意:本程序中高斯投影为任意分带类型,用户需要指明“中央经线”参数。高斯坐标系的X、Y轴正好对应本程序中坐标系的纵轴Y和横轴X。高斯坐标系的横向带内坐标整数部分最多为6位,纵向最多为7位,故在本程序中,高斯投影横坐标含有带号,即横向可达8位整数,其中前面2位为带号,之后的6位整数及小数为带内坐标。

⑵双标准纬线等角正轴圆锥投影,也称兰伯特正形圆锥 (Lambert Conformal Conic, LCC) 投影。该投影的微分圆投影后仍为圆形。经线为辐射直线,纬线为同心圆圆弧。沿指定的两条标准纬度线B1和B2无长度变形。此种投影也叫等角割圆锥投影,常用来编制中、小比例尺地图。1962年以后,国际上,百万分之一地图采用等角圆锥投影(80oS至84oN范围),而在两极附近地区则采用等角方位投影(球面极投影)。等角圆锥投影有广泛的应用,特别适宜于作为中纬度处沿纬度线伸展的制图区域之投影。如我国的分省图为两条标准纬度线B1=25o,B2=45o的兰伯特等角圆锥投影。

地图分幅为:

纬度60o以下,纬度差4度经差6度分幅

纬度60—76o,纬度差4度经差12度分幅

纬度76—84o,纬度差4度经差24度分幅

纬度84—88o,纬度差4度经差36度分幅

88—90o仍为一幅图

每幅图内两条标准纬线的纬度:B1=BS+40分(南纬线) B2=BN-40分(北纬线)

投影后经线是辐射直线,东西图幅可完全拼接,南北图幅有裂隙。

我国采用等角割圆锥,其中B1=PHIS+35分B2=PHIN-35分

⑶双标准纬线等面积正轴圆锥投影,即正轴等面积割圆锥投影,也称亚尔伯斯投影(Albers Conic Equal-Area, ACEA)。该投影经纬网的经线为辐射直线,纬线为同心圆圆弧。亚尔伯斯等积圆锥投影的应用在编制一些行政区划图,人口地图,地势图等方面应用较广。如中国地势图,即是以B1=25度,B2=45度的亚尔伯斯等积圆锥投影。

⑷单标准纬线等角正轴圆锥投影,即正轴等角切圆锥投影。该投影的投影性质与LCC 相同,只是在指定的标准纬度线上没有长度变形。

⑸单纬线等面积正轴圆锥投影,即正轴等面积切圆锥投影。该投影的投影性质与ACEA 相同。

⑹单纬线等距离正轴圆锥投影(Equidistant Conic, EC)

⑺双纬线等距离正轴圆锥投影(Equidistant Conic, EC)。这两种投影沿经线方向的距离均保持不变,其它变形在标准纬线处最小,均为零。

⑻通用横轴墨卡托(Universal Transverse Mercator, UTM) 投影,即等角横轴割椭圆柱投影,椭圆柱割地球于两条等高圈。该投影将地球从180oW起向东至180oE,每6o经差为一带(斯堪的那维亚及以北地区的带宽例外),将全球划分为60个投影带,带号从1至60。每个带的中心经线为该带的中央子午线,所有中央子午线上的比例因子统一定为0.9996。纬度方向,从80oS起向北至72oN,每8o用一个字母表示(区号)。中央子午线上的东向距为500km(坐标原点西移500公里)。赤道为北向距起算点(假北距对北半球为0米,对南半球为10,000,000m)。该投影的坐标表示方法类似于我国高斯投影的图幅编号及表示,已被许多国家作为地形图的数学基础,一般用于80oS至84oN的范围内在每个带中,两极地区则采用通用球面极(UPS)投影。

对椭球体地球的计算讲,UTM与高斯投影仅仅只差一个比例因子k=0.9996。

⑼等角正轴切圆柱投影,即墨卡托投影(Mercator, MER),经纬线投影为互相正交的平行直线。该投影在航海,航空应用很广。航海图上的等角航线常使用该投影。使用该投影,等角航线在地图上是一条直线。值得注意的是,等角航线是球面上两点间对所有经线保持等方位角的特殊曲线,不是两点间的最近路线,是一条以极点为渐近点的螺旋曲线。

⑽等面积正轴切圆柱投影,经线和纬线投影后均为相互垂直的平行线。投影中所有纬线长度相同,并随纬度增大,纬线的间距越来越小。投影角度变形显著,实际编图中应用较少。

⑾等距离正轴切圆柱投影,等矩形圆柱投影,也称方格投影(Equirectanglar, ER)。投影后,经纬线互相垂直,且组成相等的方格。该投影适用于沿赤道或沿中央经线伸展的地区,也可用于编制世界交通图和世界范围的量算格网。

⑿等角横轴切圆柱(横轴Mercator)投影。该投影是把地球看作半径=R的球,如果把地球看作椭球即为通用横轴墨卡托投影或高斯一克吕格投影。该投影等高圈和垂直圈互相正交,经纬线为曲线。墨卡托投影因其经线为平行直线,便于显示时区划分,如时区图、航空图、航海图等。

⒀等面积横轴切圆柱投影,同“等面积正轴切圆柱投影”,只是纵横轴换位。

⒁等距离横轴切圆柱投影,同“等距离正轴切圆柱投影”,只是纵横轴换位。

⒂等角方位投影,也称球面投影。等角方位投影的等角性质是圆投影后仍为圆,常用来作为大比例地图的数学基础,其投影格网在工程和科研方面有应用。

正轴投影时,纬线投影后成为同心圆,经线投影后成为交于一点的直线束,两经线间的夹角与实地经度差相等。对于横轴或斜轴的方位投影,则为等高圈和垂直圈相当于经纬线的线圈。球面投影时,地面上无论大圆或小圆,在投影中的表象仍为一个圆。

⒃等面积方位投影,即兰伯特等面积方位(Lambert Azimuth Equal-Area, LAEA) 投影。在小比例尺制图中,特别是东西半球图应用很多。如东半球取φ0=0o,λ0=70oE,西半球

取φ0=0o,λ0=110oW的横轴等面积方位投影。对于水陆半球图常取:φ0=(±)45o,λ0=0o或180o的斜轴等面积方位投影。

各大洲图常采用斜轴等面积方位投影,中心为:

亚洲图:φ0=+40o,λ0=90oE 欧洲图:φ0=+52o30’,λ0=20oE

非洲图:φ0=+0o,λ0=20oE 北美洲图:φ0=+45o,λ0=100oW

南美洲图:φ0=-20o,λ0=60oW

⒄等距离方位(Azimuth Equidistant, AE)投影,即波斯托投影,从定点或原点(φ0,λ0)向任何地方的方位角与距离都相等。正轴投影用于南北极半球图;横轴投影用于东西半球图;斜轴在实践中也有应用。航空中心站,观测站等常需要这种投影。

