文档库 最新最全的文档下载
当前位置:文档库 › 京能石电循环水余热利用工程项目可行性研究报告

京能石电循环水余热利用工程项目可行性研究报告

京能石电循环水余热利用工程项目可行性研究报告
京能石电循环水余热利用工程项目可行性研究报告

京能石电循环水余热利用工程项目可行性研究报告

1.0 概述

随着北京世界大都市进程加快、城市发展和居民生活水平’日勺提高0北京冬季供暖能源需求将继续增加,采暖供热’日勺供需矛盾将日趋凸现0而热电联产’日勺热电厂如何将原有对外供热量和热电厂’日勺效率提高也已提到日程0尽管热电厂多种废热排汽可以回收,现只将电厂循环水余热进行利用,实现能源’日勺高效利用符合国家“节能减排”‘日勺国策0

北京京能石景山热电厂现装机4x200MW,全部为供热机组,承担北京地区3200万平方米’日勺供热任务0据2009~2010年供热季节运行数据显示,四台机组整个采暖季平均抽汽量已接近额定抽汽量0在严寒期已达到甚至超过额定抽汽量,说明电厂供热能力已经受限,特别昰首钢搬迁后京能热电厂南线热负荷急剧增加,如若增加供热面积,必须增加新热源0

电厂机组做完功后,经凝汽器循环水带走热量,排入冷却水塔,运行数据显示,全厂每小时通过冷却水塔排出热量为1440GJ,相当于50吨标准煤’日勺发热量,若将这部分排入大气热量回收,采用吸收式热泵技术,即解决了部分热源不足问题,增加电厂供热量从而使电厂产生巨大’日勺经济效益和社会效益0 1.1设计依据和设计范围

1.1.1 设计依据

1)北京创时能源有限公司与国电华北电力设计院北京设计事务所签订’日勺(北京京能石景山热电厂循环水余热厂利用工程)可行性研究设计合同0

2)2010年4月北京创时能源有限公司编制’日勺“京能热电循环水余热

回收项目初步技术方案”0

3)2010年5月华北电力设计院工程有限公司编制’日勺北京京能石景山热电厂循环水余热利用工程初步技术方案(A版)0

4)华北电力设计院原设计’日勺石景山热电厂各专业施工图、竣工图0 5)京能热电厂提供’日勺运行数据0

1.1.2 设计范围

1) 在220KV变电装置平台下布置10台热泵和循环水管道,汽水管道,疏水管道’日勺连接0

2)将4号机循环水回水管经升压泵引入热泵放热,放热后循环水再进入凝汽器吸热,采用闭式循环返复运行0

3) 新设循环水升压泵房,包括设备选型,设备布置和有关专业设计0

4) 增加两台基本加热器,包括设备选型,设备布置和有关专业设计0

5) 余热利用项目厂用电6000V 380V电气连接方式0

6) 设置必要’日勺测量仪表对各介质压力,温度,流量进行测量0

7) 为保障设备和管道安全运行,化学专业应对闭式循环水质进行论证0

8) 循环水升压泵房、凝结水泵坑、热泵站结构设计

9) 京能集团提出’日勺4台机组循环水系统由并联改为串联系统0

10) 投资估算及经济效益分析0

1.2工作过程

2010年4月中旬北京创时能源有限公司和华北电力设计院工程有限公司共同到京能石景山热电厂,洽谈循环水余热利用有关问题,创时能源有限公司并提供了京能循环水余热利用项目初步技术方案,并看了现场,之后华北电力设计院

工程有限公司曾两次出版了“京能热电循环水余热回收工程设计初步技术方案设计”,并向京能集团进行了汇报02010年5月中旬北京创时能源有限公司委托我院进行京能石景山热电厂循环水余热利用项目可行性研究阶段设计0

2.0 设计基础资料

2.1 厂址位置

京能石景山热电厂地处北京西郊石景山工业区,距离市中心约25km,厂区三面为铁路环抱,东临首都钢铁厂(即将拆除)及城市规划道路,西靠丰沙干线及永定河,厂区地形狭长,厂区地形标高为90.5-91.50m,不考虑百年一遇洪水问题0

2.2 地址、地震、水文气象

2.2.1 工程地质

该厂位于永定河北岸,厂区内大部分范围原为永定河河床,相对地势较低0由于近十年来’日勺逐步回填,地面高程发生了相对变化0地势平坦,地层主要为素填土和卵石,其分布规律比较稳定,只昰局部见有杂土0

北京地区土壤标注冻结深度0.8m0

2.2.2 地震

根据国家地震局“中国地震烈度区规划图(1992)”,北京地区抗震设防烈度为8度0

2.2.3 水文气象

2.2.

3.1 气温

1)多年平均气温11.8℃0

2)多年极端最高气温42.2℃(1961年6月10日发生)

3)多年极低气温-22.9℃(1966年2月22日发生)

4)多年最热月(7月份)

平均气温25.7℃

5)多年最冷月(1月份)

平均气温-4.2℃

2.2.

3.2 湿度

1)多年平均相对湿度56%

2)多年最大月平均相对湿度87%(1976年7月发生)

3)多年最小月平均相对湿度24%(1963年1月发生)

4)多年8月平均相对湿度79%

5)多年1月平均相对湿度39%

2.2.

3.3 降水

1)多年平均降水量626.4mm

2)多年月最大降水量473.5mm(1973年7月发生)

3)多年一日最大降水量161mm(1985年8月25日)

4)多年最长连续降水量285.4mm(1973年8月2日-8月21日)

5)多年最长连续降水日数124天(1984年10月10日-1985年3月12日)

2.2.

3.4 风速

多年平均风速2.5m/s

2.2.

3.5 冻土深度

多年最大冻土深度68cm(1968年2月发生,共5天)

2.2.

3.6 积雪深度

多年最大积雪深度22cm(1959年2月25日发生天)

2.2.

3.7 主导风向

多年平均主导风向:全年为南风和西北风0夏季为南风,冬季为西北风0

2.2.

