文档库 最新最全的文档下载
当前位置:文档库 › 抗体偶联药物

抗体偶联药物

抗体偶联药物
抗体偶联药物

抗体偶联药物(ADC)的涅槃重生

抗体偶联药物(antibody-drug conjugate, ADC)是将抗体与细胞毒性药物连接起来,通过抗体的靶向作用将细胞毒药物靶向肿瘤,进而降低化疗中常见的药物非特异性的全身毒性。抗体偶联药物(antibody-drug conjugate, ADC)的研究可以追溯到1980s,,但是直到2000年,首个抗体偶联药物gemtuzumaboz ogamicin(商品名Mylotarg,Pfizer研发)才被FDA批准用于治疗急性粒细胞白血病,但由于偶联技术、靶向性、有效性等受限,完整的抗体偶联药物在血液不稳定,导致致死性毒性的产生,于2010年撤市。这使得本就不明朗的ADC药物研究,更蒙上了一层阴影。

但是随着Takeda/Seattle Genetics 通过对原有技术的改进,利用自己的新型抗体偶联技术开发了brentuximabvedotin(SGN-35,商品名Adcetris,)新型抗体偶联药物,并与2011年被FDA批准用于治疗霍奇金淋巴瘤和系统性间变性大细胞淋巴瘤。2013年抗体偶联药物再次取得突破,Genentech/ImmunoGen 联合开发的Ado-trastuzumabemtansine(T-DM1,商品名Kadcyla)被FDA批准用于HER2阳性乳腺癌,这是首个针对实体瘤的抗体偶联药物。随着这两个药物的研发成功,ADC药物再次以火热的状态进入人们的研究视野。

1、进入临床阶段ADC药物

截至目前大概有30多种ADC药物进入临床开发阶段(表1),统计表中30种药物针对适应症发现,其中仅有4种药物针对实体瘤。主要原因:抗体难于透过毛细管内皮层和穿过肿瘤细胞外间隙到达实体瘤的深部。而使用抗体片段,如Fab,制备分子量较小的偶联物,可能提高对细胞外间隙的穿透性,增加到达深部肿瘤细胞的药物量。因此“抗体的小型化或适度的小型化将会是研制ADC药物的重要途径”。同时我们还能看到ImmunoGen、Seattle Genetics在现有ADC 药物研发中占有绝对的统治地位,这得力于他们成熟的抗体偶联技术——利用天然抗体自身的赖氨酸和半胱氨酸中的巯基偶联药物(non-specific)。

2、如何才能成功开发出一种ADC药物?

一种成功的ADC药物(图1所示)主要包括四个方面:合适的靶点(Tumor Antigen)、高度特异性的抗体(Antibody)、理想的偶联子(Linker)、高效的药物(Cytotoxic Drug)。

第一、靶点选择的依据

现在ADC药物主要应用于抗肿瘤作用,因此在选择靶点时,理想的靶点抗原,应在在肿瘤细胞表面过量表达,但是在正常组织中无表达或者极少表达。其次当A DC药物中抗体和靶点集合后,可有有效内化,进入细胞内释放药物,对靶细胞进行杀伤。

第二、抗体的特异性,亲和力和药代动力学研究Antibody specificity, affin ity, and pharmacokinetics

抗体和靶抗原的高亲和力是ADC有效起到靶向杀伤的核心所在,一般认为亲和力指数KD 10 nM是对抗体的基本要求。在这基础上,在筛选免疫原性低,半衰期长,在血液中稳定的抗体。

第三、偶联子(Linker)的选择 selection and intracellular drug release

理想的linker既可以在血液中维持稳定,又可以在靶细胞有效释放药物。现在常用的Linker可以分为两大类: cleavable linkers 和non-cleavable linke rs。目前研究中发现,已有7个B细胞受体(CD19, CD20, CD21, CD22, CD79b, and CD180) 使用cleavable linkers可以起到有效的效果。相反,在使用non-cleavable linkers时只有CD22 和 CD79b抗原可以跟抗体结合后,有效的将A DC转运至溶酶体,并把药物释放出来,杀伤靶细胞。因此在选在使用那种link er时必须结合靶点的自身性质进行选择。

第四、细胞毒性药物的选择

由于抗体进入体内后,能有效进入肿瘤部位的约占总量的0.003–0.08%,因此就需要药物对靶细胞具有高效,高灵敏的杀伤作用(free drug IC50: 10-1

1–10-9M)。目前常用的药物主要有两大类——microtubule inhibitors and D NA-damaging agents。

3、ADC发展趋势

3.1定向偶联技术(Site-specific conjugation)

目前走在开发最前列的ADC药物均使用传统的偶链技术(no-specific conj ugation),最大的缺点就是得到的产品是一种每个抗体载有不同药物分子数的混合物);无法实现特定位置偶联药物,更重要的是临床评价难得到均一数据(e g,PK)。针对这些缺点,定向偶联技术成为各大公司追逐的热点。使用定向偶联技术可以使每个抗体上携带相同数目的药物分子数,得到均一性的ADC药物。利于药效学的研究和评估。并且在临床中能够得到更加稳定有效的效果。其中A mbrx的Unatural Amino acid(pAcPhe)技术更有应用及推广前途。