⒅通用球面极投影(Universal Polar Stereographic Projection),简称UPS;即正轴等角方位投影,相当于极点切球面投影。通用球面极投影一般用于地球两极附近的投影。纬度范围在84oN至90oN、80oS至90oS的投影常用该投影。该投影的纬线投影后成为同心圆,经线投影后成为交于一点的直线束,两经线间的夹角与实地经度差相等。

地图投影复习资料

地图投影复习资料 基本概念 地图投影是在平面上建立与地球曲面上相对应的经纬网的数学法则。 任务 (1)研究将地球面上的地理坐标描写到平面上,建立地图数学基础的各种可能的方法; (2)讨论这些方法的理论、变形规律、实用价值以及不同投影坐标的相互换算等问题。 大地水准面与大地体(Geoid ) 大地水准面设想当海水面完全处于静止状态下,并延伸到大陆内部,使它成为一个处处与铅垂线(重力线)正交的连续的闭合曲面,这个曲面叫做。由它所包围的球体,叫做大地体。 地球椭球面与地球椭球体(Ellipsoid) 地球椭球体选择一个大小和形状同大地水准面极为接近的,以椭圆短轴为旋转轴的旋转椭球面。这个旋转椭球面可代表地球的形状,又称为地球椭球面或参考椭球面(原面)。由它所围成的球体,称为或地球椭球。 地球椭球体的形状和大小 扁率(Flattening or Compression) 第一偏心率(First Eccentricity) 第二偏心率(Second Eccentricity) 地球椭球面的基本点、线、面和地理坐标 点 两极 (pole) 线 经线(meridian) 纬线(parallel) 面 平行圈(parallel) 子午圈(meridian) : 长半径为ae ,短半径为 be 的椭圆 地理坐标 地理纬度(latitude ) 地理经度(longitude) 子午圈:通过地面任一点的法线可以有无数法截弧,它们 与椭球面相交则形成无数法截弧,其中有一对互相垂直的法截弧,称为主法截弧。主法截弧都是椭圆,其中一个是子午圈。 卯酉圈:与子午圈垂直的另一个圈称为卯酉圈。地球椭球面上的子午圈始终代表南北方向;卯酉圈除了两个极点外,代表东西方向。 子午圈曲率半径:地球椭球体表面上某点法截弧曲率半径中最小的曲率半径

几种常见地图投影各自的特点及其分带方法

高斯-克吕格(Gauss-Kruger)投影,是一种“等角横切圆柱投影”。德国数学家、物理学家、天文学家高斯(Carl Friedrich Gauss,1777一 1855)于十九世纪二十年代拟定,后经德国大地测量学家克吕格(Johannes Kruger,1857~1928)于 1912年对投影公式加以补充,故名。设想用一个圆柱横切于球面上投影带的中央经线,按照投影带中央经线投影为直线且长度不变和赤道投影为直线的条件,将中央经线两侧一定经差范围内的球面正形投影于圆柱面。然后将圆柱面沿过南北极的母线剪开展平,即获高斯一克吕格投影平面。 一、只谈比较常用的几种:“墨卡托投影”、“高斯-克吕格投影”、“UTM 投影”、“兰勃特等角投影” 1.墨卡托(Mercator)投影 1.1 墨卡托投影简介 墨卡托(Mercator)投影,是一种" 等角正切圆柱投影”,荷兰地图学家墨卡托(Gerhardus Mercator 1512-1594)在1569年拟定,假设地球被围在一中空的圆柱里,其标准纬线与圆柱相切接触,然后再假想地球中心有一盏灯,把球面上的图形投影到圆柱体上,再把圆柱体展开,这就是一幅选定标准纬线上的“墨卡托投影”绘制出的地图。 墨卡托投影没有角度变形,由每一点向各方向的长度比相等,它的经纬线都是平行直线,且相交成直角,经线间隔相等,纬线间隔从标准纬线向两极逐渐增大。墨卡托投影的地图上长度和面积变形明显,但标准纬线无变形,从标准纬线向两极变形逐渐增大,但因为它具有各个方向均等扩大的特性,保持了方向和相互位置关系的正确。 在地图上保持方向和角度的正确是墨卡托投影的优点,墨卡托投影地图常用作航海图和航空图,如果循着墨卡托投影图上两点间的直线航行,方向不变可以一直到达目的地,因此它对船舰在航行中定位、确定航向都具有有利条件,给航海者带来很大方便。 “海底地形图编绘规范”(GB/T 17834-1999,海军航保部起草)中规定1:25万及更小比例尺的海图采用墨卡托投影,其中基本比例尺海底地形图(1:5万,1:25万,1:100万)采用统一基准纬线30°,非基本比例尺图以制图区域中纬为基准纬线。基准纬线取至整度或整分。 1.2 墨卡托投影坐标系 取零子午线或自定义原点经线(L0)与赤道交点的投影为原点,零子午线或自定义原点经线的投影为纵坐标X轴,赤道的投影为横坐标Y轴,构成墨卡托平面直角坐标系。 2.高斯-克吕格(Gauss-Kruger)投影和UTM(Universal

在Arcgis中配准遥感图像

图像 在ArcGIS中配准(TIF、JPEG)栅格图像 在ArcGIS中配准(TIF、JPEG)栅格图像最好不要压缩,越精确地图的矢量化原精确,使用ArcGIS 9.2 Desktop完成。 栅格图像的校正和坐标系确定 启动ArcMap,新建一个新工程,右键Layers选择Add Data…添加TIF图像,将出现如下提示(如果提示无法加载rester data时请安装ArcGIS Desktop SP3补丁),单击Yes确定,加载图像后提示图像没有进行配准,确定然后配准图像。 图像加载后即可看到图像内容,右键工具栏打开Georeferencing工具条,进行图像的配准工作,在配准之前最好先保存工程。 在File菜单下打开Map Properties编辑地图属性,Data Source Options可设置保存地图文件的相对路径和绝对路径。(这里选择相对路径以确保将工程复制到其他机器可用)。 配准前要先读懂地图,望都县土地利用现状图采用1954北京坐标系,比例尺1:40000,查阅河北省地图发现望都县位于东经115度附近,那么按6度分带属于20带中央经线117度,按3度分带属于38带。从图框看到的公里数发现没有带号,应该是公里数。 这里只找了4个点进行配置(可以找更多的点),从左到右从下到上,逆时针编号为1、2、3、4;在ArcMap中单击Georefercning工具条上的Add Control Ponit工具(先掉Auto Adjuest 选项),添加4个点控制点。 然后编辑Link Table中的4个控制点的代表的公里数,然后单击“Georeferecning下拉菜单的Auto Adjuest”图像即进行校正这时可看到参差值这里是0.00175(Total RMS)非常小说明配准较为精确。单击Save按钮可将控制点信息保存到文件,单击Load按钮可从文件加载控制点坐标。 给校准后的地图选择适合的坐标系,右键Layers打开Properties对话框属性对话框选择投影坐标系,(Prokected Coordinate Systems)展开Predefined/ Prokected Coordinate Systems/Gauss Kruger/Beijing 1954下找Beijing 1954 GK Zone 20坐标系(高斯克里克投影20带无带号),单击确定保存工程;这时配准工作即完成,在状态栏就可以看到正确的坐标单位了。 最后保存校正重新生成采样数据,单击“Georeferencing”工具条的“Rectify”菜单矫正并

