文档库 最新最全的文档下载
当前位置:文档库 › 直梁纯弯曲电测实验试验报告

直梁纯弯曲电测实验试验报告

直梁纯弯曲电测实验试验报告
直梁纯弯曲电测实验试验报告

邵阳学院实验报告

实验项目:直梁纯弯曲电测实验

实验日期实验地点成绩学院班级学生姓名同组成员指导老师学生学号

一、实验内容和目的:、

1、测定直梁纯弯曲时横截面上正应力大小和分布规律;

2、验证纯弯曲梁的正应力计算工式;

3、掌握电测法原理和电阻应变仪的使用方法。

二、实验设备(规格、型号)

三、实验记录及数据处理

表1.试件相关数据

表2.实验数据记录

四、实验结果计算与分析

1、画出应变布示意图

2、实验计算—

根据测得的各点应变值ε1求出应变增量平均值Δε1,代入胡克定律计算各点的实验应力值,因1με=10-6ε,所以各点实验应变力为σi实=Ε×Δεi×10-6

3、理论值计算

载荷增量为ΔP,弯曲增量ΔM=ΔP·a/2,故各点应力的理论值为:σi理=(ΔM·Yi)/Iz 4、实验值与理论值的比较

5、绘制实验应力值和理论力值的分布图

分别认横坐标表示各测点的应力σi实和σi理,以坐标轴表示各点测距梁中性层位置Yi,选用合适的比例绘出应力分布图。

纯弯曲实验报告

《材料力学》课程实验报告纸 实验二:梁的纯弯曲正应力试验 一、实验目的 1、测定矩形截面梁在只受弯矩作用的条件下,横截面上正应力的大小随高 度变化的分布规律,并与理论值进行比较,以验证平面假设的正确性,即横截面上正应力的大小沿高度线性分布。 2、学习多点静态应变测量方法。 二:实验仪器与设备: ①贴有电阻应变片的矩形截面钢梁实验装置 1台 ②DH3818静态应变测试仪 1件 三、实验原理 (1)受力图 主梁材料为钢梁,矩形截面,弹性模量E=210GPa,高度h=40.0mm,宽度 b=15.2mm。旋动转轮进行加载,压力器借助于下面辅助梁和拉杆(对称分布)的传递,分解为大小相等的两个集中力分别作用于主梁的C、D截面。对主梁进行受力分析,得到其受力简图,如图1所示。 (2)内力图 分析主梁的受力特点,进行求解并画出其内力图,我们得到CD段上的剪力为零,而弯矩则为常值,因此主梁的CD段按理论描述,处于纯弯曲状态。主梁的内力简图,如图2所示。 Page 1 of 10

《材料力学》课程实验报告纸 (3)弯曲变形效果图(纵向剖面) (4)理论正应力 根据矩形截面梁受纯弯矩作用时,对其变形效果所作的平面假设,即横截面上只有正应力,而没有切应力(或0=τ),得到主梁纯弯曲CD 段横截面上任一高度处正应力的理论计算公式为 z i i I y M = 理论σ 其中,M 为CD 段的截面弯矩(常值),z I 为惯性矩, i y 为所求点至中性轴的距 离。 (5)实测正应力 测量时,在主梁的纯弯曲CD 段上取5个不同的等分高度处(1、2、3、4、5),沿着与梁的纵向轴线平行的方向粘贴5个电阻应变片,如图4所示。 在矩形截面梁上粘贴上如图5.3所示的2组电阻应变片,应变片1-5分别贴在横力弯曲区,6-10贴在纯弯曲区,同一组应变片之间的间隔距离相等。 Page 2 of 10

纯弯梁的弯曲应力测定

纯弯梁的弯曲应力测定实验报告 使用设备名称与型号 同组人员 实验时间 1、 实验目的 1.测定梁纯弯曲时横截面上的正应力大小及分布规律,并与理论值比较,以验证弯曲正应力公式。 2.观察正应力与弯矩的线性关系。 3.了解电测法的基本原理和电阻应变仪的使用方法。 2、 实验设备与仪器 1.弯曲梁实验装置和贴有电阻应变片的矩形截面钢梁。 2.静态数字电阻应变仪YJ28A-P10R(见附录四)和载荷显示仪。 3.直尺。 3、 实验原理 梁纯弯曲时横截面上的正应力公式为σ= ,式中M为作用在横截面上的弯矩,Y为欲求应力点到中性轴Z的距离,I z为梁横截面对中性轴的惯性矩。本实验采用矩形截面钢梁,实验时将梁的支承及载荷情况布置如图6-1所示,梁的CD段为纯弯曲,在梁的CD段某截面不同高度(四等分点)处贴五片电阻应变片,方向平行梁轴,温度补偿片粘贴梁上不受力处,当纯弯梁受载变形时,利用电阻应变仪测出各应变片的应变值(即梁上各纵向应变值)ε实。由于纵向纤维间不互相挤压,故根据单向应力状态的虎克定律求出应力σ实=Eε实。E为梁所用材料的弹性模量。为了减少测量误差,同时也可以验证正应

力与弯矩的线性关系,采用等量加载来测定沿高度分布的各相应点的应变,每增加等量的载荷 F,测定各点相应的应变一次,取应变增量的平均值 ε实。求出各应力增量 σ实=E ε实,并与理论值 σ理= 进行比较,其中 M= Fa.,从而验证理论公式的正确性。

图6-1纯弯梁示意图 4、 实验操作步骤 1.将梁放在实验装置的支座上。注意应尽量使梁受平面弯曲,用尺测量力作用点的位置及梁的截面尺寸。 2.在确保梁的最大应力小于材料的比例极限σp前提下,确定加载方案。 3.将梁上各测点的工作应变片逐点连接到应变仪的A、B接线柱上,而温度补偿片接在B、C接线柱上。按电阻应变仪的使用方法,将应变仪调整好。 4.先加载至初载荷,记录此时各点的应变值,然后每次等量增加载荷 ΔF,逐次测定各点相应的应变值,直到最终载荷终止。卸载后,注意记录各测点的零点漂移。 5.检查实验数据是否与离开中性轴的距离成正比,是否与载荷成线形关系,结束工作。 5、 实验结果及分析计算 1、 实验数据 12345