3.8 最大风速

30年一遇10m高10分钟平均最大风速为25.4m/s0

2.3 循环水水质

目前电厂循环水采用城市再生水,经再生水厂进一步处理后供应京能石景山热电厂0循环水水质见表2-1、表2-2

表2-1 城市再生水水质全分析数据

热电厂循环水余热利用方案

******技术发展有限公司 ******热电厂循环水利用方案 (溴化锂吸收式热泵) 联系人: 手机: 联系电话: 传真: 信箱: 2013年8月18日

目录 1 项目简介 (3) 1.1 吸收式热泵方案 (3) 1.2 吸收式热泵供暖工艺流程设计 (3) 1.3 蒸汽型吸收式热泵主机选型(31.7℃→25℃) (4) 1.4 节能运行计算 (4) 1.5 初投资与回报期计算 (5) 2 热泵机组简介 (6) 2.1 吸收式热泵供暖机组 (6) 2.2 溴化锂吸收式热泵采暖技术特点 (7) 2.3 标志性案例介绍 (7)

1 项目简介 ********热电厂,采暖季有温度为26.3~19.6℃的循环冷却水2800m3/h,需要通过降低汽轮机组凝汽器真空或提高汽轮机背压,使得冷却循环水的温度提升到到31.7℃,然后利用溴化锂吸收式热泵机组提取凝汽器冷却循环水中的热量,将循环冷却水温度降低到25℃,可以制备供水温度为74.7/55℃热网水2400 m3/h,对建筑物进行供暖,供暖期为152天。提高汽轮机背压大约2KPa左右,汽轮机的轴向推力几乎不变,对发电量影响不大。 1.1 吸收式热泵方案 采用蒸汽型吸收式热泵机组,通过0.49MPa的饱和蒸汽作为驱动热源,在冬季采暖期,将2800m3/h的循环冷却水从31.7℃降低到25℃,可以从循环冷却水中提取21.82MW的热量用于建筑物采暖。 1.2 吸收式热泵供暖工艺流程设计 使用吸收式热泵加热,供暖系统流程原理图如下: 由上图可以看出,实际应用流程非常简单,只是把工艺循环水引到热泵机房,把原来通过冷却塔排放到环境中的冷凝废热,通过溴化锂吸收式热泵机组将热量传递给供暖回水。此系统改造不影响循环水原系统的稳定性,节省大量的蒸汽,同时带来了大量的经济效益。

热电厂循环水余热利用项目可行性实施报告

某某县热电厂 循环水余热利用项目可行性研究报告 2000年2月1日

目录 概述 (2) 1.企业的描述 (4) 2.工艺现状和相关的能耗情况 (4) 3.建议的项目 (5) 4.期望的能耗 (7) 5.投资估算 (8) 6.预计运行费用 (8) 7.预计节能效益 (9) 8.节能效果验证 (9) 9.存在的设备供货商 (10) 10.存在的设备安装承包商 (10) 11.技术经济分析 12.主要设备材料清单

1、概述 1.1县城及企业概况 某某县隶属省日照市,位于半岛的西南部,东接胶南,西连莒县,南与日照接壤,北与诸城相邻. 某某县热电厂位于城区的西北部,厂区东靠解放路,西临沿河路. 该厂始建于一九六八年, 占地面积5.6万平方米,,最大供热能力90t/h.职工450人,其中各类专业技术人员60人。原为小型火力发电厂.自一九八三年后改建为热电厂.厂在一九八五年建成规模为2×20t/h锅炉+2×1500kw背压式汽轮发电机组.为了适应外部热负荷逐渐增加的要求,该厂在九三年又进行了扩建,扩建机组的容量为2×35t/h锅炉+1×C6-3.43/0.981抽汽凝汽式汽轮发电机组,并于一九九六年建成投产.某某县热电厂通过不断地发展,逐渐成为某某县基础性行业和县城的唯一的热源厂,承担着城区30余家工业用户用汽和部分居民的采暖用汽供应。该厂坚持国家的产业政策,以让“政府放心,用户满意“为目标,积极发挥热电联产,集中供热的优势,努力改善居民的生活条件,增加能源供应,减轻环境污染,取得了显著的经济效益和社会效益,1998年全厂实现销售收入4067万元,利税558万元,两个文明建设取得突出成绩,连续三年被县委县政府先进企业和十佳明星企业。 1996-1998年生产经营情况表见表-1 表-1 2、存在问题

电厂循环水余热利用可行性研究报告

电厂循环水余热利用建议书 编制: 朱明峰 审核: 批准: 中海油节能环保服务有限公司 2013年9月19日

目录 一概述 (1) 1.1项目背景 (1) 1.2余热资源现状 (1) 1.3项目实施条件 (1) 1.4遵循的标准及规范 (2) 二余热回收方案设计 (3) 2.1现有补水加热流程图 (3) 2.2改造方案 (3) 2.3改造主要工作量 (5) 2.4技改效果 (6) 2.5改造投资及静态回收期 (6) 三节能环保效益分析 (7) 3.1节能效益 (7) 3.2环保效益 (7) 四结论与建议 (7)

一概述 1.1项目背景 **热电厂全年供应蒸汽。由于外供蒸汽的凝结水回收比例较低,需要大量的除盐补充水,新厂补充除盐水的流量常年在100~150t/h,平均温度约为25℃,本方案将回收电厂发电后的大量循环水余热,用于加热锅炉补充除盐水,从而减少部分除氧器加热蒸汽耗量,节省的蒸汽可用于外送或发电。 充分利用电厂循环水余热,提高能源利用效率,对节能减排工作得推动起到了重要的作用。 1.2余热资源现状 **热电循环冷却水总流量约为15000t/h,上下塔温度夏季为40/30℃、冬季为30/20℃,最冷时下塔温度约为15~18℃。 循环冷却水余热若按照温差10℃提取,可回收的余热量为:ΔQ =4.1868MJ/t·℃×15000t×10℃/3600s=174.4MW 1.3项目实施条件 蒸汽压力:0.5-0.8MPa(饱和蒸汽) 除盐水补水平均温度:25℃ 预热除盐水温度:90℃(夏)/80℃(冬) 除盐水量:100t/h 循环水温度(冬季):30/20℃ 循环水温度(夏季):40/30℃

