文档库 最新最全的文档下载
当前位置:文档库 › 滑移网格实例——转刷

滑移网格实例——转刷

滑移网格实例——转刷
滑移网格实例——转刷

这几天,我看了一些资料,自己试着做了一下,我的想法就是模拟那篇文章里面的思路,先对小部分转刷进行模拟,先在一个小型的转刷系统里进行计算,然后将计算的转刷外沿10cm处的速度信息作为整体计算的边界条件对整个系统进行模拟。

下面是我对小型转刷系统模拟的一些操作,因为没有做过遇到了很多问题,希望得到朋友的解答。

步骤:1.我将转刷简化为没有厚度的面,首先创建了叶片,然后我建立一个包围该叶片的旋转流体区域volume1(尺寸稍稍大于叶片的宽度与直径)

2.创建一个小型的反应槽volume2,宽20厘米(叶片直径10厘米),长约20米,深度

5米

3.对volume1、volume2进行布尔减操作,volume2被减,同时保留volume1,经过次操作以后,两个体积之间有了交界面,就是interface,一共有三组,分别是槽的两面和槽底。(罗

老师的文章里面也是这样指明的)

4.建模完成以后就是划分网格了,因为叶片是面,我就在面里面划分的网格,采用默认

设置,

然后对旋转流体区域volume1进行了网格划分,也是默认设置

最后对反应区域进行了网格划分(图很大没有贴上来)

5.接下来就是区域和边界类型的指定了:

我将volume1的流体设定为fluidxiao,将volume2流体设定为fluidda

Face9\25\26\27\28\代表转刷的叶片,我将其设置为W ALL,命名为blade(但是后来fluent 里面却没有看到了,不知道什么原因)

将来构建interface的六组面Face36、37、38、15、23、16也将其设置为WALL,命名为da36、da37、da38、xiao15、xiao 23、xiao 16

Face33是水面,也设置为W ALL,以后运用滑移边界条件,因为与其他的壁面有所区别,其他都是非滑移的壁面(我这样考虑对么?)

但是还有一个就是Face24,它是转刷所在小体积区域与水面重合的一个面,我不知道如何设置??

其他的都默认为WALL?

6.最后是导出网格文件

7.将文件读入FLUENT并检查网格设置尺寸,选择计算模型,操作环境为默认,定义流体物理性质为水

8.设置边界条件

将da36、da37、da38、xiao15、xiao 23、xiao 16改为interface

将Face33(是水面),设置为滑移避面,不知道怎么设置?是不是将shear condition 改为specified shear?其他参数又该如何设置?

将fluidxiao设置为MOVING MESH,旋转轴为-X,右手规则

将fluidda设置为stationary, 旋转轴为-X,

将W ALL(blade原来命名的blade没有找到,觉得因该是它了,因为选项里面其他都不符合条件)设置为与fluidxiao一起运动,其相对速度为0。

8.定义交界面INTERFACE

da36、da37、da38、xiao15、xiao 23、xiao 16配成3对INTERFACE

9.设置其他参数,初始化,开始计算….

第一次试验,计算的结果很不好,一开始用steady老是收敛不行,后在再用UNSTEADY

首先可能是我没有弄懂滑移网格的原理,照猫画虎,本来的旋转区域应该是在水中的,但是图中的旋转体已经旋转出水面了,我真的不知道怎么搞。

其次,速度不知道怎么了最高的有400多,我设置的流体旋转区域的转速为6rad/S

除了上面红色部分的问题以外,我还有几个问题,想得到师兄的解答:

1.课题到了这样,我已经没有什么退路了,只好做这个,几乎是从零开始,所以很

多问题可能会很幼稚,还请师兄包涵,但是我现在有些顾虑,我就想按照那篇英国文献的方法来做,我真的不知道自己能不能做出来,按照他的方法难度到底有多大?

2.罗老师给我讲过,先对小部分转刷进行模拟,先在一个小型的转刷系统里进行计

算,外部看成开放边界,然后将计算的转刷外沿10cm处的速度信息作为整体计算的边界条件对整个系统进行模拟。师兄能给我详细的解释一下么?

3.那篇英国的文章里面,首先采用了自定义函数对转刷x 和y方向赋以速度,然后

在小型系统里面计算后得到结果,然后将计算的转刷外沿10cm处的速度拷贝下来,经过MA TLAB数据处理得到耦合的函数,然后再导入自定义函数作为整体流场模拟的速度初始条件,我想请问非这么做不可么?我现在定义旋转速度可以不用自定义函数,在小型系统里面可以这样,但是在整个流场计算的情况下是否最终还是要用到自定义函数?