纯弯梁正应力分布电测实验(精)

实验七 纯弯梁正应力分布电测实验 实验内容一 纯弯梁正应力分布电测实验 一、实验目的 1、用电测法测定矩形截面梁在纯弯曲时的正应力的大小及其分布规律,并与理论值作比较。 2、初步掌握电测方法。 二、实验设备 1、弯曲梁实验装置一台(见图7.2) 2、YJ-4501A 静态数字电阻应变仪一台 3、温度补偿片 三、实验原理及方法 试件选用矩形截面,荷载及测量点的布置如图7.1。梁的材料为钢,其弹性模量a G E Ρ=210,转动实验装置上的加载手轮,可使梁受到如图7.1的荷载,梁的中段为纯弯曲段,荷载作用于纵向对称平面内,而且在弹性极限内进行实验,故为弹性范围内平面弯曲问题。梁的正应力公式为 y I M Z =σ 式中:M --纯弯曲段梁截面上的弯矩 Z I --横截面对中性轴的惯性矩 y --截面上测点至中性轴的距离。 为了测量梁纯弯曲时横截面上应力分布规律,在梁的纯弯曲段沿梁的侧面各点沿轴线方向粘贴应变片,其分布如图(图7.1)应变片1#粘贴在中性层上,应变片2#、3#、应变片4#和应变片6#、7#分别粘贴在距离中性层为、和上下表面。此外,在梁的上表面沿横向粘贴应变片8#,如果测得纯梁弯曲时沿横截面高度各点的轴向应变,则由单向应力状态的胡克定律公式4/h 8/3h εσE =,可求出各点处的应力实验值。将应力实验值与应力理论值进行比较,可得出测量误差。 式中:ε—各测量点的线应变 E —材料的弹性模量 σ--相应各测点正应力

若由实验,测得的应变片7#和8#的应变7ε和8ε满足 μεε=7 8 ,则证明 验采用等增量加载的方法测量应力的实验值及计算理论值,计算时均应以弯矩增量及应变增量的平均值代入。 4# 图7.1 图中:, mm c 150=mm h 40= mm b 20= , mm l 620= 1#--8#所示应变片粘贴位置及方向。 四、实验步骤 1、检查梁是否安放稳妥 2、把梁上的应变片接在静态电阻应变仪的A 、B 接线柱上。公共温度补偿片接在0通道接线柱B 、C 上。此接法为半桥接线法 3、打开实验装置和仪器的电源开关,转动加载系统给梁加载荷0.5kN 。 4、校对电阻应变仪上的灵敏度系数。对搭接的各测量通道置0操作。 5、用等增量加载法测量,分四次加载,。实验时逐级加载,并记录各应变片在各级荷载作用下的读数应变。 N P 1000=ΔN P 4500max =6、根据实验数据计算各测点应力的实测值及理论值,并作比较。 7、计算78εε值,若μεε=78,则说明纯弯曲梁为单向力状态。 五、注意事项 1、接线要牢固可靠。

实验五 直梁弯曲实验 实验报告

实验五 直梁弯曲实验 一、 实验目的: 1. 用电测法测定纯弯时梁横截面上的正应变分布规律,并与理论计算结果进行比较。 2. 用电测法测定三点弯梁某一横截面上的正应变分布与最大切应变,并与理论计算结 果进行比较。 3.学习电测法的多点测量。 二、实验设备: 1. 微机控制电子万能试验机; 2. 电阻应变仪; 三、实验试件: 本实验所用试件为两种梁:一种为实心中碳钢矩形截面梁,其横截面设计尺寸为h ×b=(50×28)mm 2 ;另一种为空心中碳钢矩形截面梁,其横截面设计尺寸为h ×b=(50×30)mm 2 ,壁厚t=2mm 。材料的屈服极限MPa s 360=σ,弹性模量E=210GPa ,泊松比=。 北京航空航天大学、材料力学、实验报告 实验名称: 学号 姓名 同组 实验时间:2010年12月1日 试件编号 试验机编号 计算机编号 应变仪编号 百分表编号 成绩 实验地点:主楼南翼116室 1 1 1 1 1 教师 年 月 日 图一 实验装置图(纯弯曲) 图二 实验装置图(三点弯)

四.实验原理及方法: 在比例极限内,根据平面假设和单向受力假设,梁横截面上的正应变为线性分布,距中性层为 y 处的纵向正应变和横向正应变为: ()()Z Z M y y E I M y y E I εεμ ?= ??'=-? (1) 距中性层为 y 处的纵向正应力为: ()()z M y y E y I ?=?= σε (2) 对于三点弯梁,梁横截面上还存在弯曲切应力: () ()S z z F S y I ωτδ ?= ? (3) 并且,在梁的中性层上存在最大弯曲切应力,对于实心矩形截面梁: max 32S F A = τ (4) 对于空心矩形截面梁: 22max [((2)(2)]16S z F bh b t h t I t = ---τ (5) 由于在梁的中性层处,微体受纯剪切受力状态,因此有: max max G τγ= (6) 实验时,可根据中性层处0 45±方向的正应变测得最大切应变: 45454545max 22)(εεεεγ-==-=-- (7) 本实验采用重复加载法,多次测量在一级载荷增量M 作用下,产生的应变增量、’ F F F a a a a 2a 图三 纯弯梁受力简图(a=90mm ) 图四 三点弯梁受力简图(a=90mm )

纯弯曲梁的正应力实验参考书报告

《纯弯曲梁的正应力实验》实验报告 一、实验目的 1.测定梁在纯弯曲时横截面上正应力大小和分布规律 2.验证纯弯曲梁的正应力计算公式 二、实验仪器设备和工具 3.XL3416 纯弯曲试验装置 4.力&应变综合参数测试仪 5.游标卡尺、钢板尺 三、实验原理及方法 在纯弯曲条件下,梁横截面上任一点的正应力,计算公式为 σ= My / I z 式中M为弯矩,I z 为横截面对中性轴的惯性矩;y为所求应力点至中性轴的距离。 为了测量梁在纯弯曲时横截面上正应力的分布规律,在梁的纯弯曲段沿梁侧面不同高度,平行于轴线贴有应变片。 实验采用半桥单臂、公共补偿、多点测量方法。加载采用增量法,即每增加等量的载荷△P,测出各点的应变增量△ε,然后分别取各点应变增量的平均值△ε实i,依次求出各点的应变增量 σ实i=E△ε实i 将实测应力值与理论应力值进行比较,以验证弯曲正应力公式。 四、实验步骤 1.设计好本实验所需的各类数据表格。 2.测量矩形截面梁的宽度b和高度h、载荷作用点到梁支点距离a及各应变 片到中性层的距离y i 。见附表1 3.拟订加载方案。先选取适当的初载荷P 0(一般取P =10%P max 左右),估 算P max (该实验载荷范围P max ≤4000N),分4~6级加载。 4.根据加载方案,调整好实验加载装置。