基于热泵技术的热电厂循环水余热回收方案研究

基于热泵技术的热电厂循环水余热回收方案研究 发表时间:2018-10-01T19:15:42.717Z 来源:《基层建设》2018年第26期作者:陈永山 [导读] 摘要:传统的热电厂进行供热的时候,能源选用上通常是煤、石油、天然气这样的能源,供热效率较低,且会产生一些对人类有害的气体。 身份证号码:37011219810311XXXX 摘要:传统的热电厂进行供热的时候,能源选用上通常是煤、石油、天然气这样的能源,供热效率较低,且会产生一些对人类有害的气体。而如果使用循环水余热回收技术,就能够改变这一点,通过该技术的使用使得整个供热过程变得清洁环保,且节约了大量的能源,供热的规模也大大增强了。由此可见,将循环水余热回收技术加以利用是非常重要的。 关键词:热泵技术;热电厂循环水余热;回收方案 引言 随着社会的不断发展,全球化石能源的储量随之急剧减少。伴随着化石燃料消耗量的急剧增加,环境问题又日益凸显出来。全球气候变暖、雾霆、大气层破坏等诸多环境问题对人类社会的长久稳定发展造成极大的影响。在我国的能源消耗构成中,电力企业占国家化石能源的消耗量的比重相对较大,近些年我国政府也出台针对电力企业节能减排的政策:重点推广能量梯级利用、低温余热发电和热泵机组供暖等节能减排技术。 1热泵的分类及基本工作原理 1.1热泵的基本种类 如图1所示,由热源来源进行种类划分,热泵主要可分为如下几类:①水源热泵。所利用的水源主要包括自然水源和人工排水源。自然水源主要为地下水、河川水及海洋水。人工排水源主要为城市生活污水、工业废水及热电冷却水。②地源热泵。③空气源热泵。具体至当前普遍应用于热电厂的热泵,我们具体又可将其划分为两大类:①压缩式热泵,包括蒸汽驱动压缩式热泵和电驱动压缩式热泵。②吸收式热泵。 图1热泵的基本种类结构示意 1.2热泵技术的基本工作原理 从本质上而言,热泵显然为一种热量提升装置。热泵主要从周围环境中吸收热量,并将其有效传递给被加热对象,也即是温度较高的物体。热泵的工作原理和制冷机类似。一般情况下,热泵主要有如下几个重要部分构成:①压缩机;②蒸发器;③冷凝器;④膨胀节流阀等。具体如图2所示。 图2热泵技术的基本工作原理示意 (1)压缩机为热泵机组的心脏,压缩机起到的作用主要为:压缩并输送循环工质,将其由低温、低压转变为高温、高压。蒸发器为热泵机组的输出冷量设备。(2)蒸发器可使经节流阀流入的制冷剂液体蒸发,进而吸收被冷却物体的热量,最终切实实现制冷的目的。(3)冷凝器为热泵机组输出热量的设备。压缩机消耗功转化的热量以及蒸发器中吸收的热量传输至冷凝器中之后,会被冷却介质带走,从而实现制热的基本目的。(4)热泵机组的膨胀阀亦或是节流阀可以对循环工质起到较好的节流降压作用,在此基础上还可起到对进入蒸发器的循环工质流量进行调节的重要作用。研究表明,采用热泵技术能够节约大量的电能。 2方案确定 在选择循环水余热回收方案时,首先要对各个方案的经济性进行分析并以此为方案选择依据,当热泵机组确定时,即使余热量无限大,但是热泵机组增加的热量不是无限增大的,热泵机组所能回收的热量存在一个极限值,也就是理论最大回收热量。因此,本文将针对吸收式热泵和压缩式热泵,以电厂实际条件为背景,分析其所能提供的最大供热量,来选择合适的热泵机组。 2.1应用吸收式热泵 采用吸收式热泵时,需要耗费部分抽汽作为热泵的驱动热源,吸收循环水的余热并将吸收的热量输送给一次网回水,使一次网回水温度升高。吸收式热泵的供热量为:

冷却循环水处理方案

冷却循环水处理方案

北京东方君悦大酒店循环冷却水处理方案 诚信绿洲 2016年12月

4.3 技术介绍 A)、不含重金属(Cr等),不以磷为基础的阻垢剂,排污水不造成公害,符合环境保护法规,可节省排污处理费用,并免除处理之麻烦。 B)、媲美铬酸盐法的防蚀效果。 C)、药品中所含之专用分散剂,克服了传统冷却水处理所常发生之结垢问题,碳酸钙阻垢能力达1200ppm。 D)、适合于循环水高倍浓缩操作,因此可节省水费及总操作费用。 我司处理方案分三部份,兹分别说明于后: a.结垢抑制 b.腐蚀抑制 c.微生物抑制 (A)结垢抑制 我司最新专用分散剂,可防止冷却水系统产生结垢物,甚至水中钙硬度高达1200ppm,亦有优异之分散作用,保持热传金属表面无结垢之虞,高浓缩情况排污水量减少,并产生下列优点: a. 降低成本:1、用水量减少。 2、用药量节省。 减废功能:水资源充分利用。 附带效益:因本处理方案可适应极差的水质,当补充水质较差时,本处理方案亦能有效因应,从而避免因水质变差导致停机或减量生产。 (B)腐蚀抑制 碳钢腐蚀抑制通常以无机磷酸盐作为阳极及阴极保护,形成坚韧之r-Fe2O3钝化保护膜,避免铁金属游离失去电子,有效抑制铁 材质腐蚀 Fe Fe2++2e- 另外,冷却水中磷酸钙及碳酸钙在阴极高pH位置形成覆盖性保护膜,避免水中O2来接受电子,阻止阴极半反应的发生,腐蚀问题将可彻底抑制 1/2O2+H2O+2e- 2OH-

Fe + o-PO4(p-PO4) → r-Fe2O3 ANODIC ANODIC PASSVATION Ca + p-PO4→ Ca-p-PO4↓ Ca + o-PO4 →Ca-o-PO4↓ Ca + CO32- →CaCO3↓ Zn + OH-→ Zn(OH)2↓ CATHODIC PRECIPITATION (C). 微生物抑制 日常杀菌灭藻采用氧化性杀菌剂-漂白水和溴化物相结合,其杀菌机理主要靠氧化作用破坏细胞组织。建议采用自动控制设备连续添加,控制余氯量在0.2-0.5ppm之间。 为提高漂白水的杀菌能力,配合添加生物表面活性剂XXX,可根据漂白水杀菌的效果采取定时添加的方式,投加剂量以每次30-50PPM。同时,每周定期投加非氧化性杀菌剂XXXX,以更好地控制菌藻的滋生。 4.4 补给水水质 目前补充水为自来水,补充水的水质波动较大,冬季有2-3个月的枯水期,氯根、电导率、硬度都有较大的增加。 4.5 循环水系统处理方案 (1)日常运行方案 浓缩倍数:冷却水的用水成本与浓缩倍数关系极大,冷却水浓缩倍数愈高排污水量愈少,整体操作成本可大幅降低,但若无效果优异和稳定性高的分散剂,极容易产生结垢问题。我公司提供的全自动整体水处理方案,是一个集腐蚀,污垢和微生物控制的综合水处理技术,配合由自动分析,监测,控制和加药系统,以及服务工程师定期的现场服务,使循环冷却水系统真正实现长周期安全稳定的运行,节水,环保,高效和低成本。