3.2多价偶联ADC药物

抗体药物以及疫苗的发展过程都是从单价药物向多价药物进行发展。ADC也应该会走这个发展历程,即在同一个抗体链接几种相互协同的小分子来提高药物的药效。这就需要更完善的偶链技术,至需要对两种甚至更多种技术进行整合使用。但是现在,在Site-specific技术中,过度追求了在特定位点偶联特定分子数,忽略了偶联的多样性。

实用传统技术进行多价偶联药物,需要在一个抗体上同时偶联多种药物,这时抗体自身修饰链接基团的单一性,会造成混合型产品,无法保证每个抗体上同时携带不同的药物。

这个难题可以通过Site-specific技术来解决,在进行Site-specific修饰时,可以设计多种不同的偶联基团,这就可以使用一种基团来针对带有对应基团的linker进行药物偶联。最终通过linker多样化改造进行多种药物的链接,实现多价偶联ADC药物。

单抗及其偶联物均为大分子物质。庞大的药物分子难于透过毛细管内皮层和穿过

肿瘤细胞外间隙到达实体瘤的深部。而使用抗体片段,如Fab、Fab′制备分子量较小的偶联物,可能提高对细胞外间隙的穿透性,增加到达深部肿瘤细胞的药物量。“小型化或适度的小型化是研制ADC药物的重要途径。”

第1章抗体偶联药物研发进展

Ingrid Sassoon and Véronique Blanc

摘要

在肿瘤治疗中,虽然许多单独给药的裸抗药物临床疗效有一定的局限性,但毋庸置疑的是,生物治疗手段已在癌症治疗中担当着日益重要的角色。如果将具有治疗应用前景的抗体和小分子化学药物通过偶联反应制备抗体偶联药物(antibody-drug conjugate,ADC),则可以达到进一步提高抗体疗效的目的。因为ADC药物不但能特异性识别肿瘤细胞的表面抗原,而且可利用自身携带的高效小分子药物毒素杀灭肿瘤靶细胞。然而ADC药物的设计并不仅仅是简单的组合,它需要对特定肿瘤靶点和其适应证进行全方位考量,并在此基础上将抗体、连接子和小分子药物毒素三部分合理地整合在一起。现阶段大部分进入临床试验的新一代ADC药物,都是建立在不断总结第一代ADC药物的经验基础上并结合日益更新的技术所研发的。维布妥昔单抗(Adcetris?)是将抗CD30单克隆抗体和一种高效微管生成抑制剂偶联而成的ADC药物,用于治疗“霍奇金淋巴瘤(Hodgkin’s lymphoma)”和“间变性大细胞淋巴瘤(anaplastic lar ge cell lymphomas)”,该产品也是迄今为止唯一成功上市的ADC药物。至今总共有27种抗体偶联药物进入临床试验(2013年),适应证主要涉及恶性血液肿瘤和实体肿瘤治疗。其中,曲妥珠-美坦新衍生物(trastuzumabemtansine,T-DM1)是曲妥珠单抗通过不可切除连接子偶联美坦新衍生物(DM1)构成的。在III期临床试验中,该药物对人类表皮生长因子受体2(human epidermal growth factor receptor 2,HER2)阳性且难治/复发转移性乳腺癌表现出显著疗效。而另一些正在进行临床试验的ADC 药物,如CMC-544、SAR3419、CDX-011、PSMA-ADC、BT-062和IMGN901,其抗原靶点、连接子及所偶联的药物也越来越多样化,这使我们对ADC药物的理解不断深入,同时也使得曾经一度停滞不前的ADC药物再次迎来了新的发展机遇。为了提升疗效,ADC药物依然还面临着各种挑战,主要包括:仍需进一步提高治疗指数、靶点的精准选择、对ADC药物作用机制的透彻理解,更好地了解和控制ADC 药物脱靶效应的毒副作用,以及临床试验方案的优化和确定(包括患者的选择、给药方案的设计等)。

关键词:抗体偶联药物,癌症,细胞毒,连接子,抗体,美坦新,奥瑞他汀(Auristatin),卡奇霉素(Calicheamicin),曲妥珠-美坦新衍生物(T-DM1),SGN-35,CMC-544

1 引言

几十年来,肿瘤学的深入研究一直在为战胜癌症并且延长患者生命这一目标而努力奋斗。如今抗肿瘤生物药(如抗体、多肽和蛋白质)在肿瘤治疗药物中也逐渐占有了一席之地,通常这些生物药物会与放疗和化疗药物联合使用。虽然抗体药物与小分子药物相比具有许多优势,如:①抗体药物对抗原阳性的肿瘤细胞具有高度特异性,因此可降低因药物脱靶效应对正常组织的毒性;②具有更长的半衰期等。但迄今为止只有13种肿瘤治疗的抗体药物获准上市[1]。这也再次说明确定一个靶点并通过该靶点抗原的表达水平来调控影响肿瘤增长的困难性,以及单克隆抗体药物单独给药时其临床疗效的局限性。而利用毒素、细胞毒素药物以及放射性核素改造修饰的抗体或抗体片段,已被公认为是一种既能高效杀伤靶细

胞,又能实现对正常细胞和组织具有较低毒副作用的有效方法。已有部分诸如此类的抗体上市,如通过基因工程手段将人白细胞介素-2(可与白细胞介素-2受体结合)和白喉毒素融合而成的地尼白介素(Ontak?),其适应证为顽固性或易复发的表皮T细胞淋巴瘤的治疗。替伊莫单抗(Zevalin?)和131I-托西莫单抗(Bexxar?)是两种分别与90Y和131I偶联的鼠源抗CD20单克隆抗体,用于难治/复发性的滤泡性淋巴瘤治疗,而维布妥昔单抗(Adcetris?)则是在抗CD30单克隆抗体上偶联了高效的微管抑制剂,用于治疗霍奇金淋巴瘤和间变性大细胞淋巴瘤。