4.谢谢师兄,我把mesh文件也一起发给你好吗

转刷与氧化沟视图

HyperMesh画网格总结

hypermesh网格划分总结 1、我想提取一个面的线,映射到另外的面上,然后用那个线来分面,该怎么做呢? 如果是几何面,但是没有你需要的边界线的话,你可以在几何面上已有的边界线上create nodes,然后利用这些nodes --〉lines /create,建立你需要的线,再project;或者最简单的办法,选择surf edit/line from surf edge 如果是网格面,你可以geom/fea->surface,再project,或者直接project nodes,利用nodes 可以直接划分面 2、hypermesh中如何将网格节点移动到指定的线或者面上。 project. 3、面上网格分不同的comp划分,但划分后所有网格并不是连续的,只有同一个comp的网格连续,和临近的comp相邻的网格不连续,就是存在重叠的单元边和结点,如何合并为连续的单元 1、Tool ->edges 下找出并合并面单元的自由边和找出并删除重节点 2、Tool ->faces 下找出并合并体单元的自由面和找出并删除重节点 4、我的模型画出六面体单元了,但是是8节点的,想变成20节点的,怎么变?我用的是solidmap功能生成六面体单元的? 1D or 2D or 3D下面的order change 5、直接在已分网的体表面上,create elements through nodes,这个要在哪个菜单实现?我找不着 edit/element中不是有个create吗?那就是通过node建单元 6、对灰线构成的区域划分2D网格,网格后发现灰线变成了红线,是怎么回事呢?对计算结果有影响么? 灰色的是lines,至于为什么画完网格后会变成红色,是因为生成了surface,surface的自由边会由红色来表示。请注意为什么会生成surface,是因为你选择了mesh/keep surface这个选项 7、偶很想知道OI mesh定义是什么,和普通的mesh有什么区别 普通mesh的网格经过clean up 或QI 调整后就跟QI mesh划分的网格效果差不多,QI的具体参数可以自行设定。QI主要目的是为了节省时间,QI就是Quality Index——质量导引HM最强调的就是网格质量的概念,有限元计算的精度取决于网格质量,再好的求解器如果网格质量不好,计算的精度也不会好。 8、有两个闭合的园,一上一下,如何在两个园间创建曲面?使形成圆柱面?

hypermesh运用实例

运用HyperMesh软件对拉杆进行有限元分析 1、1 问题得描述 拉杆结构如图1-1所示,其中各个参数为:D1=5mm、D2=15mm,长度L0=50mm、L1=60mm、L2=110mm,圆角半径R=mm,拉力P=4500N。求载荷下得应力与变形。 图1-1 拉杆结构图 1、2 有限元分析单元 单元采用三维实体单元。边界条件为在拉杆得纵向对称中心平面上施加轴向对称约束。 1、3 模型创建过程 1、3、1 CAD模型得创建 拉杆得CAD模型使用ProE软件进行创建,如图1-2所示,将其输出为IGES格式文件即可。

图1-2 拉杆三维模型 1、3、2 CAE模型得创建 CAE模型得创建工程为: 将三维CAD创建得模型保存为lagan、igs文件。 启动HyperWorks中得hypermesh:选择optistuct模版,进入hypermesh程序窗口。主界面如图1-3所示。 程序运行后,在下拉菜单“File”得下拉菜单中选择“Import”,在标签区选择导入类型为“Import Goemetry”,同时在标签区点击“select files”对应得图形按钮,选择“lagan01、igs”文件,点击“import”按钮,将几何模型导入进来,导入及导入后得界面如图1-4所示。 图1-3 hypermesh程序主页面

图1-4 导入得几何模型 (4)几何模型得编辑。根据模型得特点,在划分网格时可取1/8,然后进行镜像操作,画出全部网格。因此,首先对其进行几何切分。 1)曲面形体实体化。点击页面菜单“Geom”,在对应面板处点击“Solid”按钮,选择“surfs”,点击“all”则所有表面被选择,点击“creat”,然后点击“return”,如图1-5~图1-7所示。 图1-5 Geom页面菜单及其对应得面板 图1-6 solids按钮命令对应得弹出子面板

絮凝反应池网格设计计算书

絮凝反应池网格设计计算书 一、设计原则要求 (1)网格絮凝池流速一般按照由大到小进行设计。 (2)反应时间10~30min,平均G 值20~70s ,GT 值10~105 ,以保证絮凝过程的充分和完善。 (3)为使絮粒不致被破坏或产生沉淀,絮凝池内流速必须加以控制,控制值随絮凝池形式而异。 (4)絮凝池内的速度梯度G由进口至出口逐渐减小,G值变化范围100~151 10。 s-以内,且GT 2×4 二、本絮凝池设计水量为100000t/d,厂区自用水量为7%,分2座,每座絮凝池 =100000(1+0.07)/2=535000t/d=2229t/h=0.619m3/s。单组分2组。则Q 总 流量为0.619/2=0.3095m3/s=0.31 m3/s。 三、竖井隔墙过孔流速的计算如下表(以施工图标注尺寸为据)

四、内部水头损失计算 1-10格为前段,其竖孔之间孔洞流速为0.32-0.25m/s,过网流速为0.3038m/s,(0.3113)。网格孔眼尺寸采用45 mm×45 mm或80 mm×80 mm两种规格进行计算比较,开孔比均约为39.4%,(38.45%);该段水头损失约为0.3056 m,(0.31277);G值约为92.724 s,(93.81). 11-20格为中段,其竖孔之间孔洞流速为0.2-0.15m/s,过网孔流速为0.21233m/s。网格孔眼尺寸采用105 mm×105 mm,开孔比均约为52.14%;该段水头损失约为0.084646 m;G值约为48.01 s. 21-30格为后段,其竖孔之间孔洞流速为0.14-0.11m/s,不需设置网格。该段水头损失约为0.026454 m;G值约为25.86 s. 整个絮凝反应池的水头损失合计约为0.4167 m,(0.42387);平均G值约为61.04s,(61.57);GT=67922,(68504.2);符合设计条件要求。[注:括号内数字为网格孔眼45 mm×45 mm的参数] 具体计算情况,请见附表《竖井孔洞及小孔眼网格絮凝反应设备设计计算表》