电厂循环水余热回收供暖节能分析与改造技术

电厂循环水余热回收供暖节能分析与改造技术 摘要:当今世界,节能已成为一项重要的研究课题。发电厂作为耗能大户,存在大量循环水余热没有得到有效利用,浪费严重。因此,如何利用循环水余热成为电厂节能的重要任务。 1.回收电厂循环水余热的意义 能源是国民经济发展的基础,深入开展节能工作,不仅是缓解能源矛盾和保障国家经济安全的重要措施,而且也是提高经济增长质量和效益的重要途径。本世纪的头20 年,我国工业化和城镇化进程将进一步加快,需要较高的能源增长作为支撑。因此,节能工作对促进整个经济社会发展的作用日益凸显,国家已经把节能作为可持续发展的大政策。 目前,我国大中型城市普遍存在着集中供热热源不能满足迅速增加的供热需求的情况,而新建大型热源投资高、建设周期长,并受到城市环境容量的强烈制约。 为了缓解供热紧张的局面,一些地方盲目发展小型燃煤锅炉房,严重恶化了城市的大气环境;一些城市盲目发展燃气采暖、甚至电热采暖,在带来高采暖成本的同时,也引发了城市的燃气和电力资源的全面紧张。一方面,是燃用高品位的化石燃料来提供低品位的热能用于供暖和提供生活热水。另一方面,城市周边的火力发电厂在发电过程中,通过冷却塔将大量的低品位热量排放到大气中,造成了巨大的能源浪费和明显的环境湿热影响。因此,如果能将循环冷却水余热用于供热(采暖、生活热水等),不仅能够减少电厂冷却水散热造成的水蒸发损失和环境的热污染,而且能够缓解采暖带来燃气和电力资源的紧张局面。同时,实现能源的梯级利用,节约大量燃料,提高能源综合利用率。 北京五大热电厂和热力集团所属六个供热厂的供热能力都已达到极限。北京热电厂普遍采用的抽凝式汽轮机组,即使在冬季最大供热工况下,也有占热电厂总能耗10~20%的热量由循环水(一般通过冷却塔)排放到环境。根据调研,北京并入城市热网的四大热电厂在冬季可利用的循环水余热量就达1000MW 以上,远期规划余热量将达约1700MW。如果将这些余热资源加以利用,仅仅考虑有效利用现有的余热量,就相当于在不新增电厂装机容量和不增加当地污染物排放的情况下,可新增供热面积3000 万平方米以上。因此,利用电厂循环水余热供热是一种极具吸引力的城市集中供热新形式。 2.电厂循环水余热供热技术现状 2.1汽轮机低真空运行供热技术 凝汽式汽轮机改造为低真空运行供热后,凝汽器成为热水供热系统的基本加热器,原来的循环冷却水变成了供暖热媒,在热网系统中进行闭式循环,可有效利用汽轮机凝汽所释放

冷却循环水处理方案

北京东方君悦大酒店循环冷却水处理方案 诚信绿洲 2016年12月

4.3 技术介绍 A)、不含重金属(Cr等),不以磷为基础的阻垢剂,排污水不造成公害,符合环境保护法规,可节省排污处理费用,并免除处理之麻烦。 B)、媲美铬酸盐法的防蚀效果。 C)、药品中所含之专用分散剂,克服了传统冷却水处理所常发生之结垢问题,碳酸钙阻垢能力达1200ppm。 D)、适合于循环水高倍浓缩操作,因此可节省水费及总操作费用。 我司处理方案分三部份,兹分别说明于后: a.结垢抑制 b.腐蚀抑制 c.微生物抑制 (A)结垢抑制 我司最新专用分散剂,可防止冷却水系统产生结垢物,甚至水中钙硬度高达1200ppm,亦有优异之分散作用,保持热传金属表面无结垢之虞,高浓缩情况排污水量减少,并产生下列优点: a. 降低成本:1、用水量减少。 2、用药量节省。 减废功能:水资源充分利用。 附带效益:因本处理方案可适应极差的水质,当补充水质较差时,本处理方案亦能有效因应,从而避免因水质变差导致停机或减量生产。 (B)腐蚀抑制 碳钢腐蚀抑制通常以无机磷酸盐作为阳极及阴极保护,形成坚韧之r-Fe2O3钝化保护膜,避免铁金属游离失去电子,有效抑制铁 材质腐蚀 Fe Fe2++2e- 另外,冷却水中磷酸钙及碳酸钙在阴极高pH位置形成覆盖性保护膜,避免水中O2来接受电子,阻止阴极半反应的发生,腐蚀问题将可彻底抑制 1/2O2+H2O+2e- 2OH- 如图所示 Fe + o-PO4(p-PO4) → r-Fe2O3 ANODIC ANODIC PASSVATION Ca + p-PO4→ Ca-p-PO4↓ CATHONIC

电厂循环水余热利用可行性研究报告

电厂循环水余热利用建议书 编制: _________朱明峰____________ 审核: ___________________________ 批准: ___________________________ 中海油节能环保服务有限公司 2013年9月19日

一概述................................................................. 1.. 1.1项目背景...................................................... 1.. 1.2余热资源现状.................................................. 1. 1.3项目实施条件................................................... 1. 1.4遵循的标准及规范............................................... 2. 二余热回收方案设计.................................................... 2. 2.1现有补水加热流程图............................................ 2. 2.2改造方案....................................................... 2. 2.3改造主要工作量................................................. 4. 2.4技改效果....................................................... 5. 2.5改造投资及静态回收期.......................................... 5. 三节能环保效益分析..................................................... 5. 3.1节能效益....................................................... 5. 3.2环保效益....................................................... 6. 四结论与建议......................................................... 6..