地图投影的基本问题

3.地图投影的基本问题 3.1地图投影的概念 在数学中,投影(Project)的含义是指建立两个点集间一一对应的映射关系。同样,在地图学中,地图投影就是指建立地球表面上的点与投影平面上点之间的一一对应关系。地图投影的基本问题就是利用一定的数学法则把地球表面上的经纬线网表示到平面上。凡是地理信息系统就必然要考虑到地图投影,地图投影的使用保证了空间信息在地域上的联系和完整性,在各类地理信息系统的建立过程中,选择适当的地图投影系统是首先要考虑的问题。由于地球椭球体表面是曲面,而地图通常是要绘制在平面图纸上,因此制图时首先要把曲面展为平面,然而球面是个不可展的曲面,即把它直接展为平面时,不可能不发生破裂或褶皱。若用这种具有破裂或褶皱的平面绘制地图,显然是不实际的,所以必须采用特殊的方法将曲面展开,使其成为没有破裂或褶皱的平面。 3.2地图投影的变形 3.2.1变形的种类 地图投影的方法很多,用不同的投影方法得到的经纬线网形式不同。用地图投影的方法将球面展为平面,虽然可以保持图形的完整和连续,但它们与球面上的经纬线网形状并不完全相似。这表明投影之后,地图上的经纬线网发生了变形,因而根据地理坐标展绘在地图上的各种地面事物,也必然随之发生变形。这种变形使地面事物的几何特性(长度、方向、面积)受到破坏。把地图上的经纬线网与地球仪上的经纬线网进行比较,可以发现变形表现在长度、面积和角度三个方面,分别用长度比、面积比的变化显示投影中长度变形和面积变形。如果长度变形或面积变形为零,则没有长度变形或没有面积变形。角度变形即某一角度投影后角值与它在地球表面上固有角值之差。 1)长度变形 即地图上的经纬线长度与地球仪上的经纬线长度特点并不完全相同,地图上的经纬线长度并非都是按照同一比例缩小的,这表明地图上具有长度变形。 在地球仪上经纬线的长度具有下列特点:第一,纬线长度不等,其中赤道最长,纬度越高,纬线越短,极地的纬线长度为零;第二,在同一条纬线上,经差相同的纬线弧长相等;第三,所有的经线长度都相等。长度变形的情况因投影而异。在同一投影上,长度变形不仅随地点而改变,在同一点上还因方向不同而不同。 2)面积变形 即由于地图上经纬线网格面积与地球仪经纬线网格面积的特点不同,在地图上经纬线网格面积不是按照同一比例缩小的,这表明地图上具有面积变形。 在地球仪上经纬线网格的面积具有下列特点:第一,在同一纬度带内,经差相同的网络面积相等。第二,在同一经度带内,纬线越高,网络面积越小。然而地图上却并非完全如此。如在图4-9-a上,同一纬度带内,纬差相等的网格面积相等,这些面积不是按照同一比例缩

几种常用地图投影

一:等角正切方位投影(球面极地投影) 概念:以极为投影中心,纬线为同心圆,经线为辐射的 直线,纬距由中心向外扩大。 变形:投影中央部分的长度和面积变形小,向外变形逐渐增 大。 用途:主要用于编绘两极地区,国际1∶100万地形图。 二:等距正割圆锥投影 概念:圆锥体面割于球面两条纬线。 变形:纬线呈同心圆弧,经线呈辐射的直线束。 各经线和两标纬无长度变形,即其它纬线均有 长度变形,在两标纬间角度、长度和面积变形 为负,在两标纬外侧变形为正。离开标纬愈远, 变形的绝对值则愈大。 用途:用于编绘东西方向长,南北方向稍宽地区 的地图,如前苏联全图等。 三:等积正割圆锥投影 概念:满足mn=1条件,即在两标纬间经线长度放 大,纬线等倍缩小,两标纬外情况相反。 变形:在标纬上无变形,两标纬间经线长度变形为正, 纬线长度变形为负;在两标纬外侧情况相反。角度 变形在标纬附近很小,离标纬愈远,变形则愈大。 用途:编绘东西南北近乎等大的地区,以及要求面积 正确的各种自然和社会经济地图。

四:等角正割圆锥投影 概念:满足m=n条件,两标纬间经线长度与纬线长度 同程度的缩小,两标纬外同程度的放大。 变形:在标纬上无变形,两标纬间变形为负,标纬外变 形为正,离标纬愈远,变形绝对值则愈大。 用途:用于要求方向正确的自然地图、风向图、洋流图、 航空图,以及要求形状相似的区域地图;并广泛用于制 作各种比例尺的地形图的数学基础。 如我国在1949年前测制的1∶5万地形图,法国、比利 时、西班牙等国家亦曾用它作地形图数学基础,二次大 战后美国用它编制1∶100万航空图。 五:等角正切圆柱投影——墨卡托投影 概念:圆柱体面切于赤道,按等角条件,将经 纬线投影到圆柱体面上,沿某一母线将圆柱体 面剖开,展成平面而形成的投影。是由荷兰制 图学家墨卡托(生于今比利时)于1569年创拟 的,故又称(墨卡托投影)。 变形:经线为等间距的平行直线,纬线为非等 间距垂直于经线的平行直线。离赤道愈远,纬 线的间距愈大。纬度60°以上变形急剧增大, 极点处为无穷大,面积亦随之增大,且与纬线 长度增大倍数的平方成正比,致使原来只有南 美洲面积1/9的位于高纬度的格陵兰岛,在图 上比南美洲大。 用途:等角航线表现为直线,用于编制海图、印度尼西亚和赤道非洲等赤道附近国家和地区的地图、世界时区图和卫星轨迹图等。

地理信息系统软件与应用实验报告-影像配准及矢量化

本科实验报告 课程名称:地理信息系统软件与应用 实验项目:影像配准及矢量化 实验地点:地学楼测绘科学与技术系实验中心专业班级:地信1201学号:201200 学生姓名: 指导教师:侯莉琴 2014年11月10日

一、实验目的 1、利用影像配准(Georeferencing) 工具进行影像数据的地理配准 2、编辑器的使用(点要素、线要素、多边形要素的数字化)。 3、熟悉GRAMIN GPS手持机的基本使用方法。 二、实验原理 影像配准工具用于栅格数据的空间位置匹配。栅格数据一般来源于扫描地图、航摄及卫星影像。地图坐标系通过地图投影来定义。对栅格数据集进行地理匹配时,将使用地图坐标确定其位置并指定数据框的坐标系。 三、实验数据 昆明市西山区普吉地形图1:10000 地形图――70011-1.Tif 昆明市旅游休闲图.jpg (扫描图) 四、实验步骤 1、打开ArcMap,添加“影像配准”工具栏。 2、把需要进行配准的影像—70011-1.TIF增加到ArcMap中