针对改造抗体提升其疗效的思路并不是近年才兴起的,早在20世纪70年代,科研文献里就已出现ADC药物于动物模型中研究的报道。虽然基于鼠源IgG研发的ADC药物临床疗效不尽如人意,但自80年代起,已经有ADC药物获准进入临床试验研究。直到2000年,第一个ADC药物,即一种将抗CD33单克隆抗体与卡奇霉素(强效DNA结合毒素)偶联的新型药物——吉姆单抗/奥佐米星(Mylotarg?),因其可显著降低患者髓细胞恶性增殖而获得美国FDA批准,主要用于急性髓性白血病的治疗[2, 3]。然而经该ADC药物上市许可后的研究(SWOG S0106)数据证实,其存在严重的安全隐患,并且无法证实患者的临床获益性[4],因此2010年该产品即被开发其的辉瑞公司撤市。

本章将专注于现阶段正在进行临床研究的ADC药物(表1-1)。第一部分我们将为读者介绍来自第一代ADC药物研发的总结经验,以及在ADC药物设计研发过程中应用的各种改良技术,这些经验和技术对正处于不同临床研究阶段的新型ADC药物的研发会有良好的指导作用。第二部分将介绍至今最为成功的ADC药物——Adcetris的临床研究。第三部分则从现有临床前和临床研究中,在对已获得ADC药物的安全性和有效性关键参数的充分理解的基础上,对ADC药物探索和研发的进展予以综述。如今越来越多的ADC药物获准进入临床研究,不断彰显着临床医生和制药公司对ADC药物疗效的关注及信心,ADC势必会为癌症患者带来更多的福音。

2 抗体偶联药物的构成

2.1 抗体偶联药物的定义

抗体偶联药物可以被定义为药物前体。抗体能够识别表达肿瘤抗原的靶点,并通过连接子与细胞毒素“弹头”偶联形成针对肿瘤细胞的靶向递送系统。在理想状态下,该药物前体在系统给药时不具有毒性,而当ADC药物中的抗体与表达肿瘤抗原的靶细胞结合、整个ADC药物被肿瘤细胞内吞后,小分子细胞毒素组分将以高效活性形式被足量释放,从而完成对肿瘤细胞的杀伤。

理想的ADC药物的设计十分复杂,而并不仅仅是一个简单的组合。在精心选择表达特定肿瘤抗原/靶点和相关适应证的过程中,除了考虑抗体、连接子和细胞毒素药物自身特点及局限性外,更重要的是需要找到它们之间最佳的组合方式,因为三者偶联在一起并且相互影响。

2.2 抗体偶联药物识别的靶点/抗原

靶点/抗原的选择是设计ADC药物的起点,因为其确定了ADC药物将针对哪些肿瘤适应证,并潜在影响偶联细胞毒素药物的选择。此外,靶点的选择对该肿瘤适应证中靶向患者群体的选择标准具有决定性作用。

这些年在ADC药物的开发过程中,已评估了许多靶点[5]。在临床前小鼠模型的研究中显示了靶点的多样性,单个或多个跨膜结构蛋白或锚定的糖基磷脂酰肌醇(glycosylphosphatidylinositol,GPI),都可引起ADC药物内吞,从而迟滞肿瘤的细胞生长乃至使其消退。

靶点/抗原选择的基本依据是肿瘤组织中该抗原高度表达,而在正常组织中仅有限表达,从而尽可能地将ADC药物的毒性限制或集中在靶细胞。然而特异性肿瘤抗原在正常组织中不表达的概率是非常低的,在大多情况下该抗原通常在正常组织/器官亚群的上皮细胞表面表达。因此,在选择靶点时,不仅应考虑表达该抗原的器官类型(如重要器官与生殖器官),以及细胞亚型和所处的细胞周期状态(分裂期细胞与分化静止期细胞),还应考虑在该抗原呈阳性的正常细胞和肿瘤细胞之间这一肿瘤抗原的表达差异。

值得注意的是,在临床试验中如果正常器官表达肿瘤抗原,并不一定意味着会导致严重的毒副作用。在几个与正常组织呈现交叉反应的ADC药物的临床试验中,其患者呈现了良好的耐受性,ADC药物产生的毒性不是很低,就是可控和可逆的。例如,莫坎妥珠单抗/IMGN242(靶向CanAg抗原,一种黏蛋白样蛋白上的糖类抗原结构[6, 7])、BT-062(靶向CD138抗原的ADC药物,见下文)或CDX-011(靶向gpNMB抗原的ADC药物,见下文)。相反,在莫比伐珠单抗(靶向CD44v6抗原的ADC药物)的案例中,由于皮肤角质细胞[8]表达CD44v6,因此导致了严重的皮肤毒性,包括一例致命的中毒性表皮坏死松解症[9~11],最终该ADC药物I期临床研究在早期即被终止[9~11](表1-2)。