冷却循环水处理方案

... 北京东方君悦大酒店循环冷却水处理方案 诚信绿洲 2016年12月

4.3 技术介绍 A )、不含重金属(Cr等),不以磷为基础的阻垢剂,排污水不造成公害,符合环境保护法规,可节省排污处理费用,并免除处理之麻烦。 B )、媲美铬酸盐法的防蚀效果。 C )、药品中所含之专用分散剂,克服了传统冷却水处理所常发生之结 垢问题,碳酸钙阻垢能力达1200ppm。 D )、适合于循环水高倍浓缩操作,因此可节省水费及总操作费用。 我司处理方案分三部份,兹分别说明于后: a.结垢抑制 b.腐蚀抑制 c.微生物抑制 (A)结垢抑制 我司最新专用分散剂,可防止冷却水系统产生结垢物,甚至水中钙硬度 高达1200ppm,亦有优异之分散作用,保持热传金属表面无结垢之虞,高浓缩情况排污水量减少,并产生下列优点: a. 降低成本:1、用水量减少。 2 、用药量节省。 减废功能:水资源充分利用。 附带效益:因本处理方案可适应极差的水质,当补充水质较差时,本处理方 案亦能有效因应,从而避免因水质变差导致停机或减量生产。 (B)腐蚀抑制 碳钢腐蚀抑制通常以无机磷酸盐作为阳极及阴极保护,形成坚韧之 r-Fe 2O3钝化保护膜,避免铁金属游离失去电子,有效抑制铁 材质腐蚀 Fe Fe 2++2e- 另外,冷却水中磷酸钙及碳酸钙在阴极高pH位置形成覆盖性保护膜, 避免水中O2来接受电子,阻止阴极半反应的发生,腐蚀问题将可彻底 抑制 1/2O 2+H2O+2e- 2OH-

如图所示 ANODIC Fe + o-PO 4(p-PO4) r-Fe 2O3 ANODIC PASSVATION CATHONIC Ca + p-PO 4Ca-p-PO 4 Ca + o-PO 4Ca-o-PO4 2- Ca + CO CaCO 3 3 Zn + OH- Zn(OH) 2 CATHODIC PRECIPITATION (C). 微生物抑制 日常杀菌灭藻采用氧化性杀菌剂- 漂白水和溴化物相结合,其杀菌机理主要靠氧化作用破坏细胞组织。建议采用自动控制设备连续添加,控制余氯量在 4.4-0.5ppm 之间。 为提高漂白水的杀菌能力,配合添加生物表面活性剂XXX,可根据漂白水杀菌的效果采取定时添加的方式,投加剂量以每次30-50PPM。同时,每周定期投加非氧化性杀菌剂XXXX,以更好地控制菌藻的滋生。 4.4 补给水水质 目前补充水为自来水, 补充水的水质波动较大, 冬季有2-3 个月的枯水期, 氯根、电导率、硬度都有较大的增加。 4.5 循环水系统处理方案 (1) 日常运行方案 浓缩倍数:冷却水的用水成本与浓缩倍数关系极大,冷却水浓缩倍数愈高排污水量愈少,整体操作成本可大幅降低,但若无效果优异和稳定性高的分 散剂,极容易产生结垢问题。我公司提供的全自动整体水处理方案,是一个 集腐蚀,污垢和微生物控制的综合水处理技术,配合由自动分析,监测,控

电厂循环水余热回收供暖节能分析与改造技术知识讲解

电厂循环水余热回收供暖节能分析 与改造技术 摘要:当今世界,节能已成为一项重要的研究课题。发电厂作为耗能大户,存在大量循环水余热没有得到有效利用,浪费严重。因此,如何利用循环水余热成为电厂节能的重要任务。 1.回收电厂循环水余热的意义 能源是国民经济发展的基础,深入开展节能工作,不仅是缓解能源矛盾和保障国家经济安全的重要措施,而且也是提高经济增长质量和效益的重要途径。本世纪的头20 年,我国工业化和城镇化进程将进一步加快,需要较高的能源增长作为支撑。因此,节能工作对促进整个经济社会发展的作用日益凸显,国家已经把节能作为可持续发展的大政策。 目前,我国大中型城市普遍存在着集中供热热源不能满足迅速增加的供热需求的情况,而新建大型热源投资高、建设周期长,并受到城市环境容量的强烈制约。 为了缓解供热紧张的局面,一些地方盲目发展小型燃煤锅炉房,严重恶化了城市的大气环境;一些城市盲目发展燃气采暖、甚至电热采暖,在带来高采暖成本的同时,也引发了城市的燃气和电力资源的全面紧张。一方面,是燃用高品位的化石燃料来提供低品位的热能用于供暖和提供生活热水。另一方面,城市周边的火力发电厂在发电过程中,通过冷却塔将大量的低品位热量排放到大气中,造成了巨大的能源浪费和明显的环境湿热影响。因此,如果能将循环冷却水余热用于供热(采暖、生活热水等),不仅能够减少电厂冷却水散热造成的水蒸发损失和环境的热污染,而且能够缓解采暖带来燃气和电力资源的紧张局面。同时,实现能源的梯级利用,节约大量燃料,提高能源综合利用率。 北京五大热电厂和热力集团所属六个供热厂的供热能力都已达到极限。北京热电厂普遍采用的抽凝式汽轮机组,即使在冬季最大供热工况下,也有占热电厂总能耗10~20%的热量由循环水(一般通过冷却塔)排放到环境。根据调研,北京并入城市热网的四大热电厂在冬季可利用的循环水余热量就达1000MW 以上,远期规划余热量将达约1700MW。如果将这些余热资源加以利用,仅仅考虑有效利用现有的余热量,就相当于在不新增电厂装机容量和不增加当地污染物排放的情况下,可新增供热面积3000 万平方米以上。因此,利用电厂循环水余热供热是一种极具吸引力的城市集中供热新形式。 2.电厂循环水余热供热技术现状 2.1汽轮机低真空运行供热技术