hypermesh网格划分总结

Hypermesh网格划分 1 入门基础篇 1、如何将.igs文件或.stl文件导入hypermesh进行分网? files\import\切换选项至iges格式,然后点击import...按钮去寻找你的iges文件吧。划分网格前别忘了清理几何 2、导入的为一整体,如何分成不同的comps?两物体相交,交线如何做?怎样从面的轮廓产生线(line)? 都用surface edit Surface edit的详细用法见HELP,点索引,输入surface edit 3、老大,有没有划分3D实体的详细例子? 打开hm,屏幕右下角help,帮助目录下hyperworks/tutorials/hyermesh tutorials/3D element,有4个例子。 4、如何在hypermesh里建实体? hm的几何建模能力不太强,而且其中没有体的概念,但它的曲面功能很强的.在2d面板中可以通过许多方式构建面或者曲面,在3D面板中也可以建造标准的3D曲面,但是对于曲面间的操作,由于没有"体"的概念,布尔运算就少了,分割面作就可以了 5、请问怎么在hypermesh中将两个相交平面到圆角啊? defeature/surf fillets 6、使用reflect命令的话,得到了映射的另一半,原先的却不见了,怎么办呢? 法1、在选择reflect后选择duplicate复制一个就可以 法2、先把已建单元organize〉copy到一个辅助collector中, 再对它进行reflect, 将得到的新单元organize〉move到原collector中, 最后将两部分equivalence, 就ok拉。 7、请问在hypermesh中如何划分装配体?比如铸造中的沙型和铸件以及冷铁, 他们为不同材质,要求界面单元共用,但必须能分别开? 你可以先划分其中一个部件,在装配面上的单元进行投影拷贝到被装配面上8、我现在有这样一个问题,曲线是一条线,我想把它分成四段,这样可以对每一段指定density,网格质量会比直接用一条封闭的线好。 可用F12里的cleanup_add point,那里面还有很多内容,能解决很多问题9、我在一个hm文件中创建了一组组装件的有限元模型,建模过程很麻烦,由于失误我把一个很重要的部件建在了另一个hm文件中,请问有没有什么方法把这个部件的有限单元信息转移到组装件的hm文件中呢? 如果可以,装配关系可以满足吗? Sure, you can make it. Just export the only part from one hm file (export displayed only), and then import to your new hm file. Usually it will meet your assembly requirement, if not, you can easily translate it desired position with in hypermesh

hypermesh网格划分总结[免费专享]

hypermesh 网格划分总结 1、我想提取一个面的线,映射到另外的面上,然后用那个线来分面,该怎么做呢? 如果是几何面,但是没有你需要的边界线的话,你可以在几何面上已有的边界线上create nodes ,然后利用这些nodes --〉lines /create ,建立你需要的线,再project ;或者最简单的办法,选择surf edit/line from sur f edge 如果是网格面,你可以geom/fea->surface ,再project ,或者直接project nodes ,利用nodes 可以直接划分面 2、hypermesh 中如何将网格节点移动到指定的线或者面上。 project. 3、面上网格分不同的comp 划分,但划分后所有网格并不是连续的,只有同一个comp 的网格连续,和临近的comp 相邻的网格不连续,就是存在重叠的单元边和结点,如何合并为连续的单元 1、Tool - >edges 下找出并合并面单元的自由边和找出并删除重节点 2、Tool - >faces 下找出并合并体单元的自由面和找出并删除重节点 4、我的模型画出六面体单元了,但是是8节点的,想变成20节点的,怎么变?我用的是solidmap 功能生成六面体单元的? 1D or 2D or 3D 下面的order change 5、直接在已分网的体表面上,create elements through nodes ,这个要在哪个菜单实现?我找不着 edit/element 中不是有个create 吗?那就是通过node 建单元 6、对灰线构成的区域划分2D 网格,网格后发现灰线变成了红线,是怎么回事呢? 对计算结果有影响么? 灰色的是lines ,至于为什么画完网格后会变成红色,是因为生成了surface ,surface 的自由边会由红色来表示。请注意为什么会生成surface ,是因为你选择了mesh/keep surface 这个选项 7、偶很想知道OI mesh 定义是什么,和普通的mesh 有什么区别 普通mesh 的网格经过clean up 或QI 调整后就跟QI mesh 划分的网格效果差不多,QI 的具体参数可以自行设定。 QI 主要目的是为了节省时间,QI 就是Quality Index ——质量导引 HM 最强调的就是网格质量的概念,有限元计算的精度取决于网格质量,再好的求解器如果网格质量不好,计算的精度也不会好。 8、有两个闭合的园,一上一下,如何在两个园间创建曲面?使形成圆柱面? ruled 或选择line 方式。记住选择surface only 。 9、hypermesh 划分的网格其中一部分单元的节点连接顺序是顺时针的,导致计算不能进行,请问如何在hyp ermesh 中改变节点连接的顺序呢?谢谢!