表1-2 已终止的抗体偶联药物

注:ND表示未被披露。

作为靶点的抗原应在正常组织中处于较低水平的表达,而在肿瘤细胞表面(抗原密度)的表达水平应该较高,且该靶抗原与抗体结合后,抗原抗体复合物可被内化并在合适的细胞腔室内被加工降解,之后在细胞质中释放出足量的细胞毒素活性药物。

在临床前研究中所采用的肿瘤细胞模型,如果其肿瘤靶抗原表达模式、表达水平与来自患者活检的肿瘤细胞一致,那么该肿瘤细胞的体外研究模型则可有效地将在临床前研究所获得的数据桥接转化至相应ADC药物临床研究的疗效。靶向CD33抗原的ADC药物AVE9633,在其I期临床研究中没有显示出疗效[12],提示该候选药物在细胞质中没有递送足量可杀死肿瘤细胞的毒素药物。相反,其临床前研究的肿瘤细胞模型却对AVE9633表现出了好的应答[13],这是因为该肿瘤细胞模型CD33抗原的表达水平显著高于来自患者活检组织中肿瘤细胞CD33抗原的表达量(来自未发表的内部数据,Sanofi,2009)。

2.3 细胞毒素药物和连接子

许多传统的治疗用药物已经用于抗体药物的偶联,可是之后很快发现,这些细胞毒素药物偶联至抗体后,在其后的临床使用中无法达到预期的抗肿瘤活性[14~16]。随后的研究重点则开始集中于那些天然存在的、具有高效抗肿瘤活性的细胞毒性小分子,而这类细胞毒性小分子因其临床毒性过高,通常无法单独作为抗肿瘤药物使用。

抗体偶联药物中的生物分析

抗体偶联药物研发中的生物分析 李秀立, 陈笑艳, 钟大放* (中国科学院上海药物研究所, 上海药物代谢研究中心, 上海201203) 摘要: 抗体偶联药物(antibody-drug conjugates, ADCs) 是一类单克隆抗体通过一段连接臂共价偶联细胞毒性小分子化合物而成的复合物, 可以提高抗肿瘤药物的靶向性并减少毒副作用。ADCs结构具有异质性并且其药物?抗体比值(drug-to-antibody ratio, DAR) 在体内呈动态变化, 其生物分析面临着巨大的挑战, 常用的定量分析包括酶联免疫吸附反应(ELISA)和液相色谱?质谱分析(LC-MS)。ADCs同其他生物制品一样, 在体内可能会产生抗药抗体(anti-therapeutic antibody, ATA), 影响其药效、药动学及安全性, 因此有必要评价其免疫原性。本文综述了在ADC研发过程中常见的基于ELISA和LC-MS方法的待测物分析, 包括DAR分布、总抗体、结合型抗体、结合型药物、游离药物以及ATA分析, 可为我国的ADCs研发提供参考。 关键词: 抗体偶联药物; 药物?抗体比值; 免疫原性; 酶联免疫吸附反应; 液相色谱?串联质谱 中图分类号: R917 文献标识码:A 文章编号: 0513-4870 (2016) 04-0517-12 Bioanalysis in the development of antibody-drug conjugates LI Xiu-li, CHEN Xiao-yan, ZHONG Da-fang* (Shanghai Center for Drug Metabolism and Pharmacokinetics Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China) Abstract: Antibody-drug conjugates (ADCs) are complex molecules with cytotoxic small molecular drugs covalently bound to monoclonal antibodies via a linker and can improve the targeted drug delivery with minimizing the systemic toxicity. ADCs are heterogeneous mixtures with different drug-to-antibody ratios (DARs) and the DAR distribution is dynamically changing in vivo, therefore the bioanalysis of the ADCs is challenging. Enzyme-linked immunosorbent assay (ELISA) and LC-MS have been widely used in the ADCs bioanalytical assays. Just like other biotherapeutics, ADCs may elicit the host immune response and produce the anti-therapeutic antibody (ATA), which could affect its efficacy, pharmacokinetics, and safety. It is thereby important to investigate its immunogenicity in the ADC development. In this review, we summarized the ELISA- and LC-MS-based bioanalysis strategies for the development of ADCs, including DAR distribution, the determination of total antibody, conjugated antibody, conjugated drug, free drug, and ATA, with the expectation of providing insights and reference for the ADC development in China. Key words: antibody-drug conjugate; drug-to-antibody ratio; immunogenicity; enzyme-linked immunosorbent assay; LC-MS 抗体偶联药物(antibody-drug conjugates, ADCs) 是一类单克隆抗体通过一段连接臂(linker) 共价偶 收稿日期: 2015-09-08; 修回日期: 2015-10-11. *通讯作者 Tel / Fax: 86-21-50800738, E-mail: dfzhong@https://www.wendangku.net/doc/a62552995.html, DOI: 10.16438/j.0513-4870.2015-0792联细胞毒性小分子化合物而成的复合物, 用于治疗恶性肿瘤。单克隆抗体可以靶向结合肿瘤细胞表面的抗原, 通过细胞内化作用进入细胞。进入细胞后, 其结构中的小分子药物在溶酶体低pH环境或蛋白酶作用下释放出来, 发挥细胞毒作用。由于单克隆抗体的靶向性, 正常组织细胞内药物浓度较低。因此与传统