3、在”Georeferencing”工具栏上,点击“添加控制点”按钮, 使用该工具在扫描图上精确到找一个控制点点击,然后鼠标右击输入该点实际的坐标位置,用相同的方法,在影像上增加多个控制点,输入它们的实际坐标。点击“影像配准”工具栏上的“查看链接表”按钮,检查控制点的残差和RMS,删除残差特别大的控制点并重新选取控制点,转换方式设定为“二次多项式,保存控制点 4、在“Georeferencing”菜单下,点击“Update”。执行菜单命令“视图”-“数据框属 性”,设定数据框属性

更新后显示

投影转换公式

常用地图投影转换公式 青岛海洋地质研究所 戴勤奋 (Email: qddqinfen@cgs.gov.cn)   最近几乎天天都有Email跟我要这样、那样的坐标系转换或投影转换公式,或问我编的投影程序公式是哪来的,有没有专门介绍投影公式的书等等,让我越来越觉得有必要就此方面写点东西,一来我自己总结一下,二来对那些我没有回Email的同行也有个交代,因为那些公式实在太难敲了。我在“海洋地质制图常用地图投影系列小程序”( http://www.gissky.net)中用的公式来自我原来的积累,同时参考了POSC(http://www.posc.org ,国际石油技术软件开放公司)的文献“Coordinate Conversions and Transformation including Formulas”,该文献由EPSG(http://www.epsg.org ,欧洲石油勘探组)编写,比较全面地介绍了各种地图投影与坐标系的转换方法及计算公式,而且最新更新到了2004年,是我目前看到的最全面、最新的相关文档了,只不过是英文的,我正在打算将它们翻成中文,到时与大家共享。  投影计算公式往往表达方式不止一种,有时很难分辨谁对谁错,我只把“墨卡托投影”、“高斯-克吕格投影”、“UTM投影”、“兰勃特等角投影”(1:100万地形图规范中称作正轴等角圆锥投影,GB/T 14512-93)的正反转换公式列出,因为我基本能保证这些公式的正确性。 “海洋地质制图常用地图投影系列小程序”( http://www.gissky.net)已升级,原下载者请注意下载更新版本。    1. 约定    本文中所列的转换公式都基于椭球体  a -- 椭球体长半轴  b -- 椭球体短半轴  f -- 扁率 ()/a b a ?  e -- 第一偏心率 e = e’ -- 第二偏心率 'e =N -- 卯酉圈曲率半径 2 N =R -- 子午圈曲率半径 2223/2(1)(1sin ) a e R e B ?=?? B -- 纬度,L -- 经度,单位弧度(RAD)   N X -- 纵直角坐标, E Y -- 横直角坐标,单位米(M)

地图投影

世界地图常用地图投影知识大全 在不同的场合和用途下使用不同的地图投影,地图投影方法及分类名目众多,象:墨卡托投影,空间斜轴墨卡托投影,桑逊投影,摩尔维特投影,古德投影,等差分纬线多圆锥投影,横轴等积方位投影,横轴等角方位投影,正轴等距方位投影,斜轴等积方位投影,正轴等角圆锥投影,彭纳投影,高斯-克吕格投影,等角圆锥投影等等。 一、世界地图常用投影 1、等差分纬线多圆锥投影(Polyconic Projection With Meridional Interval on Same Parallel Decrease Away From Central Meridian by Equal Difference) 普通多圆锥投影的经纬线网具有很强的球形感,但由于同一纬线上的经线间隔相等,在编制世界地图时,会导致图形边缘具有较大面积变形。1963年中国地图出版社在普通多圆锥投影的基础上,设计出了等差分纬线多圆锥投影。 等差分纬线多圆锥投影的赤道和中央经线是相互垂直的直线,中央经线长度比等于1;其它纬线为凸向对称于赤道的同轴圆弧,其圆心位于中央经线的延长线上,中央经线上的纬线间隔从赤道向高纬略有放大;其它经线为凹向对称于中央经线的曲线,其经线间隔随离中央经线距离的增加而按等差级数递减;极点投影成圆弧(一般被图廓截掉),其长度等于赤道的一半(图2-30)。 通过对大陆的合理配置,该投影能完整地表现太平洋及其沿岸国家,突出显示我国与邻近国家的水陆关系。从变形性质上看,等差分纬线多圆锥投影属于面积变形不大的任意投影。我国绝大部分地区的面积变形在10%以内。中央经线和±44o纬线的交点处没有角度变形,随远离该点变形愈大。全国大部分地区的最大角度变形在10o以内。等差分纬线多圆锥投影是我国编制各种世界政区图和其它类型世界地图的最主要的投影之一。

(整理)实验二 地图配准.

实验二地图配准 地图配准是地图数据采集的一个重要步骤,它是通过参考数据集(图层)对配准数据集(图层)进行空间位置纠正和变换的过程,是配准后地图数字化结果能够与其他现有数据进行叠加分析的关键。 本章首先简单介绍地图分幅、编号、地图投影、地图要素等基础知识,再以对扫描的地形图配准为实例,介绍SuperMap GIS 6R软件的配准的基本原理及操作方法。通过本章的学习,使读者能够理解地图配准基本原理,掌握SuperMap GIS 6R进行地图配准的方法。 2.1 地图分幅与编号 我国基本比例尺的地形图包括1:5000、1:1万、1:2.5万、1:5万、1:10万、1:25万、1:50万、1:100万共8种不同比例尺的图框。基本比例尺地图以经纬线分幅制作,它们以1:100万地图为基础,按规定的经差和纬差采用逐次加密划分方法划分图幅。这样不同比例尺的图幅将1:100万的图幅划分成若干行和列,使相邻比例尺地图的经纬差、行列数和图幅数成简单的倍数,如表3.1所示。 我国的1:100万地形图的分幅按照国际1:100万的地图分幅标准进行。每幅1:100万地图包括的范围为纬差4°、经差6°。从地球赤道起,向两极每纬度4°为一行,依次以拉丁字母A,B,C,…,V表示;从经度180°起,自西向东每经度6°为一列,依次以阿拉伯数字1,2,3,…,60表示。每幅1:100万地图的编号由该图幅所在的行号(字符妈)