电厂循环冷却水废热利用

龙源期刊网 https://www.wendangku.net/doc/a62266879.html, 电厂循环冷却水废热利用 作者:翟晓敏邵爱华顾海军侯薇 来源:《中国科技纵横》2014年第05期 【摘要】介绍了在抚顺热电厂方案设计阶段,为了满足该工程在冬季采暖期大面积的热负荷需求,拟采用循环冷却水作为低位热源、利用热泵技术升温后供热的一种城市集中供热的新形式。通过系统的拟定、详细的计算、理论数据的分析,对采用该技术的经济性以及将会给电厂带来的节能效益和环保效益与传统方式的供热进行比较,从而得出利用循环冷却水废热供热的技术在本工程上的应用优势。 【关键词】循环水废热利用采暖供热节能环保 自改革开放以来,中国经济迅猛发展,但与此同时我们也不得不面对这样一个现实,当下中国经济成果的取得一定程度上是以牺牲不可再生资源及环境的污染为代价换来的,由此产生了经济发展的可持续性问题。“节能减排”政策方针正是基于我国目前所面临的经济可持续性发展因素、环境因素、国际政治因素而制定,是一项利国利民的政策。 目前我国大部分热电厂普遍采用大容量的抽凝式汽轮发电机组,即使在冬季最大供热工况下,也会有占电厂总能耗近五分之一的热量由循环水(一般通过冷却塔)排放到环境。如果利用热泵节能技术将这些余热加以利用,回收汽轮机的排汽冷凝热,用以给城市采暖水加热,提供生活区的供暖。从而实现废热利用,达到节能减排的目标。 1 工程概况 抚顺热电厂是在抚顺市建设的热电联产项目。本工程总装机容量拟为2×1025t/h循环流化床锅炉+2×300MW抽凝发电机组。 本工程为抚顺市西部地区集中采暖提供热源。 根据抚顺市建筑围护结构的特点及抚顺市气象条件,参照《城市热力管网设计规范》推荐的各类建筑物采暖热指标及《抚顺市城市总体规划修编(2010~2020)》确定采暖热指标: 现有建筑采暖热指标:56W/m2;新增建筑采暖热指标:45W/m2。 本期工程采暖面积为:1800×104m2。现有建筑面积1150×104m2。采暖热指标: 56W/m2,采暖热负荷为:644MW;新增建筑面积650×104m2。采暖热指标:45W/m2。采暖热负荷为:292.5MW,采暖总负荷为:936.5MW。

循环水余热利用收益的算法讨论

循环水余热利用收益的算法讨论 利用热泵吸收电厂循环水中的余热用于冬季采暖,有节能减排的社会效益,但对于电厂自身而言,其获得的收益和其投入相比并不十分理想。就目前可供参考的此方面资料来看,其中对于电厂收益的计算都有或多或少的放大,热泵投运后的效果和预期相去较远。文章仅对热泵在电厂循环水余热利用中,就电厂自身所得收益的算法进行讨论、讨论中不涉及财务及税收问题,仅针对技术性的问题进行讨论。 标签:热泵;循环水余热利用;节能减排;算法 1 常见算法极其缺陷 1.1 按燃料价格计算 当下常见的算法之一,就是按燃料计算收益。持这种观点的人认为:电厂增加热泵后,其供热量就会增加且增加的供热量就是热泵所吸收的热量,电厂所得到的收益,就是热泵所吸收的热量折算燃料的费用,当然也考了热泵投入后所伴随的一些损失。这里的问题在于,对于电厂而言,热泵所吸收的热量并不能简单折算成燃料费用。下面详细解释一下。 为了使问题简化我们做一些假设,第一、热泵投入后不会对电厂产生任何附加损失,无论是汽轮机背压升高产生的损失还是由于管道阻力增加造成的热网循环泵电耗增加,第二,热泵自身不消耗任何形式的能量,其作用仅仅是将循环水中的余热吸收到供热系统中。 有了如上假设之后,可以这样描述热泵投入后的作用:当热泵投入后,就会有一些“白得的”热量进入热网系统,在供热量不变的情况下,供热抽汽就会相应的减少,减少的这部分抽汽当然会返回汽轮机中做功或者说发电。由于电厂发多少电,是由电网决定的,因此我们进一步假定,当供热抽汽被排挤到汽轮机中做功时,还需保证汽轮机组的发电功率不变。为此只有减少主蒸汽的进汽量。显然,减少的主蒸汽,或者说省下来的这部分主蒸汽所发的电,应等于被排挤到汽轮机中的供热抽汽所发的电。增加热泵后,电厂所得的收益就是这部分被剩下来的主蒸汽,确切的说,就是加热这部分主蒸汽所消耗的燃料。由此可见,把热泵吸收的热量直接折算成燃料费用,并以此作为电厂的收益,显然不尽合理。 为了此后叙述方便,把上面这种算法叫做“排挤抽汽法”。显然这种算法更为合理。需要指出的是,当电厂的供热抽汽量达到最大,再也无法增加供热时,这时热泵所吸收的热量可以按燃料费用计算收益,但也只有超出电厂最大供热能力的那部分热量可以如此计算。有关这一点在后面加以详细讨论。 1.2 按热价计算

吸收式热泵循环水余热回收方案在300MW机组的应用

吸收式热泵循环水余热回收方案在300MW机组的应用0引言 随着城市建筑的不断增加,需要集中供热网为更多的建筑物供暖,但是城市的热源严重不足,而新增热源又会带来环境问题,受到各地环保部门严格控制。热电厂循环水余热回收供热,可以实现能源的高效利用和循环利用,符合国家节能减排的大政方针,亦有利于缓解城市采暖供热用能的矛盾。 1系统现状 河北邢台国泰发电公司2×300MW工程10、11号汽轮机为东方汽轮机厂生产的N-300-16.7/537/537-8型亚临界、一次中间再热、单轴双缸双排汽采暖抽汽凝汽式汽轮机。汽机额定供汽量为:400t/h,汽机最大供汽量为:625t/h。 汽轮机厂采暖抽汽压力可在0.245MPa~0.688MPa范围调整,由高温热水网将130C°的高温热水送至各小区热力站。本工程最大供热能力为2875GJ/h,对外供热网循环水量11957t/h,厂区热网供水干管管径为2×DN1200。 循环冷却水带走的余热量主要是汽轮机排入凝汽器的蒸汽释放的凝结热。每台机组循环水系统配有两台流量为17640t/h循环水泵,冬季运行一台,凝汽器循环水进出口温度24/35℃。这就意味着有大量的热量通过循环水冷却水塔直接浪费掉,同时通过冷却水塔的蒸发、风吹损失大量循环水。 2余热回收方案 1)吸收式热泵基本原理(图1) 吸收式热泵以低温低压饱和蒸汽作为驱动力,从低温热源(循环水)中回收低品位余热。将蒸汽本身放热和回收余热同时传递给热网水。 蒸发器:吸热时,由冷剂泵将冷剂喷淋到蒸发器的传热管上,传热管表面的冷剂吸收管内热源水的热量而蒸发,使热源水的温度下降。 图1 吸收器:通过喷淋在吸收器传热管上的吸收溶液,吸收由蒸发器产生的冷剂蒸汽。吸收冷剂时产生的吸收热被管内流动的热水带走,使传热管表面的吸收作用持续进行。吸收冷剂蒸汽后,浓度下降的吸收液(以下称为稀溶液),由溶液泵经溶液热交换器送入发生器。 发生器:由溶液泵从吸收器送来的稀溶液,被供给发生器的蒸汽加热。被加热的稀溶液产生冷剂蒸汽,变成浓度较高的吸收液(以下称为浓溶液),通过溶液热交换器被送到吸收器。 冷凝器:在发生器中产生的冷剂蒸汽,被冷凝器传管内流动的热水冷却,冷凝后变成为冷剂液体。冷剂液返回蒸发器,再次被喷淋到蒸发器的传热管上。 溶液热交换器:由吸收器送往发生器的低温稀溶液,与来自发生器高温浓溶液进行热交换,从而提高热泵的热效率。 蒸汽调节阀:用蒸汽调节阀,通过从控制盘传来的信号,根据热负荷的变化调节供给发生器的蒸汽量。由此将热水出口温度控制在设定的值上。 溶液泵、冷剂泵:为了确保高真空,采用了完全封闭型的屏蔽泵。并利用各自的一部分排出液,润滑轴承及冷却电机。 溴化锂溶液的特性决定了它适用于吸收式热泵系统:溴化锂极易溶于水,是一种高效水蒸气吸收剂,44℃失去1分子结晶水,160℃时成为无水物,熔点550℃,沸点1265℃,在大气中不易变质不易分解,在容器中对钢铁有很强的腐