抗体偶联药物

抗体偶联药物(ADC的涅槃重生 抗体偶联药物(antibody-drug conjugate, ADC )是将抗体与细胞毒性药物连接起来,通过抗体的靶向作用将细胞毒药物靶向肿瘤,进而降低化疗中常见的 药物非特异性的全身毒性。抗体偶联药物(antibody-drug conjugate, ADC )的研究可以追溯到1980s,,但是直到2000年,首个抗体偶联药物gemtuzumaboz ogamicin (商品名Mylotarg,Pfizer研发)才被FDA B准用于治疗急性粒细胞白血病,但由于偶联技术、靶向性、有效性等受限,完整的抗体偶联药物在血液不稳定,导致致死性毒性的产生,于2010年撤市。这使得本就不明朗的ADC药物研究,更蒙上了一层阴影。 但是随着Takeda/Seattle Genetics 通过对原有技术的改进,利用自己的 新型抗体偶联技术开发了brentuximabvedotin (SGN-35商品名Adcetris ,) 新型抗体偶联药物,并与2011年被FDA批准用于治疗霍奇金淋巴瘤和系统性间变性大细胞淋巴瘤。2013年抗体偶联药物再次取得突破,Ge nen tech/Immu noGen 联合开发的Ado-trastuzumabemtansine (T-DM1,商品名Kadcyla )被FDA批准用于HER2阳性乳腺癌,这是首个针对实体瘤的抗体偶联药物。随着这两个药物的研发成功,ADC药物再次以火热的状态进入人们的研究视野。 1、进入临床阶段ADC药物 截至目前大概有30多种ADC药物进入临床开发阶段(表1),统计表中30 种药物针对适应症发现,其中仅有4种药物针对实体瘤。主要原因:抗体难于透过毛细管内皮层和穿过肿瘤细胞外间隙到达实体瘤的深部。而使用抗体片段,如Fab,制备分子量较小的偶联物,可能提高对细胞外间隙的穿透性,增加到达深部肿瘤细胞的药物量。因此“抗体的小型化或适度的小型化将会是研制ADC药物 的重要途径”。同时我们还能看到ImmunoGe、Seattle Genetics 在现有ADC 药物研发中占有绝对的统治地位,这得力于他们成熟的抗体偶联技术一一利用天然抗体自身的赖氨酸和半胱氨酸中的巯基偶联药物(non-specific )。 2、如何才能成功开发出一种ADC药物?

创新医药抗体偶联药物发展分析

广州创亚企业管理顾问有限公司 创新医药抗体偶联药物发展分析

已获FDA批准上市的ADC药物(截至2019.11)抗体偶联药物(Antibody–Drug Conjugates,ADCs)已经成为当前全球抗体药 物研发的热门方向。截至2019.11,FDA共批准 了6款ADC药物上市,包括Seattle的Adcetris、 Genentech的Kadcyla和Polivy、Wyeth的 Besponsa和Mylotarg,其中的代表产品——抗 CD30的Adcetris在2018年实现销售收入4.77 亿美元(+55%),抗HER2的Kadcyla则实现销 售收入9.79亿瑞士法郎(+8%)。 该类药物的优点是能够将抗体的高特异性 与细胞毒药物的高杀伤力相结合,对部分肿瘤 展现出优秀的疗效,具有独特的临床价值。

ADC类药物结构示意图抗体偶联药物的设计思路是将抗体 与细胞毒药物进行偶联,从而同时发挥 抗体高特异性与细胞毒小分子的高毒性, 利用抗体-抗原的高度靶向结合将药物 输送至肿瘤部位,将细胞毒药物强大的 细胞杀伤能力集中于肿瘤细胞,降低正 常组织的毒副作用。

ADC药物作用机制 上世纪60年代便已经有了在动物模型中试 验ADC的尝试,80年代推进了临床,首个获批的 ADC是由Wyeth研发的Mylotarg(Gemtuzumab Ozogamicin),于2000年被FDA批准上市。但是 该药物在上市后的临床研究中联用化疗未能延 长生存期且增加了毒性,因此2010年由企业主 动撤市。Mylotarg上市后的10余年间未再有新 的ADC获批。

干货抗体偶联药物(adc)深度研究报告

干货抗体偶联药物(adc)深度研究报告 目录一、行业背景 针对病症 历史沿革基本原理介绍二、核心技术抗体部分(1)靶点选 择(2)抗体选择(3)抗体修饰(4)抗体内吞连接物部分 (1)连接物(Linker)选择(2)连接方式及DAR(3)新技术Abzena的ThioBridge毒素部分核心专利-连接物与毒素排序三、效果对比:Kadcyla对比Herceptin四、核心公司竞 争情况1.领先公司(1)Seattle Genetics (2)ImmunoGen (3)Immunomedics 2.规模较大公司 (1)Abzena (2)Agensys (3)Celldex (4)Progenics Pharmaceuticals (5)Genmab (6)Sorrento旗下Concortis 3.大型药企在ADC领域的布局(1)Abbvie 及其旗下Stemcentrx (2)Roche旗下Genetech的情况(3)武田旗下Takeda Oncology (4)辉瑞ADC 产品Mylotarg (5) 复星、药明、浙江医药与Ambrx (6)三生制药及三生国健(7)丽珠医药集团旗下丽珠单抗 (8)