网格絮凝池及设计计算审批稿

网格絮凝池及设计计算 YKK standardization office【 YKK5AB- YKK08- YKK2C- YKK18】

网格(栅条)絮凝池 网格絮凝池的二平面布置和穿孔旋流絮凝池相类似,由多格竖井串联而成。絮凝池分成许多面积相等的方格,进水水流顺序从一格留到下一格,上下对焦交错流动,直到出口。 一、使用条件 1.原水水温为~℃、浊度为25~2500度。 2.单池处理的水量以1~万m3/d较合适,以免因单格面积过大而影响效果。水厂产水量大时,可采用2组或多组池并联运行。采用网格或栅条的絮凝池效果相接近,但栅条加工比较方便,用料也省。 3.适用于新建也可用于旧池改造。 二、设计要求 1.絮凝时间一般为10~15min; 2.絮凝池分隔大小按竖向流速确定; 3.絮凝池分格数按絮凝时间计算,多数分成8~18格:可大致按分格数均分成3段,其中前段各格为3~5mim,段端3~5min,末段4~5min; 4.网格或栅条数前段较多,中断较少,末段可不放,但前段总数宜在16层以上,中断在8层以上上下两层间距为60~70cm; 5.每格的竖向流速,前段和中段~s,末段~s; 6.网格或栅条的外框尺寸等于每格池的净尺寸。前段栅条缝隙为50mm,或网格孔眼为80×80mm,中段分别为80mm和100×100mm; 7.各格之间的过水孔洞应上下交错布置,孔洞计算流速,前段~s,,中段~s,末段~s,各过水孔面积从前段向末段逐步增大。所有过水孔须经常处于淹没状态,因此上部孔洞标高应该考虑沉淀池水位变化时会不会露出水面; 8.网孔或过栅流速,前段~s,中段~s; 9.一般排泥可用长度小雨5m、直径150mm~200mm的穿孔排泥管或单斗底排泥,采用快开排泥阀;

Hypermesh和Abaqus的接口分析实例

Hypermesh和Abaqus的接口分析实例(三维接触分析) In this tutorial, you will learn how to: ?Load the Abaqus user profile and model ?Define the material and properties and assign them to a component ?View the *SOLID SECTION for solid elements ?Define the *SPRING properties and create a component collector for it ?Create the *SPRING1 element ?Assign a property to the selected elements Step 1: Load the Abaqus user profile and model A set of standard user profiles is included in the HyperMesh installation. They include: RADIOSS (Bulk Data Format), RADIOSS (Block Format), Abaqus, Actran, ANSYS, LS-DYNA, MADYMO, Nastran, PAM-CRASH, PERMAS, and CFD. When the user profile is loaded, applicable utility menu are loaded, unused panels are removed, unneeded entities are disabled in the find, mask, card and reorder panels and specific adaptations related to the Abaqus solver are made. 1. From the Preferences drop down menu, click User Profiles.... 2. Select Abaqus as the profile name. 3. Select Standard3D and click OK. 4. From the File drop down menu, select Open… or click the Open .hm file icon. 5. Select the abaqus3_0tutorial.hm file. 6. Click Open. Step 2: Define the material properties HyperMesh supports many different material models for Abaqus. In this example, you will create the basic *ELASTIC material model with no temperature variation. The material will then be assigned to the property, which is assigned to a component collector. Follow the steps below to create the *ELASTIC material model card: 1. From the Materials drop down menu, select Create. 2. Click mat name = and enter STEEL. 3. Click type= and select MATERIAL. 4. Click card image = and choose ABAQUS_MATERIAL. 5. Click create/edit. The card image for the new material opens. 6. In the card image, select Elastic in the option list.

一大型净水厂网格斜管絮凝沉淀池设计计算方法

净水厂网格斜管絮凝沉淀池设计计算方法 胡江博 (陕西金水桥工程设计有限责任公司,陕西,西安,710000)【摘要】本文以一净水厂为例,对净水厂网格絮凝池和斜管沉淀池的设计计算方法进行了说明,为以后城镇供水项目设计人员提供了相关参考。 【关键词】净水厂;网格絮凝池;斜管沉淀池;设计计算 在给水处理中,网格絮凝池和斜管沉淀池是水处理时常用的构筑物。在城镇供水项目中,单池处理水量在1.0万~2.5万m3/d时,宜采用网格絮凝池和斜管沉淀池综合设计。 本文以西北地区一大型净水厂为实例,对以上两种常用构筑物进行设计计算分析,此水厂设计供水规模4.0万m3/d,水厂自用水量5%。构筑物分两组设计,每组可独立运行,单组的处理水量为2.1m3/d,即 0.243 m3/s。 一、网格絮凝池及过渡段设计计算 (一)絮凝池有效容积 V=QT=0.243×18×60=262.44 m3 式中:Q-单个絮凝池处理水量(m3/s);V-絮凝池的有效容积(m3);T-絮凝时间(s),规范要求12~20min。 (二)絮凝池面积 A=V/H=262.44/4=65.61m2 式中:A-单个絮凝池面积(m2);V-絮凝池的有效容积(m3);H-有效水深(m)。 (三)单格面积 f=Q/V=0.243/0.12=2.03m2 式中:f-单格面积(m2);Q-单个絮凝池处理水量(m3/s);v-竖井内流速(m/s),规范要求0.10~0.14m/s。 假设栅格为正方形,尺寸1.45m×1.45m,每格实际面积为2.10m2,计算出分格数为: n=65.61/2.10=31.24,取整数n=32。 每组池子布置4行,每行分8格,栅格混凝土厚度取0.2m,每个池子净尺寸为:L=6.4m,B=13.0m。 (四)实际絮凝时间 t=nfH/Q=32×2.1×4/0.243=18.43min 式中:t-实际絮凝时间(min);n-栅格个数;f-单格实际面积(m2);H-有效水深(m);Q-处理水量(m3/s)。 (五)絮凝池排泥 泥斗深度取1.0m,泥斗底边宽度取0.4m,斗坡与水平夹角为62°>45°,符合要求;排泥采用多斗