2.2 地图投影 地图配准是为了使得影像数据可以和GIS矢量数据集成在一起,而为影像数据指定一个参考坐标系的过程,因此在学习如何进行地图配准之前,本节有必要对我国常用的地图投影及SuperMap GIS 6R中坐标系类型、投影设置等内容进行介绍。 2.2.1 我国常用地图投影 1、高斯—克吕格投影 (1)基本概念 如图3.1所示,假想有一个椭圆柱面横套在地球椭球体外面,并与某一条子午线(此子午线称为中央子午线或轴子午线)相切,椭圆柱的中心轴通过椭球体中心,然后用一定投影方法,将中央子午线两侧各一定经差范围内的地区投影到椭圆柱面上,再将此柱面展开即成为投影面,如图3.2所示,此投影为高斯投影。高斯投影是正形投影的一种。 图3.1 高斯投影示意图3.2 中央子午线附近投影示意(2)分带投影 由于高斯—克吕格投影中变形随着离中央经线的距离增大而递增,为了使投影的变形不致过大,所以采用分带投影。我国的1:2.5万~1:50万地形图采用6°分带;1:1万及更大比例尺图采用3°分带。6°分带是从零子午线起,每隔6°为一带,全球共分为60个6°带。3°分带是从1°30′起,每隔3°为一带,全球共分为120个3°带。 高斯投影6°带:自0°子午线起每隔经差6°自西向东分带,依次编号1,2,3….。我国6°带中央子午线的经度,由75°起每隔6°至135°,共计11带(13~23带),带号用n 表示,中央子午线的经度用L0表示,它们的关系式L0=6n-3。 高斯投影3°带:它的中央子午线一部分同6°带中央子午线重合,一部分同6°带的分界子线重合,如用nˊ表示3°带的带号,L表示3°带中央子午线经度,它们的关系L=3n ˊ,我国3°带共计22带(24~45带)。如图3.3所示为6°带与3°带投影示意图。

人教版地理高二选修7第二章第一节地图和地图投影A卷

人教版地理高二选修7第二章第一节地图和地图投影A卷 姓名:________ 班级:________ 成绩:________ 一、单选题 (共15题;共36分) 1. (2分) GIS中,不同类型的地理空间信息储存在不同的图层上。叠加不同的图层可以分析不同要素间的相互关系。 城市交通图层与城市人口分布图层的叠加,可以()。 A . 为商业网点选址 B . 分析建筑设计的合理性 C . 计算城市水域面积 D . 估算工农业生产总值 【考点】 2. (2分)湖水、长江水、黄河水三种含沙量水体反射光谱曲线图,关于图示信息的叙述,正确的是()。 A . 分析使用的地理信息技术是GIS B . ①②曲线对应的是湖水、黄河水 C . 0.7波长λ/μm的反射率区分度最大 D . 含沙量与反射率呈正相关 【考点】 3. (2分)两颗卫星同时运行,每隔九天可以覆盖地球一遍,说明遥感技术 A . 受地面限制条件少 B . 测量范围小、距离远 C . 手段多,获得信息量大 D . 获得资料速度快、周期短 【考点】 4. (2分)有关遥感技术的叙述,不正确的是()。

A . 遥感的关键装置是传感器 B . 遥感技术的主要环节是目标物→传感器→成果 C . 飞机遥感图像分辨率比卫星对地物的分辨率高 D . 遥感技术能在短时间内获得全面资料,以便及时安全安排防灾、救灾工作 【考点】 5. (2分)下列说法不正确的是否()。 A . GIS技术是地图的延伸 B . RS技术是地图的延伸 C . GPS技术可为用户提供精确的三维坐标 D . GIS技术可分析、处理GPS技术及GPS技术提供的图像和数据 【考点】 6. (2分) GIS是用于空间分析的计算机系统,某中学地理小组将它作于课题研究。据此回答: 华北平原地势平坦开阔,土壤深厚肥沃,夏季高温多雨,适宜冬小麦和玉米轮作。若该结论是通过GIS而得到的,那么这属于下列GIS能解决的哪一类问题() A . 趋势分析 B . 模式分析 C . 与分布、位置有关的基本问题 D . 模拟问题 【考点】 7. (2分)下列关于电子地图的说法,正确的是() A . 制作所有地图都需要电子地图作底图 B . 外出学习或旅行,可以先在电子地图上查找出行路线 C . 电子地图可以完全代替纸质地图 D . 电子地图就是分层设色地形图 【考点】 8. (4分)在遥感技术中,可以根据植物的反射波谱特征判断植物的生长状况。

地图投影的基本理论

第一节地图投影的概念与若干定义 一、地图投影的产生 我们了解地球上的各种信息并加以分析研究,最理想的方法是将庞大的地球缩小,制成地球仪,直接进行观察研究。这样,其上各点的几何关系——距离、方位、各种特性曲线以及面积等可以保持不变。 一个直径30厘米的地球仪,相当于地球的五千万分之一;即使直径1米的地球仪,也只有相当于地球的一千三百万分之一。在这一小的球面上是无法表示庞大地球上的复杂事物。并且,地球仪难于制作,成本高,也不便于量测使用和携带保管。 通过测量的方法获得地形图,这一过程,可以理解为将测图地区按一定比例缩小成一个地形模型,然后将其上的一些特征点(测量控制点、地形点、地物点)用垂直投影的方法投影到图纸(图4-1)。因为测量的可观测范围是个很小的区域,此范围内的地表面可视为平面,所以投影没有变形;但对于较大区域范围,甚至是半球、全球,这种投影就不适合了。 由于地球(或地球仪)面是不可展的曲面,而地图是连续的平面。因此,用地图表示地球的一部分或全部,这就产生了一种不可克服的矛盾——球面与平面的矛盾,如强行将地球表面展成平面,那就如同将桔子皮剥下铺成平面一样,不可避免地要产生不规则的裂口和褶皱,而且其分布又是毫无规律可循。为了解决将不可展球面上的图形变换到一个连续的地图平面上,就诞生了“地图投影”这一学科。 二、地图投影的定义 鉴于球面上任意一点的位置是用地理坐标()表示,而平面上点的位置是用直角坐标(X,Y)或极坐标()表示,因此要想将地球表面上的点转移到平面上去,则必须采用一定的数学方法来确定其地理坐标与平面直角坐标或极坐标之间的关系。这种在球面与平面之间建立点与点之间对应函数关系的数学方法,称为地图投影。 三、地图投影的实质 球面上任一点的位置均是由它的经纬度所确定的,因此实施投影时,是先将球面上一些经纬线的交点展绘在平面上,并将相同经度、纬度的点分别连成经线和纬线,构成经纬网;然后再将球面上的点,按其经纬度转绘在平面上相应位置处。由此可见,地图投影的实质就是将地球椭球体面上的经纬网按照一定的数学法则转移到平面上,建立球面上点()与平面上对应点之间的函数关系。 这是地图投影的一般方程式,当给定不同的具体条件时,就可得到不同种类的投影公式,依据各自公式将一系列的经纬线交点()计算成平面直角坐标系(X,Y),并展绘在平面上,连各点得经纬线得平面表象(图4-2)。经纬网是绘制地图的“基础”,是地图的主要数学要素。 四、地图投影的基本方法 (一)几何透视法 系利用透视关系,将地球表面上的点投影到投影面上的一种投影方法。例如,我们假设地球按比例缩小成一个透明的地球仪般球体,在其球心、球面或球外安置光源,将透明球体上的经纬线、地物和地貌投影到球外的一个平面上,所形成的图形,即为地图。 图4-3即是将地球体面分别投影在平面和圆柱体面上的透视投影示意图。几何透视法只能解决一些简单的变换问题,具有很大的局限性,例如,往往不能将全球投影下来。随着数学分析这一学科的出现,人们就普遍采用数学分析方法来解决地图投影问题了。(二)数学解析法 在球面与投影平面之间建立点与点的函数关系(数学投影公式),已知球面上点位的地理坐标,根据坐标转换公式确定在平面上的对应坐标的一种投影方法。