江苏恒瑞医药(9)四川恒康旗下上海美雅珂生物 (10)其他药企五、行业市场规模六、ADC成功要素分 析独家技术优秀团队研发方向 一、行业背景抗体偶联药物Antibody-drug Conjugate (ADC)是拥有强细胞毒性的化疗药物通过连接物与单抗偶联形成的,兼具小分子药物强大的杀伤力和纯单抗高度的靶向性,因而成为肿瘤靶向治疗的研究和发展热点。但是,ADC 本身并非在各方面强于纯单抗。其疗效的显著提升是通过牺牲药品的均一性与稳定性实现的。现在比较成熟的两种偶联技术分别侧重均一性与稳定性,有一些新式偶联技术能够在两方面同时改善。1、针对病症ADC药物被用于癌症治疗,其针对病症由其中抗体所针对的靶点决定,能够对将该靶点高表达的肿瘤细胞进行针对性DNA破坏或抑制微管。由于 其针对性很高,其可以使用化疗中不能使用或剂量不能提高的高毒性药物[1]。ADC药物相对于化疗药的治疗安全窗口therapeutic window会更大,相对更加安全[2]。下表为可供使用的各种靶点及其针对的癌症种类。其中,目前已经上市的两款药物中,Kadcyla使用HER2靶点,针对HER2阳性的肺癌;Adcetris使用CD30靶点,针对CD30阳性的霍奇金淋巴瘤Hodgkin Lymphoma (HL)与间变性大细胞淋巴瘤anaplastic large cell lymphoma (ALCL) [3]。靶向药物中不同抗原及其针对癌症种类,以及相应在研的ADC药物数量抗

抗体偶联药物

抗体偶联药物(ADC)的涅槃重生 抗体偶联药物(antibody-drug conjugate, ADC)是将抗体与细胞毒性药物连接起来,通过抗体的靶向作用将细胞毒药物靶向肿瘤,进而降低化疗中常见的药物非特异性的全身毒性。抗体偶联药物(antibody-drug conjugate, ADC)的研究可以追溯到1980s,,但是直到2000年,首个抗体偶联药物gemtuzumab o zogamicin(商品名Mylotarg,Pfizer研发)才被FDA批准用于治疗急性粒细胞白血病,但由于偶联技术、靶向性、有效性等受限,完整的抗体偶联药物在血液不稳定,导致致死性毒性的产生,于2010年撤市。这使得本就不明朗的ADC药物研究,更蒙上了一层阴影。 但是随着Takeda/Seattle Genetics 通过对原有技术的改进,利用自己的新型抗体偶联技术开发了brentuximab vedotin(SGN-35,商品名Adcetris,)新型抗体偶联药物,并与2011年被FDA批准用于治疗霍奇金淋巴瘤和系统性间变性大细胞淋巴瘤。2013年抗体偶联药物再次取得突破,Genentech/ImmunoGen 联合开发的Ado-trastuzumab emtansine(T-DM1,商品名Kadcyla)被FDA批准用于HER2阳性乳腺癌,这是首个针对实体瘤的抗体偶联药物。随着这两个药物的研发成功,ADC药物再次以火热的状态进入人们的研究视野。 1、进入临床阶段ADC药物 截至目前大概有30多种ADC药物进入临床开发阶段(表1),统计表中30种药物针对适应症发现,其中仅有4种药物针对实体瘤。主要原因:抗体难于透过毛细管内皮层和穿过肿瘤细胞外间隙到达实体瘤的深部。而使用抗体片段,如Fab,制备分子量较小的偶联物,可能提高对细胞外间隙的穿透性,增加到达深部肿瘤细胞的药物量。因此“抗体的小型化或适度的小型化将会是研制ADC药物的重要途径”。同时我们还能看到ImmunoGen、Seattle Genetics在现有ADC 药物研发中占有绝对的统治地位,这得力于他们成熟的抗体偶联技术——利用天然抗体自身的赖氨酸和半胱氨酸中的巯基偶联药物(non-specific)。 2、如何才能成功开发出一种ADC药物?

在研抗体偶联药物及市场分析

第3弹:在研抗体偶联药物及市场分析 1.上市抗体偶联药物 抗体偶联药物(antibody-drug conjugate, ADC)的研究可以追溯到1980s,将抗体与细胞毒药物偶联产生协同作用,同时通过抗体将药物直接输送到靶细胞。然而早期产品的临床效果并不尽如人意,由于偶联技术、靶向性、有效性等受限,完整的抗体偶联药物在血液不稳定。偶联技术的发展以及诸多靶标的发现催生了第二代抗体偶联药物,它们在血液中的稳定性有了很大提高,足以将细胞毒药物输送到靶细胞。 抗体偶联药物取得突破性进展是在2011年,FDA批准了CD30 特异性的Adcetris (brentuximab vedotin, SGN-35)用于治疗霍奇金淋巴瘤(Hodgkin’s lymphoma)和系统性间变性大细胞淋巴瘤(systemic anaplastic large cell lymphoma)。该药由三部分构成:嵌合IgG1 抗体cAC10+微管聚合抑制剂MMAE (Monomethyl auristatin E)+可被蛋白酶裂解的连接子,cAC10能够特异性识别CD30,MMAE则起到杀死肿瘤细胞的作用。该药由Millennium (The Takeda Oncology Group)和Seattle Genetics共同研发,享有专利保护的连接子和偶联技术(cytotoxic platform technology)出自Seattle Genetics公司。由于病人数量相对较少,该药在美国的年销售额(2011-10至2012-09)为1.36亿美元。 2013年2月,Genentech研发的Kadcyla (ado-trastuzumab emtansine, T-DM1)获得FDA批准,用于治疗HER-2阳性转移性乳腺癌,III临床研究显示Kadcyla优于拉帕替尼+卡培他滨。Kadcyla也是由三部分构成:曲妥珠单抗+微管聚集抑制剂DM1+连接子,曲妥珠单抗靶向HER2,本身也已被批准治疗乳腺癌,DM1是天然产物Maytansine衍生物,能够与微管花位点结合,产生细胞毒作用。DM1的细胞毒作用比标准化疗高100-10000倍,由于曲妥珠单抗对肿瘤细胞具有选择性,该药的毒性比单纯使用DM1低。该药的连接子及偶联技术(Targeted Antibody Payload ADC technology)出自ImmunoGen公司,Genentech 获得了其专利许可。 2.在研抗体偶联药物 抗体偶联药物的核心是偶联子及偶联技术(ADC platform technology),而主导这项技术的两家公司是Seattle Genetics和ImmunoGen,各大公司的在研项目多与在这两家公司的合作下展开,Genentech和Pfizer自己也在投资做前期研究。在研抗体偶联药物: 3.市场分析 两种利益驱动着抗体偶联药物的研发,一是通过这种方式产生新的专利,二是抗体药