循环冷却水结垢原理及处理方法

循环冷却水结垢原理及处理方法 一、循环冷却水系统为什么会结垢 1.一般解释 冷却水中溶解有各种盐类,如碳酸盐、碳酸氢盐、硫酸盐、硅酸盐、磷酸盐和氯化物等,它们的一价金属盐的溶解度很大,一般难以从冷却水中结晶析出,但它们的两价金属盐(氯化物除外)的溶解度很小,并且是负的温度系数,随浓度和温度的升高很容易形成难溶性结晶从水中析出,附着在水冷器传热面上成为水垢。如冷却水中的碳酸氢根离子浓度较高,当冷却水经过水冷器的换热面时,受热发生分解,发生如下反应: Ca(HCO 3)2 CaCO 3 + H 2O + CO 2 当冷却水通过冷却塔时,溶解于水中的二氧化碳溢出,水的pH 值升高,碳酸氢钙在碱性条件下发生如下反应: Ca(HCO3)2 + 2OH- CaCO 3 + 2H 2O + CO 32- 难溶性碳酸钙可以是无定型碳酸钙、六水碳酸钙、一水碳酸钙、六方碳酸钙、文石和方解石。方解石属三方晶系,是热力学最稳定的碳酸钙晶型,也是各种碳酸钙晶型在水中转变的终态产物。 2.碳酸钙的溶解沉淀平衡。 碳酸钙的溶解度虽然很小,但还是有少量溶解在水里,而溶解的部分是完全电离的。所以在溶液里也出现这样的平衡: Ca2++CO3 2- CACO 3(固)

在一定条件下达到平衡状态时〔Ca2+〕与〔CO 3 2-〕的乘积为碳酸钙在此条件下的溶度 积K SP ,为一定值。 若此条件下〔Ca2+〕×〔CO 32-〕> K SP 时,平衡向右移,有晶体析出。 若此条件下〔Ca2+〕×〔CO 32-〕< K SP 时,平衡向左移,晶体溶解。 注:实际情况下〔Ca2+〕×〔CO 32-〕值称为K CP 二、抑制为结垢的方法 (一) 化学方法 1. 加酸: 目的:降低水的PH值,使水的碳酸盐硬度硬度转化重碳酸盐硬度. 优点:费用较小,效果比较明显 缺点:加酸量不易控制、过量会产生腐蚀的危险、投加过量有产生硫酸钙垢的危险. 2. 软化 目的:降低水中至垢阳离子的含量 优点:防止结垢效果好 缺点:操作复杂、软化后水腐蚀性增强. 3. 加阻垢剂: 目的:使碳酸钙的过饱和溶液保持稳定。

低温循环水余热回收

在工业生产上普遍采用蒸汽做为载热体。在各种换热设备中蒸汽的有效能利用率都较低,特别是在各种生产部门中,由工业余热产生的大量低品位付产蒸汽(二次蒸汽)也都没有得到充分的回收利用。本文介绍采用热泵一闪蒸一孔板疏水一加热等单元组成的热泵供热系统,利用蒸汽喷射式热泵回收二次蒸汽,使其增压提高能量品位后再供生产使用。利用疏水孔板,代替常规疏水器,漏汽率低,管理十分简单。一、热泵供热原理及节能指标热泵是开发和利用低品位能源的手段,即以输入高品位能量(机械能、电能及热能等),通过热力循环从环境中吸取低于热用户能源品位的… 世界最大余热回收吸收式热泵系统”启运仪式在江苏省江阴市举办[发表时间:2009-11-23 10:31:54 | 文章来源:新浪网] | 浏览:49次 ] 更多相关内容请关注河南节能网。河南节能网是中国唯一一家节能行业专业B2B网站。网站信息齐全,是河南节能服务网下重点网站!网站地址:https://www.wendangku.net/doc/a62266879.html, 11月21日在江苏省江阴市举办“世界最大余热回收吸收式热泵系统”启运仪式。这是双良股份与国l阳新能合作的新开始,标志着双良股份近年来转型节能减排绿色产业又取得重要突破。 打造节能样板 即将发运的吸收式热泵系统,目前是世界上最大的热电余热回收机组,8台30兆瓦机组将为阳泉地区新建居民提供集中供暖。第一批将交付的6台机组,在不增加其他供热设备的前提下,充分利用热电厂的循环冷却水热量,收集余热进行加温,完全满足热电厂新增的144万平方米的供热需求,按照每平米24元成本计算,年采暖效益3500万元,节省冷却水补水量45万吨,节水效益180万元,相当于每年节省蒸气42万吨,节约5万吨标准煤,减少二氧化碳排放13万吨,减少二氧化硫及碳氧化物排放2200吨。 据了解,这是双良股份迄今最大的一笔余热利用设备订单,设备总价近5000万元。不过,在公司董事长缪志强看来,其意义更在于为双良股份开辟出广阔的市场空间和新的利润增长点。专家强调,在全国电力行业中,绝大多数企业都有专门供热的需求,存在低温热水