5. 按实验要求接好线,调整好仪器,检查整个测试系统是否处于正常工作状态。 6. 加载。均匀缓慢加载至初载荷P 0,记下各点应变的初始读数;然后分级 等增量加载,每增加一级载荷,依次记录各点电阻应变片的应变值εi ,直到最终载荷。实验至少重复两次。见附表2 7. 作完实验后,卸掉载荷,关闭电源,整理好所用仪器设备,清理实验现场,将所用仪器设备复原,实验资料交指导教师检查签字。 附表1 (试件相关数据) 附表2 (实验数据) 载荷 N P 500 1000 1500 2000 2500 3000 △P 500 500 500 500 500 各 测点电阻应变仪读数 με 1 εP -33 -66 -99 -133 -166 △εP -33 -33 -34 -33 平均值 -33.25 2 εP -16 -3 3 -50 -67 -83 △εP -17 -17 -17 -16 平均值 16.75 3 εP 0 0 0 0 0 △εP 0 0 0 0 平均值 0 4 εP 1 5 32 47 63 79 △εP 17 15 1 6 16 平均值 16 5 εP 32 65 9 7 130 163 △εP 33 32 33 33 平均值 32.75 五、实验结果处理 1. 实验值计算 根据测得的各点应变值εi 求出应变增量平均值△εi ,代入胡克定律计算 各点的实验应力值,因1με=10-6ε,所以 各点实验应力计算: 应变片至中性层距离(mm ) 梁的尺寸和有关参数 Y 1 -20 宽 度 b = 20 mm Y 2 -10 高 度 h = 40 mm Y 3 0 跨 度 L = 620mm (新700 mm ) Y 4 10 载荷距离 a = 150 mm Y 5 20 弹性模量 E = 210 GPa ( 新206 GPa ) 泊 松 比 μ= 0.26 惯性矩I z =bh 3/12=1.067×10-7m 4 =106667mm 4

材料物理性能 实验一材料弯曲强度测试

实验一 复合材料弯曲强度测定 一、实验目的 了解复合材料弯曲强度的意义和测试方法,掌握用电子万能试验机测试聚合物材料弯曲性能的实验技术。 二、实验原理 弯曲是试样在弯曲应力作用下的形变行为。弯曲负载所产生的盈利是压缩应力和拉伸应力的组合,其作用情况见图1所示。表征弯曲形变行为的指标有弯曲应力、弯曲强度、弯曲模量及挠度等。 弯曲强度f σ,也称挠曲强度(单位MPa ),是试样在弯曲负荷下破裂或达到规定挠度时能承受的最大应力。挠度s 是指试样弯曲过程中,试样跨距中心的顶面或底面偏离原始位置的距离(㎜)。弯曲应变f ε是试样跨度中心外表面上单元长度的微量变化,用无量纲的比值或百分数表示。挠度和应变的关系为:h L s f 62ε=(L 为试样跨度,h 为试样厚度)。 当试样弯曲形变产生断裂时,材料的极限弯曲强度就是弯曲强度,但是,有些聚合物在发生很大的形变时也不发生破坏或断裂,这样就不能测定其极限弯曲强度,这时,通常是以试样外层纤维的最大应变达到5%时的应力作为弯曲屈服强度。 与拉伸试验相比,弯曲试验有以下优点。假如有一种用做梁的材料可能在弯曲时破坏,那么对于设计或确定技术特性来说,弯曲试验要比拉伸试验更适用。制备没有残余应变的弯曲试样是比较容易的,但在拉伸试样中试样的校直就比较困难。弯曲试验的另一优点是在小应变下,实际的形变测量大的足以精确进行。 弯曲性能测试有以下主要影响因素。 ① 试样尺寸和加工。试样的厚度和宽度都与弯曲强度和挠度有关。 ② 加载压头半径和支座表面半径。如果加载压头半径很小,对试样容易引起较大的剪切力而影响弯曲强度。支座表面半径会影响试样跨度的准确性。 ③ 应变速率。弯曲强度与应变速率有关,应变速率较低时,其弯曲强度也偏低。 ④ 试验跨度。当跨厚比增大时,各种材料均显示剪切力的降低,可见用增大跨厚比可减少剪切应力,使三点弯曲更接近纯弯曲。 ⑤ 温度。就同一种材料来说,屈服强度受温度的影响比脆性强度大。 三、实验仪器 WDW1020型电子万能试验机 图1 支梁受到力的作用而弯曲的情况