干货抗体偶联药物(adc)深度研究报告

干货抗体偶联药物(adc)深度研究报告 目录一、行业背景 针对病症 历史沿革基本原理介绍二、核心技术抗体部分(1)靶点选择(2)抗体选择(3)抗体修饰(4)抗体内吞连接物部分(1)连接物(Linker)选择(2)连接方式及DAR(3)新技术Abzena的ThioBridge毒素部分核心专利-连接物与毒素排序三、效果对比:Kadcyla对比Herceptin四、核心公司竞争情况 1. 领先公司(1)Seattle Genetics (2)ImmunoGen (3)Immunomedics 2. 规模较大公司 (1)Abzena (2)Agensys (3)Celldex (4)Progenics Pharmaceuticals (5)Genmab (6)Sorrento旗下Concortis 3. 大型药企在ADC领域的布局(1)Abbvie及其旗下Stemcentrx (2)Roche旗下Genetech的情况(3)武田旗下Takeda Oncology (4)辉瑞ADC产品Mylotarg (5)复星、药明、浙江医药与Ambrx (6)三生制药及三生国健(7)丽珠医药集团旗下丽珠单抗(8)江苏恒瑞医药(9)四川恒康旗下上海美雅珂生物(10)其他药企五、行业市场规模六、ADC成功要素分析独家技术优秀团队研发方向

一、行业背景抗体偶联药物Antibody-drug Conjugate (ADC) 是拥有强细胞毒性的化疗药物通过连接物与单抗偶联形成的,兼具小分子药物强大的杀伤力和纯单抗高度的靶向性,因而成为肿瘤靶向治疗的研究和发展热点。但是,ADC 本身并非在各方面强于纯单抗。其疗效的显著提升是通过牺牲药品的均一性与稳定性实现的。现在比较成熟的两种偶联技术分别侧重均一性与稳定性,有一些新式偶联技术能够在两方面同时改善。1、针对病症ADC药物被用于癌症治疗,其针对病症由其中抗体所针对的靶点决定,能够对将该靶点高表达的肿瘤细胞进行针对性DNA破坏或抑制微管。由于其针对性很高,其可以使用化疗中不能使用或剂量不能提高的高毒性药物[1]。ADC药物相对于化疗药的治疗安全窗口therapeutic window会更大,相对更加安全[2]。下表为可供使用的各种靶点及其针对的癌症种类。其中,目前已经上市的两款药物中,Kadcyla使用HER2靶点,针对HER2阳性的肺癌;Adcetris使用CD30靶点,针对CD30阳性的霍奇金淋巴瘤Hodgkin Lymphoma (HL)与间变性大细胞淋巴瘤anaplastic large cell lymphoma (ALCL) [3]。靶向药物中不同抗原及其针对癌症种类,以及相应在研的ADC药物数量抗原对应在研ADC数量主要针对适应症在肿瘤细胞表面表达的靶向抗原GPNMB1乳腺癌及黑素瘤CD561小细胞肺癌(SCLC)TACSTD2