hypermesh单元质量参数说明

hypermesh单元质量参数说明

Hypermesh 单元质量参数说明 网格质量 中文名 推荐取值 物理意义 Help 原文 2D 单元质量参数 Aspec t(ratio ) 长宽 比 必须小于5:1 单元最长边与最短边(或最短对角节 点距离)之比。3D 单元的每个面被看做一个2D 单元并且计算长宽比。最大的长宽比作为3D 单元的长宽比。 This is the ratio of the longest edge of an element to either its shortest edge or the shortest distance from a corner node to the opposing edge ("height to closest node"). HyperMesh uses the same method used for length (min) described below. For 3-D elements, each face of the element is treated as a 2-D element and its aspect ratio determined. The largest aspect ratio among these faces is returned as the 3-D element’s aspect ratio. Aspect ratios should rarely exceed 5:1 Chor d dev 弦 长偏差 — 圆弧可以大量短直线模拟,弦长偏差是圆弧与直线的垂直距离。 Curved surfaces can be approximated by using many short lines instead of a true curve. Chordal deviation is the perpendicular distance between the actual curve and the approximating line segments. Interior Angles 内角 — 检查三角形与四边形最大与最小角 These maximum and minimum values are evaluated independently for triangles and quadrilaterals.

毕业论文网格絮凝池

3.242栅条絮凝池设计计算 1 ?设计参数: 絮凝池分两池,每池的处理水量为0.3125m 3/s 。絮凝时间取12min,絮凝池分 三段:前段放密栅条,过栅流速^栅=0.25m/s,竖井平均流速也井0.12m /s ;中段 放疏栅条,过栅流速为⑷栅=0.0.22m/s,竖井平均流速V 2井0.12m/s ;末段不放栅 条,竖井平均流速 V 3井0.12m/s 。前段竖井的过孔流速 0.30-0.20m/s ,中 段 0.2-0.15m/s 末段 0.14-0.1m/so 2 ?设计计算: (1) 池体尺寸: ① 絮凝池的容积W 为: W=Qt=0.3125 X12 >60=225m 3 ② 絮凝池的平面面积A: 为与沉淀池配合,絮凝池有效水深取3.2米,则絮凝池平面尺寸 A W 225 70.3m 2 ③絮凝池单个竖井的平面面积f 为: 为与沉淀池的宽度相配合,取竖井的长 L=1.6米,宽b=1.6米.单个竖井的实 际平面为Q 1,6 1, 6 2, 56m 2 ,竖井个数 n 为: n f 卷 27.5 个'为便于布 置,取28个。 (2) 竖井内栅条的布置: 选用栅条材料为工程塑料,断面为矩形,厚度为50mm,宽度为50mm ①前段放置密栅条后(栅条缝隙为 50mm): 竖井过水面积为:4水 — 03125 1.25m 2 V 1 栅 0.25 竖井中栅条面积为:A 栅2.56-1.25 1.31m 2 ,需栅条数: 单栅过水断面面积:1.6 0.05 0.08m 2 0.3125 0.12 2.6m 2

所需栅条数:M i △栅131 16.375根,取M i 17根 a i 栅0.08 两边靠池壁各放置栅条1根,中间排列放置15根,过水缝隙数为16个 平均过水缝宽:S1= —50 46.88mm 16 实际过栅流速:斗栅 03125 0.26m/s 16 1.6 0.04688 ②中段设置疏栅条后(栅条缝隙为 80mm): 竖井过水面积为:A2水— 03125 1.42m2 V2 栅0.22 竖井中栅条面积为:A2栅2.56-1.42 1.14m2单栅过水断面积:a2栅1.6 0.05 0.08m2 所需栅条数:M2色栅114 14.25根,取M2=14根a?栅0.08 两边靠池壁放置栅条各一根,中间排列放置12根,过水缝隙为13个。 平均过水缝宽S2 =1600-14 5069.2mm 13 实际过栅流速:v2栅 03125 0.22m/s 13 0.069 1.6 (3)絮凝池的总高: 絮凝池的有效水深为3.2米,取超高为0.3米,池底设泥斗及快开阀排泥.泥斗深取0.6米,则 池的总高H为: H=3.2+0.3+0.6=4.1m。 单竖井的池壁厚为200mm,絮凝池壁厚300mm

反应絮凝池及斜管沉淀池计算

反应絮凝池及斜管沉淀池计算

————————————————————————————————作者: ————————————————————————————————日期: ?