薄板弯曲实验报告

金属薄板的弯曲实验报告 1.实验目的 1)了解金属薄板弯曲变形过程及变形特点。 2)熟悉衡量金属薄板弯曲性能的指标——最小相对弯曲半径主要影响因素。 3)掌握测定最小相对弯曲半径的实验方法。 2.实验内容 1)认识弯曲过程,分析板料轧制纤维方向和板料成形性能对相对弯曲半径(R/t)的影 响。 2)了解如何通过调整行程完成指定弯曲角度的弯曲,如何进行定位完成指定边高的弯 曲,分析板厚和弯曲角度对相对弯曲半径的影响。 3)观察弯曲过程和弯曲回弹现象。 4)掌握万能角度尺、半径规等测量工具的使用,测量模具尺寸参数和板料基本尺寸。 5)熟悉板料折弯机的操作使用。 3.实验原理 弯曲是将板料、型材或管材在弯矩作用下弯成一定曲率和角度的制件的成形方法。在生产中由于所用的工具及设备不同,因而形成了各种不同的弯曲方法,但各种方法的变形过程及变形特点都存在着一些共同的规律。 弯曲开始时,如图1(a)所示,凸、凹模与金属板料在A、B处相接触,凸模在A点处所施的外力为2F,凹模在B点处产生的反力与此外力构成弯曲力矩M=2Fl0。随着凸模逐渐进入凹模,支承点B将逐渐向模中心移动,即力臂逐渐变小,由l0变为l1,…,l k,同时弯曲件的弯曲圆角半径逐渐减小,由r0变为r1,…,r k。当板料弯曲到一定程度时,如图1(c)所示,板料与凸模有三点相互接触,这之后凸模便将板料的直边朝与以前相反的方向压向凹模,形成五点甚至更多点接触。最后,当凸模在最低位置是,如图1(d)所示,板料的角部和直边均受到凸模的压力,弯曲件的圆角半径和夹角完全与凸模吻合,弯曲过程结束。 (a)(b)(c)(d) 图1 弯曲过程示意图 和所有的塑性加工一样,弯曲时,在毛坯的变形区里,除产生塑性变形外,也一定存在有弹性变形。当弯曲工作完成并从模具中取出弯曲件时,外加的载荷消失,原有的弹性变形也随着完全或部分地消失掉,其结果表现为在卸载过程中弯曲毛坯形状与尺寸的变

弯曲正应力实验报告

一、实验目的 1、用电测法测定梁纯弯曲时沿其横截面高度的正应变(正应力)分布规律; 2、验证纯弯曲梁的正应力计算公式。 3、初步掌握电测方法,掌握1/4桥,1/2桥,全桥的接线方法,并且对试验结果及误差进行比较。 二、实验仪器和设备 1、多功能组合实验装置一台; 2、TS3860型静态数字应变仪一台; 3、纯弯曲实验梁一根。 4、温度补偿块一块。 三、实验原理和方法 弯曲梁的材料为钢,其弹性模量E=210GPa ,泊松比μ=0.29。用手转动实验装置上面的加力手轮,使四点弯上压头压住实验梁,则梁的中间段承受纯弯曲。根据平面假设和纵向纤维间无挤压的假设,可得到纯弯曲正应力计算公式为: x M y I σ= 式中:M 为弯矩;x I 为横截面对中性轴的惯性矩;y 为所求应力点至中性轴的距离。由上式可知,沿横截面高度正应力按线性规律变化。 实验时采用螺旋推进和机械加载方法,可以连续加载,载荷大小由带拉压传感器的电子测力仪读出。当增加压力P ?时,梁的四个受力点处分别增加作用力/2P ?,如下图所示。 为了测量梁纯弯曲时横截面上应变分布规律,在梁纯弯曲段的侧面各点沿轴线方向布置了3片应变片,各应变片的粘贴高度见弯曲梁上各点的标注。此外,在梁的上表面和下表面也粘贴了应变片。 如果测得纯弯曲梁在纯弯曲时沿横截面高度各点的轴向应变,则由单向应力状态的虎克定律公式E σε=,可求出各点处的应力实验值。将应力实验值与应力理论值进行比较,以验证弯曲正应力公式。 σ实 =E ε 实 式中E 是梁所用材料的弹性模量。

图3-16 为确定梁在载荷ΔP 的作用下各点的应力,实验时,可采用“增量法”,即每增加等量的载荷ΔP 测定各点相应的应变增量一次,取应变增量的平均值Δε 实 来依次求出各点应力。 把Δσ实与理论公式算出的应力Z I MY =σ比较,从而验证公式的正确性,上述理论公式中的M 应按下式计算: Pa ?= M 2 1 (3.16) 四、实验步骤 1、检查矩形截面梁的宽度b 和高度h 、载荷作用点到梁支点距离a ,及各应变片到中性层的距离i y 。 2、检查压力传感器的引出线和电子秤的连接是否良好,接通电子秤的电源线。检查应变仪的工作状态是否良好。分别采用1/4桥,1/2桥,全桥的接线方法进行测量,其中1/4桥需要接温度补偿片,1/2桥通过交换接线方式分别进行两次试验来比较试验结果。 3、根据梁的材料、尺寸和受力形式,估计实验时的初始载荷0P (一般按00.1 s P σ=确定)、最大载荷max P (一般按max 0.7s P σ≤确定)和分级载荷P ? (一般按加载4~6级考虑)。 本实验中分四次加载。实验时逐级加载,并记录各应变片在各级载荷作用下的读数应变。 4、实验完毕后将载荷卸掉,关上电阻应变仪电源开关,并请教师检查实验数据后,方可离开实验室。 五、数据处理

纯弯曲实验报告

实验二:梁的纯弯曲正应力试验 一、实验目的 1、测定矩形截面梁在只受弯矩作用的条件下,横截面上正应力的大小随高度 变化的分布规律,并与理论值进行比较,以验证平面假设的正确性,即横截面上正应力的大小沿高度线性分布。 2、学习多点静态应变测量方法。 二:实验仪器与设备: ①贴有电阻应变片的矩形截面钢梁实验装置 1台 ②DH3818静态应变测试仪 1件 三、实验原理 (1)受力图 主梁材料为钢梁,矩形截面,弹性模量E=210GPa,高度h=40.0mm,宽度 b=15.2mm。旋动转轮进行加载,压力器借助于下面辅助梁和拉杆(对称分布)的传递,分解为大小相等的两个集中力分别作用于主梁的C、D截面。对主梁进行受力分析,得到其受力简图,如图1所示。 (2)力图 分析主梁的受力特点,进行求解并画出其力图,我们得到CD段上的剪力为零,而弯矩则为常值,因此主梁的CD段按理论描述,处于纯弯曲状态。主梁的力简图,如图2所示。 Page 1 of 10

(3)弯曲变形效果图(纵向剖面) (4)理论正应力 根据矩形截面梁受纯弯矩作用时,对其变形效果所作的平面假设,即横截面上只有正应力,而没有切应力(或0=τ),得到主梁纯弯曲CD 段横截面上任一高度处正应力的理论计算公式为 z i i I y M = 理论σ 其中,M 为CD 段的截面弯矩(常值),z I 为惯性矩, i y 为所求点至中性轴的距 离。 (5)实测正应力 测量时,在主梁的纯弯曲CD 段上取5个不同的等分高度处(1、2、3、4、5),沿着与梁的纵向轴线平行的方向粘贴5个电阻应变片,如图4所示。 在矩形截面梁上粘贴上如图5.3所示的2组电阻应变片,应变片1-5分别贴在横力弯曲区,6-10贴在纯弯曲区,同一组应变片之间的间隔距离相等。 Page 2 of 10