在研抗体偶联药物及市场分析

第3弹:在研抗体偶联药物及市场分析 1?上市抗体偶联药物 抗体偶联药物(antibody-drug conjugate, ADC )的研究可以追溯到1980s,将抗体与细胞毒药物偶联产生协同作用,同时通过抗体将药物直接输送到靶细胞。然而早期产品的临床效果并 不尽如人意,由于偶联技术、靶向性、有效性等受限,完整的抗体偶联药物在血液不稳定。 偶联技术的发展以及诸多靶标的发现催生了第二代抗体偶联药物,它们在血液中的稳定性有 了很大提高,足以将细胞毒药物输送到靶细胞。 抗体偶联药物取得突破性进展是在2011年,FDA批准了CD30特异性的Adcetris (bre ntuximab vedoti n, SGN-35)用于治疗霍奇金淋巴瘤( Hodgkin 'lymphoma )和系统性间变性大细胞淋巴瘤 (systemic anaplastic large cell lymphoma )。该药由三部分构成:嵌合IgG1抗体CAC10+微管聚合抑制剂MMAE (Monomethyl auristatin E)+可被蛋白酶裂解的连接子,cAC10 能够特异性识别CD30, MMAE 则起到杀死肿瘤细胞的作用。该药由Millennium (The Takeda Oncology Group)和Seattle Genetics共同研发,享有专利保护的连接子和偶联技术( cytotoxic platform technology)出自Seattle Genetics公司。由于病人数量相对较少,该药在美国的年销售额(2011-10至2012-09 )为1.36亿美元。 2013 年2 月,Genentech 研发的Kadcyla (ado-trastuzumab emtansine, T-DM1)获得FDA 批准,用于治疗HER-2阳性转移性乳腺癌,III临床研究显示Kadcyla优于拉帕替尼+卡培他滨。Kadcyla也是由三部分构成:曲妥珠单抗+微管聚集抑制剂DM1 +连接子,曲妥珠单抗靶向 HER2,本身也已被批准治疗乳腺癌,DM1是天然产物Maytansine衍生物,能够与微管长春 花位点结合,产生细胞毒作用。DM1的细胞毒作用比标准化疗高100-10000倍,由于曲妥 珠单抗对肿瘤细胞具有选择性,该药的毒性比单纯使用DM1低。该药的连接子及偶联技术(Targeted Antibody Payload ADC technology )出自ImmunoGen 公司,Genentech 获得了其专利许可。2?在研抗体偶联药物抗体偶联药物的核心是偶联子及偶联技术( ADC platform tech no logy ),而主导这项技术的 两家公司是Seattle Genetics和ImmunoGen,各大公司的在研项目多与在这两家公司的合作下展开,G e n e n t e c h和P f i z e r自己也在投资做前期研究。在研抗体偶联药物: (partner^Product mD匚Lead Nk>tabUvi?b R enntiy k unched R CM hTGtnittiiiH li III mriuri 托 日1H? | T-CHM 11H ER Pf; rt-tdfic: mAli LhiLml LoDMl EMILIA. MARIANNE. 加 K J THERESA Ahdse Nil (CMC-1! 441to caiich?arriictfi Nofl「Hodiqfc iiti\ |卉吋乩 ALL — Phu無 1 nn^UuFitjmiah mcHliiirrH nc FlMGN QOll sprrrtir mA h linked to DM 1Sriwllrril rnulTir^r^c nFma |卩。NORTH CiHldf at霑空Glf^ihd! Lirtrk|j|1Mh udAtJriitCDX-Oll)CRN MB ?ilU mAh hnif-d 诂 MMAE Haq 占1 I^IV EMERGE R CM111?■'Giri iwilw h iSBdLlkf 幼RGrJSOT urid tcurrabirulKjrb wiLhrltUklllidb) 匚DM叫严皿匸(RG-7悶 > 柯 CD 皿*die帆G-巧弼]mAb lir-ktHj toMMAE or MMAf FdlliLuiur lyuiphiiiiT]軌 DLBCLCLLiP^ Prc?yui Fiidrsr^-d |S?Llie 匸f tiL# PSMA.ADC P SMA^peciriL niAii linked toMMM Q-tdllLeH一 barxrfi llmrTiurioGcn*W4W CD LS-sprcWit rnAb Nn ked to[)U4 DLBCLBffillALL二 3?市场分析 两种利益驱动着抗体偶联药物的研发,一是通过这种方式产生新的专利,二是抗体药物协同作用产生的高额溢价。使用Adcetris每年的治疗费用在100000美元,而使用Kadcyla 每月的治疗费用也高达9800美元。

抗体药物偶联物

抗体偶联药物(antibody-drug conjugates, ADC) 因其良好的靶向性及抗癌活性目前已成为抗肿瘤抗体药物研发的新热点和重要趋势,受到越来越多的关注。 ADC 药物由单克隆抗体、高效应的细胞毒性物质以及连接臂三部分组成,它将抗体的靶向性与细胞毒性药物的抗肿瘤作用相结合,可以降低细胞毒性抗肿瘤药物的不良反应,提高肿瘤治疗的选择性,还能更好地应对靶向单抗的耐药性问题. 有以下几个问题,需要思考:1)靶标与抗体的选择 2)接头与偶联技术 3)负载药物 4)ADC药物的质量属性分析 重点说一下偶联技术: 非特定位点:通常药物与抗体的偶联是通过抗体上赖氨酸残基或链间二硫键还原产生的半胱氨酸残基实现的。这两种方式所获得的抗体药物偶联物中单个抗体上偶联的药物个数为 0个到 8 个不等,具有较大的异质性,这对抗体偶联药物的批间一致性提出了巨大的挑战。位点特异性偶联的方法还包括使用非天然氨基酸、硒代半胱氨酸和酶解偶联法。 简单介绍一下一个在研的ADC项目: 构成:Herceptin+linker+MMAF/MMAE,通过在Herceptin碳端(重链或轻链)引入额外序列CAAX,进而采用特定的酶反应使linker+drug部分能偶联在特定位点。采用在血浆中稳定的而在靶向部位易裂解的linker,保证了ADC药物的安全性以及有效性。临床前数据表明,此药物与Herceptin具有相同的体外结合亲和力以及相同的PK特性;在HER2阳性细胞株上,展现出良好的体外细胞毒性;在体内异种乳腺癌细胞株BT-474以及胃癌细胞株NCI-N87试验中,表现出强的抑制肿瘤效果。{对ADC项目或此项目有兴趣的,可以交流一下}

相关文档