反应絮凝池及斜管沉淀池计算 1、栅条絮凝池设计计算 1.1、栅条絮凝池设计 通过前面的论述确定采用栅条絮凝池。栅条絮凝池是应用紊流理论的絮凝池,网格絮凝池的平面布置由多格竖井串联而成。絮凝池分成许多面积相等的方格,进水水流顺序从一格流向下一格,上下接错流动,直至出口,在全池三分之二的分格内,水平放置栅条,通过栅条的孔隙时,水流收缩,过孔后水流扩大,形成良好的絮凝条件。 1.1.1网格絮凝池设计要求: (1)絮凝时间一般为10-15min。 (2)絮凝池分格大小,按竖向流速确定。 (3)絮凝池分格数按絮凝时间计算,多数分成8-18格,可大致按分格数均匀成3段,其中前段3-5min,中段3-5min,未段4-5min。 (4)栅条数前段较多,中段较少,未段可不放。但前段总数宜在16层以上,中段在8层以上,上下两层间距为60-70㎝。 (5)每格的竖向流速,前段和中段0.12-0.14m/s,未段0.22-0.25m/s。 (6)栅条的外框尺寸加安装间隙等于每格池的净尺寸。前段栅条缝隙为50㎜,中段为80㎜。 (7)各格之间的过水孔洞应上下交错布置,孔洞计算流速:前段0.3-0.2 m/s,中段0.2-0.15m/s,末段0.14-0.1m/s,各过水孔面积从前段向末段逐步增大。所有过水孔须经常处于淹没状态。 (8)栅孔流速,前段0.25-0.3m/s,中段0.22-0.25m/s。

螺栓预紧结构用Hypermesh做接触实例

螺栓预紧结构用Hypermesh 做接触实例 在很多场合,要将若干个零件组装起来进行有限元分析,如将连杆与连杆盖用连杆螺栓连接起来,机体与气缸盖用螺栓连接起来,机体与主轴承盖连接起来。如何模拟螺栓预紧结构更符合实际情况,是提高有限元计算精度的关键。 螺栓+螺母的连接与螺钉的连接有所不同,螺栓+螺母的连接方式比较简单,可以假设螺母与螺栓刚性连接,由作用在螺母上的拧紧力矩折算出作用在螺栓上的拉伸力F ,将螺杆中间截断,在断面各单元的节点上施加预紧单元PRETS179,模拟螺栓的连接情况。 对于螺钉(双头螺栓)连接有些不一样,螺钉头部对连接件1施加压应力,接触面是一个圆环面,但栽丝的一端,连接件2受拉应力。一种方法是在螺纹圆周上施加拉力,相当于螺纹牙齿接触部分,而且主要在前几牙上存在拉力,如第一牙承担60~65%的载荷,第二牙承担20~25%的载荷,其余作用在后几牙,但因螺纹的螺距较小,一般为1.5~2mm ,而单元的尺寸为3~4mm ,因此可以假定在连接件2的表面的螺纹圆周节点上施加拉力。另一种方法是在连接件2的表面的整个螺纹截面的所有节点上施加拉力,这样可能防止圆周上各节点上应力过大,与实际情况差别较大,应为实际表面圆周各节点只承受60~65%的载荷。比较好的处理办法是在连接件的表面单元的圆周节点上施加70%的载荷,在第二层单元的圆周节点上施加30%的载荷,但操作比较麻烦。 随着连接件1、2的内部结构和刚度不同,以及连接螺钉的个数和分布的不均匀性,连接件1、2表面的变形不一致,产生翘曲,使表面的节点有的接触,有的分离,而导致接触面的应力分布和应变分布不均匀,因此需用非线性的接触理论来讨论合件的应力问题。 若不考察螺栓头部与连接件1表面的变形,可用将螺栓与连接件1用一个公共面连接,作为由两种不同材料的构件组成一个整体。螺钉(双头螺栓)与连接件2也用这种方法处理。 图1是一个简单的螺钉连接实体模型。图2是用hypermesh 划分网格后的模型。 图1 实体模型 图2 网格模型 该模型由三个零件组成,连接件1(蓝色)、连接件2(橙色),螺钉(紫红)。 1. 建立实体模型 在PRO/E 中建立三个零件模型,见图3、4、5,并组合成合件(见图1)。

网格絮凝池计算例题

3.2 絮凝 3.2.1 设计要点: (1)网格絮凝池流速一般按照由大到小进行设计。 (2)反应时间10~30min,平均G 值20~70s -1 ,GT 值104~105 ,以保证絮凝过程的充分和完善。 (3)为使絮粒不致被破坏或产生沉淀,絮凝池内流速必须加以控制,控制值随絮凝池形式而异。 (4)絮凝时间6~15min ,絮凝池内的速度梯度G 由进口至出口逐渐减小,G 值变化范围100~151s -以内,且GT ≥2×410。 3.2.2 设计参数 絮凝池设计(近期)2组,每池设计流量为: Q =3600 ×24 1.0510×5.34? m 3/d =0.425 m 3/s 。 絮凝时间t =10 min ,设计平均水深h =3.6 m 。 3.2.3 设计计算 絮凝池的有效容积V :V =Qt =0.425×10×60=255 m 3 絮凝池的有效面积:A 1=V/h =255/3.6=70.8 m 2 水流经过每个的竖井流速v 1取0.12 m/s ,由此得单格面积: f =Q/ v 1=0.425/0.12=3.54 m 2 设计单格为正方形,边长采用1.90m ,因此实际每格面积为3.61 m 2,由此得到分格数为n =70.8/3.61=20格。 实际絮凝时间为:t = 0.425 20 3.61.901.90???=611.6s ≈10min 絮凝池得平均水深为3.6m ,取超高为0.3m ,得到池得总高度为: H =3.6+0.3=3.9 m , 从絮凝池到沉淀池的过渡段净宽1.5 米。 取絮凝池的格墙宽为200mm ,即0.2m , 单组絮凝池:长:1.9×5+0.2×6=10.7m