电厂循环水余热利用可行性研究报告

电厂循环水余热利用可行性研究报告

————————————————————————————————作者:————————————————————————————————日期:

电厂循环水余热利用建议书 编制: 朱明峰 审核: 批准: 中海油节能环保服务有限公司 2013年9月19日

目录 一概述 (1) 1.1项目背景 1 1.2余热资源现状 1 1.3项目实施条件 1 1.4遵循的标准及规范 2 二余热回收方案设计 (2) 2.1现有补水加热流程图 2 2.2改造方案 2 2.3改造主要工作量 4 2.4技改效果 5 2.5改造投资及静态回收期 5 三节能环保效益分析 (5) 3.1节能效益 5 3.2环保效益 6 四结论与建议 (6)

一概述 1.1项目背景 **热电厂全年供应蒸汽。由于外供蒸汽的凝结水回收比例较低,需要大量的除盐补充水,新厂补充除盐水的流量常年在100~150t/h,平均温度约为25℃,本方案将回收电厂发电后的大量循环水余热,用于加热锅炉补充除盐水,从而减少部分除氧器加热蒸汽耗量,节省的蒸汽可用于外送或发电。 充分利用电厂循环水余热,提高能源利用效率,对节能减排工作得推动起到了重要的作用。 1.2余热资源现状 **热电循环冷却水总流量约为15000t/h,上下塔温度夏季为40/30℃、冬季为30/20℃,最冷时下塔温度约为15~18℃。 循环冷却水余热若按照温差10℃提取,可回收的余热量为:ΔQ =4.1868MJ/t·℃×15000t×10℃/3600s=174.4MW 1.3项目实施条件 蒸汽压力:0.5-0.8MPa(饱和蒸汽) 除盐水补水平均温度:25℃ 预热除盐水温度:90℃(夏)/80℃(冬) 除盐水量:100t/h 循环水温度(冬季):30/20℃ 循环水温度(夏季):40/30℃ 循环水量:15000t/h 补水时间:该厂全年向外供应蒸汽,外供蒸汽量较为稳定,因蒸汽回收量较少,锅炉需全年补充除盐水,锅炉检修无详细计划,坏了再修,故余热回收时间暂定为250天。

循环水冷却水处理方案

循环水冷却水处理方案

循环冷却水系统水处理方案 2018年4月

一、前言 随着我国工业的发展,淡水耗量急速增加,我国北方地区更是面临严重的水源紧缺状况。据报道我国人均拥有水量为2400吨,而北方地区的人均拥有水量为240吨。在城市用水中,工业用水约占总用水量的60~80%,而工业冷却水用量占整个工业用水量的70~80%。然而,有关资料显示我国的工业用水重复利用率平均为40~50%。我国城市工业万元产值耗水量达340立方米,是发达国家的10~20倍,耗水量高,重复利用率低,是我国工业系统水资源利用的突出问题。因此,节约工业冷却水,使有限的水源得到最大限度的利用,是工业领域节水工作的重中之重。采用循环冷却水技术是工业领域节水的主要方法。 在工业循环冷却水系统的运营管理中,浓缩倍数是判定系统状态的一个重要技术指标。采用循环冷却水处理技术后,当浓缩倍数达到2.0倍时与直流水相比,可节约淡水95%以上。 本技术方案在现场实施后,可达到下列水处理技术指标: (1)腐蚀率:不锈钢≤0.005mm/y (2)污垢热阻:≤3.44×10-4 m2·℃/w (3)异养菌总数:<5×105个/ml (夏天) <1×105个/ml (冬天) 二、循环水系统工况条件及水质条件 2.1 工况条件: 系统保有水量:300m3 循环水量:600m3/h

补充水量:12m3/h 蒸发水量:9 m3/h 排污水量:3 m3/h 循环水温差:10℃ 换热设备材质:不锈钢 浓缩倍数:4.0(目前运行值) 2.2 水质条件: 系统循环水及补充水的分析数据如下: 从分析结果看出,系统补充水属于高碱度水质,浓缩运行后,极易发生结垢现象。从循环水水质分析结果可以看出系统目前已经发生了结垢问题,需要我们及时采取有效处理措施,一方面将系统运行浓缩倍数控制在适度的范围内;另一方面尽快实施投加水处理药剂的保护措施,使系统的运行恢复正常状况。根据我们多年处理循环水的经验,并参考循环水系统最佳运行浓缩倍数测试软件的测试结果,我们建议厂方最好将循环水系统运行浓缩倍数控制在3.0左右。这样的话,可以确保加药处理的最佳缓蚀阻垢效果。系统目前的运行浓

循环冷却水基础知识

第一章工业循循环冷却水处理知识 总贝y 为了贯彻国家节约水资源和保护环境的方针政策,促进工业循环冷却水的循环利用和污水资源化,有效控制和降低循环冷却水所产生的各种危害,保证设备的换热效率和延长使用寿命,减少排污、达标排污的要求,减少对环境的污染和破坏,使工业循环冷却水处理达到技术先进、经济适用、安全可靠的运行方针。 循环冷却水的处理,是许多学科交叉渗透的边缘科学,它涉及到无机化学、高分子化学、电化学、数学、微生物和工程学等领域,本手册为本单位(兰州华星高科技开发有限公司)技术售后服务而制定,根据火力发电厂水质的监督和处理原理而编写,可提供化验员及即将从事工业循环冷却水处理人员学习,本手册力求自己现有的水平的基础上,尽可能满足工业循环冷却水处理工作者的需求,廖误之处,敬请赐教。

目录 一、循环冷却水系统各术语定义和符号 ......................... 4.. 1. ..................................................................................................... 术语.......................................................... 4... 2. ..................................................................................................... 符号.......................................................... 8... 二、循环冷却水处理指标控制及平衡关系 ....................... 1.0 1.间冷开式系统循环冷却水换热设备的控制条件 .............. 1. 0 2.循环冷却水水质指标 .................................... 1.1. 3 循环冷却水计算平衡关系 ................................ 1..3 三.......................................................... 循环冷却水系统中沉积物及其控制 ............................... 1..6 1.影响结垢的主要因素 .................................... 1.7. 1.1 水质............................................ 1..7. 1.2 温度............................................ 1..7. 1.3流速 ............................................ 1..7. 1.4 表面状态 ...................................................... 1..7 . 2.垢的形成机理............................................................ 1..8 . 3. ..................................................................................................... 阻垢剂的作用机理............................................................ 1..8 .

相关文档
相关文档 最新文档