纯弯梁的弯曲应力测定实验报告

纯弯梁的弯曲应力测定 一.实验目的 1.掌握电测法的测试原理,学习运用电阻应变仪测量应变的方法 2.测定梁弯曲时的正应力分布,并与理论计算结果镜像比较,验证弯梁正应力公式。二.实验设备 1.钢卷尺 2.游标卡尺 3.静态电阻应变仪 4.纯弯梁实验装置 三.实验原理 本实验采用的是用低碳钢制成的矩形截面试件,实验装置如图所示。 计算各点的实测应力增量公式:i i E 实实εσ?=?计算各点的理论应力增量公式:z i i I My ?= ?σ式中?M=12?P×a ,Iz=bh312 四.试验方法 1.测定弯梁试件尺寸:h,b,L,a 2.电阻应变仪大调整与桥路连接 3.接通力传感器显示屏电源,当试件未受力时,调节电阻应变仪零点。 4.缓慢转动手轮,每增加1KN 载荷,测相应测点的应变值,直到载荷为4.5KN 为止。 5.卸去载荷,应变仪,力传感器显示屏复位。应变测量结束。 五.实验数据测定 试件材料的弹性模量E =210GPa

2.试件尺寸及贴片位置 试件尺寸/m贴片位置/m b0.02y6-0.020 3.应变读数记录 读 次 载荷 P/kN 载荷 增量 Δ P/k N 电阻应变仪读数(με) 测点1测点2测点3测点4测点5测点6测点7 S1Δ S 1 S2Δ S2 S3Δ S3 S4Δ S4 S5Δ S5 S6Δ S6 S7Δ S7 10.51010-290340-460480-61062 2 1.51-2934-4648-6162 1.51-1-3631-4848-6764 3 2.50-6565-9496-12 812 6 16-2333-4256-6369 4 3.56-8898-13 615 2 -19 1 19 5 12-3139-4648-5964 5 4.58-11137-1820-2525

纯弯曲正应力分布实验报告

竭诚为您提供优质文档/双击可除纯弯曲正应力分布实验报告 篇一:弯曲正应力实验报告 一、实验目的 1、用电测法测定梁纯弯曲时沿其横截面高度的正应变(正应力)分布规律; 2、验证纯弯曲梁的正应力计算公式。 3、初步掌握电测方法,掌握1/4桥,1/2桥,全桥的接线方法,并且对试验结果及误差进行比较。 二、实验仪器和设备 1、多功能组合实验装置一台; 2、Ts3860型静态数字应变仪一台; 3、纯弯曲实验梁一根。 4、温度补偿块一块。三、实验原理和方法 弯曲梁的材料为钢,其弹性模量e=210gpa,泊松比μ =0.29。用手转动实验装置上面的加力手轮,使四点弯上压 头压住实验梁,则梁的中间段承受纯弯曲。根据平面假设和纵向纤维间无挤压的假设,可得到纯弯曲正应力计算公式为:?? m

yIx 式中:m为弯矩;Ix为横截面对中性轴的惯性矩;y为所求应力点至中性轴的距离。由上式可知,沿横截面高度正应力按线性规律变化。 实验时采用螺旋推进和机械加载方法,可以连续加载,载荷大小由带拉压传感器的电子测力仪读出。当增加压力?p 时,梁的四个受力点处分别增加作用力?p/2,如下图所示。 为了测量梁纯弯曲时横截面上应变分布规律,在梁纯弯曲段的侧面各点沿轴线方向布置了3片应变片,各应变片的粘贴高度见弯曲梁上各点的标注。此外,在梁的上表面和下表面也粘贴了应变片。 如果测得纯弯曲梁在纯弯曲时沿横截面高度各点的轴 向应变,则由单向应力状态的虎克定律公式??e?,可求出各点处的应力实验值。将应力实验值与应力理论值进行比较,以验证弯曲正应力公式。 σ实=eε 式中e是梁所用材料的弹性模量。 实 图3-16 为确定梁在载荷Δp的作用下各点的应力,实验时,可采用“增量法”,即每增加等量的载荷Δp测定各点相应的应变增量一次,取应变增量的平均值Δε

纯弯梁正应力分布规律实验

中国矿业大学(北京) 工程土木工程_______专业_______班_________组 实验者姓名:__________实验日期:___________年____月___日 实验六纯弯曲正应力分布规律实验 一.实验目的 1.用电测法测定梁纯弯曲时沿其横截面高度的正应变(正应力)的 分布规律。 2.验证纯弯曲梁的正应力计算公式。 二.实验仪器与设备 1.多功能工程力学实验台。 2.应力&应变综合参数测试仪一台。 3.矩形截面钢梁。 4.温度补偿块(或标准无感电阻)。 5.长度测量尺。 三.实验原理及方法 四.实验步骤

1.测量梁矩形截面的宽度b 和高度h 、载荷作用点到梁支点的距离a ,并测量各应变片到中性层的距离y I 。 2.将拉压传感器接至应力&应变综合参数测试仪中。 3.应变片连接采用1/4桥连接方式,将待测试应变片连接在A 、B 两端,将B 、B 1短接,在桥路选择上,将A 、D 两端连接补偿片,D 1、D 2短线连接即可。 4.本次实验的载荷范围为0~2kN ,在此范围内,采用分级加载方 式(一般分4~6级),实验时逐级加载,分别记录各应变片在各级载荷作用下的应变值。 五.实验结果处理 1.按实验记录数据求出各点的应力实验值,并计算出各点的应 力理论值。计算出它们的相对误差。 2.按同一比例分别画出各点应力的实验值和理论值沿横截面高度 的分布曲线,将两者进行比较,如两者接近,则说明弯曲正应 力的理论分析是可行的。 3.计算6#和5#的比值,若 μεε≈5 6 ,则说明纯弯曲梁为单向应力状 态。