hypermesh梁壳单元混合建模实例

HyperMesh梁单元与壳单元的混合建模 本文根据工程实例,应用有限元软件HyperMesh 11、0进行梁单元与壳单元的混合建模,并在其中详细论述,梁单元在与壳单元混合建模的过程中如何对梁单元进行偏置处理,保证梁单元与壳单元的所有节点完全耦合。 在焊接工艺中,梁单元与壳单元的使用可以大大提高整体焊接结构的抵抗变形能力,避免单独使用壳单元时强度与刚度的不足。HyperMesh软件中提供了大量标准梁的截面,也可以通过实际应用需求单独创建梁截面。 在1D面板中点选HyperBeam选项,如图1所示。 图1 1D面板中的HyperBeam选项 HyperBeam中提供了大量的梁截面,如图2所示。 图2 HyperBeam下的各种梁截面 图2中红色箭头所指的就是各种标准梁截面的属性,包括H型梁,L型梁,工型梁等等。可以根据实际需求进行选择,而且可以自己独立进行尺寸编辑。图2中的shell section可以建立独立的壳截面,solid section可以建立独立的实体截面。在建立完成各种梁的截面属性之后,可以通过edit section进行梁截面属性的修改。

以上主要介绍了1D梁单元的使用情况,下面将根据工程实例对壳单元与梁单元的混合建模进行详细的介绍。图3就是梁单元与壳单元焊接之后的三维图,图4就是图3中梁单元以1D显示的情况。二者之间的切换功能键如图5所示。 图3 梁单元与壳单元焊接之后梁单元以3D显示 图4 梁单元与壳单元焊接之后梁单元以1D显示 图5 梁单元1D与3D之间的切换功能键

下面介绍梁单元的具体创建方法,不再讲述壳单元的建立方法。首先建立Beam Section,在软件左侧右键create--Beam Section,在出现的对话框窗口中对Bean进行命名。具体的过程如图6所示。 图6 Beam的建立过程 之后进入1D--HyperBeam面板,选择Standard section选择Standard Channel面板,打开面板后对各个参数进行修改,如图7所示。左侧的红色框内的区域就是进行具体尺寸的修改,修改的结果会以直观的形式显示在图形界面中,右侧的红色方框就是梁界面的各个力学参数。注意梁的方向,梁的长度方向就是X 轴,图形中的就是梁的Y轴与Z轴。在梁的方向的选取过程中Y轴为第一方向。 图7 梁的各个参数的修改 之后建立梁的属性,同样在软件左侧位置右键创建属性,弹出属性创建的选项卡片,在Type中选择1D,在Card image中选择PBEAM,单击确定按钮,如图8所示。

网格絮凝池及设计计算

网格(栅条)絮凝池 网格絮凝池的二平面布置和穿孔旋流絮凝池相类似,由多格竖井串联而成。絮凝池分成许多面积相等的方格,进水水流顺序从一格留到下一格,上下对焦交错流动,直到出口。 一、使用条件 1.原水水温为4.0~34.0℃、浊度为25~2500度。 2.单池处理的水量以1~2.5万m3/d较合适,以免因单格面积过大而影响效果。水厂产水量大时,可采用2组或多组池并联运行。采用网格或栅条的絮凝池效果相接近,但栅条加工比较方便,用料也省。 3.适用于新建也可用于旧池改造。 二、设计要求 1.絮凝时间一般为10~15min; 2.絮凝池分隔大小按竖向流速确定; 3.絮凝池分格数按絮凝时间计算,多数分成8~18格:可大致按分格数均分成3段,其中前段各格为3~5mim,段端3~5min,末段4~5min; 4.网格或栅条数前段较多,中断较少,末段可不放,但前段总数宜在16层以上,中断在8层以上上下两层间距为60~70cm; 5.每格的竖向流速,前段和中段0.12~0.14m/s,末段0.1~0.14m/s; 6.网格或栅条的外框尺寸等于每格池的净尺寸。前段栅条缝隙为50mm,或网格孔眼为80×80mm,中段分别为80mm和100×100mm; 7.各格之间的过水孔洞应上下交错布置,孔洞计算流速,前段0.3~0.2m/s,,中段0.2~0.15m/s,末段0.1~0.14m/s,各过水孔面积从前段向末段逐步增大。所有过水孔须经常处于淹没状态,因此上部孔洞标高应该考虑沉淀池水位变化时会不会露出水面; 8.网孔或过栅流速,前段0.25~0.30m/s,中段0.22~0.25m/s; 9.一般排泥可用长度小雨5m、直径150mm~200mm的穿孔排泥管或单斗底排泥,采用快开排泥阀;

hypermesh单元质量参数说明

弦长偏差Curved surfaces can be approximated by using many short lines instead of a true curve. Chordal deviation is the perpendicular distance between the actual curve and the approximating line segments.