地图配准与投影说明含示例

地图配准与投影说明 本文采用的实例为四川省小鱼洞地区地形图,该图跨越了1:5万标准图幅中的中坝,大宝山等四幅,情况较为特殊。实际操作时,应该生成地图所涉及到图幅的全部标准图框,以将整个地形图涵盖进去,并在误差校正过程中尽可能取多的控制点,确保地图配准的精度。 由于本文旨在演示配准与投影的步骤与方法,简明起见,只生成中坝一幅标准图框,并只选取少量控制点,故必然会有一定误差。特此说明。 一.生成标准图框 操作步骤:实用服务--投影变换--系列标准图框--生成1:5万图框(中坝)

生成的标准图框:

二误差校正(多种方法) 误差校正的关键是采集控制点,实际工作中为了提高精度,往往需要采集很多控制点,这时可以选择自动采集“T”型点的方法,将公里网的交点全部选为控制点。在控制点选取比较少的情况下,可以采用手工屏幕采点,自动生成控制点文件,这正是本文将要演示的方法: 1 选取原图与标准图框中对应的点为参考点。 参考点可根据原图和图框中公里网对应的坐标值选取。每个参考点对应控制点文件中的一条记录,参考点选择越多,地图配准越准确。 本例选取5个参考点,依次为:(75,69)(76,68)(77,67)(78,66)(76,66)。 2 取原图中点的屏幕坐标为实际值 在MapGis误差校正子系统中打开原图文件,选择菜单控制点――设置控制点参数

选择“选择采集文件”。选择原图文件 选择“添加校正控制点”。根据选定的参考点在原图上添加控制点

3 取图框中点的屏幕坐标为理论值 打开标准图框文件,在其上面对应的参考点上选取理论值。步骤与选取实际值相似。 先选择“设置控制点参数” 选择“选择采集文件”。选择标准图框文件。 *注意:此时视图中可能仍然显示的是原图,这时点击右键,选择“复位窗口”,然后只选 择图框文件,图框就会在视图中居中显示。

常用地图投影转换公式

常用地图投影转换公式 作者:青岛海洋地质研究所戴勤奋  投影计算公式往往表达方式不止一种,有时很难分辨谁对谁错,我只把“墨卡托投影”、“高斯-克吕格投影”、“UTM投影”、“兰勃特等角投影”(1:100万地形图规范中称作正轴等角圆锥投影,GB/T 14512-93)的正反转换公式列出,因为我基本能保证这些公式的正确性。1.约定 本文中所列的转换公式都基于椭球体 a -- 椭球体长半轴 b -- 椭球体短半轴 f -- 扁率 e -- 第一偏心率 e’ -- 第二偏心率 N -- 卯酉圈曲率半径 R -- 子午圈曲率半径 B -- 纬度,L -- 经度,单位弧度(RAD) -- 纵直角坐标, -- 横直角坐标,单位米(M) 2.椭球体参数 我国常用的3个椭球体参数如下(源自“全球定位系统测量规范 GB/T

界面上的所谓“北京1954“西安1980”及“WGS 84”在实际计算中只涉及了相应的椭球体参数。 3.墨卡托(Mercator)投影 3.1 墨卡托投影简介 墨卡托(Mercator)投影,是一种"等角正切圆柱投影”,荷兰地图学家墨卡托(Gerhardus Mercator 1512-1594)在1569年拟定, 假设地球被围在一中空的圆柱里,其标准纬线与圆柱相切接触,然后再假想地球中心有一盏灯,把球面上的图形投影到圆柱体上,再把圆柱体展开,这就是一幅选定标准纬线上的“墨卡托投影”绘制出的地图。 墨卡托投影没有角度变形,由每一点向各方向的长度比相等,它的经纬线都是平行直线,且相交成直角,经线间隔相等,纬线间隔从标准纬线向两极逐渐增大。墨卡托投影的地图上长度和面积变形明显,但标准纬线无变形,从标准纬线向两极变形逐渐增大,但因为它具有各个方向均等扩大的特性,保持了方向和相互位置关系的正确。 在地图上保持方向和角度的正确是墨卡托投影的优点,墨卡托投影地图常用作航海图和航空图,如果循着墨卡托投影图上两点间的直线航行,方向不变可以一直到达目的地,因此它对船舰在航行中定位、确定航向都具有有利条件,给航海者带来很大方便。 “海底地形图编绘规范”(GB/T 17834-1999,海军航保部起草)中规定1:25万及更小比例尺的海图采用墨卡托投影,其中基本比例尺海底地形图(1:5万,1:25万,1:100万)采用统一基准纬线30°,非基本比例尺图以制图区域中纬为基准纬线。基准纬线取至整度或整分。 3.2 墨卡托投影坐标系 取零子午线或自定义原点经线(L0)与赤道交点的投影为原点,零子午线或自定义原点经线的投影为纵坐标X轴,赤道的投影为横坐标Y轴,构成墨卡托平面直角坐标系。 3.3 墨卡托投影正反解公式 墨卡托投影正解公式:(B,L)→(X,Y),标准纬度B0,原点纬度 0,原点经度L0

世界地图常用地图投影知识大全

世界地图常用地图投影知识大全 2009-09-30 13:20 在不同的场合和用途下使用不同的地图投影,地图投影方法及分类名目众多,象:墨卡托投影,空间斜轴墨卡托投影,桑逊投影,摩尔维特投影,古德投影,等差分纬线多圆锥投影,横轴等积方位投影,横轴等角方位投影,正轴等距方位投影,斜轴等积方位投影,正轴等 角圆锥投影,彭纳投影,高斯-克吕格投影,等角圆锥投影等等。 一、世界地图常用投影 1、等差分纬线多圆锥投影(Polyconic Projection With Meridional Interval o nSame Parallel Decrease AwayFrom Central Meridian by E qual Difference) 普通多圆锥投影的经纬线网具有很强的球形感,但由于同一纬线上的经线间隔相等,在编制世界地图时,会导致图形边缘具有较大面积变形。1963年中国地图出版社在普通多圆锥投影的基础上,设计出了等差分纬线多圆锥投影。 等差分纬线多圆锥投影的赤道和中央经线是相互垂直的直线,中央经线长度比等于1;其它纬线为凸向对称于赤道的同轴圆弧,其圆心位于中央经线的延长线上,中央经线上的纬线间隔从赤道向高纬略有放大;其它经线为凹向对称于中央经线的曲线,其经线间隔随离中央经线距离的增加而按等差级数递减;极点投影成圆弧(一般被图廓截掉),其长度等于赤道的一半(图2-30)。 通过对大陆的合理配置,该投影能完整地表现太平洋及其沿岸国家,突出显示我国与邻近国家的水陆关系。从变形性质上看,等差分纬线多圆锥投影属于面积变形不大的任意投影。我国绝大部分地区的面积变形在10%以内。中央经线和±44o纬线的交点处没有角度变形,随远离该点变形愈大。全国大部分地区的最大角度变形在10o以内。等差分纬线多圆锥投影是我国编制各种世界政区图和其它类型世界地图的最主要的投影之一。