4.实验数据可参照下表: 应变片至中性层的距离 梁宽度b= 20.84 mm;梁高度h= 40.15mm;施力点到支座距离l= 106 mm 应变片在各级载荷下的应变值 各测试点应力实验结果 P=400N

弯曲与扭转实验报告

《材料力学实验报告-弯曲扭转》

扭转实验 一、实验目的 1.学习扭转实验机的构造原理,并进行操作练习。 2.测定低碳钢的剪切屈服极限、剪切强度极限和铸铁的剪切强度极限。3.观察低碳钢和铸铁在扭转过程中的变形和破坏情况。 二、实验仪器 扭转实验机,游标卡尺。 三.实验原理 塑性材料和脆性材料在扭转时的力学性能。(参考材料力学课本及其它相关书籍) 四、实验步骤 1.低碳钢实验 (1)量取试件直径。在试件上选取3个位置,每个位置互相垂直地测量2次直径,取其平均值;然后从3个位置的平均直径值中取最小值作为试件的直径。 (2)将扭转实验机刻度盘的从动针调至靠近主动针。主动针的调零方式为自动调整,如果主动针不在零位,应通知老师,由老师进行调整。绝对不能用调从动针的方法,将两针调至零位。 (3)把试件安装在扭转试验机的夹头内,并将螺丝拧紧(勿太用力)。安装时,一定要注意主动夹头的夹块要保持水平(固定夹头的夹块总是水平的),以避免引起初始扭矩。如果已经出现小量的初始扭矩,只要不超过5N*m,可以开始加载。另外,试件在水平面和垂直面上不能歪斜,否则加载后试件将发生扭曲。 (4)打开绘图记录器的开关;将调速旋钮置于低速位置。开始用档慢速加载,每增加 5N*m 的扭矩,记录下相应的扭转角度。实验过程中,注意观察试件的变形情况和图,当材料发生流动时,记录流动时的扭矩值和 相应的扭转角度。另外,注意记录扭矩刚开始下降时的扭矩值和相应的扭转角度。扭矩值估读到0.1N*m。

(5)流动以后,继续加载,试件进入强化阶段,关闭记录器后,将电机速度选择在 档,加快加载速度。这时由于变形速度较快,可每增加180 度取一次扭转角度。直至试件扭断为止,记下断裂时的扭矩值 ,注意观察断 口的形状。注意,试件扭断后应立即停止加载,以便记录断裂时的扭转角度。 2.铸铁实验 操作步骤与低碳钢相同。因铸铁在变形很小时就破坏,所以只能用 档慢速加载。每增加5N*m 的扭矩,记录下相应的扭转角度。注意观 察铸铁试件在扭转过程中的变形及破坏情况,并记录试件扭断时的极限扭矩值 和相应的扭转角度。注意,试件扭断后应立即停止加载,以便记录断裂时的扭转角度。 五、实验记录 42.5m N ? 98m N ? 67.5m N ? 注:低碳钢的剪切流动极限及强度极限的计算公式中应该乘一系数3/4。原因是这样:圆轴扭转在弹性变形范围内剪应力分布如参考图(a)所示,对于塑性材料,当扭矩增大到一定数值后,试件表面应力首先达到流动极限 ,并逐渐向内 扩展,形成环形塑性区,如参考图(b)所示。若扭矩逐渐增大,塑性区也不断扩大。当扭矩达到 时,横截面上的剪应力大小近似为 ,如参考图(c)所示,在 这种剪应力分布形式下,剪应力公式为。

弯曲正应力实验报告

弯曲正应力实验 一、实验目的:1、初步掌握电测方法和多点测量技术。; 2、测定梁在纯弯和横力弯曲下的弯曲正应力及其分布规律。 二、设备及试样: 1. 电子万能试验机或简易加载设备; 2. 电阻应变仪及预调平衡箱; 3. 进行截面钢梁。 三、实验原理和方法: 1、载荷P 作用下,在梁的中部为纯弯曲,弯矩为1 M=2 Pa 。在左右两端长为a 的部分内为横力弯曲,弯矩为11 =()2 M P a c -。在梁的前后两个侧面上,沿梁的横截面高度,每隔 4 h 贴上平行于轴线上的应变片。温度补偿块要放置在横梁附近。对第一个待测应变片联同温度补偿片按半桥接线。测出载荷作用下各待测点的应变ε,由胡克定律知 E σε= 另一方面,由弯曲公式My I σ=,又可算出各点应力的理论值。于是可将实测值和理论值进 行比较。 2、加载时分五级加载,0F =1000N ,F ?=1000N ,max F =5000N ,缷载时进行检查,若应变差值基本相等,则可用于计算应力,否则检查原因进行复测(实验仪器中应变ε的单位是 610-)。 3、实测应力计算时,采用1000F N ?=时平均应变增量im ε?计算应力,即 i i m E σε?=?,同一高度的两个取平均。实测应力,理论应力精确到小数点后两位。 4、理论值计算中,公式中的3 1I=12 bh ,计算相对误差时 -100%e σσσσ= ?理测 理 ,在梁的中性层内,因σ理=0,故只需计算绝对误差。 四、数据处理 1、实验参数记录与计算: b=20mm, h=40mm, l=600mm, a=200mm, c=30mm, E=206GPa, P=1000N ?, max P 5000N =, k=2.19 3 -641I= =0.1061012 bh m ? 2、填写弯曲正应力实验报告表格

纯弯梁弯曲的应力分析实验报告

一、实验目的 1. 梁在纯弯曲时横截面上正应力大小和分布规律 2. 验证纯弯曲梁的正应力计算公式 3. 测定泊松比m 4. 掌握电测法的基本原理 二、实验设备 多功能实验台,静态数字电阻应变仪一台,矩形截面梁,游标卡尺 三、实验原理 1. 测定弯曲正应力 本实验采用的是用低碳钢制成的矩形截面试件,实验装置简图如下所示。 计算各点的实测应力增量公式:i i E 实实εσ?=? 计算各点的理论应力增量公式:z i i I My ?= ?σ 2.测定泊松比 计算泊松比数值:ε εμ' = 四、实验步骤 1.测量梁的截面尺寸h 和b ,力作用点到支座的距离以及各个测点到中性层的距离; 2.根据材料的许用应力和截面尺寸及最大弯矩的位置,估算最大荷载,即:[]σa bh 3F 2 max ≤ ,然后确定量程,分级载荷和载荷重量; 3.接通应变仪电源,分清各测点应变片引线,把各个测点的应变片和公共补偿片接到应变仪的相应通道,调整应变仪零点和灵敏度值; 4.记录荷载为F 的初应变,以后每增加一级荷载就记录一次应变值,直至加到n F ;