最小长度,计算使用以下两种方式:Minimum element lengths are calculated using one of two methods: ? The shortest edge of the element. This method is non-tetrahedral 3-D elements. ? The shortest distance from a corner node to its opp the case of tetra elements); referred to as "height t You can choose which method to use in the Check Element Settings window. Note that this setting also affects the calculation of Aspect Ratio.

Height to Closest Node (HCN) is calculated differently for different element types. For triangular elements: For each corner node (i) HyperMesh calculates the closest (perpendicular) distance to the ray including the opposite leg of the triangle, h(i). HCN = min(hi) * 2/sqrt(3.0). The scaling factor 2/sqrt(3.0) ensures that for equilateral triangles, the HCN is the length of the minimum side. For quadrilateral elements: For each corner node, HM calculates the closest (perpendicular) distances to the rays containing the legs of the quadrilateral that do not include this node. The figure above depicts these lengths as red lines. Height to Closest Node is taken to be the minimum of all eight lines and the four edge lengths (thus, the minimum of 12 possible lengths).

网格絮凝池设计计算(水厂)

设计计算 一、已知条件 水厂的设计规模为220003m /d ,自用水系数为10%,絮凝池分为两组,则每组的设计规模为: 33322000 1.1/212100m /d 504.167m /h 0.140m /s ?=== 絮凝时间:15min T = 絮凝池分为三段,前段放密网格,过网流速1=0.25m/s v 网,竖井平均流速 1=0.13m/s v 井,絮凝时间14min t =;中段放疏网格,过网流速2=0.22m/s v 网,竖井平均流速2=0.13m/s v 井,絮凝时间24min t =;末端不放网格,竖井平均流速3=0.12m/s v 井,絮凝时间35min t =。 二、设计计算 1、每组絮凝池设计流量: 33322000 1.1/212100m /d 504.167m /h 0.140m /s Q =?=== 2、 絮凝池容积W : 30.01401360109.2m W Q T =?=??= 3、 絮凝池平面面积A : 絮凝池的有效水深=4.1m H 有效,则2/=26.634m A W H =有效 一阶段絮凝池单个竖井的平面面积2/0.140/0.13 1.077m f Q v ===井,取竖井平面为正方形,则一阶段单个竖井边长为 1.04m L f = =,取 1.1m L =则单个竖井的实际面积为2' 1.21m f =。 二阶段絮凝池单个竖井的平面面积2/0.140/0.13 1.077m f Q v ===井,取竖井的平面为正方形,则二阶段单个竖井边长 1.04m L f ==,取 1.1m L =则单个竖井的实际面积为2' 1.21m f =。 三阶段絮凝池单个竖井的平面面积2/0.140/0.12 1.167m f Q v ===井,取竖井的平面为正方形,则二阶段单个竖井边长21.04m=1.08m L f ==,取1.1m L =则单个竖井的实际面积为2' 1.21m f =。 4、竖井的个数: 一阶段竖井个数11/'0.140604/(1.21 4.1) 6.9n A f ==???=,取为7个 二阶段竖井个数22/'0.140604/(1.21 4.1) 6.9n A f ==???=,取为7个 三阶段竖井个数33/'0.140605/(1.21 4.1)8.7n A f ==???=,取为8个 校核: 一阶段絮凝池实际絮凝时间1 1.217 4.1/(0.14060) 4.13min T =???= 二阶段絮凝池实际絮凝时间2 1.217 4.1/(0.14060) 4.13min T =???= 三阶段絮凝池实际絮凝时间1 1.218 4.1/(0.14060) 4.72min T =???= 总絮凝时间:12312.98min T T T ++= 5、竖井网格的布置 选用塑料斗状网格,断面为倒V 型。

【HM内建模】Hypermesh典型例子了解HW

Hypermesh网格划分简单介绍。 这一章主要介绍hypermesh的流程,通过一个简单的例子让大家了解hypermesh的功能,使大家对hypermesh不再陌生。 这一章涉及到了几何建模,2D网格的生成,3D网格的生成,集合器collectors,删除等一些主要的功能。通过这一章,可以对hypermesh有一个基本的认识。 几何建模 1,启动hypermesh 2,点击Geom/create nodes面板,默认输入,点击create,在(0,0,0)处制作一个节点。3,点击永久菜单中的f键,观察所生成的节点,在屏幕中心处有一个黄色的小圆圈 4,点击Geom/circle ,选择center&radius子面板。点击制作的节点,选中之后黄色的圆圈变为白色。 5,选择z方向为法向,选择制作的节点,这个节点由白色变为紫色。 6,在后面的指针开关中选择circle 7,在radius=后面的输入框内,输入1,点击create,作一个半径为1的圆。 8,点击永久菜单中的f键,观察所生成的圆,按住ctrl键,同时按住鼠标左键,移动鼠标左键。旋转观察所生成的圆 9,点击return,退出这个面板。 2D网格的生成 1,点击2D/spline,选择创建的圆 2,选择keep tangentcy前面的方框,使其里面有一个对勾,

3,点击keep tangentcy上面的有一个三角形的键,选择mesh ,dele surf,点击create,出现一个选择,选择yes,生成2D网格。 4,在elem density=后面的输入框中,输入14,点击elem density=左面的最下面的那个绿色的set all to

相关文档
相关文档 最新文档