几种地图投影的特点及分带方法

一、只谈比较常用的几种:“墨卡托投影”、“高斯-克吕格投影”、“UTM投影”、“兰勃特等角投影。 1.墨卡托(Mercator)投影 1.1 墨卡托投影简介 墨卡托(Mercator)投影,是一种"等角正切圆柱投影”,荷兰地图学家墨卡托(GerhardusMercator1512-1594)在1569年拟定,假设地球被围在一中空的圆柱里,其标准纬线与圆柱相切接触,然后再假想地球中心有一盏灯,把球面上的图形投影到圆柱体上,再把圆柱体展开,这就是一幅选定标准纬线上的“墨卡托投影”绘制出的地图。 墨卡托投影没有角度变形,由每一点向各方向的长度比相等,它的经纬线都是平行直线,且相交成直角,经线间隔相等,纬线间隔从标准纬线向两极逐渐增大。墨卡托投影的地图上长度和面积变形明显,但标准纬线无变形,从标准纬线向两极变形逐渐增大,但因为它具有各个方向均等扩大的特性,保持了方向和相互位置关系的正确。 在地图上保持方向和角度的正确是墨卡托投影的优点,墨卡托投影地图常用作航海图和航空图,如果循着墨卡托投影图上两点间的直线航行,方向不变可以一直到达目的地,因此它对船舰在航行中定位、确定航向都具有有利条件,给航海者带来很大方便。 “海底地形图编绘规范”(GB/T17834-1999,海军航保部起草)中规定1:25万及更小比例尺的海图采用墨卡托投影,其中基本比例尺海底地形图(1:5万,1:25万,1:100万)采用统一基准纬线30°,非基本比例尺图以制图区域中纬为基准纬线。基准纬线取至整度或整分。 1.2 墨卡托投影坐标系 取零子午线或自定义原点经线(L0)与赤道交点的投影为原点,零子午线或自定义原点经线的投影为纵坐标X轴,赤道的投影为横坐标Y轴,构成墨卡托平面直角坐标系。 2.高斯-克吕格(Gauss-Kruger)投影和UTM(UniversalTransverseMercator)投影 2.1 高斯-克吕格投影简介 高斯-克吕格(Gauss-Kruger)投影,是一种“等角横切圆柱投影”。德国数学家、物理学家、天文学家高斯(CarlFriedrichGauss,1777一1855)于十九世纪二十年代拟定,后经德国大地测量学家克吕格(JohannesKruger,1857~1928)于1912年对投影公式加以补充,故名。设想用一个圆柱横切于球面上投影带的中央经线,按照投影带中央经线投影为直线且长度不变和赤道投影为直线的条件,将中央经线两侧一定经差范围内的球面正形投影于圆柱面。然后将圆柱面沿过南北极的母线剪开展平,即获高斯一克吕格投影平面。 高斯一克吕格投影后,除中央经线和赤道为直线外,其他经线均为对称于中央经线的曲线。高斯-克吕格投影没有角度变形,在长度和面积上变形也很小,中央经线无变形,自中央经线向投影带边缘,变形逐渐增加,变形最大处在投影带内赤道的两端。由于其投影精度高,变形小,而且计算简便(各投影带坐标一致,只要算出一个带的数据,其他各带都能应用),因此在大比例尺地形图中应用,可以满足军事上各种需要,并能在图上进行精确的量测计算。 按一定经差将地球椭球面划分成若干投影带,这是高斯投影中限制长度变形的最有效方法。分带时既要控制长度变形使其不大于测图误差,又要使带数不致过多以减少换带计算工作,据此原则将地球椭球面沿子午线划分成经差相等的瓜瓣形地带,以便分带投影。通常按经差6度或3度分为六度带或三度带。六度带自0度子午线起每隔经差6度自西向东分带,带号依次编为第1、2…60带。三度带是在六度带的基础上分成的,它的中央子午线与六度带的中央子午线和分带子午线重合,即自1.5度子午线起每隔经差3度自西向东分带,带号

常用地图投影公式

常用地图投影公式 1.约定 本文中所列的转换公式都基于椭球体 a -- 椭球体长半轴 b -- 椭球体短半轴 f -- 扁率 e -- 第一偏心率 e’-- 第二偏心率 N -- 卯酉圈曲率半径 R -- 子午圈曲率半径 B -- 纬度,L -- 经度,单位弧度(RAD) -- 纵直角坐标, -- 横直角坐标,单位米(M) 2.椭球体参数 我国常用的3个椭球体参数如下(源自“全球定位系统测量规范GB/T 18314-2001”): 椭球体长半轴a(米)短半轴b(米) Krassovsky (北京54采用)6378245 6356863.0188 IAG 75(西安80采用)6378140 6356755.2882

WGS 84 6378137 6356752.3142 需要说明的是,在“海洋地质制图常用地图投影系列小程序”中,程序界面上的所谓“北京1954“西安1980”及“WGS 84”在实际计算中只涉及了相应的椭球体参数。 3.墨卡托(Mercator)投影 3.1 墨卡托投影简介 墨卡托(Mercator)投影,是一种"等角正切圆柱投影”,荷兰地图学家墨卡托(Gerhardus Mercator 1512-1594)在1569年拟定, 假设地球被围在一中空的圆柱里,其标准纬线与圆柱相切接触,然后再假想地球中心有一盏灯,把球面上的图形投影到圆柱体上,再把圆柱体展开,这就是一幅选定标准纬线上的“墨卡托投影”绘制出的地图。 墨卡托投影没有角度变形,由每一点向各方向的长度比相等,它的经纬线都是平行直线,且相交成直角,经线间隔相等,纬线间隔从标准纬线向两极逐渐增大。墨卡托投影的地图上长度和面积变形明显,但标准纬线无变形,从标准纬线向两极变形逐渐增大,但因为它具有各个方向均等扩大的特性,保持了方向和相互位置关系的正确。 在地图上保持方向和角度的正确是墨卡托投影的优点,墨卡托投影地图常用作航海图和航空图,如果循着墨卡托投影图上两点间的直线航行,方向不变可以一直到达目的地,因此它对船舰在航行中定位、确