5.按上面步骤再做一次。根据实验数据决定是否再做第三次。 五、实验数据及处理 梁试件的弹性模量11101.2?=E Pa 梁试件的横截面尺寸h = 40.20 ㎜,b = 20.70 ㎜ 支座到集中力作用点的距离d = 90 ㎜ 各测点到中性层的位置:1y = 20.1 ㎜ 2y = 10.05 ㎜ 3y = 0 ㎜ 4y = 10.05 ㎜ 5y = 20.1 ㎜

六、应力分布图(理论和实验的应力分布图画在同一图上) 七、思考题 1.为什么要把温度补偿片贴在与构件相同的材料上? 答:应变片是比较高精度的传感元件,必须考虑温度的影响,所以需要把温度补偿片贴在与构件相同的材料上,来消除温度带来的应变。 2.影响实验结果的主要因素是什么? 答:影响本实验的主要因素:实验材料生锈,实验仪器精度以及操作的过程。

第一节 矩形截面梁的纯弯曲实验

第一节矩形截面梁的纯弯曲实验 一、实验目的 1.学习电测法的基本原理和静态电阻应变仪的使用方法。 2.学习电测法中的1/4桥、1/2桥和全桥的测量方法。 3.测量矩形截面梁在纯弯曲段中测点沿轴线方向的线应变,画出该线应变沿梁高度方向的变化规律,验证平面截面假设。 4.根据上述测量结果计算测点的正应力,并与理论计算值进行比较。 二、实验设备和仪器 1.多用电测实验台。 2.DH-3818型静态电阻应变仪。 3.SDX-I型载荷显示仪。 三、实验原理及方法 实验装置如图2-1所示,矩形截面梁采用低碳钢制成,其弹性模量GPa = E, 210 梁的尺寸为mm b,m m 40 h。在发生纯弯曲变形的梁段上,沿 = 20 100 = a,m m = 梁的沿轴线方向粘贴有5个应变片(其中应变片1位于梁的上表面,应变片2位于梁的上表面与中性层的中间,应变片3位于梁的中性层上,应变片4位于梁的中性层与下表面的中间,应变片5位于梁的下表面),另外在梁的支撑点以外粘贴有一个应变片作为温度补偿片。应变片的灵敏系数08 K。 = .2 1.应变测量 3种测量桥路的接线方法如下: 图2-1 矩形截面梁的纯弯曲 (1) 1/4桥测量方法 将5个工作片和温度补偿片按1/4桥形式分别接入电阻应变仪的5个通道中,组成5个电桥。具体接法:工作片的引线接在每个电桥的A、B端,温度补偿片接

在电桥的B 、C 端。当梁在载荷作用下发生弯曲变形时,工作片的电阻值将随着梁的变形而发生变化,电阻应变仪相应通道的输出应变为仪ε,于是测点的应变为 仪实εε= (2) 1/2桥测量方法 由于测点5与测点1的应变之间存在关系 15实实εε-= 测点4与测点2的应变之间存在关系 24实实εε-= 于是可将工作片5和1、4和2分别按1/2桥形式接入电阻应变仪的2个通道中,组成2个电桥。具体接法:工作片5接到一个电桥的A 、B 端,工作片1接到该电桥的B 、C 端;工作片4接到另一个电桥的A 、B 端,工作片2接到相应电桥的B 、C 端。当梁在载荷作用下发生弯曲变形时,电阻应变仪相应通道的输出应变为仪ε, 于是测点5和测点4的应变为 2/仪实εε= (3) 全桥测量方法 由于测点5、4、2和1的应变之间存在关系 124522实实实实εεεε-=-== 于是可将工作片5、4、2和1以全桥形式接入电阻应变仪的1个通道中,组成1个电桥。具体接法:工作片5接到电桥的A 、B 端,工作片1接到的B 、C 端,工作片4接到C 、D 端,工作片2接到D 、A 端。注意:工作片4和5可以对换,工作片1和2可以对换。当梁在载荷作用下发生弯曲变形时,电阻应变仪相应通道的输出应变为仪ε,于是对应于测点5的应变为 3/仪实εε= 2.应力计算 (1) 应力的测量值 根据胡克定律,可计算出相应测点的正应力为 实实εσE = 式中,E 为梁材料的弹性模量。 (2) 应力的理论值 梁在纯弯曲变形时,横截面上的正应力理论计算公式为 z I y M ?=理σ 式中:2/Fa M =为横截面上的弯矩;123/bh I z =为梁的横截面对中性轴的惯性矩; y 为中性轴到欲求应力点的距离。 四、实验步骤 1.预热电阻应变仪和载荷显示仪。

梁弯曲正应力测量实验报告

厦 门 海 洋 职 业 技 术 学 院 编号:XH03JW024-05/0 实训(验) 报告 班级: 姓名: 座号: 指导教师: 成绩: 课程名称: 实训(验): 梁弯曲正应力测量 年 月 日 一、 实训(验)目的: 1、掌握静态电阻应变仪的使用方法; 2、了解电测应力原理,掌握直流测量电桥的加减特性; 3、分析应变片组桥与梁受力变形的关系,加深对等强度梁概念的理解。 二、 实训(验)内容、记录和结果(含数据、图表、计算、结果分析等) 1、实验数据: (1) 梁的尺寸: 宽度b=9mm ;梁高h=30mm ;跨度l =600mm ;AC 、BD :弯矩a=200mm 。测点距轴z 距离: 21h y ==15mm ;42h y ==7.5mm ;3y =0cm ;-=-=44h y 7.5mm ;-=-=2 5h y 15mm ;E=210Gpa 。 抗弯曲截面模量W Z =bh 2/6 惯性矩J Z =bh 3 /12 (2) 应变)101(6-?ε记录: (3) 取各测点ε?值并计算各点应力:

1ε?=16×10-6 ;2ε?=7×10-6 ;3ε?= 0 ;4ε?=8×10-6 ;5ε?=15×10-6 ; 1σ?=E 1ε?=3.36MPa ;2σ?=E 2ε?=1.47MPa ;3σ?=0 ; 4σ?=E 4ε?=1.68MPa ;5σ?=E 5ε?=3.15MPa ; 根据ΔM W =ΔF ·a/2=5 N ·m 而得的理论值: 1σ?=ΔM W /W Z =3.70MPa ;2σ?=ΔM W h/4(J Z )=1.85MPa ;3σ?=0 ; 4σ?=ΔM W h/4(J Z )=1.85MPa ;5σ?=ΔM W /W Z =3.70MPa ; (4) 用两次实验中线形较好的一组数据,将平均值ε?换算成应力εσ?=E ,绘在坐标 方格纸上,同时绘出理论值的分布直线。 如有侵权请联系告知删除,感谢你们的配合!

纯弯梁弯曲的应力分析实验报告

纯弯梁弯曲的应力分析实验报告 一、实验目的 1. 梁在纯弯曲时横截面上正应力大小和分布规律 2. 验证纯弯曲梁的正应力计算公式 3. 测定泊松比m 4. 掌握电测法的基本原理 二、实验设备 多功能实验台,静态数字电阻应变仪一台,矩形截面梁,游标卡尺三、实验原理 1. 测定弯曲正应力 本实验采用的是用低碳钢制成的矩形截面试件,实验装置简图如下所示。 计算各点的实测应力增量公式:,,,E,,实i实i ,Myi,,,计算各点的理论应力增量公式: iIz 2.测定泊松比 ',,计算泊松比数值: ,, 四、实验步骤 1.测量梁的截面尺寸h和b,力作用点到支座的距离以及各个测点到中性层的距离; 2.根据材料的许用应力和截面尺寸及最大弯矩的位置,估算最大荷载,即:

2bhF,,,,,然后确定量程,分级载荷和载荷重量; max3a 3.接通应变仪电源,分清各测点应变片引线,把各个测点的应变片和公共补偿片接到应变仪的相应通道,调整应变仪零点和灵敏度值; 4.记录荷载为F的初应变,以后每增加一级荷载就记录一次应变值,直至加到 ; Fn 5.按上面步骤再做一次。根据实验数据决定是否再做第三次。 五、实验数据及处理 11E,2.1,10梁试件的弹性模量Pa 梁试件的横截面尺寸, 40.20 ?,, 20.70 ? hb 支座到集中力作用点的距离, 90 ? d 各测点到中性层的位置:, 20.1 ? , 10.05 ? , 0 ? yyy312 , 10.05 ? , 20.1 ? yy54 ,6静态电子应变仪读数 (,10)载荷(N) 1点 2点 3点 4点 5点 6点 读数增量读数增量读数增量读数增量读数增量增量读数 F,F ,,,,,,,,, ,,,,,,,,,335566112244 0 0 0 0 0 0 0 492 -27 -12 1 16 26 -10 492 -27 -12 1 16 26 -10 506 -31 -14 1 16 28 -8 998 -58 -26 2 32 54 -18 450 -10 -6 3 8 15 -4 1448 -68 -32 5 40 69 -22 262 -20 -6 1 8 12 -2 ,,,,,, ,,,,,,,F 3561241710 -88 -38 6 48 81 -24 427.5 -22 -9.5 1.5 12 20.25 -6 应变片位置 1点 2点 3点 4点 5点 6点 实验应力值/MPa -4.62 -2.00 0.32 2.52 4.25 -1.26

弯曲正应力实验报告

弯曲正应力实验报告

矩;y为所求应力点至中性轴的距离。由上式可知,沿横截面高度正应力按线性规律变化。 实验时采用螺旋推进和机械加载方法,可以连续加载,载荷大小由带拉压传感器的电子测力仪读出。当增加压力P?时,梁的四个受力点处分别增加作用力/2 ?,如下图所示。 P 为了测量梁纯弯曲时横截面上应变分布 规律,在梁纯弯曲段的侧面各点沿轴线方向布置了3片应变片,各应变片的粘贴高度见弯曲梁上各点的标注。此外,在梁的上表面和下表面也粘贴了应变片。 如果测得纯弯曲梁在纯弯曲时沿横截面高度各点的轴向应变,则由单向应力状态的虎 克定律公式E σε =,可求出各点处的应力实验值。将应力实验值与应力理论值进行比较,以验证弯曲正应力公式。 σ =E 实 ε 实 式中E是梁所用材料的弹性模量。

图 3-16 为确定梁在载荷ΔP 的作用下各点的应力,实验时,可采用“增量法”,即每增加等量的载荷ΔP 测定各点相应的应变增量一次,取应变增量的平均值Δε实来依次求出各点应力。 把Δσ实与理论公式算出的应力Z I MY =σ比较,从而验证公式的正确性,上述理论公式中的M 应按下式计算: Pa ?= M 2 1 (3.16) 四、实验步骤 1、检查矩形截面梁的宽度b 和高度h 、载荷作用点到梁支点距离a ,及各应变片到中

性层的距离i y 。 2、检查压力传感器的引出线和电子秤的连接是否良好,接通电子秤的电源线。检查应变仪的工作状态是否良好。分别采用1/4桥,1/2桥,全桥的接线方法进行测量,其中1/4桥需要接温度补偿片,1/2桥通过交换接线方式分别进行两次试验来比较试验结果。 3、根据梁的材料、尺寸和受力形式,估计实验时的初始载荷0 P (一般按00.1s P σ=确定)、最 大载荷max P (一般按max 0.7s P σ≤确定)和分级载荷P ? (一般按加载4~6级考虑)。 本实验中分四次加载。实验时逐级加载,并记录各应变片在各级载荷作用下的读数应变。 4、实验完毕后将载荷卸掉,关上电阻应变仪电源开关,并请教师检查实验数据后,方可离开实验室。 五、数据处理 1、原始数据。 其中a=80mm b=19.62mm h=39.38mm 1/4桥 荷载 测点 测点 测点 测点 测点

相关文档