各种地图投影全解析

地图投影全解析 科技名词定义 中文名称:地图投影 英文名称:map projection 定义1:按照一定的数学法则,把参考椭球面上的点、线投影到可展面上的方法。 所属学科:测绘学(一级学科);测绘学总类(二级学科) 定义2:根据一定的数学法则,将地球表面上的经纬线网相应地转绘成平面上经纬线网的方法。 所属学科:大气科学(一级学科);动力气象学(二级学科) 定义3:运用一定的数学法则,将地球椭球面的经纬线网相应地投影到平面上的方法。即将椭球面上各点的地球坐标变换为平面相应点的直角坐标的方法。 所属学科:地理学(一级学科);地图学(二级学科) 本内容由全国科学技术名词审定委员会审定公布 地图投影是利用一定数学方法则把地球表面的经、纬线转换到平面上的理论和方法。由于地球是一个赤道略宽两极略扁的不规则的梨形球体,故其表面是一个不可展平的曲面,所以运用任何数学方法进行这种转换都会产生误差和变形,为按照不同的需求缩小误差,就产生了各种投影方法。 目录

展开 定义 地图投影,Map Projection.把地球表面的任意点,利用一定数学法则,转换到地图平面上的理论和方法。 地图投影 书面概念化定义:地图投影就是指建立地球表面(或其他星球表面或天球面)上的点与投影平面(即地图平面)上点之间的一一对应关系的方法。即建立之间的数学转换公式。它将作为一个不可展平的曲面即地球表面投影到一个平面的基本方法,保证了空间信息在区域上的联系与完整。这个投影过程将产生投影变形,而且不同的投影方法具有不同性质和大小的投影变形。 由于球面上任何一点的位置是用地理坐标(λ,φ)表示的,而平面上的点的位置是用直角坐标(χ,у)或极坐标(r,)表示的,所以要想将地球表面上的点转移到平面上,必须采用一定的方法来确定地理坐标与平面

坐标系统与地图投影--基础知识

空间参照系统和地图投影 导读:正如上一章所描述的,一个要素要进行定位,必须嵌入到一个空间参照系中,因为GIS所描述是位于地球表面的信息,所以根据地球椭球体建立的地理坐标(经 纬网)可以作为所有要素的参照系统。因为地球是一个不规则的球体,为了能够将 其表面的内容显示在平面的显示器或纸面上,必须进行坐标变换。 本章讲述了地球椭球体参数、常见的投影类型。考虑到目前使用的1:100万以上地 形图都是采用高斯——克吕格投影,本章最后又对该种投影类型和相关的地形图分 幅标准做了简单介绍。 1.地球椭球体基本要素 1.1地球椭球体 1.1.1地球的形状 为了从数学上定义地球,必须建立一个地球表面的几何模型。这个模型由地球的形状决定的。它是一个较为接近地球形状的几何模型,即椭球体,是由一个椭圆绕着其短轴旋转而成。 地球自然表面是一个起伏不平、十分不规则的表面,有高山、丘陵和平原,又有江河湖海。地球表面约有71%的面积为海洋所占用,29%的面积是大陆与岛屿。陆地上最高点与海洋中最深处相差近20公里。这个高低不平的表面无法用数学公式表达,也无法进行运算。所以在量测与制图时,必须找一个规则的曲面来代替地球的自然表面。当海洋静止时,它的自由水面必定与该面上各点的重力方向(铅垂线方向)成正交,我们把这个面叫做水准面。但水准面有无数多个,其中有一个与静止的平均海水面相重合。可以设想这个静止的平均海水面穿过大陆和岛屿形成一个闭合的曲面,这就是大地水准面(图4-1)。 图4-1:大地水准面 大地水准面所包围的形体,叫大地球体。由于地球体内部质量分布的不均匀,引起重力方向的变化,导致处处和重力方向成正交的大地水准面成为一个不规则的,仍然是不能用数学表达的曲面。大地水准面形状虽然十分复杂,但从整体来看,起伏是微小的。它是一个很接近于绕自转轴(短轴)旋转的椭球体。所以在测量和制图中就用旋转椭球来代替大地球体,这个旋转球体通常称地球椭球体,简称椭球体。

介绍几种常用的地图投影

介绍几种常用的,其它的投影方式请了解的朋友跟帖补充|) 一、地图投影(比较常用的几种:“墨卡托投影”、“高斯-克吕格投影”、“UTM投影”) 1.墨卡托(Mercator)投影 1.1 墨卡托投影简介 墨卡托(Mercator)投影,是一种"等角正切圆柱投影”,荷兰地图学家墨卡托(Gerhardus Mercator 1512-1594)在1569年拟定,假设地球被围在一中空的圆柱里,其标准纬线与圆柱相切接触,然后再假想地球中心有一盏灯,把球面上的图形投影到圆柱体上,再把圆柱体展开,这就是一幅选定标准纬线上的“墨卡托投影”绘制出的地图。 墨卡托投影没有角度变形,由每一点向各方向的长度比相等,它的经纬线都是平行直线,且相交成直角,经线间隔相等,纬线间隔从标准纬线向两极逐渐增大。墨卡托投影的地图上长度和面积变形明显,但标准纬线无变形,从标准纬线向两极变形逐渐增大,但因为它具有各个方向均等扩大的特性,保持了方向和相互位置关系的正确。 在地图上保持方向和角度的正确是墨卡托投影的优点,墨卡托投影地图常用作航海图和航空图,如果循着墨卡托投影图上两点间的直线航行,方向不变可以一直到达目的地,因此它对船舰在航行中定位、确定航向都具有有利条件,给航海者带来很大方便。 “海底地形图编绘规范”(GB/T 17834-1999,海军航保部起草)中规定1:25万及更小比例尺的海图采用墨卡托投影,其中基本比例尺海底地形图(1:5万,1:25万,1:100万)采用统一基准纬线30°,非基本比例尺图以制图区域中纬为基准纬线。基准纬线取至整度或整分。 1.2 墨卡托投影坐标系 取零子午线或自定义原点经线(L0)与赤道交点的投影为原点,零子午线或自定义原点经线的投影为纵坐标X轴,赤道的投影为横坐标Y轴,构成墨卡托平面直角坐标系。 2.高斯-克吕格(Gauss-Kruger)投影和UTM(Universal Transverse Mercator)投影 2.1 高斯-克吕格投影简介 高斯-克吕格(Gauss-Kruger)投影,是一种“等角横切圆柱投影”。德国数学家、物理学家、天文学家高斯(Carl Friedrich Gauss,1777~1855)于十九世纪二十年代拟定,后经德国大地测量学家克吕格(Johannes Kruger,1857~1928)于1912年对投影公式加以补充,故名。设想用一个圆柱横切于球面上投影带的中央经线,按照投影带中央经线投影为直线且长度不变和赤道投影为直线的条件,将中央经线两侧一定经差范围内的球面正形投影于圆柱面。然后将圆柱面沿过南北极的两条母线剪开展平,即得到高斯-克吕格投影平面。 高斯-克吕格投影后,除中央经线和赤道为直线外,其他经线均为对称于中央经线的曲线。

相关文档
相关文档 最新文档